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Abstract

Hierarchical reinforcement learning (HRL) has
seen widespread interest as an approach to
tractable learning of complex modular behaviors.
However, existing works either assume access to
expert-constructed hierarchies, or use hierarchy-
learning heuristics with no provable guarantees.
To address this gap, we analyze HRL in the
meta-RL setting, where a learner learns latent
hierarchical structure during meta-training for
use in a downstream task. We consider a tab-
ular setting where natural hierarchical structure
is embedded in the transition dynamics. Analo-
gous to supervised meta-learning theory, we pro-
vide “diversity conditions” which, together with
a tractable optimism-based algorithm, guarantee
sample-efficient recovery of this natural hierar-
chy. Furthermore, we provide regret bounds on
a learner using the recovered hierarchy to solve
a meta-test task. Our bounds incorporate com-
mon notions in HRL literature such as temporal
and state/action abstractions, suggesting that our
setting and analysis capture important features of
HRL in practice.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated tremendous
successes in many domains (Schulman et al., 2015; Vinyals
et al., 2019; Schrittwieser et al., 2020), learning near-optimal
policies despite limited supervision. Nevertheless, RL re-
mains difficult to apply to problems requiring temporally
extended planning and/or exploration (Ecoffet et al., 2021).
A promising approach to this problem is hierarchical rein-
forcement learning (HRL), which has seen continued inter-
est due to its appealing biological basis. In its most basic
form, HRL seeks to decompose tasks into a sequence of
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skills, each of which is easier to learn individually than the
full task. By restricting the agent to using learned skills, the
search space over policies can be greatly reduced. Further-
more, learned skills can induce simpler state and/or action
spaces, simplifying the learning problem. Finally, learned
skills with useful semantic behavior can be reused for other
related tasks, enabling transfer learning.

Naturally, a hierarchy-based learner is limited by the quality
of skills that are made available and/or learned. Accordingly,
many empirical works have proposed algorithms for online
skill learning in the context of a single RL task (Nachum
et al., 2019a, 2018). These approaches have been experimen-
tally demonstrated to be effective at finding useful and inter-
pretable skills. Other approaches consider the skill learning
problem in the context of meta-RL (Frans et al., 2018), or
in the reward-free setting (Eysenbach et al., 2018). Nev-
ertheless, the heuristics and algorithms proposed in these
empirical works do not provide any provable guarantees on
the quality of learned skills.

On the other hand, theoretical analyses have mostly focused
on how learners benefit from having access to skills. For
example, Fruit and Lazaric (2017) provide a regret bound
on learning with skills in the infinite-horizon average reward
case. Meanwhile, in the meta-RL setting, Brunskill and Li
(2014) consider the problem of finding and using skills in a
continual learning setting and provide a sample complexity
analysis. However, these analyses either sidestep the ques-
tion of how the skills are obtained, or do not address the
problem in a computationally tractable manner.

In this work, we aim to take a step towards providing prov-
able guarantees for hierarchy learning through tractable
algorithms. We focus on the meta-RL setting, in which a
learner extracts skills from a set of provided tasks which are
then used in a downstream task. We work in the tabular case,
assuming the transition dynamics of the given tasks have
shared hierarchical structure. This hierarchical structure
comes in the form of a certain clustering in the state space,
such that the inter-cluster connections vary between tasks.
Our contributions are as follows:

1. “Diversity conditions” ensuring hierarchy recov-
ery. We develop natural optimism-based coverage
conditions ensuring that the aforementioned clusters
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and bottlenecks detectable by solving provided meta-
training tasks.

2. A tractable hierarchy-learning algorithm. We pro-
vide an algorithm that provably learns the latent hier-
archy from interactions, assuming the coverage con-
ditions above. Our method has sample complexity
scaling as O(TKS) in the leading term compared to
O(TS2A) for a brute-force method, where T are the
number of tasks, S is the number of states, A is the
number of actions, and K � SA is the number of
skills to learn. We also experimentally demonstrate our
algorithm on toy settings in Section C.

3. Regret bounds on downstream tasks. We provide
regret bounds for learners that apply the extracted hi-
erarchy on downstream tasks. Furthermore, we show
an exponential regret separation between hierarchy-
based and hierarchy-oblivious learners for a family of
task distributions, corroborating prevailing intuitions
regarding when and why HRL helps. In our construc-
tion, hierarchy-based learners incur regret bounded by
O(
√
H2N) while hierarchy-oblivious learners incur

worst-case regret Ω(2H/2
√
H2N).

2 NOTATION

We write [K] := {1, . . . ,K}. Furthermore, we use the
standard notations O,Θ,Ω to denote orders of growth, and
Õ, Θ̃, Ω̃ to indicate suppressed logarithmic factors. We use
δ(x) to denote the Dirac delta measure on x. Finally, given
discrete probability measures P and Q, we define the total
variation (TV) norm between P andQ to be ‖P −Q‖TV =
1
2

∑
x |P (x)−Q(x)|.

We work with finite-horizon Markov decision processes
(MDPs), defined as a tupleM = (S,A,P, r,H), where S
is the set of states,A is the set of actions, P : S ×A×S →
[0, 1] are the transition dynamics, r : S × A → [0, 1] is
the reward function, and H is the horizon. We assume
stationary dynamics unless otherwise noted, in which case
P(h) is the dynamics at time step h. For constants relating
to horizons, we will define [H] := {0, . . . ,H − 1}. Given
a policy π : [H]× S → A, we define the value functions

Qπh(s, a) := E

[
H−1∑
k=h

r(sk, ak)

∣∣∣∣∣ (sh, ah) = (s, a)

]
V πh (s) := Qπ(s, πk(s))

where sk+1 ∼ P(· | sk, ak). Furthermore, we write V ∗ and
Q∗ to denote optimal value functions obtained by maximiz-
ing over π (and are attained by some optimal policy π∗).
When playing π1, . . . , πN inM, we define the regret as

RegretN (M) :=

N∑
t=1

V ∗0 (s0)− V πt0 (s0).

We use 	 to denote a terminal state. We let τπ denote the
(random) trajectory of (s, a, r, s′) pairs generated by π. For
a state s and length-H trajectory τ , we write s ∈ τπ if
sh = s for some h ∈ [H]. We define (s, a) ∈ τπ similarly.
Finally, given an MDPM,M(2H) denotes a copy ofM
with a doubled horizon.

3 SETTING

The standard meta-RL setting is divided into two stages:
meta-training, and meta-testing. During meta-training, the
learner can access T MDPs {(S,A,Pt, rt, H)}t∈[T ] =

{Mt}t∈[T ]. Note that Pt and rt are task-dependent. Subse-
quently, the learner is presented in the meta-test phase with
an MDPMT+1 = (S,A,PT+1, rT+1, H), within which
the learner seeks to minimize its regret. We assume, without
loss of generality, that the MDPs have a shared starting state
s0. The problem setting is summarized in Algorithm 1.

