
Approximating a RUM from Distributions on k-Slates

Flavio Chierichetti Mirko Giacchini Ravi Kumar Alessandro Panconesi Andrew Tomkins
Sapienza University
Dip. di Informatica

Sapienza University
Dip. di Informatica

Google
Mountain View, CA

Sapienza University
Dip. di Informatica

Google
Mountain View, CA

Abstract

In this work we consider the problem of fitting
Random Utility Models (RUMs) to user choices.
Given the winner distributions of the subsets of
size k of a universe, we obtain a polynomial-time
algorithm that finds the RUM that best approx-
imates the given distribution on average. Our
algorithm is based on a linear program that we
solve using the ellipsoid method. Given that its
corresponding separation oracle problem is NP-
hard, we devise an approximate separation or-
acle that can be viewed as a generalization of
the weighted feedback arc set problem to hyper-
graphs. Our theoretical result can also be made
practical: we obtain a heuristic that is effective
and scales to real-world datasets.

1 INTRODUCTION

In this paper we consider the setting of discrete choice, in
which users must choose an item from a set of alterna-
tives. The gold standard for highly representative models
of discrete choice is the family of Random Utility Models,
or RUMs, which are capable of encoding a range of com-
plex outcomes under a broad notion of rational user behav-
ior. RUMs are quite powerful but unfortunately there are
no known algorithms guaranteed to learn or approximate a
RUM from samples of user choices.

It is therefore of great interest to find special cases for
which tractable algorithms are possible. Recent work
of Almanza et al. (2022) showed that efficient algorithms
for approximate learning of general RUMs are possible in
the pairwise setting—if the user choices being modeled
contain only two options.

There are some settings in which pairwise choices arise nat-
urally, such as head-to-head testing of two items from a

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

universe, or two-player games. But most practical settings
involve choices among larger sets of options. Many online
platforms offer interfaces with multiple options to choose
from: ten blue links, or a fixed set of movie options shown
in a carousel. In this paper, we extend earlier results to give
a polynomial-time algorithm to approximately learn RUMs
on slates of size at most k, for any constant k. Formal defi-
nitions for approximate learning of RUMs on slates of size
at most k are given in Section 2.

To describe the motivation and the idea behind the algo-
rithm, we must first introduce the idea of RUMs as distribu-
tions over permutations over a universe of items [n].When
a user is presented with a slate of objects, a random permu-
tation is drawn, and the object selected is the one of highest
rank in the permutation. Note that a RUM, for each slate
S, induces a probability distribution over S, specifying the
probability that i ∈ S is selected by the user when S is
given. In this context, there are two natural learning tasks
to consider. The input to both tasks consists of a set of pairs
(i, S) where i ∈ S is the object selected by the user when
S is presented. With this information one can compute the
empirical probability that an object is selected from a given
slate. The first learning task is to compute a RUM whose
induced probability distributions best approximate the em-
pirical distributions. The second learning task is, given a
set of past such interactions, to predict the empirical prob-
ability in the future.

Our Contributions. In this paper we give, for both learn-
ing tasks, (i) a polynomial-time algorithm for slates of size
k ≥ 2, thereby significantly extending the results in Al-
manza et al. (2022), and (ii) fast heuristics that are effective
in practice.

As in Almanza et al. (2022), we use the celebrated ellipsoid
method for linear programming (LP), together with a sep-
aration oracle. Unfortunately, their approach only works
only for the case of slates of size 2, i.e., for k = 2. The
ellipsoid method, as it is well-known, allows to cope with
LPs with exponentially many constraints, provided that a
so-called separation oracle is available. The technical diffi-
culty here is to exhibit such a separation oracle for the case
of slates of size k > 2. In particular, the separation oracle

Approximating a RUM from Distributions on k-Slates

can no longer be formed by solving the minimum feedback
arc set problem (FAS) as in Almanza et al. (2022). Instead,
we require a solution to a new problem that represents a
hypergraph extension of FAS. The main contribution of
this work is defining the new extended problem, giving a
polynomial-time algorithm that produces an approximate
solution, and then showing that the resulting approximate
separation oracle provides a sufficient approximation to the
best possible RUM.

To conclude, we would like to mention a couple of posi-
tive features of our approach. Our polynomial-time solu-
tion requires information about all slates of dimension k
in order to work, but such complete datasets might not be
available in practice. We thus provide a heuristic that is
able to cope effectively with such contingencies. We also
provide heuristic but practically more efficient separation
oracles, which are described in the experimental section.

Previous Work. Discrete choice theory is a well-
established research topic in machine learning and eco-
nomics; see (Train, 2003) for an excellent introduction
and (Chierichetti et al., 2018a, 2021; Rosenfeld et al., 2020;
Seshadri et al., 2020, 2019) for some recent work. RUMs
are a general class that contains, e.g., Multinomial Log-
its (or MNLs) models and Mixed MNLs (McFadden and
Train, 2000; Chierichetti et al., 2021), as special cases.
RUMs are equivalent (Chierichetti et al., 2018b; Farias
et al., 2009) to models in which a user samples an order-
ing of the objects in the universe, and given a slate, selects
the object in the slate ranked the highest in the ordering.

RUMs, and subclasses of RUMs, have also been exten-
sively studied from both active learning and passive learn-
ing perspectives (Soufiani et al., 2012; Oh and Shah,
2014; Chierichetti et al., 2018b,a; Negahban et al., 2018;
Tang, 2020). The problems of efficiently representing and
sketching RUMs have been studied (Farias et al., 2009;
Chierichetti et al., 2021; Almanza et al., 2022).

The work that is closest to ours is (Almanza et al., 2022),
which also aims to learn RUMs from choices on slates by
solving an LP via the ellipsoid method with an approximate
separation oracle. The differences between our work and
theirs can be summarized as follows: (i) their algorithm
works only for slates of size k = 2, while ours works for
any constant k, (ii) their LP also works only for k = 2 and,
most importantly, (iii) our separation oracles are different
and new: we (approximately) solve a novel generalization
of the FAS problem; this might be of independent interest.

Organization. Section 2 establishes the notation. Sec-
tion 3 provides formulations of the primal and dual LPs for
RUM fitting, Section 4 introduces the pivotal element of the
approximate separation oracle for the LP, Section 5 shows
that this oracle can be used with the ellipsoid method to
find an approximately optimal RUM. Section 6 discusses

lower bounds for the size of the input for our LP method.
Section 7 presents our experimental results.

2 PRELIMINARIES

For a set S, let 2S denote the set of all subsets of S and
let
(
S
k

)
denote the set of all k-sized subsets of S. For a

distributionD, let x ∼ D denote that the random variable x
is drawn according toD and letD(i) denote Prx∼D[x = i],
where i is in the support of D.

