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Abstract

Generative modelling has seen enormous practi-
cal advances over the past few years. Evaluating
the quality of a generative system however is of-
ten still based on subjective human inspection. To
overcome this, very recently the research com-
munity has turned to exploring formal evaluation
metrics and methods. In this work, we propose
a novel evaluation paradigm based on a two way
nearest neighbor test. We define a novel measure
of mutual coverage for two probability distribu-
tions. From this, we derive an empirical analogue
and show analytically that it exhibits favorable the-
oretical properties while it is also straightforward
to compute. We show that, while algorithmically
simple, our derived method is also statistically
sound. In contrast to previously employed dis-
tance measures, our measure naturally stems from
a notion of local discrepancy, which can be ac-
cessed separately. This provides more detailed
information to practitioners for diagnosing where
their generative models will perform well, or con-
versely where their models fail. We complement
our analysis with a systematic experimental eval-
uation and comparison to other recently proposed
measures. Using a wide array of experiments we
demonstrate our algorithm’s strengths over other
existing methods and and confirm our results from
the theoretical analysis.

1 INTRODUCTION

Generative modelling is a rapidly expanding field of ma-
chine learning, with increased interest since the introduction
of Generative Adversarial Networks (GANs)(Goodfellow
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et al., 2014; Arjovsky et al., 2017; Zhang et al., 2018; Karras
et al., 2019; Brock et al., 2019). As is typical for unsuper-
vised machine learning tasks, evaluating the quality of a
generative system is often still based on subjective human
inspection rather than formal quantitative measures. To bet-
ter guide the development of new models recent research has
proposed novel evaluation metrics to quantitatively grade a
model’s performance (Sajjadi et al., 2018; Kynkäänniemi
et al., 2019; Naeem et al., 2020; Djolonga et al., 2020; Borji,
2022). A promising line of work introduced the idea of mea-
suring mutual coverage analogous to the statistical notions
of precision and recall (Sajjadi et al., 2018). The main idea
is to evaluate both the degree to which a generative model
produces instances that are actually realistic (is the genera-
tive distribution covered by the true distribution?) and the
degree to which it manages to reflect the full diversity of
the true distribution that it is aiming to mimic (is the true
distribution covered by the generative distribution?).

These approaches are appealing since they assess a genera-
tive model’s performance through general algorithmic tools
that are not tied to a specific parametric form of the genera-
tive distribution nor would they require direct access to the
probability measure. While some generative models such as
kernel density estimators (KDE) (Rosenblatt, 1956) or nor-
malizing flows (Tabak and Vanden-Eijnden, 2010) construct
explicit probability distributions, other types of generative
models, such as GANs (Goodfellow et al., 2014) and varia-
tional auto encoders (VAEs) (Kingma and Welling, 2014)
only implicitly correspond to a probability distribution. Not
having direct access to this distribution makes grading such
models in a non-subjective manner more challenging. The
recent line of research on precision and recall type of metrics
has thus aimed at developing methods to grade generative
models directly based on the samples created (Sajjadi et al.,
2018; Kynkäänniemi et al., 2019; Djolonga et al., 2020;
Naeem et al., 2020).

The problem then becomes a way to assess the similarity
two probability distributions, in a quantitative yet transpar-
ent way, with access to samples from the two distributions
only. While the originally proposed notions of precision
and recall for generative models was based on an intrigu-
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ing formal foundation (Sajjadi et al., 2018; Djolonga et al.,
2020), it lacked a clear algorithmic way to instantiate the
formalism. This again lead to the possibility of arbitrary
choices affecting the overall outcome, and thus lacked trans-
parency. Follow up studies have proposed capturing the idea
of measuring precision and recall through nearest neighbor
type tests, and thus improved the framework on the front of
algorithmic clarity (Kynkäänniemi et al., 2019; Naeem et al.,
2020). However, these latter frameworks lacked a concise
formal backup with a provable relation to population level
properties.

Our work aims to combine the algorithmic appeal of the
nearest neighbor based methods with a statistically sound
framework. We develop a novel version of the nearest neigh-
bor type precision and recall measures, which we term Preci-
sion Recall Cover (PRC). Our measure stems from a natural
population level notion that captures the degree to which
relevant areas of one distribution receive sufficient coverage
by the other distribution. “Relevant” and “sufficient” are
quantified by two parameters β and α that allow for fine-
tuning the coverage requirements. Its empirical version then
becomes a k, k′-nearest neighbor test, where coverage is
defined by a k′-nearest neighbor ball from one distribution
obtaining at least k sample points from the other distribu-
tion. We provide some basic formal analysis of both the
population level and empirical version of the precision recall
cover measure and thereby argue for its statistical sound-
ness. Additionally we provide an experimental evaluation of
our measure, comparing its performance as well as failure
and success cases with the previous precision recall type
measures. Finally, we provide a proof of concept of how
our measure would assess the behavior of a GAN.

1.1 Related Work

In recent years the topic of metrics for generative models
has received immense attention and there is now a signifi-
cant amount of publications dedicated to this topic (Borji,
2022; Kynkäänniemi et al., 2019; Djolonga et al., 2020;
Sajjadi et al., 2018; Naeem et al., 2020; Salimans et al.,
2016; Heusel et al., 2017). We will focus our discussion
here on evaluation measures most relevant to ours. One of
the first scores to assess GANs were the Frechet Inception
Distance (FID) (Heusel et al., 2017) and the Inception Score
(IS) (Salimans et al., 2016).

FID models both distributions as having been generated by
multivariate normal distributions (Gaussians). It then fits the
sample sets to the respective Gaussians and measures the
distance of the Gaussians based on their parameters. While
it is still a popular metric, the quality of such a measure is
inherently dependent on how appropriate the assumption of
modelling the distributions as Gaussians was. For typical
generative models designed to produce a variety of outputs,
such modelling is likely not adequate.

A recent line of work has aimed at assessing generative
models through concepts analogous to precision and recall.
The first study in this line introduced a metric aimed at
measuring how much each distribution covered the support
of the other (Sajjadi et al., 2018). The work provides an
elegant framework of measuring mutual coverage by means
of representing the two distribution as mixtures of joint and
exclusive components, the feasible sets of mixture coeffi-
cients then yielding a Precision Recall curve. They coin
their work Precision Recall (PR). While formally very ele-
gant, the framework does not come with a direct algorithmic
analogue. The implementation of this framework thus pro-
vided a backdoor to algorithm choices influencing the actual
behaviour of the measure.

Follow up studies have aimed at providing a remedy by
basing the precision recall evaluation on nearest neighbor
computations. A metric called Improved Precision Recall
(IPR) (Kynkäänniemi et al., 2019) maintains the motivations
of the original paper on precision-recall type metrics (Sajjadi
et al., 2018) by seeking out regions where one distribution is
covered by the other and vice versa. As a nearest neighbor
based measure, IPR is naturally based on samples from
both the true distribution P , and the generative distribution
Q. However, IPR does not come with a population level
analogue, and thereby does not allow for any analysis of
statistical consistency.