For meta-RL to succeed, the MDPs must have shared struc-
ture. As our focus is on hierarchical RL, we first define a
notion of clustering:

Definition 3.1. A hierarchical clustering C on (S,A) is a
tuple (Z,Ent(·),Ext(·)), where Z is a partitioning of S
into clusters, and for any cluster Z ∈ Z:

• Ent(Z) ⊆ Z is a set of entrances into Z.

• Ext(Z) ⊆ Z ×A is a set of exits from Z.

Accordingly, we define the interior of Z, denoted Z◦, as
(Z × A) \ Ext(Z). Finally, we write Ent(C) as the set of
all entrances, and Ext(C) as the set of all exits. �

Unless noted otherwise, we consider a single hierarchical
clustering C = (Z,Ent(·),Ext(·)). We now move on to the
desired notion of shared hierarchical structure:

Definition 3.2 (Latent Hierarchy). We say that the tasks
{Mt}t∈[T+1] have a shared latent hierarchy with respect to
a hierarchical clustering C if for any Z ∈ Z:

(a) For any (s, a) ∈ Z◦, Pt(· | s, a) is independent of task
t ∈ [T + 1], and supported on Z.

(b) For any (s, a) ∈ Ext(Z), Pt(· | s, a) is supported on
Ent(C) for any t ∈ [T + 1]. Furthermore, there exists
tasks t, t′ ≤ T such that Pt(· | s, a) 6= Pt′(· | s, a). �

Algorithm 1 The meta-RL setting.

Require: Meta-training MDPs {Mt}t∈[T ], meta-test MDP
MTg.

1: Meta-training: Agent interacts with {Mt}, extracts
(algorithm-specific) structure.

2: Meta-testing: Agent interacts withMTg conditioned
on extracted structure.
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At a high level, Definition 3.2 assumes that S can be par-
titioned into distinct clusters so that (a) dynamics within
cluster interiors are task-independent and (b) exits serve as
bottlenecks for reaching other clusters.

Example 3.1 (Gated Four-Room). Figure 1 illustrates the
family of gated four-room environments along with a sam-
ple task. In this environment, the agent has five available
actions: left, right, up, down, and stay. Movement
actions move the agent by one block in the specified direc-
tion if there is no wall/gate present between the starting and
target positions; otherwise, the agent stays in place. For
example, in the given configuration with a red gate, playing
up from right below the red gate will cause no change to
the agent state.

Within the family of tasks which vary gate configurations
and which room center the agent spawns in, one can show
that the environment has a shared latent hierarchy, where
clusters are delineated by the colored gates. Cluster en-
trances are colored aqua, while exits are marked by arrows
indicating the state and directional action for the exit.1 y

To see how Definition 3.2 captures intuitive notions of hierar-
chy in practical settings, we provide the following example:

Example 3.2 (The Alchemy benchmark). Alchemy (Wang
et al., 2021) is a recently proposed benchmark for meta-RL,
where the agent needs to place a stone in a series of potions
to obtain a desired appearance, as illustrated in Figure 2.
Dipping a stone into a potion traverses an edge in a graph of
possible stone appearances. We focus on task distributions
that randomize the edges of this graph (i.e., potion positions
and feasible stone appearances are fixed). Then, the set
of obtainable MDPs has a latent hierarchy where dipping
the stone into any of the potions is an exit. Indeed, other
than potion dipping, all other actions (e.g., moving the stone
around the room) have task-independent dynamics. y

For our analysis, we need to define several quantities. In
1Although we assume a fixed starting state s0, we can model

task-dependent initial states by assuming that any action from s0
takes the agent to the true starting state. Any initial state must then
be a cluster entrance, while (s0, a) is an exit for any a.

Figure 1: The gated four-room setting, with a green start
square and starred goal.

Figure 2: alchemy.
placing stones in
potions moves the
agent through a la-
tent graph of object
properties.2

particular, we let K := |Ext(C)|, L := |Ent(C)|, and M =
supZ∈Z |Ext(Z)|. That is, K and L are the total number of
exits and entrances, respectively, while M is the maximal
number of exits from any cluster.

Query Model. We work in the online setting, where the
agent interacts with the tasks by playing policies from the
initial state s0. During meta-training, we allow the agent to
interact with the environments using an unbounded number
of timesteps for each trajectory before resetting. We then
compute query complexity in terms of the total number of
timesteps spent in all tasks in total.

4 META-TRAINING ANALYSIS

In this section, we outline an algorithm for learning a shared
latent hierarchy, as defined in Definition 3.2. As exits are
bottlenecks between clusters, exit identification is a key part
of the learning process. Recall that a key property of every
exit in Definition 3.2 is that their dynamics is guaranteed to
be different for at least two tasks. To quantify the number of
samples needed to detect this change, we need to quantity
the difference in dynamics:

Definition 4.1 (β-dynamics separation). There exists β > 0
such that for any exit e ∈ Ext(C) and t, t′ ≤ T ,

Pt(· | e) 6= Pt′(· | e)
=⇒ ‖Pt(· | e)− Pt′(· | e)‖TV ≥ β. �

Via standard concentration results, β-dynamics separation
allows for high-probability exit detection with Õ(S/β2)
samples. This suggests a brute-force approach: for every
(s, a), one can learn to reach (s, a) in every task t, learn
dynamics estimates P̂t(· | s, a), and perform comparisons
to check for large deviations in TV norm. This can be done
with query complexity Õ(TS2A/β2). However, this ig-
nores the reward functions associated with the meta-training
MDPs. Indeed, under reasonable “coverage” assumptions
in the next section making use of the reward functions, the
query cost can be lowered to Õ(TKS/β2).

2Image from Wang et al. (2021), extracted from a larger figure
with no other modifications (License).

https://creativecommons.org/licenses/by/4.0/
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4.1 Defining a Notion of Coverage

In supervised meta-learning, “diversity conditions” ensure
that the meta-training tasks reveal the underlying latent
structure (Tripuraneni et al., 2020; Du et al., 2020). We
provide analogous conditions ensuring thatM1, . . . ,MT

“cover” the latent hierarchy. Since solving maxπ V
π(s0)

requires fewer samples than learning P, we expect such
conditions to provide sample complexity gains.

Visitation Probabilities and α-Importance. Minimally,
exits need to be visited by optimal policies in meta-training
tasks for coverage. We thus define the following notion:

Definition 4.2 (α-importance). For any MDPM and state-
action pair (s, a), letM\ (s, a) be a modified MDP such
that (s, a) brings the agent to a terminal state with no re-
ward. Then, we say that (s, a) is α-important for M if
V
M\(s,a),∗
0 (s0) < VM,∗

0 (s0)− α. �

Figure 3: Illustrating Defi-
nition 4.2. Since any path
to the goal contains the
arrow, it has high impor-
tance.

Definition 4.2 allows us to
quantify value gaps between
policies that can use a par-
ticular state-action pair and
those that cannot. To illus-
trate, consider the task in
Figure 3. Note that any tra-
jectory with non-zero return
must contain the black arrow
at least once. That is, the
optimal value when the ar-
row is unavailable is 0, and
thus the arrow has high im-
portance. This suggests that
near-optimal policies tend to
visit state-action pairs with high-importance. We formalize
this connection below, and defer its proof to Section A.

