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Abstract

We examine the problem of designing learning-
augmented algorithms for metrical task sys-
tems (MTS) that exploit machine-learned advice
while maintaining rigorous, worst-case guaran-
tees on performance. We propose an algorithm,
DART, that achieves this dual objective, provid-
ing cost within a multiplicative factor (1 + ϵ)
of the machine-learned advice (i.e., consistency)
while ensuring cost within a multiplicative factor
2O(1/ϵ) of a baseline robust algorithm (i.e., ro-
bustness) for any ϵ > 0. We show that this expo-
nential tradeoff between consistency and robust-
ness is unavoidable in general, but that in impor-
tant subclasses of MTS, such as when the metric
space has bounded diameter and in the k-server
problem, our algorithm achieves improved, poly-
nomial tradeoffs between consistency and ro-
bustness.

1 INTRODUCTION

The metrical task systems (MTS) problem is a central prob-
lem in the theory of online algorithms, encompassing a
wide range of problems broadly characterized as “online
optimization with switching costs” such as convex function
chasing (CFC) and k-server. In MTS, a decision-maker
is faced with a metric space (X, d) and a sequence of ad-
versarial cost functions f1, . . . , fT : X → [0,+∞] that
are revealed online; after the function ft is revealed, the
decision-maker chooses a decision xt ∈ X and pays the
service cost ft(xt) as well as the switching or movement
cost d(xt, xt−1), which penalizes changing decisions. The
MTS problem has deep connections with online learning
(Blum and Burch, 1997; Buchbinder et al., 2012; Daniely
and Mansour, 2019) and broad applicability to problems
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such as datacenter operation (Lin et al., 2012, 2013; Albers
and Quedenfeld, 2021), smoothed online regression and
clustering (Goel and Wierman, 2019; Bubeck et al., 2021b;
Deng et al., 2022), and planning/logistics (Dehghani et al.,
2017). MTS algorithms are designed to minimize the com-
petitive ratio, which quantifies the worst-case ratio in cost
between an algorithm and the offline optimal sequence of
decisions (Definition 2.1). The competitive ratio of MTS
algorithms grows in the cardinality or dimension of the
decision space; for instance, if |X| = n, any determin-
istic algorithm is Ω(n)-competitive and any randomized
algorithm is Ω(log n)-competitive (Borodin et al., 1992;
Bubeck et al., 2022).

Due to the worst-case nature of the competitive ratio, tra-
ditional algorithms for MTS are conservative and may per-
form poorly in high-dimensional settings. In many real-
world sequential decision-making tasks, however, signifi-
cant data is available concerning typical problem instances,
enabling data-driven, machine-learned (ML) algorithms to
outperform traditional algorithms, which ignore such data.
Despite this excellent practical performance, ML algo-
rithms come with no a priori guarantees on worst-case be-
havior. As such, their performance may be jeopardized at
deployment time if they are faced with distribution shift or
unseen problem instances.

The tension between ML algorithms’ excellent average-
case performance and their lack of worst-case guarantees
has motivated the development of learning-augmented al-
gorithms for a wide range of online problems such as
ski-rental, scheduling, and caching (Mahdian et al., 2012;
Purohit et al., 2018; Lykouris and Vassilvtiskii, 2018;
Mitzenmacher and Vassilvitskii, 2021). These algorithms
are designed to exploit the performance of untrusted ad-
vice (e.g., from an ML algorithm) while maintaining rig-
orous guarantees on worst-case performance. Specifically,
learning-augmented algorithms are designed to give simul-
taneous guarantees of consistency – a competitive guaran-
tee against the advice – along with robustness – a worst-
case competitive ratio guarantee (Definition 2.2). Tunable
guarantees are typically sought so that (1 + ϵ)-consistency
can be obtained alongside bounded robustness for any ϵ >
0, enabling better exploitation of good advice when ϵ is
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chosen to be small.

Antoniadis et al. (2020) propose two algorithms that
switch between an advice algorithm and a C-competitive
algorithm for MTS or a special case thereof, giving
guarantees of robustness and consistency for any MTS
problem. In particular, their deterministic algorithm
achieves 9-consistency and 9C-robustness and their ran-
domized algorithm achieves expected cost bounded by
min {(1 + ϵ)CADV, (1 + ϵ)C · COPT}+O(Dϵ ), where D =
diam(X) and CADV,COPT are the advice and offline op-
timal costs, respectively. However, their deterministic al-
gorithm cannot improve upon 9-consistency and the ran-
domized algorithm is limited by the additive O(Dϵ ) term,
which precludes obtaining arbitrarily small consistency
(e.g., when CADV = O(1)) and causes the bound to de-
grade or fail as the diameter of the metric space grows. This
diameter-dependence is of particular limitation to special
cases of MTS such as CFC and k-server, where the natural
setting is an unbounded metric space like Rn.

Several subsequent works obtain robustness and consis-
tency bounds independent of diameter in special cases.
Rutten et al. (2022) propose an algorithm achieving (1+ϵ)-
consistency and 2Õ( 1

αϵ )-robustness under certain condi-
tions on α, ϵ > 0 when service cost functions ft are re-
stricted to be α-polyhedral (Definition 2.4). In the case
of convex function chasing (Section 2.3) on (Rn, ∥ · ∥ℓ2),
Christianson et al. (2022) propose a (

√
2 + ϵ)-consistent,

O( n
ϵ2 )-robust algorithm, and Rutten et al. (2022) give a

(1 + ϵ)-consistent, O( 1
ϵ2 )-robust algorithm for the one-

dimensional case (n = 1). Lindermayr et al. (2022) give
an algorithm for k-server (Section 2.3) on R that achieves
(1 +O(ϵ))-consistency and O( 1

ϵk−1 )-robustness.

These latter results indicate that in certain subclasses of
MTS, it is possible to obtain robustness and consistency
bounds that are independent of metric space diameter.
However, these results only exist for a few subclasses of
MTS, and do not always guarantee (1 + ϵ)-consistency for
arbitrarily small ϵ > 0, thus limiting the exploitation of
good advice. The following, important question remains
open: Does there exist a general algorithm for MTS and its
subclasses that achieves (1 + ϵ)-consistency for any ϵ > 0
while simultaneously maintaining robustness bounded in-
dependently of the metric space diameter?

Contributions. In this work, we answer the above ques-
tion in the affirmative. Specifically, we propose a random-
ized algorithm, DART (Algorithm 1), that, given any ad-
vice and any C-competitive algorithm for MTS or a special
case thereof, achieves (1 + ϵ)-consistency and 2O(1/ϵ)C-
robustness (Theorem 3.1), with robustness independent of
the diameter of the metric space.

Our main result implies several robustness and consistency
bounds for subclasses of MTS (Corollary 3.1.1), which we
summarize in Table 1. In particular, we answer the ques-

tion posed by Christianson et al. (2022) of whether (1+ ϵ)-
consistency and bounded robustness can be achieved for
convex function chasing (CFC) on unbounded domains
with ϵ arbitrarily close to 0. We further prove lower bounds
on robustness and consistency for MTS and CFC, showing
that our upper bounds are essentially tight: any (1 + ϵ)-
consistent algorithm must have robustness 2Ω(1/ϵ) (Theo-
rems 4.1, 4.2). Despite this exponential tradeoff for MTS
and CFC in general settings, we show by a refined analy-
sis that DART actually achieves robustness O( 1ϵ ) when the
space’s diameter is bounded, with an additive term match-
ing the dependence on diameter of Antoniadis et al. (2020)
(Theorem 5.1). Moreover, we find that DART achieves
O(kϵ )-robustness for the k-server problem, giving the best
known robustness and consistency tradeoff in general met-
ric spaces for this widely-studied special case of MTS
(Theorem 5.3). Finally, we consider the problem of k-
chasing convex, α-polyhedral functions, a generalization
of both k-server and CFC, and we find that DART guar-
antees robustness O( k

αϵ ) in the one-dimensional setting
(Theorem 5.4).

Our algorithm, DART, is distinguished from prior learning-
augmented algorithms for MTS in both its generality and
its specific MTS-oriented design. Prior algorithms were
either devised for different online problems and simply
applied off-the-shelf to MTS with advice (e.g., the cow
path and multiplicative weights algorithms of Antoniadis
et al. (2020)), or heavily leveraged geometric and struc-
tural assumptions on the problem setting (e.g., convexity in
Christianson et al. (2022), α-polyhedrality in Rutten et al.
(2022), X = R in Lindermayr et al. (2022)). In contrast,
DART works for any MTS or special case and is designed
principally to achieve (1 + ϵ)-consistency with respect to
an advice algorithm. Specifically, it operates by updating
probabilities assigned to the advice and to a chosen com-
petitive algorithm based on the costs incurred by each al-
gorithm as well as the distance between the two algorithms’
decisions. The dependence on this latter quantity is impor-
tant, as this enables obtaining consistency and robustness
independent of diameter, and the randomized algorithm of
Antoniadis et al. (2020) lacks such a dependence.

Proving these results requires several technical contribu-
tions. DART’s robustness is obtained by directly bounding
the extent to which DART can be led astray by bad advice;
this approach requires proving a lower bound on a broad
class of sums that includes as a special case the harmonic
series (Supplemental Section C.1). Moreover, the extremal
case of this lower bound naturally leads to the robustness
and consistency lower bound for MTS (Theorem 4.1). Fur-
thermore, our lower bound on robustness and consistency
for CFC (Theorem 4.2) makes novel use of an observation
(due to Bubeck et al. (2021a)) that MTS instances on trees
are equivalent, in a certain sense, to CFC instances in a
weighted ℓ1 space. To our knowledge, no prior work has
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Table 1: Summary of prior results, with our contributions in bold. Recall D = diam(X).

