The Communication Cost of Security and Privacy in Federated Frequency Estimation

Wei-Ning Chen
Stanford University
Ayfer Özgür
Stanford University
Graham Cormode
Meta AI
Akash Bharadwaj
Meta AI

Abstract

We consider the federated frequency estimation problem, where each user holds a private item X_i from a size-d domain and a server aims to estimate the empirical frequency (i.e., histogram) of n items with $n \ll d$. Without any security and privacy considerations, each user can communicate their item to the server by using $\log d$ bits. A naive application of secure aggregation protocols would, however, require $d \log n$ bits per user. Can we reduce the communication needed for secure aggregation, and does security come with a fundamental cost in communication?

In this paper, we develop an information-theoretic model for secure aggregation that allows us to characterize the fundamental cost of security and privacy in terms of communication. We show that with security (and without privacy) $\Omega (n \log d)$ bits per user are necessary and sufficient to allow the server to compute the frequency distribution. This is significantly smaller than the $d \log n$ bits per user needed by the naive scheme, but significantly higher than the $\log d$ bits per user needed without security. To achieve differential privacy, we construct a linear scheme based on a noisy sketch that locally perturbs the data and does not require a trusted server (a.k.a. distributed differential privacy). We analyze this scheme under ℓ_2 and ℓ_∞ loss. By using our information-theoretic framework, we show that the scheme achieves the optimal accuracy-privacy trade-off with optimal communication cost, while matching the performance in the centralized case where data is stored in the central server.

1 INTRODUCTION

Modern data is increasingly born at the edge and can carry sensitive user information. To make efficient use of this data while protecting individual information from being revealed to the public or service providers, in recent years there has been a strong desire for data science methods that allow servers to collect population-level information from a set of users without knowing each individual value. Consider, for instance, frequency estimation which serves as a fundamental building block for many analytics tasks. Each user holds an item X_i from a size-d domain \mathcal{X}, and the server aims to learn the empirical frequency (i.e., the histogram) of all items. Can the server learn the empirical frequency distribution of the items without learning each individual’s item?

Recently, distributed protocols based on multi-party computation (MPC) such as secure aggregation (SecAgg) (Bonawitz et al., 2016) have emerged as a powerful tool to securely aggregate population-level information from a set of users. In particular, SecAgg allows a single server to compute the population sum (and hence also the average) of local variables (often vectors), while also ensuring no additional information, other than the sum, is released to the server or other participating entities. This can be achieved, for example, by having users apply additive masks on their local vectors which cancel out upon addition at the server. SecAgg is widely used within protocols for secure federated learning and secure statistics gathering, which both rely on vector summation.

A straightforward way to use SecAgg for the empirical frequency estimation problem above is to have each user represent their item X_i as a d-dimensional one-hot vector (i.e., a vector with a single 1 in the X_i-th coordinate and zero otherwise), so that the sum of all one-hot vectors (which is revealed to the server by SecAgg) gives the desired histogram. However, this requires $d \log n$ bits of communication per user since each user has to communicate a masked vector of dimension d (with each entry taking values in a finite field of size n). This is a drastic increase from the $\log d$ bits per user needed to communicate each item in the absence of any security considerations.
Can we reduce the communication cost of secure aggregation, and does security come with a fundamental cost in communication? This is the main question we investigate in this paper. We show:

- The communication cost for secure frequency estimation can be reduced from \(O(d \log n)\) to \(O(n \log d)\) when \(n \ll d\). This is the relevant regime in many real-world applications (e.g., location tracking (Bagdasaryan et al. 2021), language modeling, web-browsing, etc.) where \(d\) can be very large compared to the number of participating users \(n\) (even in cross-device FL/FA settings) and computational constraints limit the number of users that can participate in each SecAgg round.

- Complementarily, any aggregation protocol that is information-theoretically secure needs \(\Omega(n \log d)\) bits per user to perfectly recover the histogram. To show this, we develop an information-theoretic model for secure aggregation and prove a lower bound on the communication cost of any secure aggregation protocol.

This reveals that while the communication cost of secure frequency estimation can be reduced with more carefully designed schemes (e.g., we show that one can formulate it as an \(\ell_1\) constrained integer linear inverse problem), there is a fundamental price to paying the histogram securely: in the absence of any security considerations, each user needs \(\log d\) bits, and hence the total communication cost for all users is \(n \log d\); with security, each user individually incurs the \(n \log d\) bits communication cost (i.e., \(\Theta(n^2 \log d)\) in total).

Secure aggregation alone does not provide any provable differential privacy (DP) guarantees (Dwork et al. 2006b). Sensitive information may still be revealed from the aggregated population statistics, causing potential privacy leakage. To address this issue, a common approach is to perturb the aggregated information by adding noise before passing it to downstream analytic tasks. With a privacy requirement, the empirical frequency can be estimated only approximately, with an amount of distortion that depends on the privacy level, number of participating users, and the loss function. This distortion due to DP also allows for some ‘slack’ in the secure aggregation framework – as long as secure aggregation returns an approximate sum with a distortion small enough compared to the distortion due to DP, we can achieve order-wise the same performance as with only the DP constraint. This observation leads us to study the communication cost of secure aggregation for computing an approximate sum rather than an exact sum of the user values. We show that computing an approximate sum requires less communication, and the optimal communication cost can be characterized by a rate-distortion function that depends on the error and the loss function. While security drastically increases the communication cost, we show that privacy helps us reduce it.

Our end goal is to arrive at secure and private frequency estimation protocols that provide differential privacy guarantees without putting trust in the service provider, while at the same time achieving the optimal privacy-accuracy-communication trade-off. To this end, we develop a user-level DP protocol for frequency estimation, where users compute a summary of their local data, perturb these slightly, and employ SecAgg to simulate some of the benefits of a trusted central party. The untrusted server has access only to the aggregated reports with the aggregated perturbations. We show that the end-to-end privacy-accuracy trade-off achieved by this scheme is optimal and matches the trade-off achievable with a trusted server, i.e., in a centralized setting where the server receives the data as it is and perturbs it after aggregation. Furthermore, by using our aforementioned information-theoretic framework for securely computing an approximate sum, we show that the communication cost of this scheme is also optimal.

Our contributions. The main contributions of our paper can be summarized as follows:

- We provide an information-theoretic view on secure aggregation and analyze the amount of communication needed for securely computing the sum either exactly or approximately. In the case of exact recovery, we show that the per-user communication cost is lower bounded by the entropy of the sum; for approximate recovery under a general loss function \(\ell(\cdot)\), we specify the communication-distortion trade-offs.

- We specialize these information-theoretic lower bounds to frequency estimation with and without differential privacy constraints. We show that without privacy \(\Omega(n \log d)\) bits per user are needed to allow the server to learn the exact histogram. We also characterize the minimal communication cost when differential privacy is required.

- We introduce schemes that match the above information-theoretic communication lower bounds. In particular, we show that to perfectly recover the exact histogram (without privacy), one can achieve the optimal \(O(n \log d)\) bits per-user communication by applying SecAgg and solving a linear inverse problem. To achieve differential privacy, we construct a linear scheme based on noisy sketch (with proper modifications tailored to the specific loss function) which locally perturbs the data and does not require a trusted server (a.k.a. user-level DP). We show that this scheme achieves the (nearly) optimal accuracy-privacy trade-off with optimal communication cost, while matching the performance in the centralized case where data is stored in the central server.

Organization. The rest of the paper is organized as follows. We discuss the related works in Section 2. In Section 3 we introduce a general framework for SecAgg...
and the corresponding information-theoretic security it provides and proves general communication lower bounds on computing the exact or approximate sum. In Section 3, we apply SecAgg to the frequency estimation problem and specify the optimal communication cost. Finally, in Section 5, we incorporate the differential privacy constraint and characterize the optimal privacy-communication-accuracy trade-offs.

Notation. Throughout this paper, we use $[m]$ to denote the set of $\{1, \ldots, m\}$ for any $m \in \mathbb{N}$. Random variables (vectors) (X_1, \ldots, X_m) are denoted as $X_{[m]}$ or X^m. We also make use of Bachmann-Landau asymptotic notation, i.e., $O, o, \Omega, \omega,$ and Θ. We use $H(X)$ (or $H(P_X)$) to denote the Shannon entropy of X with base 2. Finally, for random variables X, Y, $I(X; Y)$ denotes the mutual information, i.e., $I(X; Y) \equiv \mathbb{E}_X [D_{KL}(P_{Y|X} \parallel P_Y)]$.

2 RELATED WORK

Secure aggregation. Single-server SecAgg is a cryptographic secure multi-party computation (MPC) that enables users to submit vector inputs, such that the server learns just the sum of the users’ vectors. This is usually achieved via additive masking over a finite group (Bonawitz et al., 2016; Bell et al., 2020). The single-server setup makes SecAgg particularly suitable for federated learning (Kairouz et al., 2021; Agarwal et al., 2021) or federated analytics (Choi et al., 2020b), and a recent line of works (Jahani-Nezhad et al., 2022; So et al., 2021; Choi et al., 2020a; Kadhe et al., 2020; Yang et al., 2021) aim to scale it up by improving the communication or computation overhead. However, all of the above works focus on a general setting where the local vectors can be arbitrary; meanwhile, in the frequency estimation problem with a large domain size, local vectors are one-hot and the histogram is typically sparse. Without secure aggregation such sparsity can be leveraged to reduce the communication cost (Acharya et al., 2019b; Han et al., 2018; Barnes et al., 2019; Acharya et al., 2019a; 2020; 2021a; Chen et al., 2021a). However, with secure aggregation, it is not clear if and how sparsity can be leveraged to reduce communication, which is the main focus of our work.

Differential Privacy. To achieve provable differential privacy guarantees SecAgg is insufficient as even the sum of local model updates may still leak sensitive information (Melis et al., 2019; Song and Shmatikov, 2019; Carolini et al., 2019; Shokri et al., 2017) and so differential privacy (DP) (Dwork et al., 2006a) can be adopted. By having the noise added locally and letting the server aggregate local information via SecAgg, the DP guarantees do not rely on users’ trust in the server. This user-level DP (also referred to as distributed DP in the literature) framework has recently been adopted in private federated learning (Agarwal et al., 2018; Kairouz et al., 2021; Agarwal et al., 2021; Chen et al., 2022a). In this work, we use the Poisson-binomial mechanism as a primitive (Chen et al., 2022b) to achieve user-level DP.

We also distinguish our setup from the local DP setting (Kasiviswanathan et al., 2011; Evtimievski et al., 2004; Warner, 1965), where the data is perturbed on the user-side before it is collected by the server. Local DP, which allows for a possibly malicious server, is stronger than distributed DP, which assumes an honest-but-curious server. Consequently, local DP suffers from worse privacy-utility trade-offs (Duchi et al., 2013; Ye and Barg, 2017; Barnes et al., 2020; Acharya et al., 2021a).

SecAgg can be viewed as a privacy amplification technique that amplifies weak local DP to much stronger central DP guarantees. Other amplification techniques are based on different cryptographic techniques such as secure shuffling (Erlingsson et al., 2019; Balle et al., 2019; 2020; Balcer and Cheu, 2019) or distributed point functions (Gilboa and Ishai, 2014). While the fundamental communication cost for SecAgg that we show in our paper can be potentially circumvented by these methods, these techniques either require the existence of a trusted shuffler or assume multiple servers that do not collude.