Let [n] denote {1, . . . , n} and let Sn denote the set of per-
mutations of [n]. A slate is a non-empty subset of [n]. For
a slate ∅ 6= S ∈ 2[n] and a permutation π ∈ Sn, let π(S)
be the element of S that ranks the highest in π.

Definition 1 (Random utility model (RUM)). A random
utility model (RUM) R on [n] is a distribution D on Sn.
For a slate S, let RS denote the distribution of the random
variable π(S), where π ∼ D. We say thatRS is the winner
distribution on S induced by RUM R.

Our goal is to fit RUMs to datasets in order to minimize the
average `1-error over the winner distributions.

Definition 2 (Average RUM approximation). Let S be a
set of slates of [n] and for each S ∈ S , let P(S) be
a probability distribution over S. We say that P can
be approximated on average to within ε by a RUM R if
avgS∈S |RS − P(S)|1 ≤ ε. Given P , let ε1(P) be the
smallest1 x ≥ 0 such that there is a RUM that approxi-
mates P on average to within x.

Recall that the `1-distance between two distributions over
S is (exactly) twice as large as the total variation distance
between them, i.e., it is twice as large as the maximum gap
in the probabilities of an event in the two distributions.

Problem 3 (Average RUM additive approximation). Given
S and a corresponding P , find a δ-additive approximation
to ε1(P), i.e., obtain a RUM whose average distance from
P is not larger than ε1(P) + δ.

We also need the following generalization of the weighted
feedback edge set problem to hypergraphs. For a hyperedge
e = (x1, . . . , xk) ∈

(
[n]
k

)
and a permutation π ∈ Sn, let

π(e) = (π(x1), . . . , π(xk)).

Problem 4 (Weighted feedback hyperedge set (WFHS)).
An instance of the (τ, k)-bounded weighted feedback hy-
peredge set (WFHS) problem is composed of a set V = [n]
of vertices, a set E ⊆

(
V
k

)
of hyperedges and, for each

e ∈ E, a non-negative weight function we : e → [0, τ].
The cost of a permutation π of the vertices of V is equal to
C(π) =

∑
e∈E we(π(e)). The WFHS problem is to find a

permutation π ∈ Sn that minimizes C(π).

1This minimum exists since it is the optimal value of a finite-
sized, feasible, LP.

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

3 FITTING RUMS WITH LINEAR
PROGRAMS

Our goal in this section is to write down a linear pro-
gram (LP) whose solution gives the desired RUM. This LP
will have exponentially many constraints but polynomially
many variables. Thanks to the general theory of the ellip-
soid method, it is possible to solve the LP to within a very
small error, provided that a so-called separation oracle ex-
ists. Such an oracle is provided in the next sections.

Let us begin by writing down an LP whose solution gives a
RUM attaining minimum average `1-error for the slates in
S, and which generalizes the LP of Almanza et al. (2022) to
k ≥ 2.2 In order to write it down, we need to have access to
P . For simplicity, let DS denote P(S). Then DS(i) is the
(empirical) probability that iwins in S, for each i ∈ S ∈ S.
(Observe that, for each S ∈ S,

∑
i∈S DS(i) = 1.) The LP

assigns probability pπ ≥ 0 to each permutation π ∈ Sn,
and requires that

∑
π∈Sn pπ = 1.

min 1
|S| ·

∑
S∈S

∑
i∈S

εS,i

εS,i +
∑
π∈Sn
π(S)=i

pπ ≥ DS(i) (LS,i) ∀i∈S∈S

εS,i −
∑
π∈Sn
π(S)=i

pπ ≥ −DS(i) (US,i) ∀i∈S∈S

∑
π∈Sn

pπ = 1 (D)

pπ ≥ 0 ∀π ∈ Sn
εS,i ≥ 0 ∀i∈S∈S

(1)

Then, {pπ}π∈Sn defines a RUM. Given any i ∈ S ∈ S,
it also requires that the approximation error made by ev-
ery RUM that is a feasible solution for the pair (i, S) is no
greater than εS,i. The constraints of type LS,i guarantee
that the probability that i wins in S is at least DS(i)− εS,i;
those of type US,i guarantee that the same probability is at
most DS(i) + εS,i. Therefore, the `1-error made by the
optimal RUM on slate S is not more than

∑
i∈S εS,i. The

LP minimizes the average (i.e., the scaled sum) of the `1-
errors over all slates S (i.e., |S|−1

∑
S∈S

∑
i∈S

εS,i). It follows

that the optimal solution ensures that each εS,i equals the
`1-error on S and therefore that its average `1-error is the
minimum achievable by any RUM.

LP (1) has exponentially many variables and polynomially
many constraints. If we take its dual, we obtain an LP with

2For the interested reader, the LP of Almanza et al. (2022) can
be obtained from ours by setting k = 2. The main technical dif-
ference between the LPs stems from the fact that, when k = 2,
enforcing a bound on the error of the probability that a particu-
lar element wins in a slate is equivalent to enforcing a bound on
the total variation error of the slate distributions (for distributions
P = (x, 1 − x) and Q = (y, 1 − y) on two elements, it is easy
to see that |P −Q|1 = 2|P −Q|∞); unfortunately, this property
fails to hold if k > 2. We thus have to provide an argument that
makes use of a novel polyhedron (F ρ).

polynomially many variables and exponentially many con-
straints. Hence, it can be optimized efficiently, given a sep-
aration oracle. Here is the dual of (1):

maxD +
∑

i∈S∈S
(DS(i) · (LS,i − US,i))

LS,i + US,i ≤ |S|−1 (εS,i) ∀i ∈ S ∈ S
D +

∑
S∈S

(LS,π(S) − US,π(S)) ≤ 0 (pπ) ∀π ∈ Sn

LS,i, US,i ≥ 0
D unrestricted

Observe that every feasible dual solution can be trans-
formed into a feasible solution with the same value and
with the additional property that, for all i ∈ S ∈ S, at
least one of LS,i and US,i is equal to zero. To see this, ob-
serve that if the two variables are positive we can subtract
min(LS,i, US,i) from both without affecting feasibility and
without changing the objective function’s value. Given a
feasible solution to the dual, define ∆S,i = US,i − LS,i.
With this transformation, we have US,i = max (∆S,i, 0),
LS,i = max (−∆S,i, 0), and |∆S,i| = LS,i + US,i. The
dual LP is then equivalent to the following LP:

maxD −
∑

i∈S∈S
(DS(i) ·∆S,i)∑

S∈S
∆S,π(S) ≥ D ∀π ∈ Sn

−|S|−1 ≤ ∆S,i ≤ |S|−1 ∀i ∈ S ∈ S
D unrestricted

(2)

We now transform LP (2) from a maximization problem
into a feasibility problem, to pave the way for the ellipsoid
algorithm:

Fρ :=

D −

∑
i∈S∈S

(DS(i) ·∆S,i) ≥ ρ∑
S∈S

∆S,π(S) ≥ D ∀π ∈ Sn

−|S|−1≤ ∆S,i ≤|S|−1 ∀i ∈ S ∈ S

Observe that LP (2) has value at least ρ iff Fρ is feasible. In
order to have the polytope lie in the non-negative orthant,
we set ∆S,i = ∆S,i + |S|−1. We then rewrite the expres-
sions in terms of ∆S,i:

D −
∑
i∈S∈S

(DS(i) ·∆S,i)

= D −
∑
i∈S∈S

(
DS(i) ·

(
∆S,i − |S|−1

))
= D −

∑
i∈S∈S

(
DS(i) ·∆S,i

)
+
∑
S∈S

∑
i∈S

(
DS(i) · |S|−1

)
= D −

∑
i∈S∈S

(
DS(i) ·∆S,i

)
+
∑
S∈S
|S|−1

= D −
∑
i∈S∈S

(
DS(i) ·∆S,i

)
+ 1.