Problem Reference Consistency Robustness Assumptions

MTS
|X| = n

Bubeck et al. (2021a) — O(log2 n)COPT

Antoniadis et al. (2020) 9 · CADV 9 · O(log2 n)COPT

Antoniadis et al. (2020) (1 + ϵ)CADV +O(D
ϵ
) (1 + ϵ)O(log2 n)COPT +O(D

ϵ
) D < ∞

This work (1 + ϵ)CADV
min{2O(1/ϵ)O(log2 n)COPT,

O( log2 n
ϵ

)COPT +O(D
ϵ
)}

CFC
X ⊆ Rn

Sellke (2020) — n · COPT

Antoniadis et al. (2020) 9 · CADV 9n · COPT

Antoniadis et al. (2020) (1 + ϵ)CADV +O(D
ϵ
) (1 + ϵ)n · COPT +O(D

ϵ
) D < ∞

Christianson et al. (2022) (
√
2 + ϵ)CADV O

(
n
ϵ2

)
COPT Euclidean

This work (1 + ϵ)CADV
min{2O(1/ϵ)n ·COPT,

O(n
ϵ
)COPT +O(D

ϵ
)}

k-server

Koutsoupias and
Papadimitriou (1995) — (2k − 1)COPT

Antoniadis et al. (2020) 9 · CADV 9(2k − 1)COPT

Antoniadis et al. (2020) (1 + ϵ)CADV +O(D
ϵ
) (1 + ϵ)(2k − 1)COPT +O(D

ϵ
) D < ∞

Lindermayr et al. (2022) (1 +O(ϵ))CADV O( 1
ϵk−1 )COPT X = R

This work (1 + ϵ)CADV O(k
ϵ
)COPT

k-chasing
convex,

α-polyhedral
functions
X ⊆ Rn

Bubeck et al. (2021b),
This work — O( k

α
)COPT

Antoniadis et al. (2020) 9 · CADV 9 · O( k
α
)COPT

Antoniadis et al. (2020) (1 + ϵ)CADV +O(D
ϵ
) (1 + ϵ)O( k

α
)COPT +O(D

ϵ
) D < ∞

This work (1 + ϵ)CADV
min{2O(1/ϵ)O( k

α
)COPT,

O( k
αϵ

)COPT +O(D
ϵ
)}

This work (1 + ϵ)CADV O( k
αϵ

)COPT X = R

used this correspondence to translate performance bounds
on MTS algorithms to results for CFC. Finally, the results
we obtain in Section 5 all follow via refined analyses of the
DART algorithm, and in particular do not require modifica-
tion of the algorithm or prior knowledge of, e.g., the diam-
eter bound. Thus, DART is a unified algorithm that matches
or improves upon the best known results on robustness and
consistency for MTS and many of its subclasses.

Notation. R+ denotes the nonnegative extended reals. We
define [n] := {1, . . . , n} for n ∈ N. Metric spaces (X, d)
are assumed to be complete and separable. For a metric
space X , diam(X) := supx,y∈X d(x, y). ∆(X) denotes
the set of (Borel) probability measures on the metric space
X; when X is finite with cardinality n, we identify this
with the simplex ∆n. For x ∈ X , δx is the Dirac mea-
sure supported at x. In asymptotic notation involving ϵ, the
implied regime is ϵ→ 0.

2 MODEL & PRELIMINARIES

This section introduces the metrical task systems problem
and several subclasses that have received significant atten-
tion. We motivate these problems with applications to data
science and multi-agent logistics, and introduce the no-
tion of learning-augmented algorithms that enable break-
ing past pessimistic worst-case guarantees.

2.1 Metrical Task Systems

Let (X, d) be a metric space. In the metrical task systems
(MTS) problem, at each time t ∈ [T ], a player beginning
from some position x0 ∈ X observes an adversarially-
chosen cost function ft : X → R+ and must choose a state
xt ∈ X to move to. The player then pays both the ser-
vice cost ft(xt) as well as the movement cost d(xt, xt−1).
The time horizon T is unknown to the player a priori.
An instance of MTS is characterized by a metric space
(X, d), a starting position x0, and the cost function se-
quence f1, . . . , fT .

A deterministic online algorithm ALG for MTS is a se-
quence of maps ALGt : (RX

+ )t → X which map the cost
functions observed through time t to a decision in X for
each t ∈ [T ]. That is, upon observing the cost function ft,
ALGt(f1, . . . , ft) ∈ X is the decision produced by ALG
at time t. When the instance is implicitly understood, we
suppress the arguments and simply write ALGt for ALG’s
decision at time t. ALG thus incurs cost

CALG :=

T∑
t=1

ft(ALGt) + d(ALGt, ALGt−1).

We define the notation CALG(t, t
′) :=

∑t′

τ=t ft(ALGτ ) +
d(ALGτ , ALGτ−1) to reflect ALG’s total cost incurred
from time t through t′; if t > t′, then CALG(t, t

′) := 0.
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A randomized MTS algorithm produces its decisions ran-
domly: ALGt ∼ pt ∈ ∆(X). It suffices to describe a ran-
domized algorithm by its marginal distribution over states
at each time (see, e.g., Bubeck et al. (2021a)). That is,
suppose ALGt is distributed according to pt at each time
t ∈ [T ]; then the least-cost way for ALG to move from pt−1

to pt is to couple the two distributions so as to minimize
expected movement. Thus consecutive decisions should
be distributed jointly according the optimal Wasserstein-1
transportation plan between pt−1 and pt:

(ALGt, ALGt−1) ∼ γt := argmin
γ∈Π(pt,pt−1)

E[d(xt, xt−1)],

where (xt, xt−1) ∼ γ and Π(µ, ν) is the set
of distributions over X2 with marginals µ and ν.
If ALG couples consecutive decisions according to
γt, then E[d(ALGt, ALGt−1)] = W1

X(pt, pt−1), the
Wasserstein-1 distance between pt and pt−1.1 Thus,
E[CALG] :=

∑T
t=1 ft(pt) + W1

X(pt, pt−1), where
ft(pt) := Ex∼pt

[ft(x)].

The offline optimal algorithm OPT for an MTS instance
chooses the hindsight optimal sequence of decisions:

COPT := inf
x1,...,xT∈X

T∑
t=1

ft(xt) + d(xt, xt−1).

Algorithms for MTS are typically judged by their competi-
tive ratio, an adaptive measure of performance against OPT
or any other algorithm.

Definition 2.1. A deterministic algorithm ALG is c-
competitive with respect to another algorithm ALG′ if, on
any problem instance, CALG ≤ c · CALG′ + b, where b is
independent of the problem instance. If ALG′ is OPT, we
simply say that ALG is c-competitive, or has competitive
ratio c. If ALG or ALG′ are randomized, we replace costs
with expected costs in the inequality.

When service cost functions are arbitrary, algorithms for
MTS can only be competitive on metric spaces with finite
cardinality |X| = n ∈ N. In this case, the work func-
tion algorithm achieves the optimal deterministic competi-
tive ratio of 2n − 1 (Borodin et al., 1992). However, ran-
domization can improve performance, with state-of-the-art
algorithms achieving competitive ratio O(log2 n) (Bubeck
et al., 2021a; Coester and Lee, 2019), which is tight for
certain metric spaces (Bubeck et al., 2022).

2.2 Consistency, Robustness, and Bicompetitiveness

The competitive ratio quantifies worst-case performance
of an online algorithm; its focus on the worst case thus

1Note that the optimal transportation plan γt exists by the as-
sumption made throughout that X is complete and separable.

biases algorithm design toward more conservative algo-
rithms. Moreover, as just noted, the competitive ratio of
MTS algorithms degrades as |X| grows. In practical ap-
plications, however, data on typical problem instances is
available, and thus data-driven machine-learned algorithms
may significantly outperform traditional competitive algo-
rithms. Since these machine-learned algorithms generally
lack worst-case performance guarantees, we seek to design
algorithms that exploit the good performance of a machine-
learned advice algorithm (hereafter, ADV) while maintain-
ing worst-case competitiveness. This motivates the follow-
ing definitions.
Definition 2.2. Let ADV be an advice algorithm. An algo-
rithm ALG is c-consistent if it is c-competitive with respect
to ADV. ALG is said to be r-robust if it is r-competitive,
regardless of the performance of ADV.

Thus, if ADV is a machine-learned algorithm and ALG is
c-consistent and r-robust, then ALG achieves performance
within a multiplicative factor c of the machine-learned ad-
vice while maintaining a worst-case competitive ratio. In
this work, we design algorithms with tunable guarantees of
robustness and consistency, i.e. that can achieve (1 + ϵ)-
consistency for any ϵ > 0 while keeping bounded robust-
ness. We approach this by designing bicompetitive algo-
rithms, defined as follows.
Definition 2.3. Let ALG, ALG′, ALG′′ be three algorithms.
ALG is (c, r)-bicompetitive with respect to (ALG′, ALG′′)
if ALG is both c-competitive with respect to ALG′ and r-
competitive with respect to ALG′′.

It follows that if ALG is (c, r)-bicompetitive with respect
to algorithms (ADV, ROB) and ROB is b-competitive, then
ALG is c-consistent and rb-robust. Thus to design robust
and consistent MTS algorithms, it suffices to design bicom-
petitive algorithms. We detail prior robustness and consis-
tency results for MTS in Table 1.

2.3 Special Cases of MTS

We now briefly describe some important special cases of
MTS that are of particular relevance for applications to data
science and multi-agent planning. Select bounds on com-
petitive ratio, robustness, and consistency from prior work
are detailed in Table 1.

Convex function chasing. The problem of convex func-
tion chasing (CFC), also known as “smoothed” online con-
vex optimization, is an MTS in which the metric space is
a finite-dimensional normed vector space and cost func-
tions ft are restricted to be convex. The best known algo-
rithm for CFC in an arbitrary n-dimensional normed vec-
tor space achieves competitive ratio n and improved per-
formance of O(min{n,

√
n log T}) in the Euclidean set-

ting (Sellke, 2020). On the other hand, any algorithm
for CFC in Rn with the ℓp norm has competitive ratio
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Ω(max{
√
n, n1−1/p}) (Bubeck et al., 2019). It is straight-

forward to see by Jensen’s inequality and convexity of
norms that a c-competitive randomized algorithm for CFC
can be derandomized by taking the expectation, yielding
a c-competitive deterministic algorithm for CFC (Bansal
et al., 2015b).