Private frequency estimation and heavy hitters. Private frequency estimation, a.k.a. histogram estimation, is a canonical task that has been heavily studied in the DP literature (Dwork et al., 2006b). When subject to ℓ_2 loss, it is the same as the heavy hitter problem. Under the centralized setting, typical techniques for releasing a private histogram include the addition of noise (and thresholding the counts) (Dwork et al., 2006b; Ghosh et al., 2012; Korolova et al., 2009; Bun and Steinke, 2016; Balcer and Vadhan, 2017) or sampling-and-thresholding (Zhu et al., 2020; Cormode and Bharadwaj, 2022). The private heavy hitter problem has also been heavily studied under the local or multiparty DP model (Bassily and Smith, 2015; Bassily et al., 2017; Bun et al., 2018; 2019; Huang et al., 2022) (which can also be used to obtain a central DP guarantee when combined with a secure shuffling (Erlingsson et al., 2019; Cheu et al., 2019; Ghazi et al., 2021; Niu et al., 2011; Grgic et al., 2021; Luo et al., 2022)). Our work, however, is under the user-level DP model, under which most previous techniques cannot be directly applied. Our privatization technique makes use of noisy count-sketch, which is close to the work of Choi et al. (2020b), in which a general distributed noisy sketch framework is analyzed. In this work, we use a similar technique to characterize the exact communication cost and show that a noisy sketch can achieve the communication lower bound.
Figure 1: A framework for SecAgg (illustrated for the case without dropouts).

The private frequency estimation task can also be related to private set union [Frikken 2007] or set operations [Kissner and Song 2005], where the goal is to discover the union of the supports of the users’ vectors. Though one can try to first estimate the support of the frequency vector and then its distribution over the support via a two-step approach, we note that the resulting accuracy will be highly sub-optimal.

3 SECURE AGGREGATION

In this section, we formulate a general framework for secure aggregation with a single server and n users. Assume each user $i \in [n]$ holds local information (as a vector) $X_i \in X$, and the server aims to compute the sum $\mu(X_1, X_2, ..., X_n) \triangleq \sum_{i \in [n]} X_i$. During the aggregation, up to D clients may drop out, and the secure aggregation protocol should still be able to recover the sum of the remaining clients. In general, an aggregation protocol consists of encoding functions g_i, $i \in [n]$ at the users and an aggregation function f at the server such that:

1. Each user encodes their local information X_i as $Y_i = g_i(X_i; \theta_i)$, where θ_i is randomness available at the i’th user which is independent of X_i but may depend on other θ_i’s for $i' \in [n] \setminus i$.
2. The server observes Y_i for $i \in [n] \setminus D$, i.e., the messages of the available users. If $D = \emptyset$, i.e., there are no dropouts, it estimates the sum $\mu(X^n)$ by a (deterministic) function $f(Y^n)$.
3. If $D \neq \emptyset$, the server invokes a second round of communication with the surviving clients to recover the masks of the dropout users. In this round, the server collects $h(\theta_i, D)$, where $h(\cdot)$ is a general function of local secrets θ_i. Using the information it collects over the two rounds, $Y_i \setminus D$ and $h(\theta_i, D)$, the server estimates the sum of the surviving clients $\mu(X_i \setminus D)$.

Security constraints: We call the aggregation protocol that can tolerate D drop-outs secure, if it satisfies the following two conditions on mutual information for any distribution P_{X^n} imposed on the user data:

- $\forall D \subseteq [n], I(Y_{[n] \setminus D}, h(\theta_{[n]}, D); X_{[n] \setminus D} | \mu(X_{[n] \setminus D})) = 0$. \hspace{1cm} (S1)
- $\forall |D| > D, I(Y_{[n] \setminus D}, h(\theta_{[n]}, D); X_{[n] \setminus D}) = 0$. \hspace{1cm} (S2)

(S1) implies that $X_i \setminus D - \mu(X_i \setminus D)$ is a Markov chain, and hence given $\mu(X_{[n] \setminus D})$ the server cannot deduce any further information about $X_i \setminus D$ from the information it gathers over the two stages of the scheme, $Y_{[n] \setminus D}$ and $h(\theta_{[n]}, D)$; (S2) states that without a sufficient number of users participating (e.g., when $|D| \geq D$), the server cannot learn any information about the user data.

Note that the same framework can be used to include colluding users by allowing $h(\cdot)$ to contain information about both the masks θ_D and the information X_{D} of the users in D, i.e., $h(\theta_{[n]}, X_{[n]} \setminus D)$. Security for the remaining users is ensured with the same constraints (S1) and (S2).

The two security requirements above are satisfied by most practical secure aggregation protocols such as Bonawitz et al. [2016] and Bell et al. [2020]. In the next section, we show that these security requirements come at a fundamental and significant communication cost.

Correctness constraints: In the absence of any privacy considerations, we impose the following correctness requirement on the protocol, which ensures that it always outputs the correct sum:

- $\forall |D| \leq D, \mathbb{P}\{f(Y_{[n] \setminus D}, h(\theta_{[n]}, D)) = \mu(X_{[n] \setminus D})\} = 1$. \hspace{1cm} (C1)

We are also interested in the case where the server recovers the sum approximately under a certain loss function (this is the relevant setting under differential privacy constraints). Let $\ell(\cdot, \cdot)$ be a loss function defined on the domain of $\mu(X^n) = \sum_{i=1}^n X_i$. We refer to the following approximate recovery criterion as the β-distortion criterion:

- $\forall |D| \leq D, \mathbb{E}[\ell(f(Y_{[n] \setminus D}, h(\theta_{[n]}, D)), \mu(X_{[n] \setminus D}))] \leq \beta$. \hspace{1cm} (C1’)

Note that under this criterion the server recovers the sum with distortion β under the loss function ℓ.

Communication cost: The communication cost of an aggregation protocol for user i is given by $\max_{P_{X^n}} H(Y_i)$ (i.e., the worst-case entropy for any possible joint distributions over the local data). This is the maximum over the choice of X^n number of bits node i needs on average to communicate Y_i using an optimal compression scheme.

3.1 Communication Lower Bounds

Next, we present general communication lower bounds on estimating the sum of n random variables $X_{[n]}$ (where we do not make any assumptions on the domain of X_i) under the security constraints (S1) and (S2).

Lemma 3.1 (Lower bound for perfect recovery) Let $D \subseteq [n]$ be the set of dropout clients, such that $|D| \leq D$ for some $D \leq \frac{n}{2}$. Under the correctness constraint (C1) and security constraints (S1) and (S2) on the protocol, it holds that for all $i \in [n] \setminus D, H(Y_i) \geq H(\sum_{i \in [n] \setminus D} X_i)$.
where $H(\cdot)$ is the Shannon entropy.

Note that $H\left(\sum_{i \in [n]} D X_i\right)$ quantifies the information the server is able to learn about the user data. The lemma states that in a secure protocol, the entropy of each individual message should be at least as large the total information communicated to the server. In the following lemma, we characterize how this lower bound is modified when the server needs to recover the sum only approximately.

Lemma 3.2 Let $n' \triangleq n - |D|$. Let $\ell(\cdot, \cdot)$ be a loss function defined on the domain of $\mu\left(X\cdot\right) = \sum_{i \in [n]} D X_i$. Under the β-approximate recovery criterion (C1) and the security constraints (S1) and (S2), it holds that

$$H(Y_i) \geq R(\beta), \text{ for all } i \in [n],$$

where $R(\beta)$ is the solution of the following rate-distortion problem:

$$R(\beta) \triangleq \left(\min_{\mu} I\left(Y^{n'}; \mu\left(X^{n'}\right)\right) \text{ s.t. } \min_{\mu} \mathbb{E}[\ell\left(\mu\left(Y^{n'}\right), \mu\left(X^{n'}\right)\right)] \leq \beta\right),$$

(1)

where the first minimization is taken over all conditional probability $P_{Y^{n'}|\mu(X^{n'})}$.

Lemma 3.2 suggests that under the β-approximate recovery criterion, the communication load of a secure aggregation protocol is lower-bounded by $R(\beta)$ per user. In Section 3, we explicitly characterize $R(\beta)$ for the frequency estimation problem.

4 Secure Frequency Estimation

In this section, we formally define the frequency estimation problem with security constraints (S1) and (S2) and study the optimal communication cost. Assume each user i holds an item X_i in a size d domain \mathcal{X} and the server aims to estimate the histogram of the n items. Let $X_i \in \mathcal{X} \triangleq \{e_1, \ldots, e_d\} \subseteq \{0, 1\}^d$, i.e., each item is expressed as a one-hot vector. Note that this is without loss of generality since the encoding functions g_i at the users can be arbitrary. Then, the histogram of the n items can be expressed as $\mu(X^n) \triangleq \sum_{i \in [n]} X_i [n]^d$. We mainly focus on the high-dimensional regime where $d \gg n$, and our goal is to characterize the communication needed to securely compute $\mu(X^n)$.

To this end, we first apply the (general) lower bound derived in Section 3, with $X_i \in \{e_1, e_2, \ldots, e_d\}$. For simplicity, we present our results without dropouts (i.e., $D = \emptyset$), but extending to the $|D| > 0$ case is immediate. Our lower bound is obtained by imposing a worst-case prior distribution on X^n we arrive at the following corollary:

Corollary 4.1 Let $X_i \in \{e_1, \ldots, e_d\}$ for $i \in [n]$. Under the same set of constraints as in Lemma 3.1, there exists a worst-case prior distribution π_X such that

$$H(Y_i) \geq H(\sum_{i=1}^n X_i) = \Omega(n \log d),$$

(2)

where the entropy $H(\sum_{i=1}^n X_i)$ is computed with respect to $X^n \sim \pi_X^n$.

In the rest of this section, we outline a communication-efficient secure frequency estimation scheme based on solving a linear inverse problem, and the resulting per-user communication cost matches the lower bound in the corollary. We state this result, together with the lower bound in Corollary 4.1 as our main theorem:

Theorem 4.1 To securely (i.e., under (S1) and (S2)) and correctly (i.e., under (C1)) compute the histogram from n users, it is both sufficient and necessary for each user to send $\Theta(n \log d)$ bits to the server.

4.1 Reducing Communication via Sparse Recovery

In this section, we propose a scheme that shows that the communication cost can be reduced to the information-theoretic $\Omega(n \log d)$ bits lower bound. Our scheme depends on the main ingredients: (1) a specific construction of a secure aggregation protocol, often called SecAgg, due to Bonawitz et al. (2016), and (2) a linear binary compression scheme based on random coding. For simplicity, we describe our schemes for the case of no dropouts, but our schemes can be readily extended to handle dropouts or colluding users since they are based on SecAgg (which is designed to tolerate dropouts/colluding users).

In a nutshell, the encoding steps of SecAgg (Bonawitz et al. 2016) consist of (i) mapping X_i into an element of a finite group (where, without loss of generality, we assume the group is \mathbb{Z}_M^m for some $m, M \in \mathbb{N}$), and then (ii) adding a random mask $\theta_i \in \mathbb{Z}_M^m$ so that $Y_i = A_{\text{enc}}(X_i) + \theta_i$. The mask θ_i has uniform marginal density, is independent of X^n, and satisfies $\sum_{i \in [n]} \theta_i = 0$. Upon receipt of Y^n, the server computes the sum of Y^n and decodes it via $A_{\text{dec}}(\sum_i A_{\text{enc}}(X_i))$. The goal is to design mappings $(A_{\text{enc}}, A_{\text{dec}})$, so that

- the outcome correctly recovers $\mu(X^n)$, i.e., $A_{\text{dec}}(\sum_i A_{\text{enc}}(X_i)) = \sum_{i=1}^n X_i$;
- the per-user communication cost $m \log M$ is minimized.

Due to the linearity of SecAgg (i.e., the server obtains the sum of A_{enc}), A_{enc} is usually constructed via a linear mapping, so that $A_{\text{enc}}(X_i) \triangleq S \cdot X_i$ for some $S \in (\mathbb{Z}_M)^{m \times d}$. In this case, the sum of the encodings is the same as the encoding of the sum, i.e.,

$$\sum_i A_{\text{enc}}(X_i) = A_{\text{enc}}(\sum_i X_i) = S \mu(X^n).$$

(3)
To recover \(\mu \) from \(S\mu \), the server solves a linear inverse problem, which has a unique solution only if \(S \) is "invertible" for all possible \(\mu \)'s. For example, a naive choice of \(S \) can be the identity mapping \(I_d \), which encodes each \(X_i \) as a one-hot vector. In this case, the size of the finite group \(\mathbb{Z}_M^n \) is \((M,m) = (n,d)\), and the communication complexity is \(d \log n \) bits. This is far from the lower bound \(\Omega(n \log d) \) when \(n \ll d \).