Thus, D −
∑

i∈S∈S
(DS(i) ·∆S,i) ≥ ρ is equivalent to

D −
∑

i∈S∈S

(
DS(i) ·∆S,i

)
≥ ρ − 1. Moreover, for

Approximating a RUM from Distributions on k-Slates

π ∈ Sn,
∑
S∈S ∆S,π(S) =

∑
S∈S

(
∆S,π(S) − |S|

−1
)

=∑
S∈S ∆S,π(S) − 1. Thus,

∑
S∈S ∆S,π(S) ≥ D is equiva-

lent to
∑
S∈S ∆S,π(S) ≥ D+1. Finally,−|S|−1 ≤ ∆S,i ≤

|S|−1 is equivalent to 0 ≤ ∆S,i ≤ 2|S|−1. Hence, the sys-
tem Fρ is equivalent to the following system F ρ.

F ρ :=

cρ : D −

∑
i∈S∈S

(
DS(i) ·∆S,i

)
≥ ρ− 1

cπ :
∑
S∈S

∆S,π(S) ≥ D + 1 ∀π ∈ Sn

cS,i : 0 ≤ ∆S,i ≤2|S|−1 ∀i ∈ S ∈ S

(3)

LP (2) has value at least ρ if and only if F ρ is feasible.

To summarize, we have reduced Problem 3 to the feasibility
problem F ρ. Since F ρ has exponentially many constraints,
we cannot check the validity of its cπ constraints one by
one3. On the other hand, the feasibility of the full set of the
cπ constraints of F ρ can be checked by solving an instance
of Problem 4, which is an instance of the WFHS problem
with weights given by the ∆S,i’s. In the next section, we
provide an approximation algorithm for WFHS. And in the
subsequent section, we use this approximation algorithm to
provide an approximate separation oracle for F ρ, which we
will then use to solve Problem 3, our original RUM fitting
problem, in polynomial time.

4 AN ALGORITHM FOR THE WFHS
PROBLEM

We introduce notation and recall some results before dis-
cussing our O(ε · τ · nk)-additive approximation algo-
rithm for the WFHS problem; this algorithm, like the al-
gorithms of Kenyon-Mathieu and Schudy (2007); Schudy
(2012); Frieze and Kannan (1999) for the feedback arc
set (FAS) problem, makes use of tensor-maximization al-
gorithms for k-CSP (constraint satisfaction problem) as a
building block.

Our k-CSP will have a constant-sized alphabet [t], for t =
O(ε−1). The k-CSP has one type of predicate P of arity k:
P (x1, . . . , xk) = [x1 > max(x2, . . . , xk)].

An instance I of this k-CSP is composed of a set X =
{x1, . . . , xn} of variables, of a set M of k-tuples of vari-
ables of X (the constraints induced by P), and of a weight-
ing w : M → [0, τ]. The variables take values over [t].

The goal of the problem is to assign values to
the variables (where the value of xi ∈ X is an
element of [t]) in order to maximize the total
weight of k-tuples (xi1 , . . . , xik) ∈ M that make
the predicate P (xi1 , . . . , xik) true (i.e., maximize∑

(xi1 ,...,xik)∈M
(P (xi1 , . . . , xik) · w(xi1 , . . . , xik))).

This maximum value is called the optimal value of the
k-CSP instance and is denoted OPT(I).

3The number of CS,i’s constraints and cρ is only O (|S|), i.e.,
it is (sub)linear in the input size, and hence can be easily checked.

We will make use of the following result, that has been
proved by various authors including, e.g., (Schudy, 2012;
Yaroslavtsev, 2014).

Theorem 5. For each constant ε > 0, for each non-
negative integers t, k ≥ 1, and for each k-CSP over the al-
phabet [t], there exists an algorithm that, in timeO(nk), re-
turns an assignment to the n variables of a generic instance
I of the k-CSP such that the expected weight of the k-tuples
satisfied by the assignment is at least OPT(I)− ε · τ · nk.

We also mention that a slower algorithm, with a run-
time n2

O(k)

, for approximately solving generic k-CSPs was
given in Yoshida and Zhou (2014).

We now show that the WFHS problem can be additively
approximated. Our approach, like that of Kenyon-Mathieu
and Schudy (2007); Schudy (2012); Frieze and Kannan
(1999) for the feedback arc set (FAS) problem, solves
the WFHS problem by first (i) casting it as a tensor-
maximization/k-CSP problem and then (ii) transforming
the solution to this problem into an ordering of the vertices.

Theorem 6. For each constants 0 < ε < 1
2 , α >

0, k ≥ 2, there exists an algorithm for the (τ, k)-bounded
WFHS problem that can return an (ε · τ · nk)-additive ap-
proximation, with probability at least 1 − n−α, in time
O(αnk log n).

Proof. Given an instance V,E, {we}e∈E of the WFHS
problem, we define a k-CSP with variables x1, . . . , xn
over the alphabet [t], for t = dε−1e. For each
hyperedge e = {xi1 , . . . , xik} ∈ E, we create
k constraints: Ci1,e := P (xi1 , xi2 , . . . , xi|e|−1

, xik),
Ci2,e := P (xi2 , xi3 , . . . , xik−1

, xik , xi1), . . ., Cik,e :=
P (xik , xi1 , . . . , xik−2

, xik−1
). The weight of the constraint

Cij ,e will be w
(
Cij ,e

)
= τ −we(ij) and let Γe = {Cij ,e |

ij ∈ e}. Let I be the resulting k-CSP instance.

Now, let π ∈ Sn. For each i ∈ [t], and for each item j
having rank in π in the set Ri =

[⌈
i · nt

⌉]
\
[⌈

(i− 1) · nt
⌉]

(then, |Ri| ≤ n
t + 1), we assign value i to the variable xj .

Let σπ be the resulting variable assignment.

