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Abstract

Learning-based algorithms to solve TSP are get-
ting popular in recent years, but most exist-
ing works cannot solve very large-scale TSP in-
stances within a limited time. To solve this prob-
lem, this paper introduces a creative and distinc-
tive method to select and locally optimize sub-
parts of a solution. Concretely, we design a novel
framework to generalize a small-scale selector-
and-optimizer network to large-scale TSP in-
stances by iteratively selecting while optimiz-
ing one sub-problem. At each iteration, the run-
ning time of sub-problem sampling and selec-
tion is significantly reduced due to the full use
of parallel computing. Our neural model is well-
designed to exploit the characteristics of the
sub-problems. Furthermore, we introduce a trick
called destroy-and-repair to avoid the local min-
imum of the iterative algorithm from a global
perspective. Extensive experiments show that
our method accelerates state-of-the-art learning-
based algorithm more than 2x while achieving
better solution quality on large-scale TSP in-
stances ranging in size from 200 to 20,000.

1 Introduction

Combinatorial Optimization (CO) aims to find the opti-
mal solutions to optimization problems under integer con-
straints. One of the well-known examples is Traveling
Salesmen Problem (TSP), which has been a most exten-
sively studied NP-hard problem in the Operations Research
(OR) community, with applications in transportation, logis-
tics, and automation (Lenstra and Kan, 1974).

Nowadays, many traditional algorithms have already been
proposed to solve it. Among these TSP algorithms, the
Concorde TSP solver (Applegate et al., 2007) outper-
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forms others at relatively small scales through linear pro-
gramming with carefully handcrafted heuristics, while
heuristics-based methods (Helsgaun, 2017) are capable of
obtaining near-optimal solutions for instances with mil-
lions of cities. However, well-defined rules that rely on ex-
pert knowledge are always required, which makes these
algorithms difficult to generalize to other CO problems.
With the rapid development of computing power, deep
learning techniques have been widely applied to images,
text, videos, etc (Krizhevsky et al., 2012; Sutskever et al.,
2014; Vaswani et al., 2017). Motivated by Pointer Network
(Vinyals et al., 2015), a series of learning-based algorithms
have also been raised to solve TSP instances, showing com-
petitive performance on small-scale TSP instances com-
pared with heuristics-based method while significantly re-
ducing computation time (Khalil et al., 2017; Bello et al.,
2017; Deudon et al., 2018; Kool et al., 2019; Joshi et al.,
2019; Ma et al., 2019; Kwon et al., 2020).

However, learning-based methods for large-scale TSP in-
stances have not yet achieved adequate performance. On
the one hand, training a network for extremely large-scale
problems faces a big challenge since it is nearly impossible
to obtain abundant labels of large-scale instances within a
limited time; on the other hand, the small-scale models can
hardly generalize to large-scale instances due to the dis-
tributions varying from large-scale TSP instances to rela-
tively smaller ones, which has been confirmed by Fu et al.
(2021) and Joshi et al. (2021). As a result, the scaling of
learned networks for CO problems is becoming popular
in recent years. One possible way to solve this problem
is divide and conquer: decomposing large-scale TSP in-
stances into smaller ones which can be adequately solved
by learning-based models and then combining the solutions
of small-scale ones. Following this idea, Fu et al. (2021)
trained a small-scale model which could be repeatedly used
to build heat maps for TSP instances of arbitrarily large size
and fed the heat maps into a reinforcement learning ap-
proach to guide the search. Unfortunately, it cannot solve
an extremely large problem in a reasonable time because
of the time-consuming search process of Monte Carlo Tree
Search (MCTS). Specifically, it cannot get a high-quality
solution of a 10000 instance within 15 minutes, which will
not be acceptable in some real-time routing scenarios. Our
work also follows the decompose-and-combine idea, but
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differs from Fu et al. (2021), we iteratively improve sub-
parts of a solution with a well-trained small-scale model.
Since we circumvent the global search part of large-scale
problems, the time cost of our algorithms is significantly
reduced.

In this work, we propose a creative and distinctive frame-
work to Select and Optimize sub-parts of a solution. Con-
cretely, we train a selector-and-optimizer network to itera-
tively select and locally optimize sub-paths of consecutive
nodes in order to limit the selection space size to be lin-
ear to the problem size. Furthermore, another destroy-and-
repair method (Pisinger and Røpke, 2018) is proposed to
avoid the local minimum of the iterative algorithm. Over-
all, the main contributions are summarized as follows:

• We introduce a novel framework to generalize a small-
scale selector-and-optimizer network to large-scale
TSP instances by iteratively selecting and optimiz-
ing one sub-problem. At each iteration, sub-problems
are sampled from the complete solution and the most
promising sub-problem is then selected and optimized
by our well-designed network with nearly O(1) time
complexity.

• We extend the classical Transformer-style Encoder-
Decoder architecture to better adapt to the specifics of
sub-problems. Incorporating the symmetry into policy
gradient and inference stage, our design obtains supe-
rior select-and-optimize performance.

• Based on the result of our iteration framework, a
destroy-and-repair method is proposed to further im-
prove the solution quality. We devise special destroy
and repair operators to destruct long connections of
current solutions and fix them in a heuristic way to
escape the local minima.

2 Related Work

2.1 Neural Methods for TSP

Owing to the highly structured nature of CO problems,
deep-learning methods become a promising direction to
solve them. Learning-based methods can be categorized
into Supervised Learning (SL) methods and Reinforce-
ment Learning (RL) methods, as discussed in the follow-
ing two parts.