Can we design a better embedding matrix \(S \) with smaller range (i.e., with smaller \((M,m)\)) than the naive choice \(I_d \) so that \(y = S\mu \) is solvable? Specifically, define \(\mathcal{H}_n \) to be the collection of all possible \(n \)-histogram, i.e., \(\mathcal{H}_n \triangleq \{ \mu \in \mathbb{Z}_d^n \mid \| \mu \|_1 = n \} \). Our goal is to show that there exists an \(S \in \{0,1\}^{m \times d} \) with \(m = O(n \log d / \log n) \), such that \(y = S\mu \) is solvable for all \(\mu \in \mathcal{H}_n \). Using such \(S \) as our local embedding, the resulting communication cost becomes \(O(n \log d) \) and hence matches the lower bound. We summarize this in the following theorem.

Theorem 4.2 Let \(\mathcal{H}_n \) be the collection of all valid \(n \)-histograms formally defined as above. Then there exists an embedding matrix \(S \in \{0,1\}^{m \times d} \) with \(m = O \left(\frac{n \log d}{\log n} \right) \), such that

\[
\forall \mu_1, \mu_2 \in \mathcal{H}_n, \mu_1 \neq \mu_2 \implies S\mu_1 \neq S\mu_2.
\]

Theorem 4.2 can be viewed as a generalization of classical (non-adaptive) Quantitative Group Testing (QGT) (Bshouty 2009; Wang et al. 2016; Scarlett and Cevher 2017; Gebhard et al. 2019), in which the linear inverse problem is defined over the \(\ell_1 \) constrained binary vectors \(\mathcal{G}_n \triangleq \{ \nu \in \{0,1\}^d \mid \| \nu \|_0 = n \} \). To prove the existence of such \(S \), we follow the idea of [Wang et al. 2016] by constructing \(S \) in a probabilistic way, i.e., generating each element of \(S \) as an independent Bern(1/2) random variable. We then show that as long as \(m = \Omega \left(\frac{n \log d}{\log n} \right) \), (4) holds with high probability, hence concluding the existence of \(S \). One key step that generalizes the result from classical QGT is an application of Sperner’s theorem (Sperner 1928; Lubell 1966), which may be of independent interest. The proof of Theorem 5.1 can be found in Appendix D.1.

Comparison to compressed sensing. Note that as the set of \(n \)-histograms is a subset of \(n \)-sparse vectors in \(\mathbb{R}^d \), it may be tempting to use standard sparse recovery techniques such as compressed sensing (Donoho 2006a,b) (e.g., with the classical Rademacher ensemble, see (Wainwright 2019 Chapter 7)). This can allow us to reduce the dimensionality from \(d \) to \(m = O(n \log d) \). However, each coordinate of the embedded vector can range from \(-n\) to \(n \) (using the Rademacher ensemble), and requires \(O(\log n) \) bits to represent it and the total communication cost is \(O(n \log d \cdot \log n) \) leading to an extra \(\log n \) factor. Theorem 4.2 is necessary in order to obtain a information-theoretically optimal solution.

On the other hand, the scheme proposed in the proof of Theorem 4.2, though optimal in terms of communication efficiency, is computationally infeasible. It requires exhaustively scanning over \(\mathcal{H}_n \) to find the unique consistent histogram \(\mu^* \), and hence the computation cost is \(\Omega(d^n) \). It remains open if one can design computationally efficient schemes (e.g., a scheme with computational cost \(\text{poly}(n, d) \) or ideally \(\text{poly}(n, \log d) \)) that achieves the best \(O(n \log d) \) communication cost.

5 SECURE AND PRIVATE FREQUENCY ESTIMATION

Secure aggregation alone does not provide any differential privacy guarantees. In this section, we study the private frequency estimation problem, in which, apart from security constraints \([S1]\) and \([S2]\), we also impose a privacy constraint on our protocol. Our goal is to characterize the communication required for the optimal accuracy-privacy tradeoff. We first state the definition of differential privacy (Dwork et al. 2006b).

Definition 5.1 (Differential Privacy (DP)) For \(\varepsilon, \delta \geq 0 \), a randomized mechanism \(M \) satisfies \((\varepsilon, \delta)\)-DP if for all neighboring datasets \(D, D' \) and all \(S \) in the range of \(M \), we have that

\[
P(M(D) \in S) \leq e^\varepsilon P(M(D') \in S) + \delta,
\]

where \(D = (X_1, \ldots, X_n) \) and \(D' = (X_1', \ldots, X_n') \) are neighboring pairs that can be obtained from each other by adding or removing all the records that belong to a particular user.

In our frequency estimation setting (see Figure 1), DP can be achieved in two different ways:

- Central-level DP criterion: \(f(Y^n) \) is \((\varepsilon, \delta)\)-DP.
- User-level DP criterion: \((Y_1, \ldots, Y_n) \) is \((\varepsilon, \delta)\)-DP.

The central DP criterion requires the server to apply a DP mechanism to its computation to obtain a privatized estimate \(f(Y^n) \), and hence puts trust in the service provider. The user-level DP criterion removes the need for a trusted server as noise is added to each message before it is sent to the server. By the data processing property of DP, the latter is a stronger notion and implies the former.

In this section, we provide a secure and private frequency estimation scheme that satisfies the user-level DP criterion above in addition to \([S1]\) and \([S2]\). The scheme consists of local perturbations, where local data is privatized by local randomizers, and secure aggregation, where the server aggregates the noisy sum via SecAgg. The next lemma states that we can achieve user-level DP if the (locally privatized) noisy sum is DP and the aggregation protocol satisfies the security condition \([S1]\). This fact has been implicitly used.
Lemma 5.1 Let M_i be the local randomizer at user $i \in [n]$ such that $\mu = \sum_i M_i(X_i)$ is (ε, δ)-DP. Let Y_i be the message sent by client i in the secure aggregation protocol with input $M_i(X_i)$ (i.e., $Y_i = g_i(M_i; \theta_i)$ in Figure 7). Then as long as the security constraint (S1) holds, (Y_1, \ldots, Y_n) satisfies (ε, δ)-DP.

Lemma 5.1 implies that with secure aggregation, we only need to ensure that the sum of locally randomized messages M_i’s are DP (as opposed to requiring (M_1, \ldots, M_n) to be jointly DP). This not only simplifies the construction of M_i’s, but also significantly reduces the amount of perturbation needed.

In the rest of this section, we characterize the accuracy-privacy trade-off achieved by this scheme as well as its per-user communication cost in Theorem 5.1. Since this scheme satisfies (ε, δ)-user-level DP, it also satisfies the weaker (ε, δ)-central DP criterion. Moreover, the accuracy-privacy trade-off achieved by this scheme is (nearly) optimal in the sense that it (nearly) matches the best trade-off achievable by any scheme satisfying the central DP criterion (Balcer and Vadhan 2017). Since our scheme is designed to satisfy the stronger user-level DP criterion, this means that we can achieve the optimal privacy-accuracy trade-off while removing the need for a trusted server. We show that the communication cost is also optimal by proving a lower bound on the communication cost of any scheme that achieves the optimal privacy-accuracy trade-off while satisfying (S1) and (S2). In other words, any secure frequency estimation scheme requires at least as many bits to achieve the optimal privacy-accuracy trade-off. This establishes the optimality of our scheme in terms of communication cost. Finally, we remark that although we present bounds in terms of standard DP (Definition 5.1), our scheme also satisfies Rényi differential privacy (Mironov 2017) (RDP), which allows for tighter privacy accounting when applying a private mechanism iteratively. We defer the details to Appendix A.

We next state the main results of this section starting with our achievability result.

Theorem 5.1 (Private frequency estimation) The scheme presented in Section 5.1 (see also Algorithm 1) satisfies (S1), (S2) and an (ε, δ)-user-level DP criterion (and also $(\alpha, \varepsilon / \log(\frac{1}{\delta}))$-RDP), while achieving

- ℓ_∞ error $\mathbb{E} [\|\hat{\mu} - \mu(X^n)\|_\infty] = O\left(\sqrt{\log d \log(1/\delta)}\right)$;
- ℓ_1 error $O\left(\left(n\sqrt{\log d \log(1/\delta)}\right)\right)$;
- ℓ_2 error $\mathbb{E} [\|\hat{\mu} - \mu(X^n)\|_2^2] = O\left(\frac{n \log d \log(1/\delta)}{\varepsilon^2}\right)$;

and uses $O\left(n \min\left(\varepsilon \sqrt{\log d / \log(1/\delta)}, \log d\right)\right)$ bits (where in \tilde{O} we hide dependency on n and $\log \log d$ terms).

The formal statement of Theorem 5.1 and the proof are provided in Appendix A (see Theorem A.3). Note that the (ε, δ)-user-level DP guarantee in the theorem implies a (ε, δ)-central DP guarantee. We contrast this with the optimal accuracy-privacy tradeoff achievable in the centralized case, i.e., when the only requirement imposed on the scheme is an (ε, δ)-central DP criterion. For the ℓ_2 and ℓ_∞ loss (i.e., setting the loss function in (C1) to be $\|\cdot\|_2$ or $\|\cdot\|_\infty$ respectively), the minimax error is well-known (see, for instance, Hardt and Talwar 2010; Balcer and Vadhan 2017) as we state in the following lemma:

Lemma 5.2 (Minimax error under central DP) Under a (ε, δ)-central DP, the minimax error for frequency estimation, defined as

$$\min_{M(\cdot) \text{ satisfies } (\varepsilon, \delta)\text{-central DP}} \max_{X^n} \mathbb{E} [\ell(M(X^n), \mu(X^n))],$$

is equal to

- $\Theta\left(\min(\log \frac{d \log(1/\delta)}{\varepsilon})\right)$ under the ℓ_∞ loss;
- $O\left(\frac{n \log \log d \log(1/\delta)}{\varepsilon^2}\right)$ under the ℓ_2 loss;

We note that the the ℓ_∞ accuracy results in Theorem 5.1 matches that in Lemma 5.2 up to a factor, while the scheme in Theorem 5.1 satisfies the additional (S1), (S2) and the stronger user-level-DP constraints. This establishes the optimality of our scheme from an accuracy-privacy trade-off perspective. We also observe that the communication cost in Theorem 5.1 decreases with ε when $\varepsilon \leq \log d$, meaning that we can compress more aggressively with more stringent privacy constraint. This behavior aligns with the conclusions of Chen et al. (2022a) (under a federated learning setting) and Chen et al. (2020) (under a local DP model).

We next show that the communication cost in Theorem 5.1 is optimal under the ℓ_∞ loss (up to a poly $(\log n, \log \log d)$ factor).

Corollary 5.1 Any (ε, δ)-central DP scheme that satisfies (S1) and (S2) such that:

- $\mathbb{E} [\|\hat{\mu} - \mu(X^n)\|_\infty] = O\left(\frac{\sqrt{\log d \log(1/\delta)}}{\varepsilon}\right)$ requires
 $\Omega\left(n \min\left(\varepsilon \sqrt{\log d / \log(1/\delta)}, \log d\right)\right)$ per-user communication;
- $\mathbb{E} [\|\hat{\mu} - \mu(X^n)\|_2^2] = O\left(\frac{n \log d \log(1/\delta)}{\varepsilon^2}\right)$ requires
 $\Omega\left(n \min\left(\frac{\varepsilon}{\log(1/\delta)}\right), \log d\right)$ per-user communication.
Recall from the previous section that we need \(n \log d \) bits to securely compute the exact histogram. Corollary 5.1 characterizes the reduction in communication cost when the histogram is computed approximately due to the privacy constraint and \(\varepsilon = O(\log d) \).