Lemma 4.1. If (s, a) is α-important forM, then for any
policy π with V ∗0 (s0)−V π0 (s0) < ε, then P ((s, a) ∈ τπ) >
(α− ε)/H .

A Preliminary Coverage Assumption? The previous
discussion suggests a simple coverage condition: for any
exit (s, a), assume that (1) it has high α-importance for two
tasks, and (2) that is has different dynamics between these
two tasks. Thus, solving the two tasks would ensure that
(s, a) is visited sufficiently to form dynamics estimates, and
the TV-norm difference between the estimates would be
sufficiently large with high probability for exit detection.
However, this condition excludes natural settings, including
the earlier four-room example:

Example 4.1. In the gated four-room example, we can show
that no exit can be covered under the preliminary condition
above. Recall that gates are either open or closed; when a
gate is closed, no optimal agent would attempt to use such a
gate. In other words, an exit (s, a) cannot be α-important

Figure 4: The black arrow is not α-significant for one of the
tasks, and thus cannot be “covered” under the preliminary
coverage condition.

with α > 0 when closed. Thus, if a gate has non-zero α-
importance for two tasks, then it must have been open for
both tasks, and thus the preliminary coverage assumption
cannot hold. We illustrate this failure case in Figure 4. y

An Alternative Coverage Mechanism. The proposed as-
sumption fails because there are exits that only have non-
zero α-importance for one configuration. For such exits,
near-optimal policies can only see one dynamics configura-
tion, making them insufficient for detecting exits.

Figure 5: Using optimistic
imagination for exit detec-
tion.

As an alternative, consider
the following hypothetical
scenario in the context of
Figure 4: an agent has
solved both tasks, achiev-
ing optimal values V ∗1 and
V ∗2 . Furthermore, note that
in the process of solving the
second task, the agent will
have learned open-gate dy-
namics for the black arrow.
If the agent were to relearn
the first task while borrow-
ing the black arrow’s dynam-
ics from the second (i.e. imagining the gate were open), it
would obtain a new value V̂1. Note that V̂1 � V ∗1 , as the
path to the goal in the first task is shorter when the gate
is open. Thus, it can reasonably conclude that the black
arrow must have been an exit. We illustrate this process in
Figure 5, where πI is the optimal policy after “borrowing
dynamics.” The learner could then run πI for exit detection.

We refer to the counterfactual reasoning about the dynamics
used above as optimistic imagination. Unlike the prelim-
inary condition, optimistic imagination only requires that
an exit be important for one task and induce a value gap
in another when borrowing dynamics – a weaker condition
in many cases. With the above intuition in mind, we now
present the main coverage assumption.

Assumption 4.1 ((α, ζ)-coverage). Assume (Mt)t∈[T ]
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have a latent hierarchy with respect to C. Then, there exists
α, ζ > 0 such that for any {e1, . . . , en} ⊆ Ext(C), there
exists borrowing indices b1, . . . , bn ∈ [T ] so that

(a) ei is α-important forMbi for i ∈ [n].

(b) For someMt with t ∈ [T ], if we construct a new MDP
M̄t = (S,A, P̄, rt, H) via

P̄(· | s, a) =

{
PMbi (· | s, a) (s, a) = ei

PMt(· | s, a) otherwise
,

(i.e. we replace ei’s dynamics inMt with those from
Mbi ), then V M̄t,∗(s0) > VMt,∗(s0) + ζ.

Informally, (α, ζ)-coverage ensures that while there are
undiscovered exits, borrowing dynamics will result in an
overestimated value.3 Furthermore, the policy attaining this
overestimated value must visit at least one exit with bor-
rowed dynamics, leveraging a similar value-gap argument
as with Lemma 4.1.

4.2 Why Should Optimistic Imagination Hold?

In this section, we provide a heuristic reason as for why
the proposed coverage condition holds for many task dis-
tributions of interest. Fix any subset of exits {e1, . . . , en}
and any meta-training MDPMt. As our goal is to demon-
strate that one of the exits can be discovered via optimistic
imagination, we impose the following restriction:

Property 4.1. For every ei, there exists a distribution d∗i
such that Pt(· | ei) 6= d∗i implies that ei is 0-important for
Mt, for any t ∈ [T ].

This property excludes the use of the preliminary coverage
condition. As it is reasonable to assume that these exits
have high importance for at least one task (i.e. Assumption
4.1(a)), Property 4.1 implies d∗i is learnable from interac-
tions. Therefore, all that remains is to construct an MDP
such that borrowing d∗i for all i ∈ [n] within the MDP
guarantees the value gap in Assumption 4.1(b).

To do so, we first outline a connection between value
functions and the geometry of state visitation measures,
as explored by Eysenbach et al. (2021) within the dis-
counted infinite-horizon setting. Note that when one re-
stricts to action-independent reward functions, we can write
VM,π

0 (s0) = Hρ>M,πr, where r is the vectorized reward
function and

ρM,π(s) =
1

H

∑
h∈[H]

PM,π(sh = s | s0)

3Note that the coverage condition does not consider the pre-
liminary condition at all. Incorporating this condition can weaken
Assumption 4.1, so that it only has to hold for subsets of exits not
covered under the preliminary condition. However, our algorithm
can trivially accomodate this combined assumption.

is the state visitation measure of π withinM. An important
property we will use is that for any fixedM, {ρM,π} is a
convex subset of the probability simplex on S.

Given this, we now show that performing optimistic imagi-
nation withinMt results in a non-zero value gap in many
cases, justifying Assumption 4.1(b). Define M̄t to be the
MDP with borrowed dynamics

PM̄t(· | s, a) =

{
d∗i (s, a) = ei

Pt(· | s, a) otherwise
.

Since ‖Pt(· | e)− d∗i ‖TV > β by Definition 4.1, heuristi-
cally, we expect the following to be true:
Assumption 4.2. ρM̄t,π+ 6∈ {ρMt,π} for some π+.

Stated less formally, we expect there to be states that can be
reached more easily in M̄t compared toMt. As a result, if
we reward the agent for reaching these states in the borrowed
MDP, we would obtain the desired reward gap.
Example 4.2. In Example 3.1, this corresponds to the fact
that the agent can spend more time in states immediately
past open gates compared to if they were closed. y

Continuing from above, we can formally construct a reward
function that has the desired value gap. More specifically,
since {ρMt,π} is convex, we can invoke the hyperplane
separation theorem to demonstrate the existence of a reward
vector r̄ for which

V M̄t,∗
0 (s0) ≥ Hρ>M̄t,π+ r̄ > H sup

π
ρ>Mt,π r̄ = VMt,∗

0 (s0).

Thus, there exists a non-zero value gap betweenMt and
M̄t with reward function r, as assumed by Assumption 4.1.