Given π, let

E1 = {e | e ∈ E and @j ∈ e \ {π(e)},∃i : {π(e), j} ⊆ Ri} ,

and let E2 = E \ E1. In other words, E1 is the set of
hyperedges whose winner with π lies alone in some Ri,
and E2 is the set of hyperedges e whose winner with π lies
in some Ri together with some other element(s) of e. We
now bound the cardinality of E2:

|E2| ≤
k∑
a=2

t∑
i=1

((
|Ri|
a

)
·
(
n− |Ri|
k − a

))

≤
k∑
a=2

t∑
i=1

|Ri|a · (n− |Ri|)k−a

a! · (k − a)!

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

≤
k∑
a=2

t∑
i=1

(
n
t + 1

)a · nk−a
a! · (k − a)!

≤
k∑
a=2

t∑
i=1

O
(
εa · nk

)
=

k∑
a=2

O
(
εa−1 · nk

)
≤ O

(
ε · nk

)
= c′ · ε · nk,

for some constant c′ > 0. Now, for each e ∈ E1, the
constraint Cπ(e),e will be satisfied, and no other Cij ,e,
ij ∈ e \ {π(e)}, will be satisfied. Thus, if e ∈ E1, then
the constraints in Γe will contribute τ − we(π(e)) to the
value of the k-CSP solution σπ . Moreover, if e ∈ E2, then
the constraints in Γe will not contribute to the value of the
k-CSP solution σπ . Then, the value v(σπ) of the k-CSP
solution σπ can be lower bounded as

v(σπ) =
∑
e∈E1

(τ − we(π(e)))

≥
∑
e∈E1

(τ − we(π(e))) +
∑
e∈E2

(τ − we(π(e)))− τ |E2|

=
∑
e∈E

(τ − we(π(e)))− τ · |E2|

≥ |E| · τ − C(π)− c′ · τ · ε · nk.

Moreover, if σ is any assignment to the k-CSP vari-
ables, let πσ be any permutation that ranks the ele-
ments decreasingly by assignment value (i.e., i ≺πσ
j if xi < xj) breaking ties arbitrarily. Let E′1 =
{e ∈ E | ∃i ∈ e∀j ∈ e \ {i} : xi > xj}. Then, if e ∈
E′1, it holds that the hyperedge e contributes a value of
we(πσ(e)) to C(πσ). Then,

|E| · τ − C(πσ) =
∑
e∈E

(τ − we(πσ(e)))

≥
∑
e∈E′1

(τ − we(πσ(e))) = v(σ).

Then, C(πσ) ≤ |E| · τ − v(σ).

Let π? = arg minπ C(π) be a permutation that minimizes
the WFHS cost. We have proved that v (σπ?) ≥ |E| · τ −
C(π?)− c′ · τ · ε · nk, i.e.,

C(π?) ≥ |E| · τ − v(σπ?)− c′ · τ · ε · nk.

Now, let σ? = arg maxσ v(σ). By v(σ?) ≥ v(σπ?), we
have

C(π?) ≥ |E| · τ − v(σ?)− c′ · τ · ε · nk.

The algorithm in Theorem 5 of Schudy (2012), when run
on the max-k-CSP instance I returns (in time O(nk)) an
assignment σ̃ such that E [v(σ̃)] ≥ v(σ?)− ε · τ ·nk. Then,

C(π?) ≥ |E| · τ − v(σ?)− c′ · τ · ε · nk

≥ |E| · τ − E [v(σ̃)]− (c′ + 1) · τ · ε · nk.

On the other hand, the permutation πσ̃ will satisfy
E [C(πσ̃)] ≤ |E| · τ − E [v(σ̃)]. Thus,

C(π?) ≥ E [C(πσ̃)]− (c′ + 1) · τ · ε · nk,

or equivalently,

E [C(πσ̃)] ≤ C(π?) + (c′ + 1) · τ · ε · nk.

The algorithm then returns an expected additive (c′+1) ·τ ·
ε · nk approximation. Markov’s inequality ensures that, if
we run the algorithm r = O(α log n) times, then with prob-
ability at least 1−n−α, the best of the r returned solutions
is a
(
c · τ · ε · nk

)
-additive approximation for c = 2(c′+1).

Finally, given that c is a constant and that ε can be cho-
sen arbitrarily, we can substitute the value of ε with ε

c to
guarantee that the running time will still be not larger than
O(αnk log n) and that the algorithm returns a (τ · ε · nk)-
additive approximation with probability 1− n−α.

In our application, we will have τ = Θ(n−k), so that the
additive error will be as small as ε for any constant ε > 0.

5 RECONSTRUCTING RUMS FROM
k-SLATES

Using Theorem 6, we give next an approximate separation
oracle for F ρ when S is the class of all slates of size k.
Recall that F ρ is defined by (3).

Theorem 7. Let k be a constant and let S =
(
[n]
k

)
. Fix any

constants α > 0 and 0 < ε < 1
2 . Then, there exists a ran-

domized algorithm such that, given as input an assignment
{D} ∪ {∆S,i}i∈S∈S to F ρ, in time nO(k) and with proba-
bility at least 1− n−α: (i) if at least one of the constraints
cρ or cS,i (for i ∈ S ∈ S) is unsatisfied, it returns an un-
satisfied constraint of F ρ; or, (ii) if there exists at least one
π ∈ Sn such that

∑
S∈S

∆S,π(S) < D + 1 − 2ε, it returns

an unsatisfied constraint of type cπ; otherwise, (iii) it might
not return any unsatisfied constraint (even if some exists).

Proof. First, we check the validity of every constraint of
type cρ or cS,i (for i ∈ S ∈ S); tshis can be done in time
O(nk+1). If any one of these constraints is unsatisfied, one
of them is returned.

Otherwise, we run the algorithm of Theorem 6 on the
WFHS instance given by the {∆S,i}i∈S∈S . This instance
is (τ, k)-bounded with τ = 2|S|−1. Thus, the algorithm
of Theorem 6 returns, with probability at least 1 − n−α,
an (ε · τ · |S|)-additive approximation, which is a (2ε)-
additive approximation, in polynomial time. In particular,
with that probability, it returns a permutation π̃ such that∑
S∈S ∆S,π̃(S) ≤

(
minπ

∑
S∈S ∆S,π(S)

)
+ 2ε.

The algorithm then checks the validity of the constraint cπ̃:
if it is violated, it returns cπ̃ and none otherwise.

Approximating a RUM from Distributions on k-Slates

Observe that if minπ
∑
S∈S ∆S,π(S) < D + 1 − 2ε, the

{∆}i∈S∈S assignment violates cπ̃ , which will then be re-
turned. Otherwise if minπ

∑
S∈S ∆S,π(S) ≥ D + 1 − 2ε,

the cπ̃ constraint might or might not be violated.