We establish this result as a corollary of the following lemma which specifies the (worst-case) asymptotic behavior of \(R(\beta) \) (defined in (1)) under \(\ell_2 \) and \(\ell_\infty \) loss for secure frequency estimation. Corollary 5.1 is obtained by plugging in the corresponding errors for \(\beta \) in the lemma.

Lemma 5.3 Let \(R(\beta) \) be defined as in (1). When \(X_i \in \{e_1, \ldots, e_d\} \) for \(i \in [n] \), there is a worst-case prior distribution \(\pi_N \) (possibly correlated for \(X_i \)'s), s.t.:

- under the \(\ell_\infty \) loss, \(R(\beta) = O(n \log d / \beta) \);
- under the \(\ell_2 \) loss, \(R(\beta) = O(n^2 \log d / \beta) \).

Lemma 5.3 is a special case of Lemma 5.2. However, to obtain the asymptotic scaling, we make use of Fano’s inequality, with carefully constructed prior distributions via \(\ell_\infty \) and \(\ell_2 \) packing over the space of all histograms. The proof can be found in Appendix D.5

5.1 Frequency Estimation via Noisy Sketch

Next, we present a (nearly) optimal secret and private frequency estimation scheme in Algorithm 1 that uses the optimal communication in Corollary 5.1. We use the following ingredients in our scheme: (1) the specific SecAgg implementation of Bonawitz et al. (2016) (see Section 4.1 for a brief introduction), (2) count-sketch (Charikar et al., 2002) together with Hadamard transform, and (3) the Poisson-binomial mechanism (Chen et al., 2023). Following the idea in Section 4.1, we use the SecAgg protocol introduced by Bonawitz et al. (2016) as a primitive and focus on designing \((\Delta_{\text{enc}}, \Delta_{\text{dec}}) \). Since \((\varepsilon, \delta) \)-DP inevitably incurs \(O\left(\frac{\log d}{\varepsilon} \right) \) error on the estimated frequency, it suffices to have SecAgg output an approximate sum (i.e., histogram) with distortion less than the DP error. This slack allows us to reduce the communication below the \(\Omega(n \log d) \) lower bound per user for computing the exact histogram.

Count-sketch. We use count-sketch to achieve this goal. Count-sketch is a linear compression scheme (and hence can be represented in a matrix form \(S = [S^T_1, S^T_2, \ldots, S^T_T] \in \{-1, 0, 1\}^w \times d \) for some \(w, t \in \mathbb{N} \), where each \(S_j \in \{-1, 0, 1\}^w \times d \) is generated according to an independent hash function) that allows for trading off the estimation error for communication cost. A count-sketch is determined by two parameters \(w, t \in \mathbb{N} \); \(w \) is the bucket size that controls the magnitude of \(\ell_\infty \) error, and \(t \), the number of hash functions, determines the failure probability. To apply count-sketch in the frequency estimation problem, each user computes a local sketch of its data, i.e., \(S \cdot X_i \), and sends it to the server. Upon receiving local sketches, the server can unsketch and obtain an estimate on \(\mu(X^n) \). By setting \(t = \Theta(\log(d/\gamma)) \), count-sketch estimates \(\mu \) with \(O\left(\frac{|\mu|_1}{w} \right) \) error with failure probability at most \(\frac{1}{4} \).

Hadamard transform. After computing the local sketch, each user performs the Hadamard transform to flatten each \(S_j X_i \) for \(j \in [t] \) and \(i \in [n] \), i.e., computes \(H \cdot S \cdot X_i \), where \(H \) is the (normalized) Walsh-Hadamard matrix (assuming \(w \) is a power of 2) satisfying the following relation:

\[
H_{2^n} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{2^{n-1}}, & -H_{2^{n-1}} \end{bmatrix}, \quad \text{and } H_0 = [1].
\]

The flattening step reduces the dynamic range of \(S \cdot X_i \) in the sense that \(||H \cdot S \cdot X_i||_\infty = \frac{1}{\sqrt{w}} ||S \cdot X_i||_\infty \). This controls the \(\ell_\infty \)-sensitivity, which facilitates the following privatization steps.

Poisson-binomial mechanism. Last, to introduce DP, we make use of the Poisson-binomial mechanism (PBM) (Chen et al., 2023). In PBM, users encode their locally flattened sketches \(H \cdot S \cdot X_i \) into parameters of binomial random variables (and hence the sum of \(n \) users’ noisy reports follow a Poisson-binomial distribution). The main advantages of using PBM include: (1) the binomial distribution is closed under addition, and hence it is compatible with SecAgg; (2) it asymptotically converges to a Gaussian distribution and gives Renyi DP guarantees (which supports tight privacy accounting); (3) it does not require modular clipping and hence results in an unbiased estimate of \(\mu \) (as opposed to other user-level discrete DP mechanisms, such as those of Kaurouz et al. (2021), Agarwal et al. (2021)).

3Here we apply an \(\ell_1 \) point-query bound due to the \(\ell_1 \) geometry of \(\mu(X^n) \).
Figure 2: ℓ_2 loss with $\varepsilon = 1$. The error is computed with a normalization (the goal is to estimate $\mu(X^n)$).

By putting these pieces together, we arrive at Algorithm 1 with privacy guarantees, estimation error, and communication cost as stated in Theorem 5.1. A more detailed version is given in Algorithm 2 in Appendix A. In addition, in Appendix C we show that we can improve the accuracy when additional knowledge on the sparsity of $\mu(X^n)$ is available.

Comparing the communication cost in Theorem 5.1 and the lower bounds in Corollary 5.1, we see that under ℓ_∞ loss, Algorithm 1 matches the lower bound up to a $\log n$ and $\sqrt{\log d}$ factor, where the small sub-optimality gap is due to the modular arithmetic used by SecAgg. Closing this gap is left to future work.

6 EXPERIMENTS

In this section, we provide empirical results for Algorithm 1 which we label as ‘Sketched PBM’.

We compare sketched PBM with other decentralized (local) DP mechanisms, including randomized response (RR) (Warner, 1965; Kairouz et al., 2016) and the Hadamard response (HR) (Acharya et al., 2019b) (which is order-wise optimal for all $\varepsilon = O(\log d)$).

We set $d = 10^5$ and $n \in [10K, 50K]$, i.e., in a regime where $d \gg n$. Under this regime, it is well-known that local DP suffers from poor-utility (Duchi et al., 2013). We demonstrate that our proposed sketched PBM achieves a much better convergence rate (though admittedly at the cost of higher communication as predicted by our theoretical results). We also remark that the communication cost per user of the sketched PBM is fixed in this set of experiments, and thus the (normalized) estimation error does not strictly decrease with n (recall that our theory suggests in order to achieve the best performance, the communication cost has to be increasing with n). More detailed empirical results can be found in Appendix B.

7 ACKNOWLEDGEMENTS

This work was supported in part by NSF Award # CCF-2213223, a Meta Faculty research award, and a National Semiconductor Corporation Stanford Graduate Fellowship. The authors would like to thank Peter Kairouz for the helpful suggestions in the earlier version of this work.
References

Leighton Pate Barnes, Yanjun Han, and Ayfer Oezgur. Lower bounds for learning distributions under communication constraints via Fisher information, 2019.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated learning on user-held data. *arXiv preprint arXiv:1611.04482*, 2016.

David L Donoho. For most large underdetermined systems of linear equations the minimal ℓ_1-norm solution is also the sparsest solution. *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 59(6):797–829, 2006b.

Yanjun Han, Pritam Mukherjee, Ayfer Ozgur, and Tsachy Weissman. Distributed statistical estimation of high-dimensional and nonparametric distributions. In *2018

A Additional Details of Section 5

In this section, we provide additional details and empirical results of our noisy sketch scheme Algorithm 1 in Section 5 and give formal proofs on its privacy and utility guarantees. As mentioned in Section 5, our goal is to design a scheme that satisfies a stronger version of (distributed) DP, i.e., Rényi differential privacy, as it allows for tight privacy accounting. Therefore, in this section we first provide an RDP guarantee for our scheme, and then convert the RDP guarantee to (ε, δ)-DP using well-known conversion results such as Mironov (2017). To this end, we start by giving a brief introduction to Rényi DP.

A.1 Rényi Differential Privacy (RDP)

A useful variant of DP is the Rényi differential privacy (RDP), which allows for tight privacy accounting when a mechanism M is applied iteratively.

Definition A.1 (Rényi Differential Privacy (RDP)) A randomized mechanism M satisfies (α, ε)-RDP if for any two neighboring datasets D, D', we have that $D_\alpha \left(P_{M(D)}, P_{M(D')} \right) \leq \varepsilon$ where $D_\alpha \left(P, Q \right)$ is the Rényi divergence between P and Q and is given by

$$D_\alpha \left(P, Q \right) \triangleq \frac{1}{\alpha} \log \left(\mathbb{E}_Q \left[\left(\frac{P(X)}{Q(X)} \right)^\alpha \right] \right).$$

Note that one can convert an RDP guarantee to an (approximate) DP guarantee (for instance, see Mironov (2017)) but not the other way around in general. Although we presented our bounds in Section 5 in terms of approximate DP, our proposed schemes satisfy the RDP definition as we show next.

A.2 Details of Algorithm 1

We start by briefly recalling the details of count-sketch Charikar et al. (2002), which serves as our main compression tool for reducing communication costs. Count-sketch can be constructed via two sets of (pairwise independent) hash functions $h_i : [d] \rightarrow [w]$ and $\sigma_i : [d] \rightarrow \{-1, +1\}$ for $i \in [t]$. The functions can be organized in matrix form $S \in \{-1, 0, 1\}^{wt \times d}$, which can be viewed as a vertical stack of $S_1, ..., S_t \in \{-1, 0, 1\}^{w \times d}$, where for $i \in [t]$, $(S_i)_{j,k} = \sigma_i(j) \cdot 1_{\{h_i(j) = k\}}$. Note that $m \triangleq w \cdot t$ is the embedded dimension.

In Algorithm 2, we give a more detailed description of Algorithm 1, our private frequency estimation scheme from Section 5. We analyze the performance of Algorithm 2 in the next section.

A.3 Performance Analysis for Algorithm 2

We start by proving that Algorithm 2 satisfies the following RDP guarantee.

Theorem A.1 (RDP guarantee) As long as $\theta \leq \frac{1}{4}$, Algorithm 2 satisfies $(\alpha, \tau(\alpha))$-RDP for all $\alpha > 1$ and $\tau(\alpha)$ such that

$$\tau(\alpha) \geq C_0 \frac{\theta^2 L_\alpha}{n} \cdot wt,$$

for some $C_0 > 0$

Proof. The proof follows from (Chen et al., 2022b, Corollary 3.2).

Once we obtain an RDP guarantee, we cast it into an (ε, δ)-DP guarantee by using results due to Canonne et al. (2020).