A number of special cases of CFC in which cost func-
tions have additional structure have received attention in
the literature. For example, the case where each ft is the
{0,+∞} indicator of a convex set Kt ⊆ Rn is known as
convex body chasing and was first considered by Friedman
and Linial (1993); the case of well-conditioned ft was con-
sidered by Argue et al. (2020). The class of α-polyhedral
functions has been widely studied as a special case in the
CFC literature (Chen et al., 2018; Lin et al., 2020; Zhang
et al., 2021) and is defined as follows.
Definition 2.4. Fix α > 0 and a normed vector space
(Rn, ∥ · ∥). A function g : Rn → R+ is α-polyhedral if
it has a unique minimizer v ∈ Rn, and for all x ∈ Rn,
g(x) ≥ g(v) + α∥x− v∥.

A simply greedy algorithm obtains competitive ratio
max{1, 2

α} for CFC with α-polyhedral service costs
(Zhang et al., 2021), but better results can be obtained in
the Euclidean setting (Lin, 2022).

k-server. In the k-server problem, we control k agents
(“servers”) residing in the metric space X , and at each time
t, we receive a request rt ∈ X and must move one of the
servers to rt, paying the distance traveled by the server we
moved to meet the request. It is straightforward to see
this is an MTS on the metric space

(
X
k

)
(i.e., unordered

k-tuples of states in X) endowed with the minimal match-
ing distance inherited from the metric on X . The service
cost ft enforces that one of the servers is located at rt, so
for xt := {x(1)

t , . . . , x
(k)
t } ∈

(
X
k

)
, ft(xt) =∞ · 1rt ̸∈xt .

The (deterministic) work function algorithm is (2k − 1)-
competitive for k-server on any metric space (Koutsou-
pias and Papadimitriou, 1995), and no deterministic algo-
rithm can achieve competitive ratio better than k (Manasse
et al., 1988). Significant work has been done establish-
ing tighter bounds on deterministic algorithms in particular
metric spaces as well as sublinear bounds for randomized
algorithms; see Koutsoupias (2009) for a survey and Bansal
et al. (2015a); Bubeck et al. (2018) for recent results. For
brevity, we only invoke the O(k)-competitiveness of the
work function algorithm in our work.

k-chasing convex functions. The problem of k-chasing
convex functions is a generalization of both k-server and
CFC: the setting is taken to be a finite-dimensional vec-
tor space (Rn, ∥ · ∥), and we maintain a set of k servers
xt := {x(1)

t , . . . ,x
(k)
t } ∈

(Rn

k

)
. At time t, an adversary

serves a convex cost function gt : Rn → R+, and after
moving our servers (by the triangle inequality, it suffices to

just move one), we pay the service cost mini∈[k] gt(x
(i)
t )

and the movement cost. Similar to k-server, this is an MTS
on the metric space

(Rn

k

)
endowed with the minimal match-

ing distance inherited from the norm, with service costs
ft of the form ft(xt) := mini∈[k] gt(x

(i)
t ). This problem

was introduced by Bubeck et al. (2021b), who found that
under suitable structural assumptions on the functions gt,
competitive guarantees from existing k-server algorithms
can be translated to k-chasing. However, they obtain ran-
domized algorithms with guarantees dependent on adaptiv-
ity of the adversary. For the sake of clarity, in our work
we consider k-chasing of convex, α-polyhedral functions
(Definition 2.4), which enable translating deterministic al-
gorithms for k-server into deterministic algorithms for k-
chasing. In particular, following the proof of (Bubeck et al.,
2021b, Theorem 3.1), we have the following result, which
is proved in Supplementary Section B.

Proposition 2.5. Let g1, . . . , gT : Rn → R+ be an in-
stance of k-chasing convex, α-polyhedral functions. If
ALG is a deterministic, C-competitive algorithm for k-
server, then applying ALG to the sequence of minimiz-
ers v1, . . . ,vT of g1, . . . , gT achieves competitive ratio at
most Cmax{1, 2

α} for the k-chasing instance.

It follows that the algorithm feeding the minimizers
v1, . . . , vT to the (2k − 1)-competitive work function al-
gorithm as requests is (2k− 1)max{1, 2

α}-competitive for
k-chasing convex α-polyhedral functions.

2.4 Example: Smoothed Online Clustering

Besides its deep connections to online learning (Blum and
Burch, 1997; Buchbinder et al., 2012), MTS and its special
cases have numerous applications to problems in data sci-
ence: many online decision-making problems that penalize
switching between decisions can be modeled within this
framework. For instance, MTS has been applied to contex-
tual Bayesian optimization with switching costs (Ramesh
et al., 2022), CFC has applications to smoothed online re-
gression (Goel and Wierman, 2019; Li et al., 2021) and k-
server and its generalizations have applications to multi-
agent planning and logistics (Dehghani et al., 2017), dy-
namic clustering (Deng et al., 2022; Bubeck et al., 2021b),
and beyond. To motivate our work designing learning-
augmented algorithms for MTS, we briefly detail an appli-
cation of k-chasing to smoothed online k-median cluster-
ing, highlighting the value delivered by utilizing machine-
learned algorithms.

Suppose a decision-maker seeks to cluster a stream of
points arriving online and must pay both for the distance
between a point and the cluster center it is assigned to,
as well as for the movement of cluster centers as they are
updated to accommodate new arrivals. When the cluster-
ing objective is the k-median objective, this problem is
naturally modeled as an instance of k-chasing convex, α-
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Algorithm 1: DART(ADV, ROB; ϵ)

Input: Algorithms ADV, ROB; parameter ϵ > 0
Output: Distributions p1, . . . , pT ∈ ∆(X) chosen

online
1 λ0 ← 0
2 for t = 1, 2, . . . , T do
3 Observe ft, at := ADVt, and rt := ROBt

4 if CROB(1, t) ≥ ϵ
4 · CADV(1, t) then

5 λt ← 1
6 else
7 λt ←

max
{
λt−1 −

ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
, 0
}

8 pt ← λtδat + (1− λt)δrt
9 end

polyhedral functions gt of the form gt(x) = ct∥x− vt∥ℓ1 .
The decision-maker’s server positions xt ∈

(Rn

k

)
encode

the k cluster centers, the minimizer vt represents the po-
sition of the new arrival, and the service cost ft(xt) =

mini∈[k] gt(x
(i)
t ) gives the cost of assigning the new arrival

to the nearest cluster center. The weight ct in the cost re-
flects the tradeoff between movement and service cost, i.e.,
the tradeoff between stability of the clustering and cost of
adding new arrivals to the existing clusters.

When α is small and the number of clusters k is large,
traditional competitive algorithms for k-chasing may per-
form poorly on this smoothed clustering objective, since
the competitive ratio scales like k

α (Proposition 2.5). How-
ever, machine-learned algorithms trained on “typical” ex-
amples of evolving datasets may perform much better, mo-
tivating the development of algorithms that can be con-
sistent with respect to such ML advice while maintaining
worst-case guarantees on robustness.

3 A BICOMPETITIVE ALGORITHM
FOR METRICAL TASK SYSTEMS

We now present a randomized algorithm, DART (Distance-
Adaptive Robust Weight Transport, Algorithm 1), that
achieves a bicompetitive guarantee (1 + ϵ, 2O(1/ϵ)) in ex-
pectation with respect to any pair of (randomized) MTS
algorithms (ADV, ROB).

The algorithm works as follows: it maintains a mixing
weight λt ∈ [0, 1] associated with the decision at := ADVt

at each time t. This weight is adaptively updated at each
timestep after observing the decisions made by ADV and
ROB, as well as their relative costs and the distance be-
tween the two algorithms’ decisions (lines 4-7). DART then
chooses its decision according to the distribution pt (line
8), which takes value ADVt with probability λt and ROBt

with probability (1 − λt). The parameter ϵ > 0 provided

as input to DART governs how closely DART follows ADV,
i.e. how much we choose to “trust” the advice. A choice
of ϵ that is very small will cause λt to stay closer to 1,
giving better consistency in exchange for possibly worse
robustness. On the other hand, a larger choice of ϵ will
cause the weight λt to decrease more rapidly toward 0 in
line 7, leading DART to more closely follow ROB and im-
proving worst-case robustness. As DART is a randomized
algorithm, we couple consecutive distributions pt−1, pt ac-
cording to the optimal (Wasserstein-1) transportation plan,
as discussed in Section 2.1.

The following theorem explicitly characterizes the perfor-
mance of DART.

Theorem 3.1. Let ADV, ROB be any two (possibly ran-
domized) algorithms for MTS or a special case thereof.
For any chosen ϵ > 0, Algorithm 1 (DART) achieves
bicompetitiveness

(
1 + ϵ, 2O(1/ϵ)

)
in expectation against

(ADV, ROB).

Our proof, which is presented in Supplementary Sec-
tion C.1, consists of two parts. We first prove competitive-
ness with respect to ADV via amortized analysis, using the
potential function Ext∼pt

[d(xt, at)]. We then prove com-
petitiveness with respect to ROB by means of a novel sum
argument, upper bounding λt in terms of the cost incurred
by ADV. This bound explicitly characterizes how much
cost DART can be forced to incur by a “bad” advice algo-
rithm ADV before transferring all of its weight to ROB.

As immediate corollaries to Theorem 3.1, we obtain the
following upper bounds on robustness and consistency for
MTS, CFC, k-server, and k-chasing, which are proved in
Supplementary Section C.2.

Corollary 3.1.1. Choose any ϵ > 0.

i. There is a (1 + ϵ)-consistent, 2O(1/ϵ)O(log2(n))-
robust randomized algorithm for MTS on any n-point
metric space.

ii. There is a (1 + ϵ)-consistent, 2O(1/ϵ)n-robust de-
terministic algorithm for CFC on any n-dimensional
normed vector space.

iii. There is a (1 + ϵ)-consistent, 2O(1/ϵ)(2k − 1)-robust
randomized algorithm for k-server on any metric
space.

iv. There is a (1 + ϵ)-consistent, 2O(1/ϵ)O( kα )-robust
randomized algorithm for k-chasing convex, α-
polyhedral functions on any normed vector space.

We wish to emphasize that the bicompetitive bound in The-
orem 3.1 is the first bicompetitive bound for general MTS
that is both independent of metric space diameter and pro-
vides bounded competitiveness with respect to ROB for ar-
bitrarily small ϵ > 0. This latter property is of particu-
lar significance to practical application since this enables
DART to achieve performance arbitrarily close to that of
a black-box ML algorithm for MTS while maintaining a
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worst-case competitive guarantee, enabling better exploita-
tion of the good ML performance.