Theorem 7 provides an approximate separation oracle for
F ρ. If we plug it into the ellipsoid algorithm (Grötschel
et al., 1988), we obtain a polynomial-time algorithm to
compute a δ-additive approximation to our RUM fitting
problem.

Theorem 8. Let k > 0 be any integer and let δ be a con-
stant in 0 < δ < 1. Then, Problem 3 can be approximated
to within an additive value of δ in time nO(k), where n is
the number of elements of the RUM.

Proof. We describe RIPPLEK, a polynomial-time algo-
rithm with the stated complexity that uses the ellipsoid al-
gorithm of Grötschel et al. (1988) as a subroutine. As it is
well-known, the ellipsoid algorithm uses a separation ora-
cle as a black-box. In our case, the black-box is the approx-
imate separation oracle of Theorem 7.

First, RIPPLEK guesses ρ ∈
{
i · δ/2 | 0 ≤ i ≤

⌈
4
δ

⌉}
(the

algorithm performs a binary search among the values in
this set). For a given ρ, the ellipsoid algorithm is invoked
together with the approximate separation oracle of Theo-
rem 7 to approximately check the non-emptiness of F ρ.
In particular, the ellipsoid algorithm will call the separa-
tion oracle at most nO(k) many times4 returning at most
polynomially many separating hyperplanes. If such a set
defines an infeasible LP, the ellipsoid algorithm correctly
concludes that F ρ is empty.

Otherwise, the ellipsoid algorithm returns a point x =
(D) . (∆S,i)i∈S∈S that the oracle was unable to separate
from F ρ. This point could lie inside of F ρ, or outside of
it, since the oracle only guarantees that the constraints of
type cπ hold to within an additive error of twice ε , δ/4.
Let us define the point x′ = (D − δ/2) . (∆S,i)i∈S∈S . We
prove that x′ ∈ F ρ−δ/2. Indeed, each cπ constraint is sat-
isfied by x′ (cπ is off by at most 2ε = δ/2 with the solution
x, and the RHS of the cπ constraint decreases by δ/2 when
switching from x to x′). Moreover, the cρ−δ/2 constraint of
F ρ−δ/2 is satisfied by x′ (cρ is satisfied by x, thus cρ−δ/2 is
satisfied by x′). Each remaining constraint is also satisfied.

Let i? be the largest i for which the algorithm establishes
that x′ ∈ F ρ?−δ/2 where ρ? = i? · δ/2.5 Then, the dual
LP (2) does not admit a solution of value at least ρ? + δ/2,
but admits a solution of value at least ρ? − δ/2. It follows
that the optimal solution of the dual LP (2), and thus of

4In our separation oracle, we set α = c · k for some constant
c; this guarantees that each call to the separation oracle will have
the approximation properties of Theorem 7 with high probability.

5Such an i? exists since the maximum `1-distance between
two probability distributions is 2 ≤ d 4

δ
e · δ

2
.

the primal LP (1), lies in [ρ? − δ/2, ρ? + δ/2]. Hence,
the ellipsoid algorithm with the above separation oracle,
returns a solution that approximates the optimal solution of
Problem 3 to within δ.

Finally, to recover an approximating RUM whose average-
distance error is at most the smallest possible plus δ, RIP-
PLEK acts as follows. Consider the run of the ellip-
soid algorithm with ρ = ρ?. In this run, the ellipsoid
algorithm calls the separation oracle at most polynomi-
ally many times and returns no more than polynomially
many separating hyperplanes. Some of these hyperplanes
might refer to non-permutation constraints, and the rest
refer to the permutation constraints of, say, permutations
π1, . . . , πt (for t ≤ nO(k)). By restricting the primal LP
(1) to its non-permutation variables and to the permutation
variables pπ1 , . . . , pπt , we obtain an LP of size nO(k) (i.e.,
solvable in time nO(k)), and whose optimal value is at most
δ plus the optimum of the primal LP (1). Thus, solving the
restricted LP allows us to obtain a RUM with an error no
greater than the smallest possible plus δ.

Succinct Representation. As shown in Chierichetti et al.
(2021), every RUM can be sketched to O(ε−2 ·k ·n log2 n)
bits in such a way that the probability distribution of each
slate of size at most k is approximated to within an `1-error
of ε. This sketch is a RUM over O(ε−2 · k · log n) permu-
tations. Consequently, the approximately optimal RUM re-
turned by the algorithm of Theorem 8 can be reduced (with
the sameO(δ) additive error with respect to the optimal ap-
proximating RUM) to a RUM supported byO(δ−2·k·log n)
permutations.

Algorithm 1 A heuristic for Problem 3 RUMRUNNERK
(Almanza et al., 2022).
1: P ← ∅
2: π? ← any permutation from Sn
3: repeat
4: P ← P ∪ {π?}
5: Solve the primal LP (1) restricted to the variables εS,i for

i ∈ S ∈ S, and pπ for π ∈ P ; let P be its optimal
primal solution, and D be its optimal dual solution (i.e.,
the solution of LP (2))

6: π? ← Viol-HP (D)
7: until π? = ⊥
8: return the RUM that samples π ∈ P with probability P(pπ)

and π ∈ Sn \ P with probability 0.

6 A NON-ADAPTIVE LOWER BOUND

Our reconstruction algorithm leverages on knowing the
winning distribution of each slate of size k. We show here
that a non-adaptive algorithm that aims to approximate the
winning distribution of each slate of size k, must access a
constant fraction of slates of size k during learning.
Theorem 9. Let A be a non-adaptive algorithm that only
queries an ε fraction of the slates of size k ≥ 2. Then,

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

Algorithm 2 A randomized local-search for Viol-HP. In
experiments, we set t = 100 and t′ = 5.
1: For π ∈ Sn, let wfhs(π) =

∑
S∈S D(∆S,π(S))

2: For π ∈ Sn, let N(π) be the set of permutations that can be
obtained from π by moving one of its elements

3: let 0 < t′ ≤ t be two integers
4: wfhsmin ←∞
5: for i = 1, . . . , t do
6: π ← uniform at random permutation from Sn
7: while ∃π′ ∈ N(π) such that wfhs(π′) < wfhs(π) do
8: π ← arg minπ′∈N(π) wfhs(π′)
9: if wfhs(π) < wfhsmin then

10: wfhsmin ← wfhs(π)
11: πmin ← π
12: if wfhsmin < D(D) and i ≥ t′ then
13: return πmin

14: return ⊥

with probability at least 1− ε, the expected `1-error of A’s
prediction on at least one slate of size k is at least 2− 2

k .

Proof. This result can be proved with a very simple RUM.
Let S be a slate sampled uniformly at random from the
class

(
[n]
k

)
, and let i be sampled uniformly at random from

the slate S. The RUM R = Ri,S will be supported by a
single permutation πi,S that has the element of [n]\S in its
first n − |S| positions (sorted arbitrarily), element i in its
(n − |S| + 1)st position, and the element of S \ {i} in its
last |S| − 1 positions (again, sorted arbitrarily).