Theorem A.2 ((ε, δ)-DP guarantee) Assume $\delta \leq \exp \left(-\frac{m\theta^2 wt}{n} \right)$. Then Algorithm 2 satisfies an (ε, δ) distributed DP guarantee for all ε and δ satisfying

$$\varepsilon = \Omega \left(\sqrt{\frac{L\theta^2 wt \log \left(\frac{1}{\delta} \right)}{n}} \right).$$

Proof. We apply Canonne et al. (2020) to convert the RDP guarantee in Theorem A.1.
Algorithm 2: Secure and private frequency estimation with noisy sketch (detailed)

Input: users’ data $X_1, \ldots, X_n \subseteq \{e_1, \ldots, e_d\}$, failure probability γ, sketch parameter w, t, PBM parameter L, θ

Output: frequency estimate $\hat{\mu}$

Server generates (S_1, \ldots, S_t) (with $t = \Theta \left(\log \left(\frac{d}{\gamma} \right) \right)$ and w being a power of two and satisfying $w = \Theta \left(\min \left(n, \frac{n^2}{w} \right) \right)$);

The server broadcasts S_1, \ldots, S_t to all users;

for $i \in [n]$ do
 Set $\theta = \text{and } L = $;
 for $j \in [t]$ do
 user i computes $p_{ij} = \theta \left(H_w \cdot S_j \cdot X_i \right) + 1/2$, where $H_w \in \{-1/\sqrt{w}, 1/\sqrt{w}\}^{w \times w}$ is the Hadamard matrix;
 user i generates $Y_{ij} \triangleq \text{Binom}(L, p_{ij})$ coordinate-wisely (so $Y_{ij} \in [L]^w$);
 end
end

The server aggregates (via SecAgg Bonawitz et al. (2016)) noisy reports $\{Y_{ij}\}$ and computes the median

$$\left(S_{1\mu}, \ldots, S_{t\mu} \right) \triangleq \left(\frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} H_w \cdot \left(\frac{Y_{1i}}{L} - \frac{1}{2} \right), \ldots, \frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} H_w \cdot \left(\frac{Y_{it}}{L} - \frac{1}{2} \right) \right).$$

Server unsketches by computing the median:

$$\hat{\mu} = \text{median} \left(S_{1\mu}^T, \ldots, S_{t\mu}^T \right).$$

return $\hat{\mu}$

Lemma A.1 (Renyi DP to approximate DP) For any $\alpha \in (1, \infty)$, if

$$D_\alpha \left(\mathcal{M}(x) \parallel \mathcal{M}(x') \right) \leq \tau,$$

then $\mathcal{M}(\cdot)$ satisfies (ε, δ)-DP for

$$\varepsilon \geq \varepsilon^* \triangleq \tau + \frac{\log \left(\frac{1}{\delta} \right) + (\alpha - 1) \log \left(1 - \frac{1}{\alpha} \right) - \log(\alpha)}{\alpha - 1}.$$

Applying Theorem A.6 and Lemma A.1 above and plugging in $\tau = C_0 \frac{\theta^2 L \alpha}{n} \cdot wt$, we see that $\hat{\mu}$ is (ε, δ)-DP for

$$\varepsilon^* = C_0 \frac{\theta^2 L \alpha}{n} \cdot wt + \frac{\log \left(\frac{1}{\delta} \right) + (\alpha - 1) \log \left(1 - \frac{1}{\alpha} \right) - \log(\alpha)}{\alpha - 1} \leq C_0 \frac{\theta^2 L}{n} \cdot wt + C_0 \frac{\theta^2 L (\alpha - 1)}{n} \cdot wt + \frac{\log \left(\frac{1}{\delta} \right)}{\alpha - 1},$$

(d) $\leq C_0 \frac{\theta^2 L}{n} \cdot wt + 2 \sqrt{C_0 \frac{L \theta^2 wt \log \left(\frac{1}{\delta} \right)}{n}}$

(b) $= O \left(\sqrt{\frac{L \theta^2 wt \log \left(\frac{1}{\delta} \right)}{n}} \right),$

where (a) holds if we pick $\alpha - 1 = \sqrt{\frac{n \log(1/\delta)}{\theta^2 L wt}}$ (i.e., such that AM-GM inequality holds with equality), and (b) holds if

$$\log \left(\frac{1}{\delta} \right) \geq \frac{L \theta^2 wt}{n} \iff \delta \leq \exp \left(- \frac{L \theta^2 wt}{n} \right).$$

Finally, in the following theorem, we compute the communication cost and control the ℓ_∞ and ℓ_2 estimation error of our algorithm.
Theorem A.3 (Privacy and Utility of Algorithm 2) Let

\[t = \log \left(\frac{d}{\gamma} \right), \]
\[w = \min \left(n, \left(\frac{n\varepsilon}{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)} \right) \right), \]
\[L = \left[\frac{ne^2}{wt \log(1/\delta)} \right] + 1, \]
\[\theta = O \left(\min \left(\frac{1}{4}, \frac{ne^2}{wt \log(1/\delta)} \right) \right). \]

Let \(\hat{\mu} \) be the output of the Algorithm 2. Then:

• \(\hat{\mu} \) satisfies \((O(\varepsilon), \delta)-DP\) and \(\alpha, O \left(\frac{\varepsilon^2}{\log(1/\delta)} \right)\)-Rényi DP.
• The communication complexity is \(\tilde{O} \left(\min \left(n \varepsilon \log \left(\frac{1}{\gamma} \right), n \right) \right) \) bits per user.
• With probability at least \(1 - \gamma \),

\[\| \hat{\mu} - \mu \|_{\infty} = \max_{j \in [d]} | \mu_j - \hat{\mu}_j | \leq \frac{4\varepsilon}{w} + O \left(\frac{\sqrt{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) = O \left(\frac{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}{\varepsilon} \right). \]

• By setting \(\hat{\mu}_j = 0 \) for all \(j \in [d] \) such that \(\hat{\mu}_j = O \left(\frac{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}{\varepsilon} \right) \), the \(\ell_2^2 \) estimation error is bounded by

\[O \left(\frac{n \log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}{\varepsilon^2} \right), \]

and the \(\ell_1 \) error is bounded by

\[O \left(\frac{n \sqrt{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right). \]

Proof.

Privacy guarantee. By plugging \(L = \left[\frac{ne^2}{wt \log(1/\delta)} \right] + 1 \) and \(\theta = O \left(\min \left(\frac{1}{4}, \frac{ne^2}{wt \log(1/\delta)} \right) \right) \) into Theorem A.1 and Theorem A.2 we immediately obtain the desired privacy guarantee.

Analysis of the communication cost. Let \(\mathbb{Z}_M^d \) be the finite group that SecAgg operates on. In Algorithm 2 client \(i \) needs to communicate \(\{Y_{ij} \mid i = 1, \ldots, t\} \) to the server. Notice that each \(Y_{ij} \in [L]^w \), but for all \(j \in [t] \), each coordinate of \(\sum_i Y_{ij} \) can be as large as \(nL \). Therefore, we will set \(M = nL \). Now, if \(w = \left(\frac{ne^2}{\sqrt{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}} \right) \leq n \), then the communication cost for each client becomes

\[m \log(M + 1) = m \log(nL + 1) = wt \log(nL + 1) \]
\[= \frac{ne^2}{\sqrt{\log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}} \log \left(n \left(\left[\frac{ne^2}{wt \log(1/\delta)} \right] + 1 \right) + 1 \right). \]
The Communication Cost of Security and Privacy in Federated Frequency Estimation

\[
= n \varepsilon \frac{\sqrt{\log(d/\gamma)}}{\sqrt{\log(1/\delta)}} \log \left(n \left(\frac{\varepsilon}{\sqrt{\log(d/\gamma) \log(1/\delta)}} + 1 \right) + 1 \right)
\]

\[
= \tilde{O} \left(\frac{n \varepsilon \sqrt{\log(d/\gamma)}}{\sqrt{\log(1/\delta)}} \right),
\]

where in the last equation we hide the \(\log(n[\varepsilon]) \) term into \(\tilde{O}(\cdot) \) for simplicity. On the other hand, if \(w = n \), then

\[
m \log(M + 1) = wt \log(nL + 1)
\]

\[
= n \log \left(\frac{d}{\gamma} \right) \log \left(n \left(\frac{n \varepsilon^2}{wt \log(1/\delta)} + 1 \right) + 1 \right)
\]

\[
= n \log \left(\frac{d}{\gamma} \right) \log \left(n \left(\frac{\varepsilon^2}{\log \left(\frac{d}{\gamma} \right) \log(1/\delta)} + 1 \right) + 1 \right)
\]

\[
= \tilde{O} \left(n \log(d/\gamma) \right).
\]

Bounding the \(\ell_\infty \) error. We apply a similar analysis of error bounds using the count-sketch. Let

\[
\hat{\mu}^{(j)} = S_j^T S_j \hat{\mu} = S_j^T \left(\frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} H_w \cdot \left(\frac{Y_{ij}}{L} - \frac{1}{2} \right) \right),
\]

for \(j \in [t] \). Define \(N^{(j)} \in \mathbb{R}^w \) be the estimation error of the \(j \)-th sketch, i.e.,

\[
N^{(j)} \triangleq S_j \mu - \frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} H_w \cdot \left(\frac{Y_{ij}}{m} - \frac{1}{2} \right).
\]

Then, for any \(i \in [d] \), we can write the absolute error of the \(j \)-th sketch as

\[
|\hat{\mu}_i^{(k)} - \mu_i| = \sum_{j \neq i} \sigma_k(j) \sigma_k(i) \mathbb{I}_{\{h(j) = h(i)\}} \mu_j + N^{(j)}_{h_k(i)}.
\]

Therefore, we must have

\[
\mathbb{E} \left[|\hat{\mu}_i^{(k)} - \mu_i| \right] \leq \mathbb{E} \left[\left| \sum_{j \neq i} \sigma_k(j) \sigma_k(i) \mathbb{I}_{\{h(j) = h(i)\}} \mu_j \right| + |N^{(j)}_{h_k(i)}| \right]
\]

\[
\leq (a) \mathbb{E} \left[\sum_{j \neq i} \mathbb{I}_{\{h(j) = h(i)\}} \mu_j \right] + \sqrt{ \mathbb{E} \left[\left(N^{(j)}_{h_k(i)}\right)^2 \right] } \]

\[
\leq (b) \frac{n}{w} + \sqrt{ \mathbb{E} \left[\left(N^{(j)}_{h_k(i)}\right)^2 \right] },
\]

where (a) follows due to Jensen’s inequality and the fact that \(\sigma_k(\cdot) \in \{-1, +1\} \), (b) holds since \(h_k(i) \) and \(h_k(j) \) are pairwise independent.

Next, we upper bound \(\mathbb{E} \left[\left(N^{(j)}_{h_k(i)}\right)^2 \right] \). For notational simplicity, assume \(h_k(i) = h \in [w] \). Observe that

\[
N^{(j)} = S_j \mu - \frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} H_w \cdot \left(\frac{Y_{ij}}{L} - \frac{1}{2} \right)
\]

\[
= H_w \left(H_w S_j \mu - \frac{1}{\theta \sqrt{w}} \sum_{i=1}^{n} \left(\frac{Y_{ij}}{L} - \frac{1}{2} \right) \right),
\]
where the second equality is due to the fact that $H_w \cdot H_w = I_w$.

Denote
\[
\Delta_j \triangleq H_w S_j \mu - \frac{1}{\theta \sqrt{w}} \sum_{i=1}^n \left(\frac{Y_{ij}}{L} - \frac{1}{2} \right) \in \mathbb{R}^w.
\]

Note that $H_w S_j \mu$ is the input to the PBM and $\frac{1}{\theta \sqrt{w}} \sum_{i=1}^n \left(\frac{Y_{ij}}{L} - \frac{1}{2} \right)$ is the estimate of PBM, so Δ_j satisfies the following properties (see (Chen et al., 2022b) for more details):

- $\Delta_j(h)$ is independent of $\Delta_j(h')$ for all $h \neq h'$ (where $\Delta_j(h)$ is the h-th coordinate of Δ_j).
- $\mathbb{E} [\Delta_j] = 0$.
- For any $h \in [w]$, $\mathbb{E} [\Delta_j^2(h)] = \frac{w}{w \sigma^2} \sum_{i=1}^n \text{Var} (Y_{ij}) \leq \frac{n}{4w \sigma^2}$.