One of the latest additions to this line of work models no-
tions of Density and Coverage (DC), again by means of a
nearest neighbor based computation Naeem et al. (2020).
The aim here was to improve over the previously proposed
IPR, in particular IPR’s sensitivity to outliers, by basing the
measure on a weighted k-nearest neighbors computation.
However, as IPR, DC also lacks a population level analogue.

1.2 Overview and Summary of Contributions

We formally define our novel notion of mutual coverage of
two probability distributions based on the idea of assessing
precision and recall of a generative model in Section 2. We
provide some initial analysis of properties of this notion to
motivate and justify our formalism in Section 2.2. More
specifically, we show how suitable choices of the parameters
α and β in our measure will allow identification of identical
and disjoint supports as well as approximate measures of
how much mass each distribution assigns to the intersection
of their supports, their “joint support”. We then provide an
empirical analogue of our notion of precision recall cover
and outline how to compute it in Section 2.3. We provide
statistical guarantees for our empirical version in Section 3.
Further, our analysis reveals an attractive local property. We
show that the method will locally correctly identify regions
of sufficient coverage. This may be used as a diagnostic
tool when assessing the performance of a generative model.
Finally, in Section 4 we present a variety empirical evalu-
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ations and tests of our measure. Comparing to previously
established k-nearest neighbor based methods, we establish
that our measure exhibits favorable convergence properties
and more robustness with respect to the choice of k thank
the prior k-nn based measures. Further, we empirically
demonstrate (again contrasting with the earlier k-nn based
methods) that our measure yields correct assessments of
real life (image) data and generative models (VAEs and
GANs). For these, we systematically vary the quality of
diversity of generated samples through a variety of means
and show how our measure correctly assesses the changes.
All proofs as well as details and additional analysis and
empirical evaluations are in the appendix to save space.

2 PRECISION RECALL COVER

In this section we introduce some preliminaries and notation.
Then we discuss motivation and consequently defined our
precision recall cover measure for two distributions on the
population level. In the next subsection, we then present an
empirical analogue to our measure.

2.1 Setup and Definitions

We consider a space X ⊆ Rd and two distributions P
and Q over X . We will think of these as the true data
generating distribution P , and the generated distribution
Q that is induced by some learned generative model. We
use the notation x ∼ P to mean a point x sampled from
distribution P . We use the notation P̂ = (x1, x2, . . . , xn)
and Q̂ = (y1, y2, . . . , ym) for i.i.d. samples from P and
Q respectively. The empirical distributions induced by the
samples (uniform distributions over the sample points) are
then denoted by Pn and Qm. For simplicity of presentation,
we will assume that both P and Q admit continuous density
functions dP : X → R and dQ : X → R respectively. We
will use the notation supp(P ) and supp(Q) to denote the
supports of the distributions P and Q respectively.

We will also use notation such as Q(A) to denote the proba-
bility of event A occurring with respect to probability distri-
bution Q. For our proposed evaluation measure, the events
of importance will be balls in Rd. We will let BP (x, β)
denote the smallest ball of probability mass at least β with
respect to probability distribution P centered at point x.
Since we assume that our distributions have a continuous
density function, there always exists balls BP (x, β) of mass
exactly β. For the empirical distributions, BP̂ (x,

k
n ) will

denote a k-nearest neighbor ball with respect to sample set
P̂ around domain point x.

Several recent studies attempt to highlight the fidelity and
diversity of generated samples (Naeem et al., 2020; Sajjadi
et al., 2018; Kynkäänniemi et al., 2019). This typically
entails measuring how much each distribution covers the
support of the other. Usually, precision is defined as the

portion of the support ofQ that is in the support of P as well.
Conversely, recall is defined as the portion of the support of
P that is in the support of Q as well.

Our notions of precision cover and recall cover aim to cap-
ture the intuition that we should only care about a region
being covered (by the other distribution) if it has a at least
certain probability mass. In the context of a learned genera-
tive model, if an area has a negligibly small probability in
terms of the true distribution, then we may not care about the
generative model not being able to generate instances in that
area. Conversely, if the generative model has a negligibly
small probability of generating a certain type of instances,
then we may not be too concerned about how likely such
instances are generated by the true process.

These considerations are accounted for by the two parame-
ters α and β in the definition (below) of our precision-recall
cover measure. The parameters α and β provide “knobs" on
the cut-off for an area to be considered “negligibly small”
and correspondingly for coverage to be considered “suffi-
cient”.

Definition 1 (Precision Recall Cover (PRC)). Let P and
Q be two probability distributions over some space X , and
let α, β ∈ [0, 1] with α ≤ β be given. Then we define the
(α, β)-precision coverage of P by Q by

PCα,β(P,Q) = P
y∼Q

[P (BQ(y, β))) ≥ α] (1)

Conversely, we define the (α, β)-recall coverage of P by Q
by

RCα,β(P,Q) = P
x∼P

[Q(BP (x, β))) ≥ α] (2)

The precision version of this measure takes two distributions,
and for each point y from Q considers a ball of probability
mass β. The measure reflects what portion of these balls
have probability mass at least α with respect to P . The
choice of α and β allow for generality and for the user
to fine tune the sensitivity of the evaluation measure. For
instance, perhaps our distribution P is completely disjoint
from Q however the points from each distribution are very
close in Rd, we may not want to punish this behaviour as
badly as for points that are completely disjoint and very far
from each other. Recall is the analogous measure with the
role of the two distributions swapped.

2.2 Population Level Properties of Precision Recall
Cover

To further motivate our proposed measures, we start by
stating some simple properties of our proposed measure.

Observation 1. Let X ⊆ Rd be some domain and P and
Q be two distributions over X . Then:

1. PCα,β(P, P ) = RCα,β(P, P ) = 1 for all 0 < α ≤
β ≤ 1
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2. PCα,β(P,Q) = RCα,β(Q,P )

3. 0 ≤ PCα,β(P,Q) ≤ 1 and 0 ≤ RCα,β(P,Q) ≤ 1 for
all 0 < α ≤ β ≤ 1

4. If supp(P ) ∩ supp(Q) = ∅, then there exist α ≤
β sufficiently small such that PCα,β(P,Q) = 0 and
RCα,β(P,Q) = 0

The first three points above follow directly from Definition
1. The last statement shows that, as the parameters α and
β get smaller (the measure thus more refined) PRC will
correctly identify that distributions have disjoint support.
Moreover, as we will show next, for sufficiently small α and
β, PRC will also arbitrarily well approximate how much
mass Q assigns to the support of P and vice versa.

Theorem 2. Let P and Q be distributions over a space
X . For any ϵ > 0 there exist (sufficiently small) values
0 ≤ α < β ≤ 1, such that

|PCα,β(P,Q)−Q(supp(P ))| ≤ ϵ

and

|RCα,β(P,Q)− P (supp(Q))| ≤ ϵ.

2.3 Empirical PRC (and Algorithm)

In practice, we generally do not have access to the actual
distributions P and Q, but rather have samples P̂ ∼ Pn and
Q̂ ∼ Qm from them. We now define an empirical analogue
of the PR-cover measure.