In addition, the bound’s independence from diameter
enables obtaining robustness guarantees on unbounded
spaces: Corollary 3.1.1.ii resolves the question of Chris-
tianson et al. (2022) of whether (1 + ϵ)-consistency and
bounded robustness can be achieved for CFC on unbounded
domains with arbitrary ϵ > 0, and Corollaries 3.1.1.iii and
iv answer for the first time the analogous question for k-
server and k-chasing of convex, α-polyhedral functions.
Although most practical problems have finite (but poten-
tially very large) diameter, the robustness bounds given by
DART still improve on the diameter-dependent results of
Antoniadis et al. (2020) and Christianson et al. (2022) when
diam(X) = 2ω(1/ϵ). Moreover, as we will discuss in Sec-
tion 5, DART achieves even better robustness when the di-
ameter is bounded, matching the dependence of these other
results and giving further-improved bounds for the k-server
problem. To complement these theoretical advancements,
we present in Supplementary Section A experimental re-
sults comparing DART against prior state-of-the-art algo-
rithms for learning-augmented MTS.

4 FUNDAMENTAL LIMITS ON
ROBUSTNESS AND CONSISTENCY

Though the tradeoff between robustness and consistency
given by DART is exponential, it turns out that this is the
best that we can hope for from any robust and consistent
MTS algorithm. In the following theorem, which is proved
in Supplementary Section D.1, we present a lower bound
on the robustness of any (1 + ϵ)-consistent randomized
MTS algorithm, showing that it must be exponential in 1/ϵ.

Theorem 4.1. Let ϵ ∈ (0, 1]. There is an MTS instance
on a finite metric space (X, d) with |X| = O( 1ϵ ) and an
adversarial advice algorithm ADV such that any random-
ized algorithm achieving (1 + ϵ)-consistency with respect
to ADV is 2Ω(1/ϵ)-robust.

Since the metric space X in the preceding theorem
has cardinality O( 1ϵ ), DART achieves robustness 2O(1/ϵ),
by Corollary 3.1.1.i. Thus, DART yields the optimal
robustness-consistency tradeoff for general metrical task
systems, up to constant factors in the exponent. Moreover,
the metric space realizing the lower bound in Theorem 4.1
is not a pathological example: it is simply a finite subset of
R with the usual (Euclidean) metric. Further note that this
lower bound does not contradict the diameter-dependent
upper bound of Antoniadis et al. (2020): the metric space
has diameter exponential in 1/ϵ, and hence the randomized
algorithm of Antoniadis et al. (2020) also obtains exponen-
tial robustness in this setting.

This exponential lower bound on the tradeoff between ro-
bustness and consistency for MTS raises the question of

whether improved tradeoffs can be obtained for special
cases of MTS where there is added structure. In particu-
lar, could the convexity inherent in CFC yield an improved
dependence on ϵ in the robustness? In the following theo-
rem, we answer this question in the negative, showing that
in certain normed vector spaces the robustness-consistency
tradeoff remains exponential.

Theorem 4.2. Let ϵ ∈ (0, 1]. There is a CFC instance
in RO(1/ϵ) endowed with a weighted ℓ1 norm, along with
an adversarial advice algorithm ADV, such that any algo-
rithm that is (1 + ϵ)-consistent with respect to ADV has
robustness 2Ω(1/ϵ).

We present a proof in Supplementary Section D.2; it fol-
lows via a reduction to the MTS instance realizing the
lower bound of Theorem 4.1, using the fact that MTS in-
stances on a tree metric can be isometrically converted into
CFC instances in a weighted ℓ1 space (à la Bubeck et al.
(2021a)). To the best of our knowledge, our use of this cor-
respondence to obtain lower bounds on the performance of
algorithms for CFC is novel.

As Corollary 3.1.1.ii gives a (1 + ϵ)-consistent, 2O(1/ϵ)-
robust algorithm for CFC in a normed vector space of di-
mension O( 1ϵ ), DART thus achieves the optimal tradeoff
between robustness and consistency for CFC in general
normed vector spaces, up to constant factors in the expo-
nent. Note that this leaves open the question of whether
subexponential robustness can be achieved for CFC under
other norms such as the Euclidean norm.

5 BREAKING THE EXPONENTIAL
ROBUSTNESS BARRIER

In Sections 3 and 4, we saw that DART achieves (1 +
ϵ, 2O(1/ϵ))-bicompetitiveness, and that the resultant trade-
off between robustness and consistency is optimal in gen-
eral for MTS and CFC. However, prior work has obtained
subexponential robustness bounds in certain special cases
of MTS, including for CFC and k-server on the real line
(Rutten et al., 2022; Lindermayr et al., 2022). In addi-
tion, for spaces with diameter bounded by some finite con-
stant D, (1 + ϵ)-consistency and O( 1ϵ )-robustness can be
obtained for CFC in n dimensions with an additive term
O(Dϵ ) on the robustness (Christianson et al., 2022), and a
similar bound holds for MTS more generally (Antoniadis
et al., 2020).

Given that Theorem 3.1 suggests an exponential bicompet-
itive tradeoff for DART, it is worth asking whether DART
can perform better on such “easier” problem instances. It
turns out that this is the case: we can prove that, in sev-
eral special cases, DART achieves (1 + ϵ)-consistency to-
gether with robustness that depends only linearly on 1

ϵ . No-
tably, none of these improved bounds require modification
of DART: they simply follow by a refined analysis. We
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consider three cases in turn.

Bounded diameter. When the metric space has bounded
diameter D, and more generally when the algorithms ADV
and ROB are never farther apart than a distance D, DART
achieves bicompetitiveness (1 + ϵ,O( 1ϵ )) with respect to
(ADV, ROB), with just an additive term of O(Dϵ ) on its
competitiveness with respect to ROB. This matches the de-
pendence on diameter obtained in prior work (Antoniadis
et al., 2020; Christianson et al., 2022). Note that this bound
does not require advance knowledge of the fact that the
diameter is bounded: it simply results from a specialized
analysis in the case that the algorithms ADV and ROB only
take values in a subset of the metric space X that has diam-
eter D. We present the formal performance bound in the
following theorem.

Theorem 5.1. Let ADV, ROB be any two (possibly ran-
domized) algorithms for MTS or a special case thereof.
For any chosen ϵ > 0, if d(ADVt, ROBt) ≤ D for all
t ∈ [T ], Algorithm 1 (DART) achieves cost bounded as

CDART ≤ min

{
(1 + ϵ)CADV,O

(
1

ϵ

)
CROB +O

(
D

ϵ

)}
.

That is, DART is (1 + ϵ,O(1/ϵ))-bicompetitive against
(ADV, ROB), with an additive constant O(D/ϵ) on its
competitive guarantee against ROB.

This result is proved in Supplementary Section E.1. It is
worth emphasizing that this bicompetitive guarantee holds
in addition to the exponential tradeoff given by Theo-
rem 3.1. Thus DART is (1 + ϵ)-competitive with respect
to ADV and has cost bounded by CROB as

CDART ≤ min

{
O
(
1

ϵ

)
CROB +O

(
D

ϵ

)
, 2O(1/ϵ)CROB

}
.

As such, DART achieves the “best of both worlds” in terms
of robustness, regardless of whether D is small or large.
This simultaneous bound further extends to all the robust-
ness bounds in Corollary 3.1.1.

k-server. We next consider the k-server problem. In do-
ing so, we restrict ADV and ROB to be lazy algorithms for
k-server, i.e., algorithms that at any timestep move at most
one server, moving none if the current server positions al-
ready satisfy the request. This assumption is without loss
of generality (Borodin and El-Yaniv, 2005, §10.2.3). We
also make the assumption that all servers begin at the same
location; relaxing this assumption only changes the results
by a constant additive term.

We first state a lemma relating the distance between any
two lazy k-server algorithms to the offline optimal cost; the
lemma is proved in Supplementary Section E.2.

Lemma 5.2. Let s1, . . . , sT ∈ X be the request sequence
for a k-server instance on the metric space (X, d), and

let ADV and ROB be any two (possibly randomized) k-
server algorithms. Further suppose that ADV and ROB are
both lazy, and that all their servers start at the same point
x0 ∈ X . Let a1, . . . ,aT ∈

(
X
k

)
and r1, . . . , rT ∈

(
X
k

)
be

the sequences of server positions of ADV and ROB, respec-
tively for the problem instance. Then for any time t ∈ [T ],

dmm(at, rt) ≤ k · COPT(1, t),

where dmm is the minimal matching distance inherited from
the metric d.

Given any metric space (X, d), Lemma 5.2 allows us to
bound the diameter of the subset of X that can be occu-
pied by a lazy algorithm for a k-server instance by k times
the offline optimal cost on that instance. Substituting this
bound into Theorem 5.1 and using the fact that the work
function algorithm is (2k − 1)-competitive, we obtain the
following result.

Theorem 5.3. Consider k-server on an arbitrary metric
space with all servers starting at some x0 ∈ X . Let ADV
be a lazy advice algorithm, and let ROB be a lazy version
of the work function algorithm. For any ϵ > 0, Algorithm 1
(DART) is (1 + ϵ)-consistent and O(kϵ )-robust.

This is the first result obtaining (1 + ϵ)-consistency to-
gether with robustness linear in 1

ϵ for k-server; in partic-
ular, applying the diameter bound from Lemma 5.2 to the
multiplicative weights algorithm of Antoniadis et al. (2020)
yields only a bound of O(k) on both robustness and con-
sistency, which is no better than ignoring advice.

k-chasing. Finally, we consider k-chasing of convex, α-
polyhedral functions on R. We assume that ROB is a k-
server algorithm that operates on the sequence of mini-
mizers v1, . . . , vT , e.g., the work function algorithm ap-
plied to this sequence, which by Proposition 2.5 is O( kα )-
competitive. Moreover, we assume that ADV and ROB are
both lazy, meaning that they move at most a single server,
and they only move a server if it results in strictly lower ser-
vice cost. Again, this is without loss of generality. A simi-
lar diameter bound to that for k-server yields the following
result, which is proved in Supplementary Section E.3.