4.3 Algorithm Outline

In this section, we outline our exit detection algorithm. Our
procedure consists of a task-solving phase, a reward-free
phase, and an exit detection phase. We also illustrate our
steps in the context of Figure 5, outline the algorithm in
Algorithm 2, and provide the full algorithm in Section A.1.
In addition, we experimentally demonstrate successful exit
detection via our proposed approach in Section C.

4.3.1 Phase I: Task-Specific Dynamics Learning

The first step in our algorithm is to solve each individual
meta-training task using UCBVI (Azar et al., 2017) to ob-
tain near-optimal policies. Via Lemma 4.1, data obtained
from these policies can then be used to estimate the dynam-
ics of all α-important state-action pairs. This allows the
learner to borrow high-quality estimates of high-importance
exit dynamics when applying optimistic imagination. To
illustrate the contribution of this portion of the algorithm
in the context of Figure 4, note that solving the first task
allows us to learn the dynamics of the blue gate when open,
as Figure 6 shows.



Provable Hierarchy-Based Meta-Reinforcement Learning

Figure 6: Phase I contribu-
tion to learning πI in Figure
5. Solving other tasks allows
the agent to see the open gate.

Figure 7: Phase II. Optimal
policy state coverage (red) is
insufficient for learning πI ,
which requires data from the
green region.

4.3.2 Phase II: Reward-Free RL

To perform optimistic imagination, the learner not only
needs to be able to borrow high-quality dynamics models
from other tasks, but also be able to simulate state-action
pairs that are not being borrowed. Since only exits can
change between tasks, non-exit state-action pairs can be
simulated using data from any task. Formally, we learn a
single “template” dynamics model P̂0 by applying reward-
free RL (Jin et al., 2020) to a single task.

To further illustrate the necessity of this phase, Figure 7
highlights the state coverage of near-optimal policies in
red. In particular, most states beyond the blue gate are not
covered by these policies. However, accurately evaluating
the imagined policy πI in Figure 5 not only requires seeing
the blue gate when opened, but also knowing the highlighted
green region in Figure 7. In this context, Phase II allows the
learner to also simulate the green region’s dynamics, and
evaluate the value of πI under optimistic borrowing.

4.3.3 Phase III: Exit Detection

Having completed Phases I and II, the learner now has
sufficient estimates to perform optimistic imagination. This
is done by modifying value iteration (VI) to optimistically
borrow dynamics estimates from other tasks.

Formally, we first partition S ×A into “known exits” (ini-
tially empty) and “candidates” (initially S ×A). For every
(s, a)-pair and timestep of the Bellman backup in a taskMt

during VI, we either use P̂t(· | s, a) if (s, a) is a known
exit4, or any of the estimates P̂b(· | s, a) for b ∈ {0, . . . , T}
otherwise. Since only exits can change dynamics, this pro-
cedure only results in significant value overestimation if an
undiscovered exit’s dynamics is borrowed from a different
task. We can show that modifying VI in this way performs
an optimistic search over policies and MDPs, where As-

4Since (s, a) is a known exit, we know that (s, a)’s dynamics
are task-dependent, so we have to use the estimates for task t.

Algorithm 2 An outline of our hierarchy learning procedure
during the meta-training phase.

Require: Meta-training MDPsM1, . . . ,MT

1: (Phase I) Apply UCBVI to learn all MDPs to appropri-
ate level of accuracy (dependent on α-importance)

2: (Phase II) Apply reward-free RL from Jin et al. (2020)
toM1 (or any other arbitrarily chosen meta-training
MDP).

3: while True do
4: (Phase III) Choose one of the meta-training MDPs,

and apply value iteration (modified to perform opti-
mistic imagination/borrowing using estimates from
prior phases)

5: if value returned is much higher compared to UCBVI
applied to the same task then

6: Run policy from value iteration and form new dy-
namics estimate, compare with previous estimates
using TV-norm to find new exit

7: Learn the dynamics of the new exit in all tasks
8: end if
9: if no value overestimation after going through all T

MDPs since last found exit then
10: break from while loop
11: end if
12: end while
output Set of found exits, transition dynamics estimates

sumption 4.1(b) guarantees the feasibility of an MDP with
a detectable overestimated value. As with α-importance,
this value gap implies that the policy πI obtained by this
procedure visits an undetermined exit whose dynamics are
borrowed during VI. Upon learning the dynamics of this
discovered exit in every task and marking it as a known
exit, we continue the process until no task has siginificantly
overestimated values.

4.4 Meta-Training Guarantee

We outline our meta-training guarantee in this section. In
particular, we can show that the algorithm in the previous
section can be used to implement a particularly useful oracle
for downstream tasks. In the following, we will define two
new auxiliary states, GOAL and FAIL.

Definition 4.3 (Hierarchy oracle). An ε-suboptimal hierar-
chy oracle is an oracle such that given (x, f, r, H̃), where

• x ∈ Ent(C) is some starting state,

• f : Ext(C)→ {GOAL, FAIL} is an exit-labeling func-
tion,

• r is a reward function, and

• H̃ ≤ H is a horizon,
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the oracle returns an ε-suboptimal policy for the tuple-
induced MDP (S ∪ {GOAL, FAIL} ,A,Pf , r, H̃) with start-
ing state x and dynamics Pf given by

Pf (· | s, a) =


δ(f(s, a)) (s, a) ∈ Ext(C)
δ(s) s ∈ {GOAL, FAIL}
Pt(· | s, a) otherwise, any t ∈ [T ]

. �

To illustrate how the hierarchy oracle can be used, consider
the problem of trying to reach a particular exit e within
the current cluster, given that the agent had just entered
the cluster and is at entrance x. For MDPs consistent
with the shared latent hierarchy, this is a useful skill as
exits are bottlenecks to other clusters. The hierarchy oracle
solves this subproblem when queried with f that labels e as
GOAL and all other exits as FAIL, and setting the reward to
r(s, a) = 1 [s = GOAL]. Observe that the clusters of C are
disconnected in the induced MDP solved by the hierarchy
oracle, and thus the policy will stay within a single cluster
while solving the subproblem. As an added bonus, if it is
unknown a priori that e and x belong to the same cluster,
the value predicted by the oracle for the induced MDP can
be used to determine reachability.5 Our guarantee ensures
that this hierarchy oracle is implementable:
Theorem 4.1 (Meta-training guarantee, informal). Under
Assumption 4.1 and other assumptions in Section A.3, the
data obtained from the algorithm in Section 4.3 allows for:

(a) implementing an ε-suboptimal hierarchy oracle, and

(b) determining, for every s ∈ Ent(S), the reachable exits
in the cluster containing s,

simultaneously with probability at least 1− p. Furthermore,
this is achieved with query complexity

Õ

[
T

(
KL

αmin(ζ, β)2
+
KS

αζ2
+

SA

min(α, ζ)2
+
KS2A

α

)
+

S4A

min(ε, ζ)
+

S2A

min(ε, ζ)2

]
poly(H).