Given n samples P̂ = (x1, . . . xn) and m samples Q̂ =
(y1, . . . , ym), we can apply our measure over the discrete
distributions that are induced by sample sets. If we use
α = k

m and β = k′

n where k′ = Ck for some C ∈ N, the
measure will be based on k- and k′-nearest neighbor balls
over the sample sets.

Definition 2 (Empirical (k, k′)-PRC). Let P̂ = (x1, . . . xn)
and Q̂ = (y1, . . . , ym) be two sample sets, and let k, k′ ∈ N
with k ≤ k′ be given. Then we define the (k, k′)-Precision
Coverage ((k, k′)-PC) of P̂ by Q̂ by

PCk,k′(P̂ , Q̂) =
1

m

m∑
j=1

1

[
Pn(BQ̂(yj ,

k′

m
)) ≥ k

n

]
(3)

Conversely, we define the (k, k′)-Recall Coverage ((k, k′)-
RC) of P̂ by Q̂ by

RCk,k′(P̂ , Q̂) =
1

n

n∑
i=1

1

[
Qm(BP̂ (xi,

k′

n
)) ≥ k

m

]
(4)

In the next section, we will analyze the relationship between
the true (population level) and empirical (sample based)
version of our proposed measure.

Algorithm The above definition of the empirical measure
gives rise to a straightforward algorithm that computes the
(k, k′)-coverage between two data sets P̂ and Q̂. For the
precision version, it constructs k′-nearest neighbor balls
over the sample set Q̂ and then computes the total number
of k′-nearest neighbor balls that contain at least k points
from P̂ , and divides this number by the total number of
sample points in Q̂. For the recall version the roles of P̂
and Q̂ are swapped.

3 ANALYSIS

We now outline some of the key formal performance guar-
antees for the empirical (algorithmic) (k, k′)-version of the
PRC measure in relation to the population level version. We
will phrase all our results in terms of the precision cover
measure. By symmetry, they will hold for recall cover when
the arguments are switched. All proofs have been moved
to the appendix. The results are obtained by techniques
of applying VC-analysis to k-nearest neighbour balls (Vap-
nik and Chervonenkis, 1971; Kpotufe, 2011; Dasgupta and
Kpotufe, 2014; Berlind and Urner, 2015).

3.1 Identical Distributions

We start by presenting a type of sanity check analysis for
the cases where the two distributions are identical. In that
case, we have PCα,β(P,Q) = PCα,β(P, P ) = 1 for all
α, β, see Observation 1. We show that, given sufficiently
large samples, the empirical k, k′-cover measure will also
attain value 1 with high probability.

Theorem 3. Let δ > 0, X ⊆ Rd a domain and P̂ and Q̂
denote samples from distributions P and Q over X of sizes
n and m respectively. Then there exist finite sample sizes
N and M , depending only on the dimension of the space
and the confidence parameter δ, and appropriate choices
of k and k′ such that the following holds: if P = Q, with
probability at least 1− 2δ, over the sampling of P̂ of size
n ≥ N and Q̂ of size m ≥M , we have

PCk,k′(P̂ , Q̂) = 1

3.2 Local Consistency

Of course, in general, we don’t expect the two input dis-
tributions to be exactly identical. We now show that our
k, k′ mechanism will correctly identify local regions that are
sufficiently covered by the other distribution: For a given

local density ratio
P (BQ̂(x, k

′
m ))

Q(BQ̂(x, k
′

m ))
> ω (according to the true

distributions) there is a sample size such that all such re-
gions are correctly identified as covered by our empirical
measure.

Theorem 4. Let δ > 0, C > 1, X ⊆ Rd a domain and
P̂ and Q̂ be samples from distributions P and Q over X
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of sizes n and m respectively. Let ω > 0, k′ = Ck and
k > 9((d+ 1) ln(2m) + ln( 8δ )), and

n ≥ 72 ln(8/δ)

Cω
ln(

9m

Cω
).

Then with probability 1 − 2δ all points x ∈ Q̂ with
P (BQ̂(x, k

′
m ))

Q(BQ̂(x, k
′

m ))
> ω will be identified as “covered”; that is

their k′ nearest neighbor balls in Q̂ will contain at least k
points from P̂ .

The above theorem shows that our empirical measure sat-
isfies an attractive local property. It will locally correctly
identify sample points as “covered” if they fall into regions
that are actually covered by the other distribution. Such a lo-
cal property naturally leads to a diagnostic tool: If a sample
point is not identified as covered by the empirical measure,
the above theorem allows a user to infer a deficiency on
the population level in terms of coverage. This might be
used to identify regions where a generative model generates
instances that are unrealistic (generative distribution locally
not covered by the true distribution) or true instances that
can not be mimicked by the generative model (true distribu-
tion locally not covered by the generative distribution).

3.3 Support Consistency

Next we show that there is a number of samples N from
distribution P that will fully cover the samples of a certain
size from Q that fall into the joint support. The following
theorem states this more precisely:

Theorem 5. For δ > 0, and let m, k, and k′ satisfy the
conditions of Theorem 4. Then there exists a valueN for the
number of samples such that for all n > N , with probability
1− 3δ over the generated samples, P̂ will cover all points
from Q̂ that fall into supp(P ) ∩ supp(Q).

As for the other results in this section, note that due to sym-
metry the theorem above holds when true and generative
distribution are swapped. For that case the above statement
provides an attractive guarantee: For a given dataset size
from the true distribution, if we generate sufficiently many
points from the generative model’s indued distribution, then
all points in the intersection of the two supports will be cov-
ered that is, our measure will eventually correctly identify
all those points from the true distribution that can also be
produced with the learned model.

4 EXPERIMENTS

In this section we present and discuss a variety of exper-
iments that showcase our measure’s behaviour alongside
other metrics. This experimental section aims to supple-
ment our theoretical analysis. We present two types of

experimental setups: First, through carefully designed tests
on synthetic data, we compare our algorithm’s (ie. empiri-
cal measure’s) behavior to previously established measures
(Subsection 4.1). In particular, we highlight some failure
cases of the earlier measures where our metric succeeds
as well as compare the approximation quality in terms of
convergence to ground truth. Second, we establish that our
measure provides correct assessments in real world settings
(Subsection 4.2). Through a variety of experimental setups
where we systematically vary the diversity or quality of one
of the distributions, we show that our measure adequately
follows our design. We do this (1) by tracing the training
stages of a VAE, (2) by dropping digits from MNIST (Deng,
2012), and (3) by truncating a GAN or blurring images. In
addition, we also verify that our (k, k′)-measure is robust
to varying the choice of k as long as the ratio between k
and k′ remains constant 1/3. This is in contrast to earlier
k-nn based measures whose values we show to be highly
sensitive to the choice of k.

4.1 Experiments on Synthetic Data

Sanity checks We devised several simple toy experiments
as sanity checks to compare the results of our and earlier
measures in a simple and interpretable setting. For a variety
of pairs of (true and generative) distributions we assessed
their similarity through PR, IPR, DC, as well as our mea-
sure PRC. For this, we used a combination of normal and
uniform distributions with varying the degree of overlap and
dimensions ranging from 1 to 3. In the most benign settings,
we see mostly consistent behaviour among all measures in
terms of the degree of overlap, ie matching distributions get
perfect scores and as the degree of overlap decreases scores
get progressively worse reflecting this. However, the metrics
exhibit drastically different behavior in select experiments.
For some distributions with disjoint supports, IPR is particu-
larly prone to being overly accepting of samples outside the
distribution’s support. We also provide an example where
the disjoint supports are not recognized by any metric other
than PRC. Details and illustration of these experiments have
been moved to the appendix for space reasons.