Let $H_w(h)$ be the h-th row of H_w. Then
\[
\mathbb{E} \left[\left(N_h^{(j)} \right)^2 \right] = \mathbb{E} \left[\langle H_w(h), \Delta_j \rangle^2 \right] \leq \frac{1}{w^2 L \theta^2} \leq \frac{n}{4w L \theta^2} = O \left(\frac{w \log(1/\delta)}{n \varepsilon^2} \right) = O \left(\frac{t \log(1/\delta)}{\varepsilon} \right),
\]

where (a) holds since each coordinate of Δ_j is independent and each coordinate of $H_w(h)$ is either $\frac{1}{\sqrt{w}}$ or $-\frac{1}{\sqrt{w}}$, (b) holds since $\mathbb{E} [\Delta_j^2(h)] \leq \frac{n}{4w \sigma^2}$ for all $h \in [w]$, and (c) is because of our choice of L and θ.

Therefore, by Markov’s inequality, we have
\[
\mathbb{P} \left\{ \left| \hat{\mu}_i^{(k)} - \mu_i \right| \geq \frac{4n}{w} + O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \right\} \leq \frac{1}{4}.
\]

Taking the median for $(\hat{\mu}_i^{(1)}, ..., \hat{\mu}_i^{(t)})$ to apply the Chernoff bound, we obtain
\[
\mathbb{P} \left\{ \left| \hat{\mu}_i - \mu_i \right| \geq \frac{4n}{w} + O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \right\} \leq \mathbb{P} \left\{ \sum_{k=1}^t \mathbbm{1} \left[|\hat{\mu}_i^{(k)} - \mu_i| \geq 4n \frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right] \geq \frac{t}{2} \right\}
\]
\[
\leq \mathbb{P} \left\{ \text{Binom} \left(t, \frac{1}{4} \right) \geq \frac{t}{2} \right\}
\]
\[
\leq \frac{\gamma}{\delta},
\]

if we take $t = O \left(\log \left(\frac{\delta}{\gamma} \right) \right)$, where the last inequality is due to the Chernoff bound.

Taking the union bound over $i \in [d]$, we conclude that
\[
\mathbb{P} \left\{ \max_{i \in [d]} |\hat{\mu}_i - \mu_i| \geq \frac{4n}{w} + O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \right\} \leq \gamma.
\]

Setting $w = O \left(\frac{n \varepsilon}{\sqrt{t \log \left(\frac{1}{\delta} \right)}} \right) = O \left(\frac{n \varepsilon}{\sqrt{\log(\frac{1}{\delta}) \log \left(\frac{1}{\gamma} \right)}} \right)$, we arrive at the desired result.

Bounding the ℓ_2 and ℓ_1 error. Since
\[
\mathbb{P} \left\{ \max_{j \in [d]} |\hat{\mu}_i - \mu_j| = O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \right\} \leq \gamma,
\]
The Communication Cost of Security and Privacy in Federated Frequency Estimation

we condition on the event

\[\mathcal{E} \triangleq \left\{ \max_{j \in [d]} |\hat{\mu}_i - \mu_i| = O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \right\}. \]

Under \(\mathcal{E} \), when thresholding out every coordinate \(i \) such that \(\hat{\mu}_i \leq O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right) \) (denoted as \(\hat{\mu}_i \)), we must have

\[\begin{cases}
|\hat{\mu}_i - \mu_i| \leq O \left(\frac{\sqrt{t \log \left(\frac{1}{\delta} \right)}}{\varepsilon} \right), & \text{if } \mu_i \neq 0 \\
|\hat{\mu}_i - \mu_i| = 0, & \text{if } \mu_i = 0
\end{cases} \]

Since there can be at most \(n \) coordinates such that \(\mu_i \neq 0 \), the \(\ell_2^2 \) error can be at most

\[\sum_{i=1}^{d} (\hat{\mu}_i - \mu_i)^2 \leq n \cdot \frac{t \log \left(\frac{1}{\delta} \right)}{\varepsilon^2} + (d - n) \cdot 0 = O \left(\frac{n \log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}{\varepsilon^2} \right). \]

Similarly, for the \(\ell_1 \) error, we have

\[\sum_{i=1}^{d} |\hat{\mu}_i - \mu_i| \leq n \cdot \frac{t \log \left(\frac{d}{\gamma} \right)}{\varepsilon} = O \left(\frac{n \log \left(\frac{d}{\gamma} \right) \log \left(\frac{1}{\delta} \right)}{\varepsilon} \right). \]

This completes the proof of Theorem A.3.

Finally, setting \(\gamma = \frac{1}{\text{poly}(n,d)} \), we can cast the high-probability bound in Theorem A.3 into expected bounds shown in Theorem 5.1.

B Additional Experiments

In this section, we provide additional empirical results for Algorithm 1, which we label as ‘sketched PBM’. As in Section 6, in the first set of experiments, we compare sketched PBM with other decentralized (local) DP mechanisms, including randomized response (RR) [Warner 1965, Kairouz et al. 2016] and the Hadamard response (HR) [Acharya et al. 2019b] (which is order-wise optimal for all \(\varepsilon = O \left(\log d \right) \)). The data is generated under a (truncated) Geometric distribution (with \(\theta = 0.8 \)) in Figure 3 and under a (truncated) Zipf distribution (with \(\theta = 1.0 \)) in Figure 4. For the (centralized) Gaussian and the (distributed) sketched PBM mechanisms, \(\delta \) is set to be \(10^{-5} \). For sketched PBM, we set the parameter \(L = 10 \).

We set \(d = 10^5 \) and \(n \in [10k, 50k] \), i.e., in a regime where \(d \gg n \) and compare the above schemes for \(\varepsilon \in \{1, 5, 10\} \). Under this regime, it is well-known that local DP suffers from poor utility [Duchi et al. 2013]. We demonstrate that our proposed sketched PBM mechanism achieves a much better convergence rate (though admittedly at the cost of higher communication) both for the Geometric and Zipf distributions. We also remark that the per user communication cost of the sketched PBM mechanism is fixed in this set of experiments, and thus the (normalized) estimation error does not strictly decrease with \(n \) (recall that our theory suggests in order to achieve the best performance, the per user communication cost has to be increasing with \(n \)). We note that in the low privacy regimes (e.g., when \(\varepsilon = 10 \)), the communication budget has a greater impact on the accuracy of sketched PBM. This suggests that in this regime the performance of the scheme is limited by the compression error. Equivalently, the number of bits used by the scheme are below the threshold characterized by our theory to achieve the central DP performance.

\[\text{For the local DP mechanisms, we partly use the implementation from } \text{https://github.com/zitengsun/hadamard_response}. \]
Figure 3: ℓ_∞ and ℓ_2 loss with $\varepsilon = \{1, 5, 10\}$. The error is computed with a normalization (the histogram is normalized by a factor of n, i.e., $\frac{1}{n} \mu(X_n)$). The y-axis is under a log-scale. In addition, when computing the ℓ_2 error, we project all the estimated histograms into the probability simplex to further reduce the estimation error (also been adopted by Acharya et al. (2019b)).
Figure 4: ℓ_∞ and ℓ_2 loss with $\varepsilon = \{1, 5, 10\}$.
In the next set of experiments (Figure 5), we fix $d = 10^5$ and $n = 2 \cdot 10^4$ and vary $\varepsilon \in [1, 15]$. We compare the ℓ_2 and ℓ_∞ error from different mechanisms under the Geometric distribution and Zipf distribution. We see that the sketched PBM mechanism significantly outperforms local DP mechanisms in high-privacy regime.

Figure 5: ℓ_∞ and ℓ_2 loss with $\varepsilon = [1, 15]$.

In the next set of experiments (Figure 5), we fix $d = 10^5$ and $n = 2 \cdot 10^4$ and vary $\varepsilon \in [1, 15]$. We compare the ℓ_2 and ℓ_∞ error from different mechanisms under the Geometric distribution and Zipf distribution. We see that the sketched PBM mechanism significantly outperforms local DP mechanisms in high-privacy regime.
To this end, observe that

\[
\|\mu(X^n)\|_0 \leq s \text{ for some } s \ll n \ll d \text{ (i.e., } X_i \text{ belongs to a size-} s \text{ subset of } [d]).
\]

When \(s \) is known ahead of time, the server can generate a sketch matrix \(S \) according to \(s \) instead of \(n \), and all the analysis carries through with \(n \) replaced by \(s \). This improves both the communication cost and the \(\ell_2 \) estimation error.

On the other hand, if \(s \) is unknown but we are allowed to run a protocol with multiple rounds (this may or may not be possible in federated analytic settings where users may frequently drop out), we can first estimate \(\Delta \) as long as \(m \) is large enough, we construct \(S \) according to \(\mu \) and \(\nu \). For instance, if \(\nu \) has at most \(\ell \) non-zero entries, then

\[
\|\mu - \hat{\mu}\|_2 \leq \sqrt{\frac{\ell}{2}} \sqrt{\frac{\|\nu\|_1}{2}}.
\]

Recall that \(H_n \) is the collection of all \(n \)-histograms. Then

\[
\forall \Delta \mu \in \Delta H_n, S \cdot \Delta \mu
eq 0,
\]

where \(\Delta H_n = H_n - H_n \triangleq \{ \mu_1 - \mu_2 | \mu_1, \mu_2 \in H_n, \mu_1 \neq \mu_2 \} \). Note that for any \(\Delta \mu \in \Delta H_n \), we must have (1) \(\Delta \mu_j \in \mathbb{Z}^d \); (2) \(\sum_j \Delta \mu_j = 0 \); and (3) \(\|\Delta \mu_j\|_1 \leq 2n \).

To show that (5) holds when \(m \) is large enough, we construct \(S \) in the following probabilistic way:

\[
\forall i \in [m], j \in [d], S_{ij} \overset{i.i.d.}{\sim} \text{Bern}(1/2).
\]

We denote the resulting probability distribution over all possible \(S \) as \(Q \). In addition, let \(s_i \in \mathbb{R}^d \) be the \(i \)-th row of \(S \), i.e., \(S = [s_1, s_2, \ldots, s_m]^T \). Then, to prove (5) holds for some \(S \), it suffices to show

\[
P_Q \{ \forall \Delta \mu \in \Delta H_n, S \cdot \Delta \mu = 0 \} < 1,
\]

as long as \(m = O(n \log d/\log n) \), where the probability is taken with respect to the randomization over \(S \).

To this end, observe that

\[
P_Q \{ \forall \Delta \mu \in \Delta H_n, S \cdot \Delta \mu = 0 \} \overset{(a)}{=} \sum_{\Delta \mu \in \Delta H_n} P_Q \{ S \cdot \Delta \mu = 0 \} \overset{(b)}{=} \sum_{\Delta \mu \in \Delta H_n} (P_Q \{ s_1 \cdot \Delta \mu = 0 \})^m,
\]

where (a) is due to the union bound, and (b) holds since each row of \(S \) is generated i.i.d.

Additional notation. Before we proceed to upper bound \(P_Q \{ s_1 \cdot \Delta \mu = 0 \} \), we introduce some necessary notations. Let \(\Delta \mu^+ \) be the positive part of \(\Delta \mu \), i.e., \(\Delta \mu_j^+ \triangleq \min(\Delta \mu_j, 0) \) for \(j \in [d] \). Similarly, \(\Delta \mu^- \triangleq \min(-\Delta \mu_j, 0) \) (so we must have \(\Delta \mu = \Delta \mu^+ - \Delta \mu^- \)).

For a vector \(\nu \in \mathbb{Z}^d \), let \(\iota(\nu) \) be the multi-set containing all the non-zero values of \(\nu \). Let \(|\nu(\nu)| \) be the (multi-set) cardinality of \(\iota(\nu) \). For instance, if \(\nu = [0, 1, 3, 3, 2] \), then \(\iota(\nu) = \{1, 2, 3, 3\} \) and \(|\nu(\nu)| = |\{1, 2, 3, 3\}| = 4 \).