Supervised learning methods attempt to learn specific pat-
terns or policies through optimal solution labels provided
by conventional solvers. Pointer Network (Vinyals et al.,
2015) is a sequence-to-sequence model equipped with an
attention mechanism (Bahdanau et al., 2015), it constructs
a solution through step-by-step decoding, while the training
process is guided by expert solutions from Concorde. Joshi
et al. (2019) design a deep Graph Convolutional Network

(GCN) to build efficient TSP graph representations, the
neural network outputs tours in a non-autoregressive man-
ner via beam search. Kool et al. (2022) extract information
from supervised pre-trained GCN as learned neural heuris-
tics, which helps Dynamic Programming algorithms search
more efficiently. Recently, Hudson et al. (2021) present a
hybrid data-driven approach combining Graph Neural Net-
works and Guided Local Search, which converges to op-
timal solutions at a faster rate than three recent learning-
based TSP algorithms.

Since optimal solution labels of TSP are unavailable to
instantly access, reinforcement learning methods that do
not need optimal labels are getting popular recently. Bello
et al. (2017) present a framework integrating actor-critic
reinforcement learning into LSTM-based Pointer Network,
which achieves close to optimal results on TSP and Knap-
Sack. Khalil et al. (2017) combine deep graph embedding
with reinforcement learning and demonstrate the effective-
ness of the proposed framework in learning greedy heuris-
tics. Kool et al. (2019) specifically design an Encoder-
Decoder architecture with an attention mechanism which
is called Attention Model (AM), and the AM is trained
using REINFORCE with a greedy rollout baseline. Ma
et al. (2019) propose a Graph Pointer Network framework
which efficiently solves larger-scale TSP and other con-
strained CO problems like TSPTW. Kwon et al. (2020)
train the same Attention Model with a shared baseline pol-
icy gradient algorithm, this algorithm guides itself towards
the optima by exploiting the symmetry of CO problems.
Some other researches focus on improvement-based meth-
ods which aim at improving sub-optimal solutions with
different schemes. da Costa et al. (2020) and Wu et al.
(2021) both present improvement-based learning frame-
works, which train deep RL to automatically discover bet-
ter improvement policies. Ma et al. (2021) devise a novel
Dual-Aspect Collaborative Transformer to learn embed-
dings for the node and positional features separately and
capture the circularity of routing problems. Moreover, they
incorporate curriculum learning into Proximal Policy Opti-
mization (PPO) algorithm to learn improvement heuristics.

Some recent works have investigated generalizing TSP in-
stances to different distributions by adding extra modules
apart from SL and RL methods mentioned above. Wang
et al. (2021); Geisler et al. (2021); Zhang et al. (2022)
attempt to solve generalization problems with adversarial
learning techniques, Boffa et al. (2022) show that augment-
ing the structural representation of problems with distance
encoding is promising to enhance the encoder’s represen-
tation power and generalize to “out of the box” problems.
Jiang et al. (2022) study group distributionally robust op-
timization to improve the cross-distribution generalization
ability.
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Figure 1: Our select-and-optimize iterative framework: At each step, batch sub-problems are sampled and then fed into our
selector-and-optimizer network. We select the most promising sub-problem and transform it into a new sub-solution Xs by
our network. The destroy-and-repair method is applied on the new solution X ′ at a certain updating interval.

2.2 Scaling up for CO Problems

Although learning-based algorithms achieve competitive
performance on small-scale TSP instances, they suffer from
generalizing to large-scale ones, namely most learning-
based algorithms fail to obtain high-quality solutions on
large-scale instances. Therefore, it is still a challenge to
solve large-scale TSP instances within a reasonable time.
Fu et al. (2021) manage to smoothly generalize a small-
scale model to large-scale cases by training GCN which
helps to build heat maps with a series of techniques. How-
ever, MCTS consumes too much time that one TSP in-
stance of 10000 cannot be solved within 15 minutes, de-
spite it already running much faster than heuristic methods.
Ouyang et al. (2021) combine equivalence, local search,
and stochastic curriculum learning techniques to directly
improve generalization ability on TSP instances up to
10000, but its performance is inferior to Fu et al. (2021).
Qiu et al. (2022) introduce a compact continuous space to
parameterize the underlying distribution of candidate solu-
tions and further propose a meta-learning framework over
CO problem instances to enable effective initialization of
model parameters in the fine-tuning stage. Experiments in
Qiu et al. (2022)show that their proposed DIMES outper-
forms strong baselines among DRL-based solvers on TSP
instances of 500, 1000 and 10000, but the time to obtain the
solution is far longer than that of Fu et al. (2021). Other re-
search like VSR-LKH (Zheng et al., 2021) and Neuro-LKH
(Xin et al., 2021) replace inflexible part of LKH3 (Hels-
gaun, 2017) with learning-based methods to improve the
robustness of original heuristic methods, but they have no
advantages in time cost. As for other CO problems, Li et al.
(2021) propose a learning-augmented framework to itera-
tively improve a large-scale CVRP solution, at each step
a well-designed delegate network identifies an appropriate
sub-problem to solve in a black-box way, which offers a
1.5x to 2x speedup over heuristics eventually. As the ho-
mochronous work of Li et al. (2021), Zong et al. (2022)
solve large-scale VRPs by RL-based hierarchical frame-
work named Rewriting-by-Generating (RBG) and show

significant advantage on both solution quality and solving
speed to other baselines. Ahn et al. (2020) propose an it-
erative scheme called learning-what-to-defer for a maxi-
mum independent set. It can be interpreted as prioritizing
the easy decisions to be made first and then simplifying
the difficult ones by eliminating the source of uncertainties,
which also leads to a remarkable speedup.

Our framework for scaling up TSP is motivated by POP-
MUSIC (Taillard and Voß, 2002), which also follows the
principle of divide and conquer. It comes up with the idea
that locally optimizing sub-parts of an available solution
brings global improvement. POPMUSIC has been widely
applied in map labeling (Laurent et al., 2009) and p-median
clustering (Taillard, 2003). In this paper, we take full ad-
vantage of the generalization capability of learning-based
methods and parallel computing technology of the servers
to accelerate our large-scale TSP algorithm. In particular, a
well-designed select-and-optimize framework is leveraged
to solve large-scale problems with considerable accelera-
tion, while another destroy-and-repair method is raised to
further improve the solution quality from a global perspec-
tive.