Convergence quality We now present comparisons of
the three nearest neighbor based measures, namely the im-
proved precision/recall (IPR), density/coverage (DC), and
precision/recall cover (PRC) in terms of the convergence
behavior and quality of approximation to ground truth. By
varying the degree of overlap of two uniform distributions,
we establish settings of clear ground truth for precision and
recall (namely the probability masses of the joint support
(Naeem et al., 2020)(Kynkäänniemi et al., 2019)(Sajjadi
et al., 2018)(Djolonga et al., 2020)). We use the same value
of k for each measure (and the same k-nn computation),
and we set the number of samples from the “true distribu-
tion” and “generative distribution” to be equal throughout
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Figure 1: Recall convergence experiments for well defined uniform distributions. The orange dashed line is the true recall,
the green line is our metric RC (from PRC), the blue line is Coverage (from DC), and the red line is improved recall (IR
from IPR). From left to right the dimension increases from 2 to 4. These plots show the recall-type scores with changing
number of samples. All measures converge to an approximation of the true recall (orange-dashed line), but as dimension
increases our measure converges faster and to a better approximation.

these experiments. For PRC we use a value of k such that
k′ = 3k, as suggested by our analysis. Also, as guided by
the analysis, we let the value of k (or k′ in the case of PRC)
change and grow logarithmically with the sample size; order
(log(n)) see appendix for more technical details.

The results for the recall version are shown in Figure 1.
All measures shown converge to an approximation of the
ground truth (orange line). However, as dimension increases
our measure converges faster and clearly to a better approxi-
mation of the ground truth.

4.2 Experiments in Real World Settings

Application to VAEs In this section we present experi-
ments on a popular generative model that, unlike GANs,
gives rise to an explicit generative probability distribution.
VAEs are trained by minimizing KL divergence and, if train-
ing succeeds, the quality of generated samples gets better as
the KL divergence decreases. This suggests an intuitive set
of experiments for the precision type measures: training on
MNIST image data (Deng, 2012), we track the precision-
based scores per training epoch as image quality gets better.
Figure 2 shows that, among the k-nn based measures, our
measure PC is the only one effectively reflecting the increase
in image quality.

Application to image data directly We first discuss an-
other set of experiments over the MNIST data: to track the
change in recall-type scores with respect to a loss in diver-
sity of generated samples, we successively dropped a digit
from the image collection. We simply start off with original
MNIST data as the “real set” and the “generated set”. Then,
a certain label (a specific digit) is dropped from the “gener-
ated set”, while randomly taking out samples from the “real

set” to ensure the overall sample sizes remain balanced. Fig-
ure 3 shows that, as we progressively drop digits, our recall
cover measure (RC) correctly reflects the loss in diversity
of the “generated set”. The RC score drops approximately a
10% for each dropped digit (one out of ten digits dropped at
each step).

For a second set of experiments we used the FFHQ dataset,
a high resolution 1024x1024 image dataset of human faces
(Karras et al., 2019). Here we progressively added noise to
an image in a fashion similar to that of the forward process
of diffusion models (Sohl-Dickstein et al., 2015). This
allows us to control the gradual degradation of quality of the
images from a high quality image of a person to pure noise.
We expect to see the scores of precision type measures
decrease as we add noise and the image quality decreases.
The first plot in Figure 4 shows results of this setup. As the
noise increases, the scores of all measures decreases. We
again see the IP has a tendency to be overaccepting and that
Density is not normalized (the score starts off with a value
larger than 1). As a second means to induce degradation
of image quality and and its effect on precision scores, we
downsample the images (“generated set”) and compare to
the original images (“real set”). A downsampling factor of
2 takes an image of resolution 1024x1024 and averages the
pixel values of every 2x2 square over the image and replaces
the pixel values of each pixel in that square with the average
pixel value. The center plot of Figure 4 shows the scores of
PC, IP and Density as we repeatedly downsample. Again
we observe that Density is not normalized and IP has a
tendency to be overaccepting (while all measures indicate
the decrease in quality eventually).
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Figure 2: Training a VAE, we track the precision type scores per epoch. The plot on the left shows PC (our measure, in
green) and IP (in red). The plot in the center shows Density (blue) (from DC). The image collection on the right shows
one generated sample image from epoch 1 to epoch 9 (top left to bottom right). These image samples confirm that quality
improves as training progresses. Only our measure PC accurately reflects this. Density gives scores of 125 (the measure is
not normalized) and decreases non-monotonically and IP stays constant 1 due to its tendency for over-acceptance.

Figure 3: Tracking RC, IR and Coverage, as we succes-
sively drop a digit from MNIST data (comparing to an equal
size sample from all digits in MNIST). RC and IR correctly
reflect the loss in diversity in the “generated set”, while
Coverage remains almost constant for quite a while (until
more than two thirds of the digits are dropped).

Application to GANs Finally, we explore our measure’s
performance on evaluating generative adversarial networks
(GANs). Prior work (Kynkäänniemi et al., 2019; Brock
et al., 2019; Naeem et al., 2020) discusses an artificial way
of controlling diversity and fidelity via truncation. It is ac-
cepted in the literature (Brock et al., 2019; Kynkäänniemi
et al., 2019) that the more truncation that is applied the
higher the quality of the generated images; however this
comes at the cost of less diversity in generated samples.
Conversely, with less truncation, it is expected to see more
diversity in samples, but worse quality. We design experi-
ments to show that our measure will accurately reflect this
diversity-quality trade off with StyleGAN (Karras et al.,
2019) (see Figure 5).

Robustness w.r.t choice of k Finally we compare the k-
nn based measures on popular datasets while varying k, to
test their sensitivity to the choice of k. We again use FFHQ
for our real dataset and samples from StyleGAN2 (Karras
et al., 2020). Figure 6 shows the results. While varying the
choice of k, (the same bottleneck computation of k nearest
distances is used for all measures) our PC and RC measure
results in consistent scores. DC and IPR, on the other hand
are shown to be sensitive to the choice of k. Our measure
enjoys better statistical consistency through the interplay
between k and k′ (whose ratio remains constant 1/3, as
suggested by our analysis). We believe that a measure not
showing brittleness with respect to hyper-parameter choices
(such as k in k-nn based measures) provides an important
reassurance for practitioners.
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Figure 4: We track PC (green), IP (red), and Density (blue) as we decrease image quality of the “generated set” by
increasing noise levels (left plot) or repeated downsampling (center plot). All measures indicate the degradation in image
quality, but Density is not normalized and IP has a tendency to be overaccepting. Note that when downsampling, IP gives
perfect scores Density remains above 1 until a downsampling factor of 16. The image samples on the right illustrate the
gradual degradation in quality by adding noise (top row) or downsampling (bottom row).