Theorem 5.4. Let ADV be a lazy advice algorithm for k-
chasing convex, α-polyhedral functions on R, and let ROB
be a lazy,O( kα )-competitive algorithm for the problem with
the property that, at each time t ∈ [T ], ROB has a server
at the minimizer vt of the current cost function. Suppose
ADV and ROB begin with all servers at the same position
x0 ∈ R. Then DART achieves, for any ϵ > 0, (1 + ϵ)-
consistency and O( k

αϵ )-robustness.

6 CONCLUDING REMARKS

We examine the problem of designing learning-augmented
algorithms for MTS and its special cases. Our algorithm,
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DART, achieves (1 + ϵ)-consistency and robustness expo-
nential in 1

ϵ for MTS and its special cases, which we show
is tight for both MTS and for CFC with a certain weighted
ℓ1 norm. We further show that DART achieves improved
performance, matching known results, when the diameter
of the problem instance is bounded, and improves upon the
best known bounds on robustness and consistency for k-
server on any metric space and for k-chasing on the line.

Several interesting avenues remain open for study. Specif-
ically, (i) can subexponential robustness be achieved for
CFC and k-chasing with “nicer” norms, e.g., in the Eu-
clidean setting, and (ii) can matching lower bounds be ob-
tained on robustness and consistency for the k-server prob-
lem?
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Optimal robustness-consistency tradeoffs for
learning-augmented metrical task systems:

Supplementary Material

A Experimental results

In this section, we examine the application of DART to several real-world datasets for the online caching problem, a special
case of MTS that may be thought of as k-server on a uniform metric space. We specifically use the same datasets, problem
instances, and advice predictors used in Antoniadis et al. (2020) in order to compare the performance of DART against
their algorithms for learning-augmented MTS.

Datasets. We compare the performance of DART against both the deterministic and randomized algorithms of Antoniadis
et al. (2020) on the same two datasets used in their work.

• The BK dataset originates from a now obsolete social network, BrightKite (Cho et al., 2011). We consider the caching
problem with instances generated by sequences of user check-in locations, filtered as in Antoniadis et al. (2020) to
include the first 100 instances with the longest nontrivial check-in sequences – those which require at least 50 evictions
under the optimal policy. We select a cache size of k = 10.

• The Citi dataset originates from a bike-sharing program in New York City (https://citibikenyc.com/
system-data). We consider caching problem instances where each request corresponds to a trip’s starting point in
the dataset. We consider 12 sequences representing each month of 2017, each comprised of the first 25,000 bike trips
of that month. We use a cache size of k = 100.
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Figure 1: Algorithm performance on the BK dataset with various choices of ϵ.

Advice. We use the same synthetic predictions and advice setup as in Antoniadis et al. (2020) for our experiments.
Specifically, for each request, we compute its next arrival time a(t); if it does not appear again in the future, we set
a(t) = T + 1. To simulate the noise inherent in an ML prediction algorithm, we assume access only to a noisy predictor
p(t) = a(t)+ϵ, where ϵ iid∼ Lognormal(0, σ2) in order to model infrequent but high-impact unreliability of an ML predictor.
These noisy predictions of elements’ future arrival time are then transformed into an “advice” decision through simulation
of an algorithm that uses these predictions to evict the element with the latest predicted arrival time, as well as subsequent
filtering with the Follow the Prediction (FtP) algorithm of Antoniadis et al. (2020). This constitutes our advice ADV.

Algorithms. Following Antoniadis et al. (2020), for the “robust” algorithm ROB, we employ Least Recently Used (LRU),
a widely used heuristic algorithm for caching that, when faced with a new request, replaces the page that was least recently
used by the new page request. We implement the DART algorithm, with ADV the synthetic prediction-based algorithm
(which we refer to as FtP) and ROB the LRU algorithm, and compare its performance against both the deterministic and
randomized RobustFtP algorithms proposed by Antoniadis et al. (2020) with the same ADV and ROB. We examine the
performance of these three algorithms across several choices of ϵ ranging from 0.01 to 1.2

Results. We calculate the competitive ratio for each algorithm (including LRU and the advice, denoted FtP) on both
datasets by dividing the total number of evicted pages across all instances by the offline optimal number, averaging over 10
independent experiments to account for the randomization of DART and the randomized RobustFtP algorithm. We display
the results in Figures 1 and 2. In particular, we observe that on the BK dataset, across all values of ϵ, DART outperforms
both the deterministic and randomized RobustFtP algorithms when the magnitude of the noise on the synthetic predictions
is small-to-moderate, with this trend reversing as the noise grows large. This behavior is not surprising, since DART uses
an a priori fixed “trust” parameter ϵ, whereas the randomized RobustFtP algorithm of Antoniadis et al. (2020) essentially
runs multiplicative weights on ADV and ROB, and hence is more adaptive in responding to poor advice at the expense of
worse exploitation of good advice when the noise is small. The question of adaptively varying DART’s parameter ϵ in such
a manner to improve performance is an interesting avenue for future work.

On the other hand, we find that on the Citi dataset, DART always slightly outperforms both the deterministic and randomized
RobustFtP algorithms. This highlights that, in comparison to the algorithms in Antoniadis et al. (2020), DART yields finer
control of the tradeoff between consistency and robustness, since it enables obtaining arbitrarily small consistency (of the
form (1+ ϵ)) and doesn’t have the diameter-dependent additive term ofO(D/ϵ) that the randomized RobustFtP algorithm
of Antoniadis et al. (2020) has on both the consistency and robustness.

2For the deterministic algorithm of Antoniadis et al. (2020), which takes a parameter γ > 1, we run the algorithm with γ = 1 + ϵ
for each choice of ϵ in this range.
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Figure 2: Algorithm performance on the Citi dataset with various choices of ϵ.

B Proof of Proposition 2.5

Let g1, . . . , gT be the sequence of α-polyhedral cost functions for an instance of k-chasing, and let v1, . . . ,vT ∈ Rn be
their minimizers. Let OPTs be the offline optimal algorithm for the k-server instance on Rn with requests v1, . . . ,vT ,
and let OPTc be the offline optimal algorithm for the k-chasing instance on Rn with function requests g1, . . . , gT . We
denote by Cs

OPTs
the cost of OPTs as a k-server algorithm (i.e., ignoring the service costs), and by Cc

OPTs
the cost of OPTs

as a k-chasing algorithm (including the hitting costs); we use similar notation for ALG. Note that the cost of a k-server
algorithm applied to the minimizers of the k-chasing instance will simply be the cost of the k-server algorithm (i.e., the
total movement cost incurred by the servers) plus the sum of minimizer costs

∑T
t=1 gt(vt), since the minimizer will be

occupied by a server at each time. Thus,

Cc
ALG = Cs

ALG +

T∑
t=1

gt(vt),

and the same holds for OPTs.

Let o1, . . . ,oT ∈
(Rn

k

)
be the sequence of server positions of the algorithm OPTc, and let it ∈ [k] denote the server of OPTc

that realizes the binding service cost at time t, i.e., it := argmini∈[k] gt(o
(i)
t ). Thus COPTc =

∑T
t=1 gt(o

(it)
t )+d(ot,ot−1),

where d is the minimal matching distance inherited from the norm ∥ · ∥. Define the offline algorithm OPT′
c that acts like

OPTc, except that at time t it moves the server it from o
(it)
t to the minimizer vt, and moves it back to o

(it)
t at time t + 1

before any other server is moved. Since the costs gt are α-polyhedral,

COPT′
c
=

T∑
t=1

gt(vt) + 2∥o(it)
t − vt∥+ d(ot,ot−1)

≤
T∑

t=1

max

{
1,

2

α

}(
gt(vt) + α∥o(it)

t − vt∥
)
+ d(ot,ot−1)

≤ max

{
1,

2

α

} T∑
t=1

gt(o
(it)
t ) + d(ot,ot−1)

= max

{
1,

2

α

}
COPTc

. (1)

Moreover, since OPT′
c always has a server at vt at time t, it is a feasible k-server algorithm for the request sequence

v1, . . . ,vT , and its cost as a k-server algorithm is simply its total cost as a k-chasing algorithm, minus the the sum of
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minimizer service costs. Thus we have

Cc
ALG = Cs

ALG +

T∑
t=1

gt(vt)

≤ C · Cs
OPTs

+

T∑
t=1

gt(vt) (2)

≤ C · COPT′
c

(3)

≤ C ·max

{
1,

2

α

}
COPTc

, (4)

where (2) follows by C-competitiveness of ALG for k-server, (3) follows from the fact that OPTs is optimal and OPT′
c

is feasible for the k-server instance v1, . . . ,vT , and (4) follows (1). Thus ALG is C · max
{
1, 2

α

}
-competitive for the

k-chasing instance.

C Proofs for Section 3

C.1 Proof of Theorem 3.1

It suffices to prove the bicompetitive bound in the case that ADV and ROB are deterministic algorithms. That is, we prove
the following bound on DART’s expected cost:

E[CDART] ≤ min{(1 + ϵ)CADV, 2
O(1/ϵ)CROB}, (5)

where the expectation is over the randomness of DART. The result in its full generality, i.e., when ADV and ROB can
be randomized algorithms, follows by the observation that (5) establishes the same bound on the expected cost of DART
conditioned on a particular pair of realized trajectories (a1, . . . , aT ), (r1, . . . , rT ) of ADV and ROB:

E[CDART|a1, . . . , aT ; r1, . . . , rT ] ≤ min{(1 + ϵ)CADV, 2
O(1/ϵ)CROB},

where the expectation is now over the randomness of DART, ADV, and ROB. With this inequality established, the desired
result follows immediately by taking the expectation over the behavior of ADV and ROB on both sides and applying the
law of total expectation.

In the following, we thus assume that ADV and ROB are deterministic, with decision trajectories a1, . . . , aT and r1, . . . , rT ,
respectively. All expectations are over the decisions x1, . . . , xT made by DART, which are each distributed marginally
according to xt ∼ pt, with consecutive distributions jointly distributed according to the optimal transportation plan γt
between pt−1 and pt.