Finally, let \(\text{sum}(\Delta \mu^+) \) be the set of all possible partial sums of \(\iota(\Delta \mu^+) \), i.e., \(\text{sum}(\Delta \mu^+) = \{ \nu \cdot \Delta \mu^+ | \nu \in \{0, 1\}^d \} \). Similarly, \(\text{sum}(\Delta \mu^-) = \{ \nu \cdot \Delta \mu^- | \nu \in \{0, 1\}^d \} \).

Claim D.1 For any \(\Delta \mu \in \Delta H_n \),

\[
P_Q \{ s_1 \cdot \Delta \mu = 0 \} \leq \sqrt{\frac{n}{2}} \left| \left| \iota(\Delta \mu) \right|_{1/2} \right|^{-1}.
\]
Proof of claim. Observe that
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu = 0\} \overset{(a)}{=} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = s_1 \cdot \Delta \mu^-\} = \sum_{\ell \in \text{sum}(\Delta \mu^-) \setminus \text{sum}(\Delta \mu^+)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = \ell \cap s_1 \cdot \Delta \mu^- = \ell\} \overset{(b)}{=} \max_{\ell \in \text{sum}(\Delta \mu^+)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^- = \ell\} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^- = \ell\}
\]
where (a) holds since \(\Delta \mu = \Delta \mu^+ - \Delta \mu^-\), (b) holds since \(\Delta \mu^+ \) and \(\Delta \mu^-\) have disjoint supports and that each coordinate of \(s_1\) is generated independently. Similarly, by symmetry, we have \(\mathbb{P}_Q \{s_1 \cdot \Delta \mu = 0\} \leq \max_{\ell \in \text{sum}(\Delta \mu^-)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^- = \ell\}\), so
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu = 0\} \leq \min \left(\max_{\ell \in \text{sum}(\Delta \mu^+)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = \ell\}, \max_{\ell \in \text{sum}(\Delta \mu^-)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^- = \ell\}\right).
\]
Therefore, it remains to upper bound \(\max_{\ell \in \text{sum}(\Delta \mu^+)} \mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = \ell\}\). To this end, observe that since each coordinate of \(s_1\) is i.i.d. Bern(1/2),
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = \ell\} = |\{v|v \in \{0,1\}^d, v \cdot \Delta \mu^+ = \ell\}| \cdot 2^{-d} = \left|\left\{A \in 2^{\ell(\Delta \mu^+)} : \sum_{a \in A} a = \ell\right\}\right| \cdot 2^{-|\ell(\Delta \mu^+)|},
\]
where \(2^{\ell(\Delta \mu^+)}\) denotes the power set of the multi-set \(\ell(\Delta \mu^+)\). Notice that for the multi-set \(\ell(\Delta \mu^+)\), we treat each element as a different one even some of them may possess the same value, so the cardinality of \(2^{\ell(\Delta \mu^+)}\) is \(2^{|\ell(\Delta \mu^+)|}\).

Now, observe that \(\mathcal{F}_\ell \triangleq \left\{A | A \in 2^{\ell(\Delta \mu^+)}, \sum_{a \in A} a = \ell\right\}\) must form a Sperner family \(\text{Sperner} [1928, \text{Lubell} 1966]\), that is, for any \(A_1, A_2 \in \mathcal{F}_\ell\), neither \(A_1 \subseteq A_2\) nor \(A_2 \subseteq A_1\) holds. This is because otherwise, if \(A_1 \subseteq A_2\), we must have \(\sum_{a \in A_1} a > \sum_{a \in A_2} a\), and thus at least one of them must be not equal to \(\ell\). Therefore, applying Sperner’s theorem \(\text{Sperner} [1928, \text{Lubell} 1966]\), we must have
\[
\left|\left\{A | A \in 2^{\ell(\Delta \mu^+)}, \sum_{a \in A} a = \ell\right\}\right| \leq \left(\frac{|\ell(\Delta \mu^+)|}{|\ell(\Delta \mu^+)|}\right)^{\ell(\Delta \mu^+)},
\]
which implies
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu^+ = \ell\} \leq \left(\frac{|\ell(\Delta \mu^+)|}{|\ell(\Delta \mu^+)|}\right)^{\ell(\Delta \mu^+)},
\]
where the last inequality is due to basic combinatorial fact \(\text{Cover} [1999]\) Chapter 17). Similarly, by symmetry, we also have
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu^- = \ell\} \leq \sqrt{\frac{\pi}{2}} |\ell(\Delta \mu^-)|^{-1},
\]
and hence plugging in (9) we obtain
\[
\mathbb{P}_Q \{s_1 \cdot \Delta \mu = 0\} \leq \min \left(\sqrt{\frac{\pi}{2}} |\ell(\Delta \mu^+)|^{-1}, \sqrt{\frac{\pi}{2}} |\ell(\Delta \mu^-)|^{-1}\right) \leq \sqrt{\frac{\pi}{2}} \left[\frac{|\ell(\Delta \mu^+)|}{2}\right]^{-1},
\]
where the last inequality holds since
\[
\max (|\ell(\Delta \mu^-)|, |\ell(\Delta \mu^+)|) \geq \left[\frac{|\ell(\Delta \mu^-)| + |\ell(\Delta \mu^+)|}{2}\right] = \left[\frac{|\ell(\Delta \mu)|}{2}\right].
\]
□
Now, with Claim D.1 we proceed to bound (6) as follows:
\[
\mathbb{P}_Q \{ \forall \Delta \mu \in \Delta H_n, S \cdot \Delta \mu = 0 \} \leq \sum_{\Delta \mu \in \Delta H_n} (\mathbb{P}_Q \{ s_1 \cdot \Delta \mu = 0 \})^m
\]
\[
\leq \sum_{\Delta \mu \in \Delta H_n} \sqrt{\pi / 2} \left(\frac{\ell (|\Delta \mu|)}{2} \right)^{-m/2}
\]
\[
= \sum_{\ell = 1}^{2n} \sum_{\Delta \mu : |\ell (|\Delta \mu|)| = \ell} \sqrt{\pi / 2} \left(\frac{\ell}{2} \right)^{-m/2}
\]
\[
\leq \sum_{\ell = 1}^{2n} \left(\frac{d}{\ell} \right) (2n + 1) \ell \left(\frac{\ell}{2} \right)^{-m/2} + \sum_{\ell = n^*}^{2n} \left(\frac{d}{\ell} \right) (2n + 1) \ell \left(\frac{\ell}{2} \right)^{-m/2}
\]
\[
= \sum_{\ell = 1}^{n^*} \left(\frac{d}{\ell} \right) (2n + 1) \ell \left(\frac{\ell}{2} \right)^{-m/2}
\]
\[
\leq (2n + 1)^n \left(\frac{\pi}{2} \right)^{-m/2} (d + 1)^{n^* + 1}
\]
\[
\leq \exp \left((n^* + 1) \log(d + 1) + n^* \log(2n + 1) - \frac{m}{2} \log(\pi/2) \right) \to 0,
\]
as long as \(m = \Omega (n^* \log(d + 1) + n^* \log(2n + 1)) = \Omega (n^* \log d) \) (since \(n \ll d \)). For the second term, observe that
\[
\sum_{\ell = n^*}^{2n} \left(\frac{d}{\ell} \right) (2n + 1) \ell \left(\frac{\ell}{2} \right)^{-m/2} \leq (2n + 1)^{2n} \left(\frac{n^* \ell}{4} \right)^{-m/2} \left(\sum_{\ell = n^*}^{2n} \left(\frac{d}{\ell} \right) \right)
\]
\[
\leq (2n + 1)^{2n} \left(\frac{n^* \ell}{4} \right)^{-m/2} \left(\sum_{\ell = 0}^{2n} \left(\frac{d}{\ell} \right) \right)
\]
\[
= \exp \left(2n \log(2n + 1) + 2n \log(d + 1) - \frac{m}{2} \log n^* + \log(\pi/4) \right).
\]
Therefore, as long as \(m = \Omega \left(\frac{2n \log(d + 1) + n \log(d)}{\log n^* + \log(\pi/4)} \right) = \Omega \left(\frac{2n \log d}{\log n^* + \log(\pi/4)} \right).
\]
Putting both upper bounds on \(m \) together, and select \(n^* = \lfloor n / \log n + 3 \rfloor \), we conclude that as long as
\[
m = \Omega \left(\max \left(\frac{n \log d}{\log n + 3 \log d}, \frac{n \log d}{\log n - \log n + 3 - \log(\pi/4)} \right) \right) = \Omega \left(n \log d / \log n \right),
\]
then \(\mathbb{P}_Q \{ \forall \Delta \mu \in \Delta H_n, S \cdot \Delta \mu = 0 \} \to 0 \), which implies that there must exists a feasible \(S \) that distinguish all elements in \(\Delta H_n \).

D.2 Proof of Lemma 3.1

First of all, observe that for any \(D \subset [n] \) such that \(D \leq d \)
\[
I \left(X_{[n]} ; Y_{[n] \setminus D}, h (\theta_{[n]}, D) \right)
\]
\[
= I \left(\sum_{i \in [n] \setminus D} X_i ; Y_{[n] \setminus D}, h (\theta_{[n]}, D) \right) + I \left(Y_{[n] \setminus D}, h (\theta_{[n]}, D) ; X_{[n]} \right) \sum_{i \in [n] \setminus D} X_i
\]
by (11), we have
\[D \] Proof of Lemma 3.2

Let \(H \) be such that
\[H \left(\sum_{i \in [n]} X_i \right) \geq H \left(\sum_{i \in [n]} X_i \right) \]
where the second equality holds due to \((S1)\) and the third equality holds since \((C1)\) implies
\[
H \left(\sum_{i \in [n]} X_i \right) = 0.
\]

On the other hand, let \(D' \subset [n] \) be such that \(|D'| = d \) and let \(j \in D \setminus j \) we also have
\[
I \left(X_{[n]}; Y_{[n]} \setminus D', \theta_{D'} \right)
\]
where the second equality is due to \((S2)\).

D.3 Proof of Lemma 3.2

Notice that by \((\ref{eq:11})\), we have
\[
H(Y_{\pi}) \geq I \left(X_{[n]}; Y_{[n]} \setminus D, h (\theta_{[n]}, D) \right). \]

Therefore, it suffices to lower bound \(I \left(X_{[n]}; Y_{[n]} \setminus D, h (\theta_{[n]}, D) \right) \) subject to \((C1)', (S1), \) and \((S2).\) Using \((S1),\) we have
\[
I \left(X_{[n]}; Y_{[n]} \setminus D, h (\theta_{[n]}, D) \right) = I \left(\sum_{i \in [n]} X_i \right) \geq I \left(\sum_{i \in [n]} X_i \right).
\]

Constrained on \((C1)',\) this quantity is lower bounded by \(R(\beta) \).

D.4 Proof of Corollary 4.1

Let \(\mathcal{H}_n \triangleq \left\{ (n_1, n_2, \ldots, n_d) \mid \sum_{j=1}^d n_j = n, n_j \in \mathbb{Z}_+ \right\} \) be the collection of all \(n \)-histograms (over a size-\(d \) domain). To construct a worst-case prior \(\pi_{X^n} \) over \(X^n \) such that \(H \left(\sum_{i=1}^n X_i \right) = H \left(\mu \left(X^n \right) \right) \) is maximized, it suffices to find a \(\pi_\mu \) over \(\mathcal{H}_n \) that has large entropy. This is because one can generate \(\pi_{X^n} \) according to the following compound procedure such that \(X_i \) has marginal distribution \(\pi_\mu \): first select \(\mu \sim \pi_\mu \) and then draw \(X_i \) from histogram \(\mu \) without replacement.