As a point of comparison, we have the following guarantee
on brute-force hierarchy learning:
Theorem 4.2. The brute-force approach outlined in Section
A.6, under Assumption 4.1(a), determines the set of exits
with high probability and query complexity

Õ

[
T

(
S2A

αβ2
+
SA

α2
+
S4A

α

)]
poly(H).

When α, β, and ζ are of the same order, we see that the pro-
posed method incurs a smaller query complexity compared
to a brute force learner that has only learned the exits. We
provide proofs of both results in Section A, along with all
other necessary assumptions and full algorithm details.

5More specifically, the predicted value can only be non-zero if
exit e is reachable from x without moving to other clusters.

5 META-TEST ANALYSIS

In this section, we bound the regret of an agent using a
hierarchy oracle during meta-testing. We first characterize
a family of tasks for which one can achieve improved re-
gret bounds. Furthermore, we provide sufficient conditions
ensuring that using the hierarchy incurs low suboptimality.

5.1 Assumptions

Recall that we evaluate the regret an agent incurs on
MT+1 = (S,A,PT+1, rT+1, H). For meta-learning to
succeed, we need to restrictMT+1, as the hierarchy cannot
be compatible with all possible downstream tasks. We have
the following sufficient condition for compatibility with the
learned hierarchy:
Assumption 5.1 (Task Compatibility). There exists a clus-
ter Z∗ such that rT+1 is supported on Z∗ ∪ Ext(C). Fur-
thermore, there exists an optimal policy π∗ satisfying

(a) Conditioned on sh ∈ Z∗, we have that (sh′ , ah′) 6∈
Ext(Z∗) for h′ ≥ h almost surely.

(b) The number of exits encountered by π∗ is bounded by
Heff with probability ζ.

Hierarchical compatibility. Intuitively, Condition (a)
and the reward assumption in Assumption 5.1 suggests that
the task can be decomposed into (1) navigating exits to
reach Z∗ and (2) optimally collecting rewards within Z∗.
As the learner is able to use the hierarchy oracle to reach
exits and plan within clusters, the hierarchy oracle reduces
the complexity of exploration in the two phases. We note
that decomposing a task in the manner described above is
characteristic of the goal-conditioned RL setting, which has
been studied extensively in recent empirical works (Nachum
et al., 2019a; Levy et al., 2018; Nachum et al., 2018), and
involves an agent navigating to a particular goal location.

Temporal Abstraction. As noted above, Condition (a)
allows the agent to abstract away the planning process so
that it only needs to either select an exit to use, or remain
within the current cluster for the rest of the episode. Thus,
using the hierarchy oracle reduces the effective planning
horizon of the agent. Condition (b) quantifies this reduction.
Informally, we expect that most tasks of interest are solvable
via a short sequence of skills that can be correctly executed
with high probability by a near-optimal agent.

Hierarchical Suboptimality. Restricting the learner to
executing hierarchical policies can greatly reduce the search
space. While this reduction leads to improved regret bounds,
this also incurs approximation error, as the optimal policy
may not lie in this restricted class. We refer to this error
as hierarchical suboptimality. We will show that hierar-
chical suboptimality is controllable with certain properties
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of PT+1, which require the following notions of reaching
times:

Definition 5.1 (Reaching times). Let s be a starting state
and g be a goal state, both belonging to a single cluster
Z, and fix a horizon H̃ . Furthermore, for a policy π, let
(s0, s1, . . . , sH̃) be the (random) states visited by rolling
out π for H̃ steps from s, so that s0 = s. We then define the
(random) truncated reaching time Tπ

H̃
(s, g) as

Tπ
H̃

(s, g) := min {h | sh = g, (s0:h) ⊆ Z} ∪ {H̃}.

Thus, Tπ
H̃

(s, g) is the time to reach g from s, while remain-
ing in the same cluster (truncated to H̃). Additionally, we
write

T ∗
H̃

(s, g) := inf
π

E
[
Tπ
H̃

(s, g)
]

Tmin(s, g) := inf
π

min {h | P (Tπ∞(s, g) = h) > 0} .

In particular, Tmin is the minimum time for which it is
possible to reach g from s. �

We now proceed with describing the relevant property:

Definition 5.2 (Regular and low-variance dynamics). There
exists η, κ, γ > 0 such that for any clusterZ, states s, g ∈ Z,
and horizon H̃ < H ,

(a) ((η, κ)-unreliability) For any deterministic policy
π with E[Tπ

H̃
(s, g)] − T ∗

H̃
(s, g) < η, Tπ

H̃
(s, g)

has a sub-Gaussian upper tail with variance proxy
κ2E[Tπ

H̃
(s, g)]2.

(b) (γ-goal-reaching suboptimality) T ∗
H̃

(s, g) ≤ (1 +

γ)Tmin(s, g). �

Since (η, κ)-unreliability only considers near-optimal deter-
ministic policies, the condition can informally be thought of
as quantifying the randomness in reaching time due to the
inherent randomness in the dynamics. On the other hand, γ-
goal-reaching suboptimality measures whether near-optimal
goal-reaching policies nearly achieve the minimum possible
reaching time. Deterministic environments satisfies these
conditions with η = ∞ and κ = γ = 0. We provide an
extended discussion of why these quantities control hierar-
chical suboptimality in Section B.5. Note that the guarantees
of Definition 5.2 scales with the cluster width, and thus we
have the following final assumption:

Assumption 5.2. There exists a W > 0 such that for any
cluster Z and s, g ∈ Z, Tmin(s, g) ≤ W , and HeffW �
H .

Assumption 5.2 limits the length of the subtasks within each
cluster. This is consistent with hierarchy-based methods
in practice, with skills only being executed for a limited
amount of time. This width bound, together with Assump-
tion 5.1, suggests that π∗ requires O(HeffW ) timesteps to

Figure 8: The hard
instance in Theorem
5.2. Randomization
of `∗ forces hierarchy-
oblivious learners to ex-
plore the whole tree.

reach Z∗ with high probability, which is much smaller than
H by assumption.6

5.2 Meta-test Regret Guarantee

Assumption 5.1 allows us to consider a “high-level” MDP
wherein entrances serve as abstracted states and exits are
abstracted actions, which can be solved by any arbitrarily
chosen RL algorithm. We formalize this in Section B. In
our case, using regret bounds on EULER by Zanette and
Brunskill (2019), we can obtain the following regret bound:
Theorem 5.1. We work under Assumptions 5.1 and 5.2.
Furthermore, assume that the learner has access to an ε-
suboptimal hierarchy oracle as guaranteed by Theorem 4.1,
where ε < η. Then, a learner that applies the procedure in
Section B.2 toMTg, with high probability, incurs regret

Regret(N) .
√
H2HeffWLMN +Nεsubopt,

where

εsubopt := ζH + (1 +Heff + κ
√
Heff)ε

+
[
γHeff + κ(1 + γ)

√
Heff

]
W.

We note that the hierarchical suboptimality term εsubopt

decomposes into three terms corresponding to errors from
temporal abstraction, meta-training, and noise, respectively.
Furthermore, the irreducible hierarchical suboptimality (i.e.
when ε = 0) tends to zero as γ, κ, ζ → 0. In particular,
environments with deterministic dynamics within clusters
do not incur hierarchical suboptimality. We prove this regret
bound in Section B.