We begin by proving competitiveness with respect to ADV, i.e., consistency of DART. The argument takes the form of a
potential function argument, with potential function ϕt = E[d(xt, at)] = (1 − λt)d(rt, at). For an arbitrary time t, there
are two cases.

(1) Suppose the algorithm follows the case in line 4; then λt = 1, so xt = at. Then

E[ft(xt) + d(xt, xt−1) + ϕt − ϕt−1]

= ft(at) + λt−1d(at, at−1) + (1− λt−1)d(at, rt−1) + (1− λt)d(rt, at)− (1− λt−1)d(rt−1, at−1)

≤ ft(at) + d(at, at−1) (6)

where (6) follows from the triangle inequality applied to d(at, rt−1).

(2) Suppose the algorithm follows the case in line 6. First, note that since the coupling between xt−1 and xt is done via
the optimal transport plan between pt−1 and pt, we can upper bound E[d(xt, xt−1)] by the expected movement cost
under any transport plan between pt−1 and pt. In particular, we can use the transport plan in which we first send a
probability mass of min

{
ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
, λt−1

}
from at−1 to rt−1, resulting in a mass of λt at at−1 and of
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(1− λt) at rt−1, followed by sending the entire mass at at−1 to at and the entire mass at rt−1 to rt. Upper bounding
E[d(xt, xt−1)] with this transportation plan, we find:

E[d(xt, xt−1)] ≤ (1− λt)d(rt, rt−1) + λtd(at, at−1)

+ min

{ ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
, λt−1

}
d(at−1, rt−1)

≤ (1− λt)d(rt, rt−1) + λtd(at, at−1) +
ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2
. (7)

Second, note that

(1− λt)d(rt, at) ≤ (1− λt)(d(rt, rt−1) + d(at, at−1))

+

(
1− λt−1 +

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)

)
d(at−1, rt−1) (8)

≤ (1− λt)(d(rt, rt−1) + d(at, at−1))

+ (1− λt−1)d(at−1, rt−1) +
ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2
(9)

where (8) follows from the triangle inequality and line 7 of the algorithm. Then, by (7) and (9), and noting that
λt ≤ λt−1 in this case, we have

E[ft(xt) + d(xt, xt−1) + ϕt − ϕt−1]

= λtft(at) + (1− λt)ft(rt) + E[d(xt, xt−1)] + (1− λt)d(rt, at)− (1− λt−1)d(rt−1, at−1)

≤
(
1 +

ϵ

2

)
(ft(at) + d(at, at−1)) + 2(ft(rt) + d(rt, rt−1))

Summing cases 1 and 2 over time and using the fact that case 2 only occurs in timesteps t where CROB(1, t) <
ϵ
4CADV(1, t)

we obtain

E[CDART] ≤ (1 + ϵ)CADV.

We now turn to proving the competitive bound with respect to ROB, i.e., robustness. Let τ ∈ {0, . . . , T} be the last time
index that CROB(1, τ) ≥ ϵ

4 · CADV(1, τ). Clearly if τ = 0, then λt = 0 for all t ∈ [T ], so DART follows ROB exactly and
we are finished. Thus we restrict to the case that τ ≥ 1, i.e., λt > 0 for some time t ∈ [T ]. By the consistency result just
presented, we have

E[CDART] = E[CDART(1, τ)] + E[CDART(τ + 1, T )]

≤ (1 + ϵ)CADV + E[CDART(τ + 1, T )]

≤ 4(1 + ϵ)

ϵ
CROB(1, τ) + E[CDART(τ + 1, T )]. (10)

Thus we are faced with the task of bounding E[CDART(τ + 1, T )] in terms of CROB. Let σ ≥ τ be the last time index at
which λσ > 0 (it is possible that σ = T , i.e., that the weights λt remain strictly positive from time τ through the end of
the instance). Note that, if σ < T − 1, then at time σ + 1 the algorithm will move to coinciding with ROB, and from time
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σ + 2 onward the algorithm (and its costs) will exactly coincide with ROB. Then the cost of DART during this phase is

E[CDART(τ + 1, T )] = E[CDART(τ + 1, σ + 1) + CDART(σ + 2, T )]

= E[CDART(τ + 1, σ)] + fσ+1(rσ+1) + E[d(rσ+1, xσ)] + CROB(σ + 2, T )

≤
σ∑

t=τ+1

E [ft(xt) + d(xt, xt−1)] + λσd(rσ, aσ) + CROB(σ + 1, T )

≤
σ∑

t=τ+1

λtft(at) + (1− λt)ft(rt) + (1− λt)d(rt, rt−1) + λtd(at, at−1)

+
ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2
+ λσd(rσ, aσ) + CROB(σ + 1, T ) (11)

≤
σ∑

t=τ+1

(1− λt)CROB(t, t) +
(
1 +

ϵ

4

)
CADV(t, t) + λσd(rσ, aσ) + CROB(σ + 1, T ) (12)

≤ CROB(τ + 1, T ) +
(
1 +

ϵ

4

)
CADV(τ + 1, σ) + λσd(rσ, aσ) (13)

≤ CROB(τ + 1, T ) +
(
1 +

ϵ

4

)
CADV(τ + 1, σ) + CROB(1, σ) + CADV(1, σ) (14)

≤ CROB(τ + 1, T ) + CROB(1, σ) + CADV(1, τ) +
(
2 +

ϵ

4

)
CADV(τ + 1, σ)

≤ CROB(τ + 1, T ) + CROB(1, σ) +
4

ϵ
CROB(1, τ) +

(
2 +

ϵ

4

)
CADV(τ + 1, σ) (15)

where (11) follows (7) and the fact that λσ > 0, so λt = λt−1−
ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
exactly for each t = τ+1, . . . , σ,

(12) follows from λt ≤ λt−1 for t = τ + 1, . . . , σ, (14) follows from the triangle inequality applied to d(rσ, aσ), and (15)
follows by the assumption that CROB(1, τ) ≥ ϵ

4 · CADV(1, τ).

All that remains is to upper bound (2 + ϵ
4 )CADV(τ + 1, σ) under the assumption that λσ > 0. By assumption, λτ = 1,

hence

λσ = 1−
σ∑

t=τ+1

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
. (16)

This begs the question: given that λσ > 0, how large can CADV(τ + 1, σ) be? To help answer this question, we prove the
following lemma.

Lemma C.1. Let (yi)Ti=0 be a sequence of nonnegative reals with y0 > 0. Then

T∑
t=1

yt∑t−1
i=0 yi

≥ log

(∑T
i=0 yi
y0

)
. (17)

This lemma can be seen as a generalization of the classical observation that the T th harmonic number HT is lower bounded
by log(T + 1); indeed, this result can be recovered from Lemma C.1 by setting yi = 1 for all i. The proof of the lemma
goes as follows.

Proof. Define a piecewise constant function y(t) : [0, T ]→ R+ as follows:

y(t) =


y1 for t ∈ [0, 1)

y2 for t ∈ [1, 2)
...
yT for t ∈ [T − 1, T ]

and further define a function Y (t) : [0, T ]→ R+ as its integral:

Y (t) = y0 +

∫ t

0

y(s) dx.
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Note that for t ∈ [T ], Y (t) =
∑t

i=0 yi. Moreover, by the fundamental theorem of calculus, Y’(t) = y(t).

Since Y (t) is increasing, observe that for arbitrary t ∈ [T ],∫ t

t−1

y(s)

Y (s)
ds ≤

∫ t

t−1

yt
Y (t− 1)

ds =
yt

Y (t− 1)
=

yt∑t−1
i=0 yi

.

Thus, we may lower bound the sum on the left-hand side of (17) as follows:

T∑
t=1

yt∑t−1
i=0 yi

≥
T∑

t=1

∫ t

t−1

y(s)

Y (s)
ds

=

∫ T

0

y(s)

Y (s)
ds

=

∫ T

0

Y ′(s)

Y (s)
ds

= [log(Y (s))]
T
s=0

= log(Y (T ))− log(Y (0)),

establishing the desired bound.

With the lemma proved, let us return to (16) and the question of how large CADV(τ + 1, σ) can be given that λσ re-
mains strictly positive. By (16), this is equivalent to the question of how large CADV(τ + 1, σ) can be given that the sum∑σ

t=τ+1

ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
is strictly less than 1. To answer this question, it suffices to prove a lower bound on the

sum in terms of CADV(τ + 1, σ). If we can show that

σ∑
t=τ+1

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
≥ g(CADV(τ + 1, σ)) (18)

for some strictly increasing function g : R+ → R+, then CADV(τ + 1, σ) ≥ g−1(1) would imply that∑σ
t=τ+1

ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
≥ 1. Thus the assumption that

∑σ
t=τ+1

ϵ
2CADV(t,t)+(1−λt−1)ft(at)

2d(at−1,rt−1)
< 1 will in turn

imply an upper bound of CADV(τ + 1, σ) < g−1(1) on the cost, as desired.

Let us thus construct a lower bound in the form of (18). Before moving on, we note two inequalities: first,

d(aτ , rτ ) ≤ CADV(1, τ) + CROB(1, τ) ≤
(
1 +

4

ϵ

)
CROB(1, τ) (19)

by the assumption that CROB(1, τ) ≥ ϵ
4 · CADV(1, τ). Second, for t ∈ {τ + 1, . . . , σ},

d(at, rt) ≤ CADV(1, t) + CROB(1, t)

≤
(
1 +

ϵ

4

)
CADV(1, t) (20)

≤
(
1 +

ϵ

4

)
CADV(1, τ) +

(
1 +

ϵ

4

)
CADV(τ + 1, t)

≤
(
1 +

4

ϵ

)
CROB(1, τ) +

(
1 +

ϵ

4

)
CADV(τ + 1, t), (21)

where (20) and (21) both follow from the assumption that τ is the last time index in which CROB(1, τ) ≥ ϵ
4 · CADV(1, τ).