3 Methods

3.1 Preliminaries

We focus on TSP in 2D Euclidean space. Given nodes
1, ..., N , X = {xi}Ni=1 where the two-dimensional coordi-
nate of the ith node can be described as xi ∈ [0, 1]2 without
loss of generality. The objective of TSP is to find the short-
est feasible route that visits each node exactly once so that
the solution is a permutation of N nodes π = [π1, ..., πN ]
that minimizes the total tour length. The length of a tour is
defined as :

L(π) = ∥xπN
− xπ1∥2 +

N−1∑
i=1

∥∥xπi − xπi+1

∥∥
2

(1)

where ∥·∥2 denotes the l2 norm.
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3.2 Framework

The overview of our framework is illustrated in Figure 1.
At the beginning of the framework, an initial solution is
constructed by our innovative initialization method, which
is an extension of initialization algorithm in Taillard and
Helsgaun (2019), more details are included in Algorithm
1. At each iterative step, a number of sub-problems are
sampled from the incumbent solution X . Then all sub-
problems will be fed into our neural model in parallel and
the sub-problem Xs with the largest improvement will be
selected and optimized to update the current solution. A
destroy-and-repair method is proposed to resist to local op-
timum at a specific frequency δd. The total iterative step is
T . In the following sections, we will introduce sub-problem
sampling and selection, our neural selector-and-optimizer
architecture, and the destroy-and-repair method in detail.

3.3 Sub-problem Sampling

To optimize sub-problem iteratively, the sub-problem can-
didates should first be extracted from the large-scale TSP
instance. Alternatively, we can optimize the connections in-
side a group of nodes that are the closest to a given node,
but the cardinality of the selected space will be O(N2)
because identifying such a group would take a computa-
tional effort in O(N), which is prohibitive for very large
instances. Thus we further restrict the selection space by
leveraging the positions of the nodes in the complete so-
lution since many combinatorial optimizations problems
have inherent spatial locality. Specifically, we propose to
optimize sub-paths of r consecutive nodes, and r is a rel-
atively small number. In this way, if the sub-problem size
we set is r, a tour of total N nodes can be considered as N
sub-paths which contains r nodes, denoted as S = {si}Ni=1,
sub-path si contains a series of consecutive nodes i+1, i+2
, ..., i + r, which can easily be identified and located in a
complete solution. The total computational effort is then re-
duced to O(N) or even nearly O(1) with the aid of parallel
computing.

3.4 Sub-problem Selection

After N sub-problem candidates of size r are sampled from
a current solution, only one sub-problem will be selected
and optimized at each iteration. A neural selector-and-
optimizer is trained to simultaneously select and optimize
an appropriate sub-problem since many learning-based ap-
proaches have the ability to obtain high-quality solutions of
small-scale TSP instances with fast speed, as shown in Fig-
ure 1. Specifically, the total N sub-problems are fed into
the neural solver concurrently to obtain N new sub-costs.
According to the sub-costs gap before and after the opti-
mization, the most valuable sub-problem is then selected
based on the immediate improvement. Note that only the
sub-problem we select is optimized into a new sub-path,

while the other sub-problems remain unchanged though
their optimized sub-paths have already been calculated in
the last step. Optimizing all the sub-problems concurrently
seems no improvement comparing to just optimizing the
best one according to our experiments, probably because
the sub-problems have strong influences on each other.

During the iteration, a hill-climbing procedure is adopted,
which means if the most valuable sub-problem cannot get
any improvement after optimization, the incumbent solu-
tion will remain the same. In this way, we can avoid making
the objective worse. Note that we only consider a one-step
improvement, thus the solution tends to be trapped in the
local optima, later we will introduce a destroy-and-repair
method to alleviate this issue.

3.5 Neural selector-and-optimizer

In this section, we present our well-designed neural
selector-and-optimizer that can select the most promising
sub-problem and optimize it. The sub-problem is a little
different from the original TSP. Firstly, the head and the
tail of a sub-problem must be fixed to ensure that local im-
provement equals global improvement. Secondly, the head
and the tail have no connections, namely the solution of
a sub-problem is a sequence instead of a cycle. We de-
fine the sub-problem s as a sequence with r nodes, each
node’s coordinate is xi(i = 1, .., r) and the solution is
π = (π1, .., πr). Due to the aforementioned characteris-
tics, the unique constraint for sub-problem is π1 = 1, πr =
r, πt ∈ {2, ..., r − 1} and πt ̸= πt′∀t ̸= t′. Our neu-
ral selector-and-optimizer models the policy as pθ(π|s),
the optimization objective is to minimize the traveling tour
length L(π) =

∑r−1
i=1

∥∥xπi+1 − xπi

∥∥
2
.

To quickly obtain high-quality solutions of the sub-
problems in parallel, we extend Transformer-style
Encoder-Decoder architecture and train it with a modified
Policy Gradient algorithm to handle this problem, which
will be discussed in the following two sub-sections.

3.5.1 Network architecture

We inherit the Transformer-style Encoder-Decoder archi-
tecture from Kool et al. (2019) to solve TSP sub-problem
since the Multi-Head Attention (MHA) structure of the en-
coder can be leveraged to encode the coordinates and the
output of Decoder is exactly a sequence, which is consis-
tent with our objective.

In the light of the characteristics of sub-problems, the orig-
inal network is modified to better adapt to solving sub-
problems. The Encoder architecture remains the same, as
illustrated in Figure 2(a), which projects the 2-dimensional
input feature xi into dh-dimensional vector h(0)

i and then
followed by L stacked attention layers. As for Decoder, it
is supposed to observe both the head and the tail informa-
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tion of the route. Thus the context embedding h
(L)
c should

consist of three parts: the node embedding visited in the
last time step h

(L)
πt , the head embedding h

(L)
1 , and the tail

embedding h
(L)
r .