When does knowing the hierarchy help? Consider the
binary tree environment in Figure 8. All of the leaves take
the learner to a state with exits with probability 1/2, with the
exception of a special leaf `∗ that does so with probability
(1/2) + ε. Rewards can only be collected upon performing
one of the exits (blue/purple). To achieve low regret, a
learner has to quickly identity `∗ and the correct exit.

We consider the set of task distributions indexed by `∗ that
randomize the reward-granting exit. Knowing the hierarchy

6In practice, the task horizon is often much longer than what is
needed to solve the task, which is consistent with this assumption.
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amounts to knowing `∗, reducing the exploration problem to
determining the correct exit. However, a hierarchy-oblivious
learner needs to explore the tree, leading to regret that is ex-
ponential in the tree depth. Formally, we have the following
result:

Theorem 5.2. There exists a family of task distributions
such that any hierarchy-oblivious learner incurs expected
regret lower bounded by Ω(2W/2

√
H2N) on at least one

task distribution. In contrast, a learner with access to a
0-suboptimal7 hierarchy oracle incurs regret bounded by
O(
√
H2N) with high probability, over any sampled task

from any of the task distributions.

We prove this result in Section B.4.3, using a result by
Domingues et al. (2021) which shows that the set of binary
tree subproblems above form a set of minimax instances
for any RL algorithm. This separation result suggests that
hierarchy-based learners gain in situations where temporally
extended exploratory behaviors are needed. This corrobo-
rates the experimental findings of Nachum et al. (2019b),
which attributes the benefits of hierarchical RL to improved
exploration.

6 RELATED WORK

Hierarchical reinforcement learning has been studied ex-
tensively (Sutton et al., 1999; Parr and Russell, 1998; Di-
etterich et al., 1998; Vezhnevets et al., 2017). An early
approach formalizing the use of hierarchies in RL is the op-
tions framework (Sutton et al., 1999), which fixes a finite set
of available skills/options. Since then, a large body of work
has focused on designing methods for learning and adapt-
ing these options during the learning process (McGovern
and Barto, 2001; Menache et al., 2002; Şimşek and Barto,
2004; Mann et al., 2014). Of particular note is the work
of Frans et al. (2018), which learns a finite set of neural
network sub-skills in the meta-RL setting. On the other
hand, Laplacian-based option discovery in Machado et al.
(2017, 2018) defines options using proto-value functions
(Mahadevan, 2005), which captures global features of the
state space. In more theoretical directions, Fruit and Lazaric
(2017); Brunskill and Li (2014) provide regret and sample
complexity bounds, respectively, for learning with options.
In particular, Brunskill and Li (2014) first prove a combined
sample complexity bound on the meta-learning process, as-
suming the existence of a small option set that is sufficient
for near-optimal behavior, and subsequently propose an op-
tion discovery algorithm inspired by their PAC bound. In
contrast, our work starts with a natural but specific notion of
shared structure, which we show can be leveraged for prov-
able option learning, and provide conditions quantifying
their usefulness for downstream tasks. Additionally, Mann

7We use a 0-suboptimal hierarchy oracle for the separation
result for ease of presentation.

and Mannor (2014) demonstrate that options can improve
the convergence rate of approximate value iteration.

More recent empirical works have studied hierarchy learning
beyond the options framework in a wide variety of settings.
Nachum et al. (2019a); Levy et al. (2018) provide algo-
rithms for learning hierarchies based on goal-conditioned
policies, reducing the learning problem to choosing sub-
goals. Nachum et al. (2018) considers a more general case
when learned representations are used to map states to goals.
Other works such as Co-Reyes et al. (2018); Eysenbach et al.
(2018); Sharma et al. (2019) provide intrinsic objectives for
learning hierarchies without rewards.

Closely related is the work of Wen et al. (2020), which
introduces a similar latent structure on the state space, and
provides sufficient conditions ensuring sample-efficient and
tractable hierarchy-based learning. However, their works
hinges on prior knowledge of the latent structure, while a
major focus of our work is discovering the structure itself
from interactions.

Several heuristics have been proposed in prior work for
the detection of useful bottlenecks in MDPs (McGovern
and Barto, 2001; Menache et al., 2002; Şimşek and Barto,
2004; Şimşek et al., 2005). In particular, Şimşek and Barto
(2004) define the notion of access states, states which max-
imize short-term novelty of future states. Although exits
as defined in Definition 3.2 meet this heuristic, we note
that cluster interiors may also contain bottlenecks also meet
these conditions. In contrast, our algorithm would not de-
tect these bottlenecks; however, this behavior is desirable as
such bottlenecks are unimportant for meta-learning.

7 CONCLUSION

We have demonstrated that certain natural coverage con-
ditions allow for learning useful hierarchies from tasks.
Interesting future directions include analyzing hierarchy-
based multi-task RL and extending the ideas in this work to
continuous state and/or action spaces. Another interesting
direction would be to provide sample-efficient algorithms
for learning additional structures that can be imposed on the
learned hierarchy, such as cluster equivalences as in Wen
et al. (2020).
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retical analyses of existing algorithms, we do not foresee
any negative social impacts arising from the misuse of the
paper’s contribution.
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A META-TRAINING PROOFS

A.1 Algorithm

In this section, we provide the complete algorithm for exit detection with optimistic imagination. For readability, we separate
the three phases.

A.1.1 Phase I: Task-Specific Learning

Algorithm 3 Exit Detection, Phase I: Task-Specific Learning

Require: TasksM1, . . . ,MT , NUCBVI UCBVI iterations, NTS policy samples, threshold NTS
thresh

1: for all t ∈ [T ] do
2: Dt ← ∅.
3: Obtain policy set Φt ← UCBVI(Mt, NUCBVI).
4: for all n = 1, . . . , NTS do
5: Sample π ∼ Unif (Φt).
6: Play π inMt, add all (s, a, s′) pairs to Dt, get sum of rewards V̂ (n).
7: end for
8: Form estimated dynamics model P̂t from Dt.

9: Form optimal value estimate V̂t ←
1

NTS

NTS∑
n=1

V̂ (n)

10: Nt(s, a)← |{(x, u, x′) ∈ Dt | x = s, u = a}|.
11: for all (s, a) ∈ S ×A do
12: if Nt(s, a) < NTS

thresh then
13: P̂t(· | s, a)← 0.
14: end if
15: end for
16: end for
output dynamics estimates P̂t and value estimates V̂t for t ∈ [T ].