Figure 5: Some samples generated by StyleGAN Karras et al. (2019) with varying degrees of truncation. We plot our
measures RC and PC as a function of the amount of truncation. As desired, we observe tat as truncation decreases (maximum
truncation at ψ = 0, minimal at ψ = 1) PC (green) decreases and RC (blue) increases. We also conduct this experiment
while tracking IPR (top left), this also gives expected behavior.
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Figure 6: The plot on the left shows precision-type measures’ results on the FFHQ dataset and StyleGAN2 samples with
varying k. The plot on the right shows recall-type measures’ results with a varying k on the same dataset and GAN. While
DC and IPR are sensitive to the choice of k, the scores of PRC remain constant when varying k. Our measure enjoys better
statistical consistency through the interplay between k and k′ (their ratio remains 1/3, as suggested by our analysis).

5 CONCLUDING REMARKS

We have introduced a new evaluation measure for comput-
ing and diagnosing differences and similarities between two
distributions with access to samples only. Our population
level (α, β)-PRC measure and its empirical (k, k′)-PRC
counterpart are statistically sound while the empirical mea-
sure is also algorithmically simple to evaluate. We believe
that this combination, namely a sound framework that di-
rectly corresponds to the algorithmic implementation, is
crucial and prior measures have lacked in offering both of
these aspects simultaneously. On top, our measure is based
on a natural local test of coverage that can naturally be used
as a diagnostic tool, eg to improve a generative model’s
performance. In addition to the development, theoretical
motivation and analysis, we have here presented a variety of
promising empirical results from applying and comparing
our measure in synthetic and real world settings.
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A Proofs of Results

A.1 Preliminaries

We start by listing some technical lemmas and tools that we use in our analysis. The following lemma appears in (Kpotufe,
2011).

Lemma 6 ((Kpotufe, 2011)). Let B denote the class of balls on X , with VC-dimension VB . Let 0 < δ < 1, and define
αn = (VB ln 2n+ ln( 8δ ))/n. The following holds with probability at least 1− δ (over i.i.d. samples of size n) for all balls
in B: Pick any a ≥ αn. Then µ(B) ≥ 3a =⇒ µn(B) ≥ a and µn(B) ≥ 3a =⇒ µ(B) ≥ a.

Note that, for d-dimensional euclidean spaces the VC-dimension of the class of balls is d+ 1.

The following is a commonly used inequality. It can be found in the appendix of (Shalev-Shwartz and Ben-David, 2014).

Lemma 7. Let a ≥ 1 and b > 0. Then x ≥ 4a log(2a) + 2b implies x ≥ a log(x) + b.

A.2 Proofs

Proof of Observation 1. The first three claims follow directly from the definitions. For the last item, we will argue why it is
true for the recall cover version. The claims for the precision cover then follow analogously. Let (βi)i∈N be a monotonically
decreasing sequence of values for β in (0, 1) converging to 0. Note that for any point x ∈ supp(P ) we have

∞⋂
i=1

BP (x, βi) = {x}

and thus we get
∞⋂
i=1

⋃
x∈supp(P )

BP (x, βi) = supp(P ),

where supp(P ) denotes the (topological) closure of suppP . Since the Lebesgue measure of supp(P ) \ supp(P ) is 0 and
we are assuming our distributions to admit density functions, we get that for any α0 > 0, since the support of P and of Q
are disjoint, there exists an index i ∈ N such that

Q

( ⋃
x∈supp(P )

BP (x, βi)

)
< α0.

This implies that, for any β < βi and α < min{α0, β}, we have

RCα,β(P,Q) = P
x∼P

[Q(BP (x, β))) ≥ α] = 0

and the statements follow.

Proof of Theorem 2. As in the proof of Observation 1, one can choose α0 and β0 sufficiently small so that

Q(
⋃

x∈(supp(P )\supp(Q))

BP (x, β0)) < α0

and thus, for any β ≤ β0 and α ≤ α0 only balls around points in the support of Q will be α-covered by Q. However note,
that not all of these will necessarily be α-covered by Q. It remains to show that we can choose α sufficiently small so that
the P -mass of balls that are not α-covered by Q is at most ϵ.

Let some ϵ > 0 be given and let’s fix some β1 < β0. For every x ∈ supp(Q) we have Q(BP (x, β0))) > 0. We consider a
sequence of values (αi)i∈N that converges to 0. Then we get that the sets

Ai := {x ∈ supp(Q) | Q(BP (x, β1)) > αi}

are ordered by inclusion, namely Ai ⊆ Aj for j ≥ i and

∞⋃
i=1

{x ∈ supp(Q) | Q(BP (x, β1)) > αi} = supp(Q).
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Thus, there exists a j ∈ N such that for any i ≥ j, we get

P (Ai) = P ({x ∈ supp(Q) | Q(BP (x, β1)) > αi}) ≥ P (supp(Q))− ϵ.

This completes the proof.

Proof of Theorem 3

Proof:

First fix Q̂ ∼ Q with M samples such that: for its k′ nearest neighbors we have:

k′ ≥ 81(VB ln(2M) + ln(
8

δ
))

Choose k′ = Ck, such that C ≥ 9. With a choice of k such that:

k ≥ 9(VB ln(2M) + ln(
8

δ
))

Now recall our measure the PR-Cover is defined as:

Precision =
1

M

M∑
i=1

1yi∼Q[k ≤ |P̂ ∩BQ(yi,
k′

M
)|]

And recall is defined with P and Q swapped.
Now we first fixed our M samples called set Q̂, these balls define an empirical probability distribution:

Q̂M (BQ̂(y,
k′

M
)) =

k′

M

For each of our k′-nn balls the above is true. With a sufficient choice of k′ which is given above. Then applying Lemma 6
since we know Q̂M (BQ̂(y,

k′

M )) = k′

M ≥ 81(
VB ln(2M)+ln( 8

δ )

M ) we readily obtain (with probability 1− δ):

Q(BQ̂(y,
k′

M
)) ≥ 27(

VB ln(2M) + ln( 8δ )

M
)

Now let us sample a new set of N samples P̂ ∼ P = Q. Now our metric for this sample would be:

Precision =
1

M

M∑
i=1

1yi∼Q[k ≤ |P̂ ∩BQ̂(yi,
k′

M
)|]

Precision =
1

M

M∑
i=1

1yi∼Q[P̂N (BQ̂(yi,
k′

M
)) ≥ k

N
]

Note that since P = Q we have P (BQ̂(y,
k′

M )) = Q(BQ̂(y,
k′

M )) ≥ 27(
VB ln(2M)+ln( 8

δ )

M )

Now since we know P (BQ̂(y,
k′

M )) ≥ 27(
VB ln(2M)+ln( 8

δ )

M ) By applying Lemma 6 we have with probability
1− 2δ:

P (BQ̂(y,
k′

M
)) ≥ 27(

VB ln(2M) + ln( 8δ )

M
)⇒ P̂N (BQ̂(y,

k′

M
)) ≥ 9(

VB ln(2M) + ln( 8δ )

M
)

Which implies with probability 1− 2δ that there are s points from sample P̂ ∼ P = Q such that:

P̂N (BQ̂(y,
k′

M
)) =

s

N
≥

9(VB ln(2M) + ln( 8δ ))

M

s ≥
(
9(VB ln(2M) + ln( 8δ ))

M

)
N

So if we choose n such that n ≥ N so that we have: s ≥ k ≥ 9(VB ln(2M) + ln( 8δ ))

Therefore, we have P̂n(BQ̂(y,
k′

M )) ≥ k
n then with prob 1− 2δ we have more than k points from distribution P in the k′-nn

balls of the generated samples.
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A.2.1 Proof of Theorem 4

This proof has been adapted from Berlind and Urner (2015). Note that

n ≥
72 ln( 8δ )

Cω
ln(

9m

Cω
)

this implies

⇒ n ≥ 9m

Cω
(5)

⇒ n ≥
18m ln( 8δ )

Ckω
(6)

⇒ n ≥ 72mVB
Ckω

ln(
9mVB
Ckω

) (7)

using Lemma 7 on the inequality 7:

n ≥ 2
(
4×

(9mVB
Ckω

ln(
9mVB
Ckω

)
))

⇒ n ≥ 2
(9mVB
Ckω

ln(2n)
)

(8)

adding inequalities 6 and 8 we get:

2n ≥ 18mVB
Ckω

ln(2n) +
18m ln( 8δ )

Ckω

⇒ n ≥ 9mVB
Ckω

ln(2n) +
9m ln 8

δ

Ckω

⇒ n
Ckω

3m
≥ 3(VB ln(2n) + ln(

8

δ
))

⇒ Ckω

3m
≥

3(VB ln(2n) + ln( 8δ ))

n
(9)

Now note that by the definition of the k’ nearest neighbor balls over the generated samples we have (and recall that k′ = Ck):

Q̂m(BQ̂(y,
k′

m
)) =

Ck

m

Note that we choose k such that:
k ≥ 9(VB ln(2m) + ln(

8

δ
))

plugging this choice of k into the definition of k’-nn ball over the generated samples:

Q̂m(BQ̂(y,
k′

m
)) =

Ck

m
≥

9C(VB ln(2m) + ln( 8δ ))

m

by Lemma 6 we have:

⇒ Q(BQ̂(y,
k′

m
)) ≥ Ck

3m

using the density ratio we obtain:

⇒ P (BQ̂(y,
k′

m
)) ≥ Ckω

3m

using equation 9 into the above, we get:

⇒ P (BQ̂(y,
k′

m
)) ≥ Ckω

3m
≥

3(VB ln(2n) + ln( 8δ ))

n

using Lemma 6 again, we get:

⇒ P̂n(BQ̂(y,
k′

m
)) ≥ Ckω

9m
≥

(VB ln(2n) + ln( 8δ ))

n
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using equation 5 on the above, we readily obtain:

P̂n(BQ̂(y,
k′

m
)) ≥ k

n

so with probability 1− 2δ we have that there are more than k points in the k’-nn ball centered around a generated sample
y ∈ Q. This then ensures w.h.p. that the precision measure will recognize this k’-nn ball and thus give it a perfect score; ie.
the indicator function in the definition of the precision measure is 1.

A.2.2 Proof of Theorem 5

We will first prove a lemma necessary for the following proof:

Lemma 8.
lim
ω→0

Q(XQ(ϵ, ω) ∩ XP ) = 0

Proof. First call the set of samples from the generated distribution that have density less than ω: XQ(ϵ, ω) = {y ∈
XQ|P (BQ(y,ϵ)

QQ(B(y,ϵ) < ω}, where BQ(y, ϵ) is a ball centered at point y ∈ Q with mass ϵ w.r.t. distribution Q ie: (Q(BQ(y, ϵ)) =

ϵ) . Now consider an ordered sequence of densities in decreasing order called [ωi]i∈N, let this sequence converge to 0. We
clearly get:

lim
n→∞

ωn = 0

Now putting this sequence into the set we defined earlier we have:

lim
n→∞

XQ(ϵ, ωn) =

∞⋂
n=1

XQ(ϵ, ωn)

∞⋂
n=1

XQ(ϵ, ωn) = XQ\XP

That is, the intersection of the set of all points from Q that have no neighboring points within radius ϵ of them for
progressively smaller values of ω converges to the points in support Q that are not in support P .

Taking the probability of the limit sequence w.r.t. probability distribution Q:

lim
n→∞

Q(XQ(ϵ, ωn)) = Q(

∞⋂
n=1

XQ(ϵ, ωn))

Q(

∞⋂
n=1

XQ(ϵ, ωn)) ≤ Q(XQ\XP )

Note that if we take the intersection with XP we obtain the limit we are trying to prove:

lim
n→∞

Q(XQ(ϵ, ωn) ∩ XP ) ≤ Q((XQ\XP ) ∩ XP ) = 0

Proof of Theorem 5

Proof. Recall that we define the set XQ(ϵ, ω) = {y ∈ XQ|P (BQ(y,ϵ)
Q(BQ(y,ϵ) < ω} (where Q(BQ(y, ϵ)) = ϵ). Recall that in our

setup we assumed that both P and Q have continuous density functions dP and dQ respectively. This implies that for any
sample from either distribution we can pick a ball of mass exactly ϵ, for ϵ ∈ (0, 1].

Using Lemma 8 there exists a choice of ω small enough such that there is a generated sample size m, so no generated
samples y will be in XQ(ϵ, ω) ∩ XP , in similar fashion to Theorem 4. Pick ϵ = Ck

3m . also note that:

Q(BQ(y, ϵ)) =
Ck

3m
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There exists a sample size, N, from P we can pick such that this sample set will have perfect precision on XP \XQ(ϵ, ω).
Recall our choice of k from prior: k ≥ 9(VB ln(2m) + ln( 8δ )). This then implies:

Ck

m
≥

9C(VB ln(2m) + ln( 8δ ))

m

By employing the contrapositive of Lemma 6 and the above, we have:

Q̂m(BQ(y, ϵ)) ≤
Ck

m

This implies that there are at most Ck points in the ball BQ(y, ϵ) from Q.

Using Theorem 4 (assuming we satisfy the conditions to use), for our choice of ω,C, δ, and m we have a value of N such
that:

n ≥ N =
72m ln( 8δ )

Cω
ln(

9m

Cω
)

by Theorem 4, this sample size implies that the ball BQ(y, ϵ) will have at least k points from P : that is: P̂n(BQ(y, ϵ)) ≥ k
n .

This thus implies (with probability 1−3δ) that P̂ will cover all points from Q̂ that have joint support. Our precision measure
will give these generated points a perfect score. Thus concluding the proof.
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A.3 The Algorithm

Algorithm 1: Precision-Recall Cover

Input Sample Sets P̂ , Q̂ as well as choice of k, and C
Q̂β ← ∅;
k′ ← C ∗ k;
r̂Q̂ ← k’-NearestNeighborDistances(Q̂, k′);
for y ∈ Q̂ do

val← PR-Cover-Indicator(y, r̂y, P̂ )
if val = 1 then

Q̂β ← Q̂β ∪ y
end

end

PC← |Q̂β |
|Q̂|

return PC

Algorithm 2: Precision-Recall Cover Indicator subroutine

Input Sample Set P̂ , sample point y ∈ Q̂, (k’)-nearest neighbor distance r̂y , and k
val← 0;
i← 0;
for x ∈ P̂ do

if ||y − x|| ≤ r̂y then
i← i+ 1;

end
end
if i ≥ k then

val← 1;
end
return val
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B Experiments

For all experiments we intend to make the code publicly available on GitHub. In the vein of reproducibility we choose to
provide a detailed summary of experiments here in addition to extra images and results.