The decoding process at time t is as below:
a. Generate context embedding h

(L)
c = [h

(L)
πt , h

(L)
1 , h

(L)
r ]

b. Compute the query, key, value: qc = WQhc, ki =
WKhi, vi = W vhi (L is omitted)
c. q′c = h

(L+1)
c = MHA(q, k, v)

d. Compute the logits of candidate nodes with single-head
attention, the tail and the visited nodes are masked:

ucj =

{
C · tanh( q

′T
c kj√
dk

), if j ̸= n and j ̸= πt′ ∀t′ < t

−∞, otherwise
(2)

where dk = dh

M , heads M = 8, clip value C = 10.
f. Calculate the final probability: pi = softmax(uci)
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Figure 2: The network architecture (a) Encoder: Encoding
all the coordinate features of a sub-problem instance in one
shot; (b) Decoder: Decoding from the two directions con-
currently: from the head to the tail and the opposite direc-
tion.

3.5.2 Policy gradient with double optima

Compared with SL algorithms, RL models are guided by
environmental reward signal so that it allows near-optimal
solutions to be found without expert guidelines. As a re-
sult, we train our Encoder-Decoder with Policy Gradient
(Williams, 2004), which is a classical reinforcement learn-
ing algorithm. The training loss function is defined as fol-
lows, where reward function R(π) = −L(π), b(s) denotes
the average reward of the batch data.

∇L(θ|s) = Epθ(π|s)[(R(π)− b(s))∇ log pθ(π|s)] (3)

Inspired by POMO (Kwon et al., 2020), we exploit the
symmetry of the sub-problem. It comes up with the idea

that whether the route travels from the head to the tail or
the opposite, both of the solutions are equally feasible. We
perform different operations during training and testing to
take advantage of this symmetry property. When training,
our algorithm forces the network to produce the start point
as the head or the tail, also called flip augmentation. While
in the testing phase, decoding process is conducted from
the two directions concurrently, the final inference solution
is the better one among the two trajectories.

3.6 Destroy-and-repair method

The neural selector-and-optimizer mentioned above aims at
iteratively locally optimize the whole problem, which may
be trapped in local minimum due to the lack of a global
perspective. Concretely, a situation may occur in our frame-
work is that the route still contains very long connections
after iterations, as illustrated in Figure 4. There is a possible
reason that the nodes relatively far from each other may be
the neighborhood in the initialized solution. What’s worse,
the sampling only considers consecutive nodes in a tour as
sub-problems so that one node may never have the chance
to connect to a nearby node in 2D Euclidean space. When
the gap between the scale of the sub-problem and the orig-
inal problem is too large, this situation may appear more
frequently, which directly leads to the local optima instead
of the global optima. Our proposed initialization method
(Algorithm 1) helps to alleviate the problem, but another
algorithm is needed as the iteration goes.

To tackle this issue, we propose a novel destroy-and-repair
method to perturb the incumbent solution at a certain fre-
quency during iteration, which was first proposed in Shaw
(1998). In the destroy-and-repair phase, a destroy operator
destructs part of the current solution while a repair oper-
ator rebuilds the destroyed solution. In particular, the de-
stroy operator typically contains an element of stochastic-
ity such that different parts of the solution are destroyed in
every invocation of the method. In this situation, we aim to
destroy the long connections and then repair the broken
fragments to a complete route solution, as shown in Figure
3. In order to enhance the randomness of the proposed de-
stroy operator, not only the long connections but also some
others are destructed to make the sizes of all fragments re-
semble each other. After transforming the solution into d
fragments, the Lin–Kernighan (Helsgaun, 2000) algorithm
is leveraged to repair the broken fragments to form a feasi-
ble solution. The same hill-climbing strategy in select-and-
optimize procedure is also kept in this stage, which means
a new solution will only be accepted when its cost is lower
than before. The destroy-and-repair method will only be
conducted at a certain frequency in order to achieve a com-
promise between performance and runtime.
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Figure 3: Illustration of destroy-and-repair method. (a) The original solution. (b) Destroy the longest connections in a
solution. (c) Destroy some other connections to make the sizes of all fragments resemble each other. (d) Repair the d
broken fragments into a feasible solution by Lin–Kernighan algorithm.

Figure 4: Bad long-connection case of a TSP2000 instance
in our framework

4 Experiments and Analysis

In this section, we conduct two types of data sets experi-
ments to evaluate our learning framework: generated data
sets with various sizes and real-world benchmark TSPLIB
(Reinelt, 1991). To verify the feasibility of our select-and-
optimize iterative framework, comparison experiments are
carried out to observe asymptotic behavior compared with
heuristic selectors. Moreover, extensive ablation studies are
conducted to exhibit the effectiveness of our neural network
design and destroy-and-repair method.

4.1 Experimental setup

4.1.1 Data setup

Following the conventions, problem instances of our ex-
periments are generated uniformly in the unit square. 1000
TSP instances are generated for training, respectively with
N = 200, 500, 1000. Then an extension of initialization
algorithm from Taillard and Helsgaun (2019) briefly ini-
tialize each problem instance. We train two neural selector-
and-optimizer models of size r = 50 (SO50 in brief) and
r = 100 (SO100 in brief) since experiments in Kool et al.
(2019) and Kwon et al. (2020) show that neural methods
can solve TSP instances of these two sizes with fast speed.
For SO50, training sets are extracted from TSP200 and
TSP500 instances, resulting in 1.4 millions samples with

data augmentation. For SO100, training sets are extracted
only from TSP1000 instances, in total 2.0 millions samples
with data augmentation.

Pertaining to test data set, medium-scale and large-scale
data groups are used to validate the effectiveness of our
algorithm. For the medium-scale group, we adopt data set
offered by Fu et al. (2021), 128 instances respectively with
N = 200, 500, 1000. For the large-scale group, we gener-
ate 32 instances respectively with N = 2000, 5000 and 16
instances with N = 10000 by following the same rule as
training sets.