A.1.2 Phase II: Learning Reference Dynamics

Algorithm 4 Exit Detection, Phase II: Learning Reference Dynamics

Require: MDPM, NRF
EULER Euler iterations, NRF policy samples

1: Set policy class Ψ← ∅ and dataset DRF ← ∅
2: for all g ∈ S do
3: Create MDPMg fromM with horizon 2H and P (	 | g, a) = 1 for any a.
4: rg(s, a)← 1 [s = g] for any (s, a) ∈ (S ∪ {	})×A.
5: Φg ← EULER(Mg, rg, N

EULER
RF )

6: πh(· | g)← Unif (A) for π ∈ Φg , h ∈ [H].
7: Add policies in Φg to Ψ.
8: end for
9: for all n = 1, . . . , NRF do

10: Sample π ∼ Unif (Ψ).
11: Play π inM and obtain trajectory (s0, a0, . . . , s2H).
12: Sample h ∼ Unif ([2H]) and add (sh, ah, sh+1) to DRF.
13: end for
output reference dynamics P̂0 formed from DRF.

A.1.3 Phase III: Exit Detection
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Algorithm 5 Exit Detection, Phase III: Exit Detection

Require: NED, N
ED
thresh, N

EL
EULER, NEL policy samples

1: Initialize ISEXIT[s, a]← FALSE for (s, a) ∈ S ×A.
2: while True do
3: for all t ∈ [T ] do
4: P̂0(· | s, a)← P̂t(· | s, a) for (s, a) ∈ S ×A with ISEXIT[s, a].
5: Ṽ t, Q̃t ← OPTIMGVI(P̂0, (P̂1, . . . , P̂T ), rt, ISEXIT)
6: if Ṽ t0 (s0)− V̂t > (2/3)ζ then
7: Run greedy policy with respect to Q̃ NED times and form estimate P̂ for (s, a) pairs visited at least N ′thresh

times.
8: for all (s, a) ∈ S ×A with P̂(· | s, a) 6≡ 0 do
9: if (∃t ∈ [T ]) P̂t(· | s, a) 6≡ 0 and

∥∥∥P̂(· | s, a)− P̂t(· | s, a)
∥∥∥

TV
> β/2 then

10: ISEXIT[s, a]← True
11: P̂t(· | s, a)← LEARN-EXIT(Mt, (s, a), NEL

EULER, NEL) for all t ∈ [T ]
12: end if
13: end for
14: end if
15: if no new exits found after passing through T tasks since last found exit then
16: Break loop
17: end if
18: end for
19: end while
output ISEXIT

Algorithm 6 Borrowing Optimistically Across Tasks during Value Iteration (BOAT-VI)

Require: Reference dynamics P̂0, Estimated dynamics (P̂1, . . . , P̂T ), Reward function r, Table ISEXIT[S ×A]
1: V̂H(s)← 0 for s ∈ S.
2: for all h = H − 1, . . . , 0 do
3: for all (s, a) ∈ S ×A do
4: if ISEXIT[s, a] then
5: Q̂h(s, a)← r(s, a) + P̂0V̂h+1(s, a)
6: else
7: Q̂h(s, a)← r(s, a) + maxt=0,...,T P̂tV̂h+1(s, a)
8: end if
9: end for

10: V̂h(s)← maxa Q̂h(s, a) for s ∈ S.
11: end for
output V̂ , Q̂

Algorithm 7 Exit-learning subroutine

Require: MDPM, exit (s, a), NEL
EULER EULER iterations, NEL policy samples

1: Create MDP M̃ fromM so P (	 | s, a) = 1.
2: r̃(s′, a′)← 1 [(s′, a′) = (s, a)] for any (s′, a′) ∈ (S ∪ {	})×A.
3: Ψ← EULER(M̃, r̃, NEL

EULER)
4: for all n = 1, . . . , NEL do
5: Sample π ∼ Unif (Ψ).
6: Play π inM and obtain trajectory (s0, a0, . . . , sH).
7: end for

output reference dynamics P̂(· | s, a) formed from all trajectory data.
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A.2 Subroutines from Prior Work

In order to keep our work self-contained, we also include the following subroutines from prior work:

Algorithm 8 Computing Q-values with bonuses for UCBVI from Azar et al. (2017).

Require: Bonus algorithm bonus, DataH
1: Compute, for all (x, a, y) ∈ S ×A× S,
2: Nk(x, a, y) =

∑
(x′,a′,y′)∈H I(x′ = x, a′ = a, y′ = y)

3: Nk(x, a) =
∑
y∈S Nk(x, a, y)

4: N ′k,h(x, a) =
∑

(xi,h,ai,h,xi,h+1)∈H I(xi,h = x, ai,h = a)

5: Let K = {(x, a) ∈ S ×A, Nk(x, a) > 0}
6: Estimate P̂k(y|x, a) = Nk(x,a,y)

Nk(x,a) for all (x, a) ∈ K
7: Initialize Vk,H+1(x) = 0 for all (x, a) ∈ S ×A
8: for H = H,H − 1, . . . , 1 do
9: for (X, a) ∈ S ×A do

10: if (x, a) ∈ K then
11: bk,h(x, a) = bonus(P̂k, Vk,h+1, Nk, N

′
k,h)

12: Qk,h(x, a) = min
(
Qk−1,h(x, a), H,

13: R(x, a) + (P̂kVk,h+1)(x, a) + bk,h(x, a)
)

14: else
15: Qk,h(x, a) = H
16: end if
17: Vk,h(x) = maxa∈AQk,h(x, a)
18: end for
19: end for
output Q-values Qk,h

Algorithm 9 UCBVI from Azar et al. (2017)

Initialize dataH = ∅
for episode k = 1, 2, . . . ,K do

Compute Qk,h via Algorithm 8
for step h = 1, . . . ,H do

Take action ak,h = arg maxaQk,h(xk,h, a)
UpdateH = H ∪ (xk,h, ak,h, xk,h+1)

end for
end for
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Algorithm 10 EULER from Zanette and Brunskill (2019).

1: Input: δ′ = 1
7δ, brk(s, a) =

√
2V̂arR(s,a) ln 4SAT

δ′
nk(s,a) +

7 ln 4SAT
δ′

3(nk(s,a)−1) , φ(s, a) =

√
2V̂arp̂k(s,a)(V

π̃k
t+1k) ln 4SAT

δ′
nk(s,a) +

H ln 4SAT
δ′

3(nk(s,a)−1) ,

Bp = H
√

2 ln (4SAT )
δ′ , Bv =

√
2 ln (4SAT )

δ′ , J = H ln (4SAT )/δ′

3 .
2: for k = 1, 2, . . . do
3: for t = H,H − 1, . . . , 1 do
4: for s ∈ S do
5: for a ∈ A do
6: p̂ = psum(·,s,a)

nk(s,a)

7: bpvk = φ(p̂(s, a), V t+1) + 1√
n(s,a)

(
4J+Bp√
nk(s,a)

+Bv‖V t+1 − V t+1‖2,p̂
)

8: Q(a) = min{H − t, r̂k(s, π̃k(s, t)) + brk(s, a) + p̂>V t+1 + bpvk }
9: end for

10: π̃k(s, t) = argmaxaQ(a)
11: V t(s) = Q(π̃k(s, t))

12: bpvk = φ(p̂(s, π̃k(s, t)), V t+1) + 1√
n(s,π̃k(s,t))

(
4J+Bp√

nk(s,π̃k(s,t))
+Bv‖V t+1 − V t+1‖2,p̂

)
13: V t(s) = max{0, r̂k(s, π̃k(s, t))− brk(s, π̃k(s, t)) + p̂>V t+1 − b

pv
k }

14: end for
15: end for
16: Evaluate policy π̃k and update MLE estimates p̂(·, ·) and r̂(·, ·)
17: end for
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A.3 Other Assumptions and Relevant Definitions

The remaining assumptions quantify the reachability of certain states. First, we have the following assumption, which in
effect ensures that one can reach most states regardless of exit configuration in the meta-training tasks:

Assumption A.1 (Non-limiting exit configurations). LetM = (S,A,P, H) be any reward-free environment with time-
varying dynamics

P(h)(· | s, a) = Pt(h,s,a)(· | s, a) for some t : [H]× S ×A → [T ].