B.1 Toy Models

As stated in the main paper, we devised several toy experiments as a sanity check for our measure. In these settings,
we start off with two synthetic distributions as stand-ins for the “real distribution” and the “generated distribution”. The
real distribution and generated distributions are either both uniform distributions or Gaussian distributions in most of our
setups. We use numpy to randomly sample points from their respective distributions. We create the distributions in 1 to 3
dimensions for visualization purposes and use the same random seed throughout the experiments. We have conducted a
wide set of experiments where we vary many factors in a controlled setting; we vary the amount of overlap between the
two distributions, the number of samples for each distribution, the dimension, and the shape of the distributions. We will
show several figures to illustrate the setup of the experiment and some of the results. In most of these toy models we show a
visualization of the data (on the left) and on the right the Precision-Recall Curve from (Sajjadi et al., 2018) with the scores
from the other measures on the top right of the figure. For the toy models shown here we have opted to use a choice of k = 9
for DC and IPR, and for PRC we use a choice of k′ = 9 and k = 3. See Figure 7 for a 1 dimensional case of matching
distributions. See Figure 8 for a case of 2-dimensional distributions that are partially overlapping, in this example we also
have the true distribution have 3 times as many samples as the generated distribution has. In fig 9 we have 3 dimensional
uniform distributions that are essentially disjoint.

Figure 7: The true distribution (blue) and the generated distribution (salmon) are both matching (uniform from 0 to 10).
See visualization of the 1-dimensional data (in form of a histogram of the samples) on the left. Both sample sets have the
same size (1,000 samples). We use k = 9 for DC and IPR and k′ = 9 and k = 3 for PRC. The PR curve (right) is filled in
implying perfect precision and recall. All other measures also reflect the matching distributions (see top right for scores).
We observe that density and converge (DC) is not normalized, while density takes on a value larger than 1 (even if only
slightly), coverage is significantly below 1. This shows that the scores of this measure are difficult to interpret, and thus
might be misleading.
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Figure 8: In this example we sample from two distributions; a 2 dimensional uniform square from 0 to 10 for both x and y
axis (gen distribution in red), and a uniform square from 4 to 14 on both x and y axis (real distribution in blue). The scores
mostly all reflect the partial overlap (see the PR curve right). Notice that in this example we have far more samples from
the true distribution than the real (3000 samples from real dist. vs 1000 samples from gen dist.). This is reflected in the
precision type scores of all measures (see top right). Note that the two distributions have equal area and have an overlapping
area of 36%, as supported in the theory, since there are more true samples than gen samples we see that the precision scores
are closer to the overlapping area amount than the recall-type scores.

Figure 9: In this example we have two 3-dimensional cubes (see data on the left); a true uniform distribution from 0 to 10
on the three axes (in blue) and a generated uniform distribution from 10 to 20 on the three axes (in red). In this case the 2
distributions are essentially disjoint (one shared boundary points exists), and all measures reflect this. The PR curve (right)
is empty implying no precision or recall, and the other measures almost all give scores of 0 (top right).
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Figure 10: In this scenario we have a 2 dimensional Gaussian with mean 0 and std of 1 for both x and y axes as the true
distribution (blue) and a Gaussian with mean 2 and std of 1 for both axes as the gen distribution (red). As we can see in the
visualization of the data, although the data is overlapping most points from both distributions do not overlap and there is a
clear distinction between the two distributions. On the right the PR curve shows that there is a discrepancy between the two
distributions (seen in the lack of the PR curve being filled in), our measure PRC keeps a lower score (about 0.15) reflecting
the lack of overlap between the distributions. In contrast, DC has a high density score yet retains a lower coverage score (top
right). Also IPR has scores above 65% which is not appropriate for these two distributions. This is another example of the
over-accepting nature of this measure.
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Figure 11: In this scenario we have a 3-dimensional Gaussian with mean 0 and std of 1 all three axes as the true distribution
(blue) and a Gaussian with mean 2 and std of 1 for all three axes as the gen distribution (red). As we can see in the
visualization of the data, although there is overlap in the data from these two distributions, most points are located in distinct
areas, clearly belonging one of the two distributions. On the right the PR curve shows that there is a discrepancy between
the two distributions (seen in the lack of the PR curve being filled in), our measure PRC keeps a lower score (about 0.20)
reflecting the lack of overlap between the distributions. In contrast, DC has a high density score yet retains a lower coverage
score (top right). Also IPR has the highest scores above 50% which is not the nature of the two distributions. This is yet
another example of the over-accepting nature of this measure.

Figure 12: The PR Curve (right) gives a very high scores on both precision and recall (indicating similar distributions with
large overlap) while the two distributions are in fact disjoint (data on left). The PR curve is almost fully filled in implying
both high precision and recall. The doughnut (red; generated samples) does not overlap with the sphere (blue: real samples).
Other metrics have the same issue: Density = 0.20, Coverage = 0.06, Improved Precision = 0.45, Improved Recall = 0.80.
Only PRC correctly scores these sets as disjoint with PC = 0.02, and RC = 0.00

We observe many interesting behaviors that support our theory and highlight issues of other measures. Some interesting
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observations we observe is that if we sample from the true distribution more than the gen distribution or vice versa we can
see scores be skewed (this supports some of the theory we have developed see theorem 4), this behaviour of our measure is
empirically reflected in fig 8. Another behaviour we have noted in this simplistic setting is that DC and IPR are prone to be
more over-accepting than our measure. This is also true in settings where the distributions have significant discrepancy
between them, but DC and IPR incorrectly say they are similar distributions (see fig 10, 11, 12). In fig 12 we can see a case
of where two distributions are completely disjoint yet all other measures identify these distributions as similar. This again
adds to the point of PR, IPR and DC being prone to over-accepting. Only our measure accurately reflects the disjoint nature
of the two distributions. This experiment highlights this worrying behavior that will be seen again in later experiments in
real world data.