4.1.2 Training hyperparameters

Training hyperparameters are set the same for the two neu-
ral models. The hidden dimension dh = 128, the feed-
forward sub-layer of each attention layer has a dimension
dff = 512. The Adam optimizer is used with a learning
rate of 0.0002 and weight decay of 10−6. The policy net-
work is trained with batch size 256, and 1000 epochs train-
ing takes approximately 16 hours for SO50 and 40 hours
for SO100 on a single NVIDIA V100 GPU.

4.1.3 Algorithm parameters

The initialization algorithm for all the instances is the same
as the training sets. As for iterative steps, we set T = 50 for
medium-scale data, T = 60, T = 80, T = 100 for size of
2000, 5000, 10000 respectively, and T = 100 for TSPLIB
instances. For the destroy-and-repair method parameters,
updating interval δd = T/2, separated fragments d = 25.

4.2 Performance on generated data set

There are two variants of our algorithm: Ours-SO100 iter-
atively optimizes the solution by only using SO100 model;
Ours-mixed re-optimizes the solution after SO100 by us-
ing SO50, apparently this variant takes a little more time.
Since the destroy-and-repair method doesn’t have a signif-
icant effect on medium-scale data, we disable it in this ex-
periment. We compare our algorithm with various types of
solvers, (1) conventional solvers including Concorde (Ap-
plegate et al., 2007), LKH3 (Helsgaun, 2017), (2) learning-
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based method including AM-greedy (Kool et al., 2019),
POMO (Kwon et al., 2020), GCN-BS (Joshi et al., 2019),
AttGCRN+MCTS (Fu et al., 2021). For these baselines,
we just rerun the publicly available source codes. Table
1 demonstrates the results obtained by our algorithm on
medium-scale data. Column 1 corresponds to the method
name, and columns 2-4 respectively indicate average tour
length, gap to the optimal solution (provided by Concorde),
and runtime per instance (seconds). The runtime per in-
stance metric is hard to compare due to various factors (e.g.
Python v.s. C++, batch size, multi-processes). To ensure
fair comparisons, we run C++ code on Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz (e.g. Concorde, LKH3,
MCTS) and Python code on one single NVIDIA Tesla
V100 (e.g. POMO, AttGCRN). The runtime of AttGCRN-
MCTS consists of the time for building heatmaps and run-
ning MCTS, while the runtime of our algorithm consists of
initialization and iteratively solving sub-problems.

As shown in Table 1, our algorithm significantly outper-
forms all the learning-based methods both in terms of the
quality of the solutions and the runtime. The inference
time of AM-greedy and POMO is very short, but their
performance deteriorates rapidly as the problem size in-
creases. Compared to the SOTA on large-scale instances,
AttGCRN-MCTS, our algorithm outstrips it within shorter
than half of its runtime. Since our algorithm belongs to the
learning-based category, we don’t aim to strictly outper-
form the non-learning algorithms, but the gap can be further
reduced within a little more inference time by Ours-mixed.

In Table 2, we only list results of LKH3, AM-greedy,
POMO, AttGCRN-MCTS due to solving time and platform
memory restriction. Note that we don’t exploit the sym-
metry of sub-problems on TSP10000 due to GPU mem-
ory exceptions. Pertaining to large-scale data, the results
are consistent with our design. The initialization method
offers a rough solution to large-scale instances in a short
time. Within a total runtime shorter than half of LKH3 and
AttGCRN-MCTS, our algorithm achieves superior perfor-
mance among all the learning-based methods.

Except for the results of TSP below 10000, we also test
our algorithm on 8 extremely large-scale instances with
20000 vertexes to prove the generalization ability of our
method, as shown in Table 3. POMO (Kwon et al., 2020)
and AttGCRN-MCTS (Fu et al., 2021) fail to solve these
instances due to GPU memory exceptions, thus we only
compare our algorithm with AM-greedy (Kool et al., 2019)
and LKH3 (Helsgaun, 2017). The performance of AM-
greedy is extremely bad despite its lowest runtime. Our al-
gorithm offers a 2x speedup over LKH3 while achieving
competitive solution quality. The results demonstrate that
our select-and-optimize design is an effective framework
to solve large-scale TSP instances.

The results of Table 1, Table 2 and Table 3 demonstrate

that our algorithm is capable of producing solutions close
to LKH3 on large-scale TSP instances and the runtime is
much shorter than LKH3 and the learning-based SOTA,
and our work is the first neural method to test on TSP in-
stances up to 20000.

4.3 Performance on real-world data set

To evaluate the generalization ability of our algorithm, Ta-
ble 4 compares LKH3, OR-tools (Perron and Furnon, 2022)
and AttGCRN-MCTS with our algorithm on large-scale in-
stances of TSPLIB. The large-scale TSPLIB data are di-
vided into two groups: 1000-2000 with 11 instances and
2000-6000 with 7 instances. Metrics include the average
gap to the optimal solution and the total runtime. Note that
the model tested in TSPLIB experiments is trained on the
generated data set. As shown in Table 4, Ours-mixed sig-
nificantly outperforms learning-based SOTA on all the data
groups within a much shorter time. Ours-mixed offers 6x
and 25x speedup over OR-tools on 1000-2000 group and
2000-6000 group respectively while achieving competitive
solution qualities. LKH3 achieves best performance close
to the optimum, but it costs too much time on some atypical
instances such as fl1400 and fl1577 in TSPLIB.

Full detailed experimental results are provided in Table 7
of our appendix. Actually, AttGCRN-MCTS achieves bet-
ter performance in some cases, but it can deteriorate badly
on some atypical distribution data, e.g. fl1400. A possible
reason is that the heat-map merging method of AttGCRN-
MCTS is not robust to different distributions. However, our
algorithm obtains more stable results across all kinds of
data distribution with lower variance.