Observe that RS(i) = 1 and RS(j) = 0, for each j ∈ S \
{i}. Moreover, if one queries R on any slate in

(
[n]
k

)
\ {S},

one is unable to tell which element of S ranks highest in
π and, thus, in permutations sampled from R. Indeed, the
elements of S lie in the last k positions of π and thus no
slate of size k other than S will result in some element of
S winning.

Thus, a non-adaptive algorithm that did not query S in its
learning phase, can correctly guess that one element i′ of
S will always win in S. However, from the algorithm’s
perspective, Pr[j = i′] = 1

|S| for each j ∈ S. Thus, if the
goal of the algorithm is to minimize the expected `1-error
on its guess for DS , it should return the uniform vector(

1
|S| , . . . ,

1
|S|

)
, since it is the (geometric) median of the

k possible distributions for DS , and since each of these
distributions is equally likely. The expected `1-error onDS

of any non-adaptive algorithm that does not query S during
its learning phase is then at least 1 ·

(
1− 1

|S|

)
+ (|S| − 1) ·(

1
|S| − 0

)
= 2− 2

|S| = 2− 2
k .

Moreover, if the non-adaptive algorithm queries only ε ·
(
n
k

)
slates during its learning phase, then it will query S with
probability at most ε. If this event does not happen, the
algorithm’s expected `1-error on S is ≥ 2 ·

(
1− 1

k

)
.

Dataset n k |P | average lower MNL
error bound avg. err.

Sushi 10

2 46 0 0 2 · 10−5

3 241 0 0 0.0389
4 631 0 0 0.0354
5 916 0.0002 0 0.0282

SFwork 6

2 16 0 0 2 · 10−5

3 36 0.0044 0.0044 0.0317
4 35 0.0072 0.0072 0.0235
5 20 0.0035 0.0035 2 · 10−5

SFshop 8

2 29 0 0 2 · 10−5

3 109 0.0002 0.0002 0.0493
4 195 0.0010 0.0010 0.0348
5 192 0.0017 0.0017 0.0203

A5 16

2 121 0 0 1 · 10−5

3 951 0.0005 0 0.0443
4 1044 0.0105 0 0.0497
5 1001 0.0207 0.0078 0.0542

A9 12

2 67 0 0 1 · 10−5

3 441 0 0 0.0318
4 1053 0.0014 0 0.0347
5 1032 0.0080 0 0.0387

A17 13

2 79 0 0 3 · 10−5

3 573 0 0 0.0441
4 829 0.0127 0.0038 0.0603
5 843 0.0281 0.0253 0.0732

A48 10

2 46 0 0 1 · 10−5

3 241 0 0 0.0319
4 561 0.0026 0.0002 0.0392
5 433 0.0224 0.0208 0.0507

A81 11

2 56 0 0 2 · 10−5

3 325 0.0005 0.0005 0.0484
4 513 0.0250 0.0233 0.0659
5 425 0.0535 0.0521 0.0859

Table 1: Results of the fitting experiments. |P | is the size
of the support found by RUMRUNNERK. For some datasets
we were able to find a non-trivial lower bound on the aver-
age error achievable via a RUM. The last column represents
the average `1-error of the MNL model.

7 EXPERIMENTS

We perform two types of experiments. In Section 7.2 we
are given as input a set of slates and for each slate a winner,
chosen by a user, over its elements. We evaluate the qual-
ity of our algorithm in representing the resulting winner
distributions by measuring the `1-error between the winner
distributions induced by the dataset and those given by the
RUM found by the algorithm. Next, in Section 7.3, we con-
sider a prediction setting where the data is split into training
and test set. We learn a RUM using our algorithm on the
training set and evaluate its generalization quality on the
test set.

7.1 Experimental Setup

For practical reasons we did not implement the polynomial-
time algorithm RIPPLEK, but based on similar ideas, used

Approximating a RUM from Distributions on k-Slates

the heuristic RUMRUNNERK described in Algorithm 1,
which is from Almanza et al. (2022). The heuristic needs
access to a separation oracle (Viol-HP) that, as shown in
Section 5, can be seen as an instance of the WFHS prob-
lem. We implemented such an oracle both with an exact
algorithm running in time O(nk2n) (which we describe in
the Appendix, and that is a generalized version of the ex-
act algorithm of Lawler (1964) for the FAS problem) and
also using a randomized local-search heuristic described
in Algorithm 2; the latter is a generalization of the algo-
rithm in Almanza et al. (2022). We were able to use the
exact oracle on most of the datasets, but when it turned
out to be too slow, we resorted to the local-search (in par-
ticular, we needed the local-search on dataset A5). Note
that, when provided with an exact oracle, RUMRUNNERK
is guaranteed to find the optimal RUM, however, we have
no (non-trivial) upper bound on its running time. On the
other hand, when we use the local-search heuristic, RUM-
RUNNERK loses also its guarantee to converge to the op-
timal RUM, since the local-search might fail at finding a
separating hyperplane even if it exists. We implemented
RUMRUNNERK in Python using IBM cplex6 and we ran it
on general-purpose hardware7.

Baselines. We compared the performances of our algorithm
with the MNL model (Bradley and Terry, 1952), both in the
fitting experiments and in the prediction ones. We used the
scikit-learn8 implementation of this model.

Slate sizes. We ran the experiments on sets of equal-sized
slates, in particular, we considered slates of size between
2 and 5, i.e., S ⊆

(
[n]
k

)
for k ∈ {2, 3, 4, 5}. Note that we

allowed missing k-slates (i.e., possibly S (
(
[n]
k

)
).

Datasets. We performed the experiments on the following:

(i) Sushi dataset (Kamishima, 2003) contains a list of
permutations over 10 elements, representing people’s pref-
erences over different types of sushi. Since we only care
about k-slates, we transformed each permutation into

(
n
k

)
different k-slates setting the winner according to the per-
mutation. Note that a RUM with error 0 exists on such a
dataset.

(ii) Datasets SFwork and SFshop (Koppelman and Bhat,
2006) contain a list of choices between different transporta-
tion alternatives made by people going to work or to a shop-
ping center, respectively. Since these datasets contain only
a few slates of fixed size, we augmented them in the fol-
lowing way: each slate S, |S| ≥ k, with winner w ∈ S, is
transformed into

(|S|−1
k−1

)
slates of size k, each havingw as a

winner. This transformation might induce a bias, however,
it seems reasonable in practice.

6https://www.ibm.com/analytics/
cplex-optimizer

7Intel core i7, 8GB of RAM
8https://scikit-learn.org/stable/

(iii) Datasets A5, A9, A17, A48, A81 (Tideman, 2006)
contain lists of election ballots, which are partial ordering
of the elements (i.e., each ballot is a sorted subset of S).
As in Sushi, we converted the sorted subsets into several
k-slates assigning the winner according to the ordering.