Applying the bounds (19) and (21), we obtain

σ∑
t=τ+1

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
≥ ϵ

4

σ∑
t=τ+1

CADV(t, t)

d(at−1, rt−1)

≥ ϵ

4(1 + ϵ
4 )

σ∑
t=τ+1

(1 + ϵ
4 )CADV(t, t)(

1 + 4
ϵ

)
CROB(1, τ) + (1 + ϵ

4 )CADV(τ + 1, t− 1)
. (22)



Optimal robustness-consistency tradeoffs for learning-augmented metrical task systems

(Recall that CALG(t, t
′) is defined to be 0 when t′ < t). Applying Lemma C.1 to (22) with y0 =

(
1 + 4

ϵ

)
CROB(1, τ) and

yi = (1 + ϵ
4 )CADV(τ + i, τ + i) for i = 1, . . . , σ − τ , we obtain

σ∑
t=τ+1

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
≥ ϵ

4(1 + ϵ
4 )

log

((
1 + 4

ϵ

)
CROB(1, τ) + (1 + ϵ

4 )CADV(τ + 1, σ)(
1 + 4

ϵ

)
CROB(1, τ)

)

=
ϵ

4 + ϵ
log

(
1 +

ϵ

4

CADV(τ + 1, σ)

CROB(1, τ)

)
. (23)

Thus the lower bound (18) holds with g : R+ → R+ defined as g(y) = ϵ
4+ϵ log

(
1 + ϵ

4
y

CROB(1,τ)

)
. Since

g−1(1) =
4CROB(1, τ)

ϵ

[
exp

(
4 + ϵ

ϵ

)
− 1

]
,

by the argument following (18), we obtain the upper bound CADV(τ + 1, σ) < 4CROB(1,τ)
ϵ

[
exp

(
4+ϵ
ϵ

)
− 1
]

on ADV’s cost
from time τ + 1 through σ. Substituting this bound into (15), and that bound subsequently into (10), we conclude that

E[CDART] ≤
4(1 + ϵ)

ϵ
CROB(1, τ) + E[CDART(τ + 1, T )]

≤ 4(1 + ϵ)

ϵ
CROB(1, τ) + CROB(τ + 1, T ) + CROB(1, σ) +

4

ϵ
CROB(1, τ) +

(
2 +

ϵ

4

)
CADV(τ + 1, σ)

≤
(
5 +

8

ϵ

)
CROB +

(
2 +

ϵ

4

)
CADV(τ + 1, σ)

≤
(
5 +

8

ϵ

)
CROB +

(
2 +

ϵ

4

) 4CROB(1, τ)

ϵ

[
exp

(
4 + ϵ

ϵ

)
− 1

]
= 2O(1/ϵ)CROB.

This concludes the proof.

C.2 Proof of Corollary 3.1.1

These results follow immediately from Theorem 3.1, the definition of bicompetitiveness (Definition 2.3), and the obser-
vation that an algorithm that is (c, r)-bicompetitive with respect to (ADV, ROB), where ROB is b-competitive, achieves
c-consistency with respect to ADV together with rb robustness. Thus (i) follows from the existence of an O(log2 n)-
competitive algorithm for MTS on any n-point metric space (Bubeck et al., 2021a); (ii) follows from the existence of an
n-competitive algorithm for CFC on any n-dimensional normed vector space (Sellke, 2020), as well as the fact that CFC
algorithms can be derandomized by taking the expectation; (iii) follows from the fact that the work function algorithm is
(2k − 1)-competitive for k-server (Koutsoupias and Papadimitriou, 1995); and (iv) follows from Proposition 2.5, i.e. the
fact that the work function algorithm is (2k − 1)max

{
1, 2

α

}
-competitive for k-chasing α-polyhedral convex functions.

D Proofs for Section 4

D.1 Proof of Theorem 4.1

We proceed under the assumption that 2
ϵ ∈ N; if this is not the case, then the same result holds up to some small constant

factor. We define the metric space (X, d) as follows: X = {0} ∪ {2i : i = 0, . . . , 2
ϵ }, and d is just the usual (Euclidean)

metric on R: for x, y ∈ X , d(x, y) = |x− y|. All algorithms start at x0 = 1.

The MTS instance realizing the lower bound is constructed as follows: at each time t = 1, . . . , T := 2
ϵ , the adversary

delivers the service cost function
ft(x) =∞ · 1x ̸∈{0,2t},

forcing any competitive algorithm to assign zero probability mass to any point other than 0 and 2t. The advice chooses
decisions ADVt = 2t at each time, i.e., it deterministically chooses the rightmost point with zero service cost. Let ALG be
an arbitrary randomized algorithm for MTS that is (1 + ϵ)-consistent with respect to ADV.
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Suppose pt is the probability that ALG assigns to the state ADVt = 2t at time t; 1 − pt is thus the probability assigned to
the state 0. If pt ≤ pt−1, then the expected movement cost of ALG at time t is

W1
X(pt, pt−1) = pt2

t−1 + (pt−1 − pt)2
t−1 = pt−12

t−1.

On the other hand, if pt > pt−1, then the expected movement cost of ALG at time t is

W1
X(pt, pt−1) = pt−12

t−1 + (pt − pt−1)2
t ≥ pt2

t−1 > pt−12
t−1.

Combining the above equality and inequality, the total cost of ALG from time 1 through t is bounded below as

E[CALG(1, t)] ≥
t∑

τ=1

pτ−12
τ−1 (24)

for any t ∈ [T ], with p0 = 1 by convention.

Since ALG is (1 + ϵ)-consistent with respect to ADV, it must be the case that, for each t ∈ [T ],

E[CALG(1, t)] + (1− pt)2
t ≤ (1 + ϵ)CADV(1, t). (25)

If this were not the case, then the adversary could simply send ft+1(x) =∞ · 1x ̸=2t as the final service cost and end
the instance, and ALG would violate the assumed consistency. Note that CADV(1, t) =

∑t
τ=1 2

τ−1 = 2t − 1. By the
inequalities (24) and (25), it must hold that

t∑
τ=1

pτ−12
τ−1 + (1− pt)2

t ≤ (1 + ϵ)(2t − 1) (26)

for all t ∈ [T ]. For t = 1, this tells us that 1 + 2(1− p1) ≤ 1 + ϵ, so p1 ≥ 1− ϵ
2 . It is straightforward to see via induction

that in general, pt ≥ 1− t ϵ2 . Thus, from (24), we obtain

E[CALG] ≥
T∑

t=1

pt−12
t−1

≥
T∑

t=1

(
1− (t− 1)

ϵ

2

)
2t−1

=
ϵ

2
2

2
ϵ+1 − (1 + ϵ)

where the final equality follows from T = 2
ϵ . Thus we have obtained that E[CALG] = 2Ω(1/ϵ). Since the offline optimal

algorithm for this instance simply moves to 0 and stays there, incurring total cost 1, ALG is thus 2Ω(1/ϵ)-robust.

D.2 Proof of Theorem 4.2

The proof proceeds via a reduction to the lower bound presented in the previous proof (Supplementary Section D.1).
Specifically, we show that the space of probability distributions over the metric space (X, d) from the previous proof
endowed with the Wasserstein-1 distance W1

X is bijectively isometric to a convex subset K of a vector space endowed with
a weighted ℓ1 norm. This fact, along with a similar correspondence between service costs, will imply that any trajectory
of decisions produced by a randomized MTS algorithm on a given problem instance is in one-to-one correspondence with
a trajectory of decisions produced by a deterministic CFC algorithm on a corresponding instance, and that moreover, the
two trajectories incur identical cost (both movement and service). Note that this correspondence was essentially observed
for tree metrics in Bubeck et al. (2021a); our construction is slightly different, so we provide further detail for the sake of
completeness.

Let n = 2
ϵ + 2, and let X = {0} ∪ {2i : i = 0, . . . , 2

ϵ } be as in the previous section. Let the simplex ∆n ⊂ Rn represent
the set of probability distributions over X , with ith coordinate corresponding to the probability assigned to the ith state of
X (in increasing order, e.g., 0 is the 1st state). We define the convex body

K = {x ∈ Rn : x ≥ 0, x1 = 1, xi ≥ xi+1 for i = 1, . . . , n− 1}.
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Let us define a linear map from ∆n to K: the map Φ : Rn → Rn represented by the upper triangular matrix with all ones
on and above the diagonal, and all zeros below the diagonal. In other words,

(Φp)i =
∑
j≥i

pj

for each i ∈ [n]. It is straightforward to observe that Φ(∆n) ⊆ K, by the property that any p ∈ ∆n satisfies p ≥ 0 and
1⊤p = 1. To see that Φ−1(K) ⊆ ∆n, first note that Φ−1 is just the matrix with 1s occupying its diagonal, and −1s just
above the diagonal, i.e.,

Φ−1 =


1 −1

1 −1
. . . . . .

1 −1
1

 .

But then, for x ∈ K,

Φ−1x =


x1 − x2

...
xn−1 − xn

xn


And thus by definition of K, we have Φ−1x ≥ 0 and 1⊤Φ−1x = x1 = 1. Thus Φ−1(K) ⊆ ∆n, so Φ is a bijection
between ∆n and K.

Now, define a vector of weights w ∈ Rn with w1 = w2 = 1, and wi = 2i−3 for i = 3, . . . , n. We define a correspondingly
weighted ℓ1 norm as follows: for x ∈ Rn,

∥x∥ℓ1(w) :=

n∑
i=1

wi|xi|.

On the other hand, we also consider the Wasserstein-1 distance

W1
X(p,p′) = min

γ∈Π(p,p′)
E(x,x′)∼γ [d(x, x

′)]

between two distributions p,p′ ∈ ∆n over states of X . Since X is a subset of R and d is the standard metric on R, the
Wasserstein-1 distance can be computed in closed form (Santambrogio, 2015): defining Fp : R→ [0, 1] as the cumulative
distribution function of p over R, we have

W1
X(p,p′) =

∫
R
|Fp(t)− Fp′(t)| dt = |p1 − p′1|+

n∑
i=2

2i−2
i∑

j=1

|pj − p′j |. (27)

We now show that Φ preserves the Wasserstein-1 distance: for any p,p′ ∈ ∆n, we have

∥Φp−Φp′∥ℓ1(w) =

n∑
i=1

wi

∣∣∣∣∣∣
n∑

j=i

pj − p′j

∣∣∣∣∣∣ . (28)

Applying the equalities 1⊤p = 1⊤p′ = 1 and
∑n

j=i pj = 1 −
∑i−1

j=1 pj (and similarly for p′), equality of (27) and (28)
follows immediately. Thus Φ is a bijective isometry between (∆n,W1

X) and (K, ∥ · ∥ℓ1(w)).