4.4 Sub-problem selector comparison

To verify the feasibility of our proposed iterative frame-
work, we devise other two hand-crafted selector heuristics
and another neural selector as baselines. The hand-crafted
selectors are: 1) Random, selecting a sub-problem from
batch sampling sub-problems randomly and uniformly; 2)
Count, the route is divided into N/r buckets, the bucket
with a smaller count has a larger probability to be selected,
then a sub-problem is randomly sampled from the selected
bucket. Another neural selector is called nn-random, which
means randomly sampling a sub-problem from the promis-
ing candidates. While our neural selector is called nn-
argmax, it selects the most promising sub-problem with the
largest improvement. Note that though different selectors
are utilized in this experiment, the sub-problem optimizer
remains unchangeable as our neural model, which can also
be replaced by other sub-solvers like LKH3.

As shown in Figure 5, we only report results on TSP500
and TSP2000 since similar patterns are observed in other
cases. The x-axis is the iterative steps and the y-axis is
the gap to the optimum. From the curves, we can con-



Select and Optimize: Learning to solve large-scale TSP instances

Method TSP200 TSP500 TSP1000
Length Gap Time(s) Length Gap Time(s) Length Gap Time(s)

Concorde 10.7191 0.0000% 1.69 16.5458 0.0000% 22.90 23.1182 0.0000% 263.96
LKH3 10.7195 0.0040% 23.89 16.5463 0.0029% 73.12 23.1190 0.0036% 109.93

AM-greedy 11.9958 11.9105% 0.19 21.4619 29.7120% 0.55 33.5451 45.1025% 1.49
POMO 10.8923 1.6158% 0.05 20.5684 24.4206% 0.57 32.9014 42.3181% 4.08

GCN-BS 16.5331 54.2396% 0.91 30.1151 82.0105% 6.85 50.8119 119.7917% 38.18
AttGCRN-MCTS 10.8139 0.8844% 0.10+20 16.9655 2.5365% 0.2+50 23.8634 3.2238% 0.3+100

Ours-SO100 10.8145 0.8900% 1.00+8.59 16.9692 2.5590% 1.50+12.69 23.7827 2.8744% 2.94+21.74
Ours-mixed 10.7873 0.6362% 1.00+8.95 16.9431 2.4012% 1.50+13.50 23.7656 2.8004% 2.94+23.10

Table 1: Results on medium-scale data set, tested on 128 instances respectively with N = 200, 500 and 1000

Method TSP2000 TSP5000 TSP10000
Length Gap Time(s) Length Gap Time(s) Length Gap Time(s)

LKH3 32.4507 0.0000% 157 50.8971 0.0000% 734 71.7752 0.0000% 1437
AM-greedy 52.9191 63.0753% 2 96.7435 90.0766% 4 153.4178 113.7504% 8

POMO 50.6465 56.0721% 5.71 88.1232 73.1399% 70.31 133.5866 86.1180% 609.75
AttGCRN-MCTS 33.5197 3.2942% 4+200 52.6867 3.5161% 20+500 74.4206 3.6856% 70+1000

Ours-SO100 33.3584 2.7971% 6.6+45.10 52.6080 3.3614% 20+180.32 74.3157 3.5395% 40+376.24
Ours-mixed 33.3456 2.7577% 6.6+48.38 52.5949 3.3357% 20+195.65 74.2993 3.5166% 40+417.60

Table 2: Results on large-scale data set, tested on 32 instances respectively with N = 2000, 5000 and 16 instances with
N = 10000

Method TSP20000
Length Gap Time(s)

LKH3 101.2861 0.0000% 4185.87
AM-greedy 244.1992 113.7504% 19.22
Ours-SO100 105.0575 4.2195% 185+1280
Ours-mixed 105.0344 3.7101% 185+1822

Table 3: Results on TSP20000

Method 1000-2000 2000-6000
Gap Time(s) Gap Time(s)

LKH3 0.05%±0.07% 323 0.09%±0.14% 1098
OR-tools 5.74%±1.78% 285 4.89%±2.20% 3291

AttGCRN-MCTS 308.84%±
1011.71% 139 1579.53%±

2675.90% 393

Ours-mixed 3.75%±1.69% 45 5.46%±2.35% 125

Table 4: TSPLIB results

clude that all the selectors based on our iterative frame-
work converge in a reasonable time, which indicates that
our iterative framework works whatever the selector is.
Furthermore, neural selectors converge significantly faster
than hand-crafted heuristics. Among these selectors, nn-
argmax exhibits the fastest converge speed and the best
solution quality, which validates the effectiveness of our
neural model’s selecting capability.

4.5 Ablation study

To better understand how the different components af-
fect our framework, ablation studies are conducted on all
the synthetic data sets. For medium-scale data, only the
specially designed components of the neural model are
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Figure 5: Selector comparison experiments

checked, including the tail embedding coupled with the
query vector (corresponding to w/o tail) and the symme-
try of sub-problems (corresponding to w/o symmetry). For
large-scale data, destroy-and-repair method (corresponding
to w/o DR) is also considered. Note that the time column
excludes the runtime of the initialization.

4.5.1 About neural network

Pertaining to the ablation study about the neural network,
we only report the results on TSP500 and TSP2000 due
to the page limitation. The results from Table 5 indicate
that every component plays an important role in solving
sub-problems. In particular, adding the tail embedding into
the query vector significantly boosts the performance of the
neural network. Without exploiting the symmetry, the infer-
ence time can be reduced by sacrificing solution quality. It
is worth noting that the inference time decreases more as
the problem size increases.
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Instance Ours-SO100 w/o tail w/o symmetry
Gap Time(s) Gap Time(s) Gap Time(s)

TSP500 2.56% 13 3.17% 13 2.75% 11
TSP2000 2.79% 45 2.96% 45 2.83% 31

Table 5: Ablation study on TSP500 and TSP2000

Instance Ours-SO100 w/o DR
Gap Time(s) Gap Time(s)

TSP2000 2.7971% 45 2.8486% 39
TSP5000 3.3614% 180 3.3897% 156

TSP10000 3.5395% 376 3.5708% 305

Table 6: Ablation study about destroy-and-repair method

4.5.2 About destroy-and-repair method

Table 6 demonstrates the ablation study of destroy-and-
repair (DR) method on the overall large-scale data. Clearly,
DR module can ameliorate the performance of our algo-
rithm plus a little more time. The results are consistent with
our assumption that globally changing the structure of the
solution route helps to be resistant to local minima.