Dataset n k RUMRUNNERK MNL Train
Tensor

Sushi 10

2 0.023 0.023 0.023
3 0.027 0.037 0.027
4 0.028 0.033 0.029
5 0.028 0.030 0.030

SFwork 6

2 0.091 0.088 0.088
3 0.094 0.087 0.094
4 0.085 0.074 0.081
5 0.071 0.072 0.072

SFshop 8

2 0.081 0.080 0.081
3 0.066 0.067 0.066
4 0.060 0.057 0.062
5 0.056 0.051 0.058

A9 12

2 0.046 0.046 0.046
3 0.058 0.055 0.059
4 0.065 0.062 0.071
5 0.070 0.069 0.081

A17 13

2 0.107 0.106 0.107
3 0.141 0.128 0.147
4 0.156 0.150 0.177
5 0.170 0.168 0.201

A48 10

2 0.071 0.071 0.071
3 0.094 0.084 0.094
4 0.105 0.097 0.114
5 0.117 0.112 0.132

A81 11

2 0.091 0.090 0.091
3 0.121 0.113 0.126
4 0.143 0.138 0.158
5 0.168 0.166 0.193

Table 2: Results of the prediction experiments. We run a 5-
fold cross validation with 10 different seeds for each dataset
and algorithm. The table reports the (avg.) RMSE of each
algorithm. The standard deviations are in [0.013, 0.025] for
SFwork and in [0.001, 0.009] for others.

7.2 RUM Fitting

The results of the fitting experiments are shown in Table 1.
We let RUMRUNNERK run for a maximum of 1500 it-
erations and stop it earlier if the average error decreased
by less than 10−5 in 20 iterations (meaning that the algo-
rithm converged). Note that our heuristic always obtains a
smaller error than the MNL model, and it seems therefore
more suitable for representing the datasets.

Due to the use of the local-search heuristic and to the fact
that we stop the algorithm after a fixed number of itera-
tions, RUMRUNNERK will not, in general, converge to the
optimal RUM. However, it is possible to find lower bounds
on the best possible average error achievable via a RUM.
Consider the dual LP (2) restricted to have only the per-
mutation constraints of P , P ⊆ Sn. Consider an opti-

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

0.00 0.02 0.04
0.00

0.25

0.50

0.75

1.00
A9

0.000 0.025 0.050
0.00

0.25

0.50

0.75

1.00
A17

0.00 0.02 0.04
0.00

0.25

0.50

0.75

1.00
A48

0.0 0.1 0.2
0.00

0.25

0.50

0.75

1.00
A81

0.00 0.05
0.00

0.25

0.50

0.75

1.00
SFwork

0.00 0.01
0.00

0.25

0.50

0.75

1.00
SFshop

error

fra
ct

io
n

of
 sl

at
es

mean error

(a) k = 4

0.00 0.05
0.00

0.25

0.50

0.75

1.00
A9

0.00 0.05 0.10
0.00

0.25

0.50

0.75

1.00
A17

0.0 0.1 0.2
0.00

0.25

0.50

0.75

1.00
A48

0.0 0.2
0.00

0.25

0.50

0.75

1.00
A81

0.000 0.005
0.00

0.25

0.50

0.75

1.00
SFwork

0.00 0.01 0.02
0.00

0.25

0.50

0.75

1.00
SFshop

error

fra
ct

io
n

of
 sl

at
es

mean error

(b) k = 5

Figure 1: Distribution of the errors over the slates.
Fixed an error x, the corresponding y value is the ratio
|{S|S∈S and |RS−DS |1≤x}|

|S| , where R is the computed RUM
and DS is the empirical distribution over S.

mal solution D to such restricted LP having value v and
suppose we know, via an exact algorithm for WFHS, that
y = minπ∈Sn

∑
S∈S D(∆S,π(S)). If y ≥ D(D), then v

is the optimal value of the original dual LP (2), and there-
fore of the primal LP (1). Otherwise, note that the point
(y) . (∆S,i)i∈S∈S is a feasible solution to the dual LP (2)
and it has value x = v − (D(D) − y), therefore x is a
lower bound on the optimal value of the primal LP (1).
Fortunately, this trick to find a lower bound can be done
at the end of the fitting procedure, so to run the exact al-
gorithm for WFHS only once. Using these simple remarks
we were able to find non-trivial lower bounds on the aver-
age error for several of the considered datasets. In practice,
RUMRUNNERK often finds the optimal (or almost-optimal)
RUM; furthermore, the error of RUMRUNNERK seems to
increase as we increase the size of the slates. We analyzed
how the errors are distributed (see Figure 1) and it seems
that the majority of the slates incur an error below the av-
erage, in particular, note that most of the 4-slates have an
error close to 0.

7.3 Quality of Predictions

We performed an `-fold cross-validation to assess the gen-
eralization quality of RUMRUNNERK. In particular, given
the slates (with repetitions), we divided them into ` groups
of roughly the same size, built at random. We then per-
formed ` iterations: during the ith iteration, the ith group is
used as the test set and the union of the other `− 1 groups
is used as the training set. In our experiments, we set ` = 5
and we repeated the random splitting 10 times with differ-
ent seeds.

As in Almanza et al. (2022); Makhijani and Ugander
(2019), since the splitting is performed on the initial slates,
the same slate might appear both in training and test-
ing. Following them, we used root mean-squared error

RMSE(D, D̂) =
√
|S|−1

∑
i∈S∈S (DS(i)− D̂S(i))2 to

evaluate the performances of the algorithms. We trained
RUMRUNNERK for a maximum of 250 iterations. The re-
sults are shown in Table 2. (The results for the case k = 2
differ from Almanza et al. (2022) because they normal-
ized by

(
n
2

)
rather than |S|, however, using their definition

we get essentially the same results.) Note that the algo-
rithm gives performances comparable to the MNL model;
furthermore, using the training data directly to make pre-
dictions9 gives results only slightly worse than RUMRUN-
NERK, this is due to the fact that RUMRUNNERK can rep-
resent the input data with a very small error.

8 CONCLUSIONS

In this paper we obtained a polynomial-time algorithm for
finding a RUM that best approximates a given set of win-
ning distributions for slates of any constant size k. While
our lower bound shows that the reconstruction algorithm is
query-optimal, extending it work for adaptive algorithms
is an interesting research direction. Developing provably
good algorithms that avoid the ellipsoid method is also an
intriguing question that merits further investigation.

Acknowledgments

We thank Pasin Manurangsi for useful discussions and sug-
gestions. Flavio Chierichetti and Alessandro Panconesi
were supported in part by BiCi—Bertinoro International
Center for Informatics. Flavio Chierichetti was supported
in part by the Google Gift “Algorithmic and Learning
Problems in Discrete Choice” and by the PRIN project
2017K7XPAN.