B.2 Convergence Experiments

In these sets of experiments we use simple uniform distributions in increasing dimensions to define true values of precision
and recall. We construct 2 uniform hypercube distributions for the real and generated distributions and vary the degree of
overlap. In this case true precision becomes the overlapping volume over the generated distribution’s volume, and conversely
true recall is the overlapping volume over the true distribution’s volume. The setup of this experiment is as follows: we
fix a configuration for a true distribution and generated distribution with a certain amount of overlap. We set the number
of samples from the true and gen distribution to be the equal n = m. We start at 15 samples for both distributions, obtain
n = m samples randomly for both distributions given a particular configuration of true and generated distributions (we use a
random seed for reproducibility). Then, we compute all k-nn based measures (IPR, DC, and PRC) for the current sample size.
We compute k-nn based measures only because they are directly comparable as the same bottleneck computation is done
for all 3 measures (the distances between sets and within sets). Then we increment the sample size and sample from both
distributions again for the given configuration of real and gen distribution and compute measures. We repeat this process
until the terminal number of samples from both distributions (we choose to stop the experiment when n = m = 1000). as
n = m increases we adjust our value of k. We use a value of k inspired from the theory of order log(n). This value of k is
the same for DC and IPR and PRC uses this same value for k’ while keeping the ratio fixed of C = 3 for our (k, k′)-based
measure. More specifically, k ranges from 9 to 13 in our set of experiments. Figure 1 in the main part of the paper shows that
our measure converges faster to the true values of precision and recall, it can also be seen that some of the other measures do
not seem to converge to the true values at all (see higher dimensional setting of experiment). We also have included the
experiments for the precision type experiments from increasing dimensions below.
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Figure 13: We compute improved precision, precision cover, and density for a fixed configuration of 1-dimensional uniform
distributions. The true distribution is a uniform distribution over the interval from 0 to 10. The gen distribution is a uniform
distribution from 8 to 18. This corresponds to a true precision of 0.2 for this configuration of distributions. We set n = m
start at 15 samples and go to 1000 samples. We can see IP (red), Density (blue), and PC (green) all converge to the true
value of precision (dashed orange line).

Figure 14: We compute improved precision, precision cover, and density for a fixed configuration of 2-dimensional uniform
distributions. The true distribution is a uniform distribution over the interval from 0 to 10 in both x and y axes. The gen
distribution is a uniform distribution from 6 to 16 for both x and y axes. This corresponds to a true precision of 0.16 for
this configuration of distributions. We set n = m start at 15 samples and go to 1000 samples. We can see IP (red), Density
(blue), and PC (green) all converge to the true value of precision (dashed orange line).
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Figure 15: We compute improved precision, precision cover, and density for a fixed configuration of 3-dimensional uniform
distributions. The true distribution is a uniform distribution over the interval from 0 to 10 in x, y and z axes. The gen
distribution is a uniform distribution from 4 to 14 for x, y and z axes. This corresponds to a true precision of 0.216 for this
configuration of distributions. We set n = m start at 15 samples and go to 1000 samples. We can see IP (red), Density
(blue), and PC (green) all converge to the true value of precision (dashed orange line).

Figure 16: We compute improved precision, precision cover, and density for a fixed configuration of 4-dimensional uniform
distributions. The true distribution is a uniform distribution over the interval from 0 to 10 in all 4 axes. The gen distribution
is a uniform distribution from 4 to 14 for all axes. This corresponds to a true precision of 0.1296 for this configuration of
distributions. We set n = m start at 15 samples and go to 1000 samples. We can see IP (red), Density (blue), and PC (green)
all converge to the true value of precision (dashed orange line).
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B.3 VAE Experiments

For the VAE training experiments we use the MNIST data set (Deng, 2012). We use a simple VAE that uses the MNIST
dataset for training (60,000 samples) and testing (10,000 samples). We use the adam optimizer and train the VAE for 10
epochs. The test set is used as the real distribution and we generate 10,000 samples from the model (to match the testing set
size) as the generated distribution. We convert these images to gray-scale, so they are of dimension 28x28x1. In these sets of
experiments we expect the measures to reflect the increase of quality as epochs increase. From fig 2 it is clear only our
measure shows the desired behavior of increasing precision (quality) scores.

B.4 Digit Dropping

Since we have a nice set of controlled experiments to see an increase in quality in a real world setting with the VAE training
experiment, we wish to do the same for our diversity based measures (recall-type scores). In this setting we design an
experiment to artificially control for diversity of a dataset. We first start off with the complete MNIST dataset (70,000
samples). Then we choose a number of samples for the real and generated dataset (n = m), in this case 5,000 samples, for
both real and gen distributions. From the complete dataset we randomly select 5,000 samples and call this the real sample
set. We then randomly pick 1 digit to drop, and use a function to eliminate all samples with that digit’s label from the
potential generated dataset pool. From the MNIST dataset (now excluding the dropped digit) we sample 5,000 samples
and call this the generated sample set. We compute improved recall, coverage, and recall cover over the real and generated
sample sets. We then drop another digit and repeat the process until 9 digits (out of 10) are dropped. For this experiment
every time prior to random sampling we use and record the value of the random seed used.

B.5 Experiments with GANs

For experiments with GANs we used the well developed pipeline of methods for assessing high resolution image data for
quality metrics. Many other prior works have used this pipeline to test out measures for grading generative models (Sajjadi
et al., 2018; Kynkäänniemi et al., 2019; Naeem et al., 2020). The pipeline consists of a network or method to project the
high dimensional (usually image) data into a lower dimensional latent space. In this latent space we then have our measure
compare the data and obtain a final score for PRC. We use the pipeline available from (Karras et al., 2020), which uses
VGG16 to obtain image embeddings. Our approach here follows consistent methodology in the literature (Naeem et al.,
2020; Sajjadi et al., 2018; Kynkäänniemi et al., 2019). We use the pretrained GAN and compute several other popular
measures on the generated and real data. In our experiments we use StyleGAN and StyleGAN2.

For the noise experiments we add noise iteratively as done in diffusion model (Sohl-Dickstein et al., 2015; Ramesh et al.,
2021). We use a linear noise schedule starting from 0.000001 ending at 0.0000075 with a 300 steps. We use small amounts
due to the sensitive nature of the pipeline; ie enough noise to degrade image quality to human perception but not enough
such that the feature extractors can no longer properly operate on the image. We notice that by adding a relatively significant
amount of noise all measures give scores of 0.

Another set of experiments to control for quality or lack thereof is the downsampling set of experiments. In this set of
experiments we use a value for the stride to downsample called s. We move an sxs square over the image (usually a high
resolution 1024x1024 image) and average the pixel value over the square and assign each pixel in that square the value of the
average. For instance, if we have a stride of 2, each 2x2 square is averaged and that average pixel value is given to each pixel
in that square. This is akin to losing information by resizing an image of size 1024x1024 to size 512x512 and then resizing
back to 1024x1024. This loss of pixel information can be seen to have a blurring effect on the quality of an image, see 4.

B.6 Limitations

Our measure along with the IPR, and DC uses the k-nn computations as a core element. It is well known that the k-nn
computation suffers from the curse of dimensionality and thus with higher dimensions it becomes a bottleneck in the
computation of each measure. Several researchers have suggested to use projections to lower dimension latent spaces for
high dimensional data such as image data . These image embeddings are used in almost all previous works for generative
modelling metrics, and we stay consistent with the embedding method used by other papers (VGG16) (Naeem et al., 2020;
Kynkäänniemi et al., 2019; Sajjadi et al., 2018; Heusel et al., 2017; Salimans et al., 2016). Both FID and IS do not use a
k-nn algorithm and as seen in other works can be faster than other metrics in computing scores to grade generative models
(Karras et al., 2020).
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