5 Conclusion

As a well-studied combinatorial optimization problem,
TSP has been widely applied in many scenarios of our real
life, but how to solve large-scale TSP in a very limited
time remains a problem. In this paper, an iterative frame-
work to solve large-scale TSP instances is proposed with
remarkable acceleration. Our select-and-optimize frame-
work significantly reduces computation costs by dividing
large-scale problems into smaller ones and solving the sub-
problems with trained neural network iteratively, while fur-
ther improving the quality of the solution by the destroy-
and-repair module. The sub-problem sampling and selec-
tion strategy, the elaborate neural selector-and-optimizer
network design, and the destroy-and-repair approach en-
able us to access high-quality solutions in a very limited
time. Experimental results of the generated data and real-
world data from TSPLIB show that our algorithm is able to
produce highly competitive solutions compared with other
learning-based TSP algorithms while taking less than half
the runtime of them. Moreover, we change the selector in
the iterative framework and empirically justify that what-
ever the selector is, iteratively selecting and optimizing a
sub-problem is a feasible technique to solve large-scale
problems.

We would like to address some options for future work.
First, we have only experimented under the standard TSP
instances, we will further explore the application in real-
word scenarios with more practical constraints and large
differences in data distribution. Second, we believe that
following the principle of divide and conquer, the select-
and-optimize iterative framework has the potential to solve

other large-scale CO problems such as Capacitated Vehi-
cle Routing Problem (CVRP) and Bin Packing Problem
(BPP). Third, simulated annealing and other evolutionary
algorithms combined with Machine Learning seem to alle-
viate the local optima problem we still face in select-and-
optimize framework, which will be a very promising re-
search direction.
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Laurent, M., Taillard, É. D., Ertz, O., Grin, F., Rappo, D.,
Roh, S.-J., and de Cheseaux, R. (2009). From point fea-
ture label placement to map labelling.

Lenstra, J. K. and Kan, A. H. G. R. (1974). Some simple
applications of the travelling salesman problem. Journal
of the Operational Research Society, 26:717–733.

Li, S., Yan, Z., and Wu, C. (2021). Learning to delegate for
large-scale vehicle routing. In NeurIPS.

Ma, Q., Ge, S., He, D., Thaker, D. D., and Drori,
I. (2019). Combinatorial optimization by graph
pointer networks and hierarchical reinforcement learn-
ing. ArXiv, abs/1911.04936.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. (2021). Learning to iteratively solve routing
problems with dual-aspect collaborative transformer. In
NeurIPS.

Ouyang, W., Wang, Y., Weng, P., and Han, S. (2021). Gen-
eralization in deep rl for tsp problems via equivariance
and local search. ArXiv, abs/2110.03595.

Perron, L. and Furnon, V. (2022). Or-tools.

Pisinger, D. and Røpke, S. (2018). Large neighborhood
search. Handbook of Metaheuristics.

Qiu, R., Sun, Z., and Yang, Y. (2022). Dimes: A differen-
tiable meta solver for combinatorial optimization prob-
lems. ArXiv, abs/2210.04123.

Reinelt, G. (1991). Tsplib - a traveling salesman problem
library. INFORMS J. Comput., 3:376–384.

Shaw, P. (1998). Using constraint programming and local
search methods to solve vehicle routing problems. In
CP.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In NIPS.
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Supplementary Materials

A Solution Initialization

Since the initial solution plays an important role in iterative algorithms, we pay much attention to the solution initialization
algorithm. da Costa et al. (2020); Wu et al. (2021); Ma et al. (2021) focus on small-scale TSP algorithms so that com-
pletely random solutions are enough for initialization. For large-scale instances, an acceptable solution should be obtained
in a short time. Moreover, it should have the potential to be improved at each iteration. Li et al. (2021) generate a rough
initial solution by partitioning it into disjoint subsets of nodes and briefly running the subsolver on each subset. Taillard
and Helsgaun (2019) get an initial solution by local clustering optimization with a relatively low complexity, which is
empirically convenient for their proposed iterative framework. In the following sections, we present an innovative algo-
rithm inherited from Taillard and Helsgaun (2019) and conduct an initialization sensitivity experiment to demonstrate the
effectiveness of our initialization method.

A.1 Initialization method

In the original POPMUSIC (Taillard and Helsgaun, 2019) initialization method line 1, uniformly sampling anchor nodes
is an important step to form a base structure. Following the uniform principle, cluster centers are generated by K-means
algorithm, then the nearest nodes to cluster centers are assigned as anchor nodes. With the aid of K-means approach, the
initial tour becomes deterministic rather than random previously. Furthermore, we re-optimize sub-paths of 3 clusters rather
than 2 to avoid long connections, which is stated in line 10-12 of Algorithm 1. Based on the same principle, the tour is
split into N/∆ sections at the final step, and each section is re-optimized by LK algorithm. The whole modified method is
illustrated in Algorithm 1. In the experimental part of the main text, we set a = n0.56, ∆ = N/4 for medium-scale data
and ∆ = 500 for large-scale data.