References

Matteo Almanza, Flavio Chierichetti, Ravi Kumar,
Alessandro Panconesi, and Andrew Tomkins. RUMs
9We used the uniform distribution for slates that appear only

in the test set.

Approximating a RUM from Distributions on k-Slates

from head-to-head contests. In ICML, pages 452–467,
2022.

K Train. Discrete Choice Methods with Simulation. Cam-
bridge University Press, 2003.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins.
Learning a mixture of two multinomial logits. In ICML,
pages 961–969, 2018a.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins.
Light RUMs. In ICML, pages 1888–1897, 2021.

Nir Rosenfeld, Kojin Oshiba, and Yaron Singer. Predicting
choice with set-dependent aggregation. In ICML, pages
8220–8229, 2020.

A. Seshadri, S. Ragain, and J. Ugander. Learning rich rank-
ings. In NeurIPS, 2020.

Arjun Seshadri, Alex Peysakhovich, and Johan Ugander.
Discovering context effects from raw choice data. In
ICML, pages 5660–5669, 2019.

Daniel McFadden and Kenneth Train. Mixed MNL models
for discrete response. J. Applied Econometrics, 15(5):
447–470, 2000.

Flavio Chierichetti, Ravi Kumar, and Andrew Tomkins.
Discrete choice, permutations, and reconstruction. In
SODA, pages 576–586, 2018b.

Vivek F. Farias, Srikanth Jagabathula, and Devavrat Shah.
A data-driven approach to modeling choice. In NIPS,
pages 504–512, 2009.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia.
Random utility theory for social choice. In NIPS, pages
126–134, 2012.

Sewoong Oh and Devavrat Shah. Learning mixed multi-
nomial logit model from ordinal data. In NIPS, pages
595–603, 2014.

Sahand Negahban, Sewoong Oh, Kiran K. Thekumpara-
mpil, and Jiaming Xu. Learning from comparisons and
choices. JMLR, 19(1):1478–1572, 2018.

Wenpin Tang. Learning an arbitrary mixture of two multi-
nomial logits. arXiv, 2007.00204, 2020.

Claire Kenyon-Mathieu and Warren Schudy. How to rank
with few errors. In STOC, pages 95–103, 2007.

Warren Schudy. Approximation Schemes for Inferring
Rankings and Clusterings from Pairwise Data. PhD the-
sis, Brown University, 2012.

Alan Frieze and Ravi Kannan. Quick approximation to ma-
trices and applications. Combinatorica, 19(2):175–220,
1999.

Grigory Yaroslavtsev. Going for speed: Sublinear algo-
rithms for dense r-CSPs. arXiv, 1407.7887, 2014. URL
http://arxiv.org/abs/1407.7887.

Yuichi Yoshida and Yuan Zhou. Approximation
schemes via Sherali–Adams hierarchy for dense
constraint satisfaction problems and assignment
problems. In ITCS, page 423–438, 2014. See
also https://yuanz.web.illinois.edu/
papers/ptas-by-hierarchy.pdf.

Martin Grötschel, Lászlo Lovász, and Alexander Schrijver.
Geometric Algorithms and Combinatorial Optimization,
volume 2. Springer, 1988.

E. Lawler. A comment on minimum feedback arc sets.
IEEE Transactions on Circuit Theory, 11(2):296–297,
1964.

Ralph Allan Bradley and Milton E. Terry. Rank analysis
of incomplete block designs: I. The method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

Toshihiro Kamishima. Nantonac collaborative filter-
ing: Recommendation based on order responses. In
KDD, pages 583–588, 2003. doi: 10.1145/956750.
956823. URL https://doi.org/10.1145/
956750.956823.

Frank Koppelman and Chandra Bhat. A Self Instructing
Course in Mode Choice Modelling: Multinomial and
Nested Logit Models. U.S. Department of Transporta-
tion, Federal Transit Administration, 2006.

Nicolaus Tideman. Collective Decisions and Voting: The
Potential for Public Choice. Routledge, 2006.

Rahul Makhijani and Johan Ugander. Parametric models
for intransitivity in pairwise rankings. In WWW, pages
3056–3062, 2019.

Flavio Chierichetti, Mirko Giacchini, Ravi Kumar, Alessandro Panconesi, Andrew Tomkins

A AN EXACT ALGORITHM FOR WFHS

In this section we give Algorithm 3, a dynamic programming for the WFHS problem (Problem 4). Our Algorithm gener-
alizes the algorithm from Lawler (1964) for the FAS problem.

Algorithm 3 An Algorithm for WFHS.
1: C(∅)← 0
2: for j = 1, . . . , n do
3: for A ∈

(
[n]
j

)
do

4: for a ∈ A do
5: ta ← 0
6: for e ∈ E such that e ⊆ A do
7: for a ∈ e do
8: ta ← ta + we(a)
9: C(A)← mina∈A (ta + C(A \ {a}))

10: `(A)← a, for any a such that ta + C(A \ {a}) = C(A)
11: An ← [n]
12: Let π? be an array of size n
13: for j = n, . . . , 1 do
14: π?j ← `(Aj)
15: Aj−1 ← Aj \ {`(Aj)}
16: return π?

Theorem 10. Algorithm 3 returns an optimal solution to WFHS in time O (k · |E| · 2n) ≤ O
(
nk · 2n

)
.

Proof. For a given A ⊆ [n], let C(A) be the minimum WFHS cost of a solution to the instance projected on the elements
of A (i.e., to the instance obtained by removing each hyperedge that is not fully contained in A). Then, C(∅) = 0 and

C(A) = min
a∈A

C(A \ {a}) +
∑
e∈E
a∈e⊆A

we(a)

 .

Then, the time required to fill entry A of the array is at most O (|E| · k) = O(nk) — indeed, we can initialize one variable
ta = 0 for each a ∈ A, for a total of |A| ≤ n variables). We then iterate over the edges of E: for each a ∈ e ⊆ A, we add
we(a) to ta. The value of C(A) is then the minimum, over a ∈ A, of C(A \ {a}) + ta; we also set `(A) to be the item of
A that achieves this minimum

Once array A is filled, a permutation π? having minimum WFHS cost, C(π?) = C([n]), can be easily obtained. Let An =
[n]. In general, the element in position 1 ≤ j ≤ n of π? will be equal to `(Aj), and for 1 ≤ j ≤ n, Aj−1 = Aj \ {`(Aj)}.
Thus, an extra iteration over the positions n, n− 1, . . . , 1 is sufficient to obtain π?.

Finally, filling the array takes time O(k · |E| · 2n) ≤ O(k ·
(
n
k

)
· 2n) ≤ O(nk · 2n) and computing π? takes time O(n).