To this end, we simply set \(\pi_\mu \) is \text{uniform} \(\left(\mathcal{H}_n \right) \). The entropy is thus given by
\[
H \left(\mu \left(X^n \right) \right) = \log |\mathcal{H}_n| = \log \left(\frac{d + n - 1}{n - 1} \right) = \Omega \left(n \log \left(\frac{d + n - 1}{n - 1} \right) \right) = \Omega \left(n \log d \right),
\]
where the last equality holds when \(d \gg n \).

D.5 Proof of Lemma 5.3

Note that characterizing the rate function \(R(\beta) \) (i.e., solving \((\ref{eq:1})\)) is equivalent to solving the following dual form:
\[
err(b) \triangleq \left(\min_{\mu \in \mathbb{R}^n} \text{subject to } \min_{\mu \in \mathbb{R}^n} \mathbb{E} \left[\ell \left(Y^n, \mu \left(X^n \right) \right) \right] \right)
\]
The dual form can be interpreted as the minimum distortion (under loss function \(\ell (\cdot) \)) subject to a \(b \)-bit communication constraint. Moreover, since \(\hat{\mu} (\cdot) \) can be any arbitrary (measurable) function of \(Y^n \), we suppress its dependency on \(Y^n \) and simplify (12) to

\[
\text{err}(b) \triangleq \min_{\hat{\mu}} \min_{\mu} \mathbb{E} [\ell (\hat{\mu}, \mu (X^n))] \text{ subject to } I (\hat{\mu}; \mu (X^n)) \leq b. \tag{13}
\]

To obtain the lower bound on \(\text{err}(b) \), our strategy is to construct a hard prior distribution \(\pi_{X^n} \). Following the same argument as in Corollary 4.1, it suffices to construct a prior \(\pi_{X^n} \) over \(\mathcal{H}_n \), such that when \(\mu_1, \mu_2 \overset{i.i.d.}{\sim} \pi_{X^n} \), with high-probability \(\ell (\mu_1, \mu_2) \) will be large. Once obtaining a hard \(\pi_{X^n} \), we make use of the following Fano’s inequality to obtain a lower bound on the smallest distortion \(\mathbb{E}_{\mu \sim \pi_{X^n}} [\ell (\hat{\mu}, \mu)] \) one can possibly hope for.

Lemma D.1 (Fano’s inequality) Let \(V \sim \text{uniform} (\mathcal{V}) \) for some finite set \(\mathcal{V} \) and \(V - U - \hat{V} \) form a Markov chain. Then

\[
\mathbb{P} \left\{ \hat{V} (U) \neq V \right\} \geq 1 - \frac{I (U; V) + 1}{\log |\mathcal{V}|}.
\]

Bounding the \(\ell_\infty \) distortion. Recall that our goal is to find a prior \(\pi_{X^n} \) over \(\mathcal{H}_n \), such that when \(\mu_1, \mu_2 \overset{i.i.d.}{\sim} \pi_{X^n} \), \(\|\mu_1 - \mu_2\|_\infty \) is large. We proceed by finding a (large) subset of \(\Pi_R \subseteq \mathcal{H}_n \), such that

- \(|\Pi_R| \geq 2^b \) (where \(R \) is a tuning parameter);
- for any \(\mu_1, \mu_2 \in \Pi_R \) such that \(\mu_1 \neq \mu_2 \), \(\|\mu_1 - \mu_2\|_\infty \geq \Theta \left(\frac{n \log d}{b} \right) \).

If we can find such \(\Pi_R \), then by setting \(\pi_{X^n} = \text{uniform} (\Pi_R) \) and together with Fano’s inequality (Lemma D.1), we obtain

\[
\min_{\hat{\mu}} \mathbb{E}_{\mu} [\|\hat{\mu} - \mu\|_\infty] \geq \min_{\hat{\mu}} \mathbb{E}_{\mu \sim \pi_{X^n}} [\|\hat{\mu} - \pi\|_\infty] \geq \min_{\mu, \hat{\mu}} \mathbb{E}_{\mu \sim \pi_{X^n}} [\|\hat{\mu} - \mu\|_\infty] \geq \Theta \left(\frac{n \log d}{b} \right) \tag{14}
\]

\[
\geq \Theta \left(\frac{n \log d}{b} \right) \min_{\mu, \hat{\mu}} \mathbb{P}_{\mu \sim \pi_{X^n}} \{\hat{\mu} \neq \mu\} \Rightarrow \Theta \left(\frac{n \log d}{b} \right) \tag{15}
\]

\[
\geq \Theta \left(\frac{n \log d}{b} \right) \left(1 - \frac{I (\hat{\mu}; \mu) + 1}{\log |\Pi_R|} \right) \geq \Theta \left(\frac{n \log d}{b} \right) \tag{17}
\]

\[
\geq \Theta \left(\frac{n \log d}{b} \right) \left(1 - \frac{b + 1}{2b} \right) \tag{18}
\]

\[
= \Theta \left(\frac{n \log d}{b} \right) , \tag{19}
\]

where (a) follows from Lemma D.1.

Therefore, it suffices to find a \(\Pi_R \) that satisfies the above two criteria. To this end, consider the following construction of \(\Pi_R \):

\[
\Pi_R \triangleq \left\{ \left(\frac{n}{R} n_1, \frac{n}{R} n_2, ..., \frac{n}{R} n_d \right) : \sum_i n_i = R, n_j \in \mathbb{Z}_+ \right\}.
\]

For a given \(b \), we will pick \(R = \Theta \left(\frac{b}{\log n} \right) \). It is then straightforward to see that

\[
|\Pi_R| = \binom{d + R - 1}{R - 1} \geq \left(\frac{d + R - 1}{R - 1} \right)^{R - 1} \geq 2^b \tag{20}
\]

In addition, for any distinct \(\mu_1, \mu_2 \in \Pi_R \), \(\|\mu_1 - \mu_2\|_\infty \geq \frac{n}{R} = \Theta \left(\frac{n \log d}{b} \right) \).
Bounding the ℓ_2 distortion. We follow the same steps of analysis as in the ℓ_∞ case (with $\|\cdot\|_\infty$ being replaced by $\|\cdot\|_2^2$), except for requiring the set Π_R to satisfy

- $|\Pi_R| \geq 2^{\Theta(b)}$;
- for any $\mu_1, \mu_2 \in \Pi_R$ such that $\mu_1 \neq \mu_2$, $\|\mu_1 - \mu_2\|_2^2 \geq \Theta \left(\frac{n^2 \log d}{b} \right)$.

The construction of Π_R under ℓ_2 loss is slightly more involved than that in the ℓ_∞ case, but the central idea is to obtain a set Π_R that matches a packing lower bound, similar to the proof of the GV bound.

We begin with a few notations: Let \mathcal{H}_R be the Hamming surface with radius R (over a d-dimensional cube), i.e., $\mathcal{H}_R \triangleq \{(n_1, ..., n_d)\big| \sum_{i=1}^d n_i = R, n_i \in \{0, 1\}\}$. Now, we construct a $\tilde{\Pi}_R \subset \mathcal{H}_R$, such that for any distinct $\pi_1, \pi_2 \in \tilde{\Pi}_R$, $d_H(\pi_1, \pi_2) \geq \frac{R}{8}$ (where $d_H(\cdot, \cdot)$ is the Hamming distance between π_1 and π_2, i.e. $\sum_{j=1}^d 1_{(\pi_1(i) \neq \pi_2(i))}$).

We claim that there exists such $\tilde{\Pi}_R$ with $|\tilde{\Pi}_R| = 2^{\Theta(R \log d)}$, when $R = o(d)$. To see this, let $\tilde{\Pi}_R$ be the largest subset that satisfies the requirement. Then this would imply that for any $\pi \in \mathcal{H}_R$ there exists a $\tilde{\pi} \in \tilde{\Pi}_R$, such that $d_H(\pi, \tilde{\pi}) \leq R/4$ (otherwise, one can add π into $\tilde{\Pi}_R$ while still satisfying the requirement). This would imply the following covering bound:

$$|\mathcal{H}_R| \leq |\tilde{\Pi}_R| \cdot |\{\pi \in \mathcal{H}_R : d_H(\pi, \tilde{\pi}) \leq R/4\}|. \tag{20}$$

Now, notice that $|\mathcal{H}_R| = \binom{d}{R}$, and the volume of the Hamming ball can be upper bounded by

$$|\{\pi \in \mathcal{H}_R : d_H(\pi, \tilde{\pi}) \leq R/4\}| = \sum_{i=1}^{R/8} \binom{d-R}{i} \binom{R}{i} \leq \binom{d-R}{R/8} \sum_{i=0}^{R/8} \binom{R}{i} \leq d^{R/8} \cdot 2^{R h_b(1/8)},$$

where in the last inequality we use upper bound on binomial partial sum: $\sum_{i=1}^k \binom{R}{i} \leq 2^{R h_b(\frac{k}{R})}$ where $h_b(\cdot)$ is the binary entropy function.

Plugging the upper bound into (20), we obtain

$$|\tilde{\Pi}_R| \geq \frac{d}{d^{R/8} \cdot 2^{R h_b(1/8)}} = 2^{R \log \left(\frac{1}{d} \right) - R \left(\frac{1}{d} + h_b(\frac{1}{d}) \right)} = 2^{\Theta(R \log d)} = 2^{\Theta(b)},$$

when $d \gg R$ and $R = \Theta \left(\frac{b}{\log d} \right)$.

Finally, we rescale $\tilde{\Pi}_R$ to obtain Π_R: $\Pi_R \triangleq \left\{ \frac{n}{R} \pi : \pi \in \tilde{\Pi}_R \right\}$. Obviously, we have $|\Pi_R| = |\tilde{\Pi}_R| \geq 2^{\Theta(b)}$. Moreover, for any distinct $\mu_1, \mu_2 \in \Pi_R$, $\|\mu_1 - \mu_2\|_2 \geq d_H(\mu_1, \mu_2) \cdot \frac{n^2}{R^2} = \Theta \left(\frac{n^2 \log d}{b} \right)$. This completes the lower bound on $\text{err}(b)$ under the ℓ_2 loss.

D.6 Proof of Lemma 5.1

Let $\mathcal{M}_j \triangleq \mathcal{M}_j(X_j')$. By security constraint (5.1), we know that $I(\mathcal{M}_1, ..., \mathcal{M}_n; Y_1, ..., Y_n|\sum_i \mathcal{M}_i) = 0$. Therefore, we must have

$$\mathbb{P} \{ (Y_1, ..., Y_n) \} = \mathbb{P} \{ (Y_1, ..., Y_n) \big| \sum_i \mathcal{M}_i \} \cdot \mathbb{P} \{ \sum_i \mathcal{M}_i \} \leq \mathbb{P} \{ (Y_1, ..., Y_n) \big| \sum_i \mathcal{M}_i \} \cdot \left(e^{\delta} \mathbb{P} \{ \sum_{i \neq j} \mathcal{M}_i + \mathcal{M}_j' \} + \delta \right)$$
\[P \left\{ (Y_1, \ldots, Y_n) \left| \sum_{i \neq j} M_i + M_j' \right. \right\} \cdot \left(e^{\varepsilon P} \left\{ \sum_{i \neq j} M_i + M_j' \right\} + \delta \right) \]
\[\leq e^{\varepsilon P} \left\{ \sum_{i \neq j} M_i + M_j' \right\} P \left\{ (Y_1, \ldots, Y_n) \left| \sum_{i \neq j} M_i + M_j' \right. \right\} + \delta \]
\[= P \left\{ (Y_1, \ldots, Y'_j, \ldots, Y_n) \right\}, \]
where the second inequality is due to the DP assumption of \(\sum_i M_i \), the third equality is due to the fact of \(I (M_1, \ldots, M_n; Y_1, \ldots, Y_n | \sum_i M_i) = 0 \).