Algorithm 1 Initialization
Input: n nodes, distance function d(i, j) between node i and node j
Parameter: the number of cluster centers a, the section length ∆
Output: TSP tour T

1: Generate a cluster centers by K-means algorithm
2: Select the nearest nodes to centers into sample set S
3: Build a LK-optimal tour Ts on S
4: T = Ts

5: for each node c /∈ S do
6: cs = argmin d(s, c), (s ∈ S)
7: Insert c just after cs in T
8: end for

c = Ts[0]
9: while c ̸= Ts[−1] do

10: Let c′ be the node after the the node next to c in Ts

11: Optimise in T a sub-path between c and c′ with LK algorithm
12: c← c′

13: end while
14: Split T into N/∆ sections
15: Optimise the N/∆ sections with LK algorithm
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Figure 6: Initialization sensitivity experiments
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Figure 7: TSPLIB sample instances

A.2 Initialization sensitivity

The problem instance initialization is the first step of our framework. To study the sensitivity of our framework to initial-
ization quality, different solutions with ∆ = 25, 50, 125 for TSP500 and ∆ = 50, 100, 200 for TSP2000 are additionally
generated. Since smaller ∆ means rougher division, the smaller ∆ corresponds to the worse initial solution quality.

We speculate that whatever the quality of the initial solution, Algorithm 1 provides a convenient structure for being itera-
tively optimized. To validate this assumption, our method runs for an excessive amount of time until convergence. From
Figure 6, we can conclude that our initial algorithm is well-suited for the iterative framework. Moreover, worse initializa-
tion corresponds to somewhat worse acceleration, but the initial gap can be significantly reduced through iterations. As
introduced in the main text, our method is vulnerable to the local minima, therefore there is still a minor gap between
convergence solution and global optima.

B Experimental Results

B.1 TSPLIB full results

Full results on large-scale TSPLIB instances are listed in Table 7. We compare our algorithm with a popular commercial
solver OR-tools (Perron and Furnon, 2022), learning-based SOTA AttGCRN-MCTS (Fu et al., 2021) and a famous heuristic
LKH3 (Helsgaun, 2017). The bold number indicates the best performance among learning-based methods and OR-tools.
Clearly, Ours-SO100 achieves superior performance on most instances within a much shorter time than baselines. It is
obvious that OR-tools suffers from a huge time budget and AttGCRN-MCTS suffers from unstable results, which means
AttGCRN-MCTS fails to generalize to some special data distributions. LKH3 is capable of solving most instances at a
favorable speed except for the instances starting with fl since the distributions vary a lot from other instances, as shown in
Figure 7. The results indicate that heuristic methods also lack generalization ability.

B.2 Ablation study on selector-and-optimizer

Full ablation results of neural selector-and-optimizer are illustrated in Table 8. It can be concluded that integrating the tail
embedding into the query vector is essential for solving sub-problems, and the characteristic of symmetry also helps to
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Problem Opt Ours-mixed OR-tools AttGCRN-MCTS LKH3
Length Gap Time(s) Length Gap Time(s) Length Gap Time(s) Length Gap Time(s)

u1060 224094 229053 2.2132% 35 236208 5.4058% 172 230218 2.7327% 106 224094 0.0000% 18
vm1084 239297 244571 2.2041% 35 250085 4.5081% 192 244221 2.0576% 109 239297 0.0000% 21
pcb1173 56892 58525 2.8715% 38 59591 4.7446% 174 58588 2.9810% 117 56892 0.0000% 0.13
rl1304 252948 270048 6.7605% 42 278717 10.1875% 245 259179 2.4633% 130 253296 0.1375% 9
rl1323 270199 281583 4.2135% 42 284340 5.2335% 210 276644 2.3852% 133 270199 0.0000% 0.29

nrw1379 56638 57564 1.6363% 44 59182 4.4911% 228 57758 1.9774% 138 56643 0.0088% 10
fl1400 20127 20521 1.9614% 45 21583 7.2328% 258 696244 3359.2537% 140 20164 0.1838% 2107
fl1577 22249 23233 4.4260% 51 23020 3.4663% 267 24887 11.8567% 158 22262 0.0584% 1310

vm1758 336556 348692 3.6061% 53 355571 5.6499% 436 342814 1.8594% 175 336750 0.0576% 6
u1817 57201 59254 3.5905% 56 60774 6.2460% 438 60407 5.6047% 182 57287 0.1503% 29
rl1889 316536 331186 4.6284% 58 335676 6.0467% 518 329426 4.0722% 189 316549 0.0041% 43
d2103 80450 87141 8.3179% 71 81813 1.6944% 955 83665 3.9962% 212 80462 0.0149% 60
u2152 64253 67408 4.9113% 66 69784 8.6080% 794 67756 5.4518% 217 64310 0.0887% 49

pcb3038 137694 141377 2.6749% 93 144510 4.9503% 1417 7879443 5622.4301% 305 137700 0.0043% 25
fl3795 28772 30353 5.4982% 121 29646 3.0370% 2277 36574 27.1166% 381 28885 0.3927% 7427

fnl4461 182566 187005 2.4318% 139 190960 4.5976% 4164 9982482 5367.8757% 451 182571 0.0027% 37
rl5915 565530 610728 7.9922% 194 600028 6.1001% 7381 644331 13.9340% 594 566367 0.1480% 48
rl5934 556045 590189 6.1406% 196 585236 5.2497% 6051 644345 15.8800% 596 556143 0.0176% 42

Table 7: Large-scale TSPLIB results

Instance Ours-SO100 w/o tail w/o symmetry
Gap Time Gap Time Gap Time

TSP200 0.8900% 9 1.6811% 9 1.2380% 8
TSP500 2.5590% 13 3.1682% 13 2.7548% 11

TSP1000 2.8744% 22 3.1456% 22 2.9911% 15
TSP2000 2.7971% 45 2.9611% 45 2.8310% 31
TSP5000 3.3614% 180 3.4933% 180 3.3799% 127
TSP10000 3.5395% 376 3.6795% 376 - -

Table 8: Ablation study about neural network

boost the performance.
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