We now go about showing that on the MTS instance realizing the lower bound proved in the previous section (Supplemen-
tary Section D.1), there is a corresponding CFC instance with the property that any sequence of decisions p1, . . . ,pT ∈ ∆n

for the MTS instance maps under Φ to a sequence of decisions x1, . . . ,xT for the CFC instance, and that moreover, these
sequences have identical costs for their respective instances. Note that this correspondence will hold more generally beyond
the particular instance we consider.

Define for each t ∈ [T ] the vector ct ∈ Rn

+ whose 1st and (t + 2)th entry is 0, with all other entries +∞; these are the
vector representations of the service cost functions for the lower bound from the previous section. Then let us define a CFC
instance with cost functions ft : Rn → R+ defined as

ft(x) = c⊤t Φ
−1x+∞ · 1x̸∈K .
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The costs ft are certainly convex, since c⊤t Φ
−1x is linear and K is a convex set. Moreover, because of the indicator

term, the only decisions yielding finite cost are those residing in K. Observe that for any p ∈ ∆n, ft(Φp) = c⊤t p.
Thus, it is straightforward to observe by the construction of the cost functions and the fact that Φ is a bijective isometry
between (∆n,W1

X) and (K, ∥·∥ℓ1(w)) that the CFC instance defined by f1, . . . , fT on Rn is equivalent to the MTS instance
defined by c1, . . . , cT on X , in the sense that sequences of decisions for the latter are in one-to-one correspondence via
Φ with (finite-cost) sequences of decisions for the former, and this correspondence preserves total cost (both moving and
service). Thus any performance bound on algorithms for the MTS instance translates to an identical performance bound
on algorithms for the CFC instance, giving the desired result.

E Proofs for Section 5

E.1 Proof of Theorem 5.1

The proof is identical to that of Theorem 3.1 presented in Supplementary Section C.1, save for the function g realizing the
lower bound 18. By assumption, d(at, rt) ≤ D for all t ∈ [T ], hence

σ∑
t=τ+1

ϵ
2CADV(t, t) + (1− λt−1)ft(at)

2d(at−1, rt−1)
≥

σ∑
t=τ+1

ϵ
2CADV(t, t)

2D

=
ϵ

4D
CADV(τ + 1, σ).

Thus, per the argument following (18), CADV(τ + 1, σ) < 4D
ϵ . Substituting this bound into (13), we obtain

E[CDART(τ + 1, T )] ≤ CROB(τ + 1, T ) +
(
1 +

ϵ

4

)
CADV(τ + 1, σ) + λσd(rσ, aσ)

≤ CROB(τ + 1, T ) +
(
1 +

ϵ

4

) 4D

ϵ
+D

and substituting this bound subsequently into (10), we conclude

E[CDART] ≤
4(1 + ϵ)

ϵ
CROB(1, τ) + E[CDART(τ + 1, T )]

≤ 4(1 + ϵ)

ϵ
CROB(1, τ) + CROB(τ + 1, T ) +

(
1 +

ϵ

4

) 4D

ϵ
+D

≤
(
4 +

4

ϵ

)
CROB +

4D

ϵ
+ 2D.

Thus the proof.

E.2 Proof of Lemma 5.2

Recall that all the servers of both ADV and ROB begin at the state x0 ∈ X at time 0. Fix any t ∈ [T ]. The algorithm ADV

has servers at a(1)t , · · · , a(k)t ∈ X and ROB has servers at r(1)t , · · · , r(k)t . Since ADV and ROB are both lazy, each of these
2k servers must either be at x0, or at some previous request si for i ∈ [t]. Consider a pair of server positions a(j)t and r

(j)
t

for some j ∈ [k]; if a(j)t = r
(j)
t , then d(a

(j)
t , r

(j)
t ) = 0. On the other hand, if one of the servers is at x0 and the other is

at si for some i ∈ [t], then d(a
(j)
t , r

(j)
t ) ≤ d(x0, si) ≤ COPT(1, t), since the offline optimal will also have had to move a

server from x0 to meet the request si. Finally, if both a
(j)
t and r

(j)
t are at different requests si, sj for i ̸= j ∈ [t], then

d(a
(j)
t , r

(j)
t ) = d(si, sj) ≤ COPT(1, t).

To see that this holds, note that if OPT served the requests si and sj with different servers, then by the triangle inequality
COPT(1, t) ≥ d(x0, si) + d(x0, sj) ≥ d(si, sj) since all the servers began at x0. On the other hand, if OPT served si and
sj with the same server, then that server must have moved from si to sj (or vice versa), hence d(si, sj) ≤ COPT(1, t).

Since there are k such pairs of servers a(j)t , r
(j)
t , and since dmm is the minimal matching distance, we obtain

dmm(at, rt) ≤
k∑

j=1

d(a
(j)
t , r

(j)
t ) ≤ k · COPT(1, t).
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E.3 Proof of Theorem 5.4

Before proving the theorem, let us formally define lazy algorithms for k-chasing convex, α-polyhedral functions on R.
Definition E.1. An algorithm ALG for k-chasing convex, α-polyhedral functions on R is lazy if, at each time t, the
following conditions hold on its decision:

i. ALG moves at most a single server at time t, and the only server that it moves (if any) is the one that realizes the
service cost.

ii. ALG only moves a server in order to obtain a strictly lower service cost.

That is, if ALG is a lazy algorithm for k-chasing convex, α-polyhedral functions on R and xt−1,xt ∈
(R
k

)
are ALG’s

decisions at times t−1 and t on an instance g1, . . . , gT : R→ R+, then either xt−1 = xt, or xt−1 and xt differ by exactly
one server, and moreover,

min
i∈[k]

gt(x
(i)
t ) < min

i∈[k]
gt(x

(i)
t−1).

With this definition formalized, it is straightforward to see by the triangle inequality that, similar to the k-server setting
(Borodin and El-Yaniv, 2005, §10.2.3), we can assume without loss of generality that ADV and ROB are lazy algorithms
for k-chasing convex functions on R. Next, we prove the following lemma.
Lemma E.2. Let g1, . . . , gT : R → R+ be a sequence of α-polyhedral costs for an instance of k-chasing convex, α-
polyhedral functions on R endowed with the usual (Euclidean) metric d(x, y) = |x − y|. Let ADV and ROB be two
lazy algorithms for the problem that both start with all servers at the same point x0 ∈ R, and let a1, . . . ,aT ∈

(R
k

)
and

r1, . . . , rT ∈
(R
k

)
be the sequences of server positions of ADV and ROB, respectively on the problem instance. Further

suppose that ROB ends each timestep with a server at the minimizer vt = argminx gt(x), so, vt ∈ rt at each time t. Then,
for any time t ∈ [T ], we have

dmm(at, rt) ≤ max{k, k/α} · COPT(1, t),

where dmm is the minimal matching distance inherited from the metric d.

Proof. Suppose without loss of generality that all servers start at x0 = 0. Note that since ADV is lazy (without loss of
generality) and costs are α-polyhedral and convex, ADV will never move a server away from the minimizer vt of the current
cost function gt.

Fix any time t ∈ [T ]. Suppose without loss of generality that ADV and ROB have servers indexed in increasing order, i.e.,
a
(1)
t ≤ · · · ≤ a

(k)
t and r

(1)
t ≤ · · · ≤ r

(k)
t . Define τ = argminτ∈[t] vτ and σ = argmaxσ∈[t] vσ . We break into two cases.

(1.) Suppose 0 ∈ [vτ , vσ]. Since ADV begins with all servers at 0 and never moves away from a minimizer, all of its
servers will lie in the interval [vτ , vσ]. Similarly, since ROB begins with all servers at 0, is lazy, and always occupies
the current minimizer with a server, all of its server positions will also lie in the interval [vτ , vσ]. As a result, we have

dmm(at, rt) ≤
k∑

i=1

d(a
(i)
t , r

(i)
t ) ≤ k · d(vτ , vσ), (29)

since the minimal matching of at and rt will match servers in increasing order, and all servers lie in the interval
[vτ , vσ].

Now we must simply bound d(vτ , vσ) in terms of COPT(1, t). Let let o∗τ be OPT’s closest server to vτ at time τ , and
let o∗σ be OPT’s closest server to vσ at time σ. Since all servers begin at 0, we can thus lower bound COPT(1, t) by

COPT(1, t) ≥ gτ (o
∗
τ ) + d(o∗τ , 0) + gσ(o

∗
σ) + d(o∗σ, 0)

≥ α · d(o∗τ , vτ ) + d(o∗τ , 0) + α · d(o∗σ, vσ) + d(o∗σ, 0) (30)
≥ min{1, α} · d(vτ , vσ) (31)

where (30) follows by α-polyhedrality of the cost functions. Substituting (31) into (29) then gives

dmm(at, rt) ≤ max

{
k,

k

α

}
COPT(1, t),

as desired.



Nicolas Christianson, Junxuan Shen, Adam Wierman

(2.) Suppose 0 is outside of the interval [vτ , vσ]; we may assume without loss of generality that 0 < vτ . By similar
reasoning as in the previous case, all of the servers of ADV and ROB, by laziness, are in the interval [0, vσ]. Then we
follow a similar argument. Note that

dmm(at, rt) ≤
k∑

i=1

d(a
(i)
t , r

(i)
t ) ≤ k · d(0, vσ),

and, defining o∗σ as OPT’s closest server to vσ at time σ,

COPT(1, t) ≥ gσ(o
∗
σ) + d(o∗σ, 0)

≥ α · d(o∗σ, vσ) + d(o∗σ, 0)

≥ min{1, α} · d(0, vσ).

Thus we obtain

dmm(at, rt) ≤ max

{
k,

k

α

}
COPT(1, t),

completing the proof.

The result of Theorem 5.4 then follows immediately by substituting the diameter bound from Lemma E.2 into Theorem 5.1
and instantiating ROB with the work function algorithm applied to the minimizer sequence v1, . . . , vT , which we know is
O( kα )-competitive.