Then, there exists C > 1 such that for any s and t ∈ [T ],

max
π

PM(s ∈ τπ) ≤ C max
π

PMt(s ∈ τπ)

Intuitively, the assumption states that the reachability of a state inMt would not be significantly improved even under an
optimal configuration of the exits. Therefore, running reward-free RL on one of the meta-training tasks is sufficient for
learning all non-exit (s, a) pairs.

Remark A.1. We note that Assumption A.1 is restrictive in that it requires that every state be roughly reachable in any of
the meta-training MDPs. This may not hold in practice, e.g., consider a four-room environment where one of the rooms
is blocked off for one of the tasks. However, this can be weakened to requiring that s be reachable in at least one of N
arbitrarily chosen meta-training tasks. This would require that the algorithm run Phase II over N meta-training tasks, which
results in a benign increase in the query complexity of the algorithm, so long as N is a constant much smaller than T . We
focus on the N = 1 case for ease of presentation. y

To simplify the presentation of the rest of the assumptions, we recall the following definition of δ-significance in Jin et al.
(2020):

Definition A.1. A state s is δ-significant if maxπ P (s ∈ τπ) ≥ δ. Additionally, we say that (s, a) is δ-significant if s is
δ-significant. �

Note that we have modified the definition to remove the dependence on the timestep h ∈ [H]. This is because the dynamics
are stationary, and thus it does not matter when s is visited in a trajectory.

Note that Assumption A.1 implies that a reachable entrance in one task is reachable in all tasks (i.e., is significant in the
sense of Definition A.1). Therefore, we can quantify the minimum level of significance:8

Definition A.2 (ρ-significant entrances). For any s ∈ Ent(S), s is ρ-significant for any task. �

Finally, we want to quantify the reachability of every exit from any entrance in the same cluster, assuming that it is indeed
reachable:

Definition A.3 (In-cluster exit reachability). Fix any cluster Z, entry s ∈ Ent(Z), and exit (g, a) ∈ Ext(Z). Consider the
reward-free environmentMt|Z = (Z,A,Pt|Z , H), where Pt|Z is the restriction of Pt to Z ×A and the starting state is s.
Then, if g has nonzero significance inMt|Z for any t ∈ [T ], then it is ε0-significant. �

The requirement that the assumption hold for any t ∈ [T ] is without loss of generality since non-exit dynamics do not
change.

A.4 Verifying Exit Detection

In this section, we demonstrate that the algorithm in Section A.1 can successfully discover Ext(C) with high probability.
Formally, we have the following result:

Theorem A.1 (Provable exit detection). Assume we run the algorithm in Section A.1 with the parameter choices given in
Table 1. Then, with probability at least 1− p, the algorithm returns an array ISEXIT satisfying:

{(s, a) | ISEXIT[s, a]} = Ext(C).

To prove this result, we proceed with a phase-by-phase analysis of the algorithm in Section A.1, which we then compile into
proof of the desired result.

8One can weaken this assumption in a way that is compatible with the weakened form of Assumption A.1.
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Parameter Value

NUCBVI
H2SA

min(α, ζ)2
log2 HSAT

p

NTS
thresh Smax

(
H4

ζ2
,

1

β2

)
log

SAHT

pαmin(β, ζ)

NTS Smax

(
H5

αζ2
,
H

αβ2

)
log

SAHT

pαmin(β, ζ)
+

H2

min(α, ζ)2
log

SAT

p

NRF
EULER

H2S4A

min(ρmin(ε, ε0), ζ/C)
log3 HSA

p

NRF
H5S2A

min(ρmin(ε, ε0)2, ζ2/C)
log

A

p

NED
thresh

S

β2
log

SAH

pζβ

NED
HKS

ζβ2
log

SAH

pζβ
+
H2K2

ζ2
log

K

p

NEL
thresh Lmax

(
H4

ζ2
,

1

β2

)
log

CSAHT

pαmin(β, ζ)

NEL
EULER

CH3S2A

α
log3

(
HSAT

p

)

NEL Lmax

(
CH5

αζ2
,
CH

αβ2

)
log

CSAHT

pαmin(β, ζ)
+
C2H2

α2
log

SAT

p

Table 1: Table of parameters for the results in Theorem A.1. Since K ≤ SA and L ≤ S, the agent does not need to know K
or L in advance, at the expense of a worse sample complexity bound.

A.4.1 Phase I Analysis

First, we prove that during Phase I, Algorithm 3 sufficiently visits all relevant exits and that all value estimates are sufficiently
close. Formally, we have the following result:

Proposition A.1. Set

NTS
thresh = Ω

[
Smax

(
H4

ζ2
,

1

β2

)
log

SAHTNTS

p

]
,

and consider the following procedure applied to one of the meta-training tasksMt:

1. UCBVI is run for

NUCBVI = Ω

(
H2SA

min(α, ζ)2
log2 HSAT

p

)
iterations, generating policies π(t)

1 , . . . , π
(t)
NUCBVI

.
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2. The learner uniformly samples

NTS = Ω

(
H

α
NTS

thresh +
H2

min(α, ζ)2
log

TK

p

)
policies from the previous step, runs each policy in Mt, and obtains a dataset of transitions Dt and returns
V̂ (1), . . . , V̂ (NTS).

Then, with probability at least 1− p/3T ,

(a) We have the regret bound

V ∗0 (s0)− 1

NUCBVI

NUCBVI∑
k=1

V
π
(t)
k

0 (s0) <
ζ

6
.

(b) The set of obtained returns satisfy ∣∣∣∣∣ 1

NTS

NTS∑
i=1

V̂ (i) − 1

N

NUCBVI∑
k=1

V
π
(t)
k

0 (s0)

∣∣∣∣∣ < ζ

6
.

(c) If (s, a) is α-important forMt, then Nt(s, a) ≥ Nthresh.

(d) For every (s, a) pair such that Nt(s, a) ≥ Nthresh,

sup
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ < min

(
ζ

24H
,
βH

2

)
.

To prove the above result, we first recall the following regret bound on UCBVI, as proven by Azar et al. (2017):

Lemma A.1 (UCBVI regret bound). For sufficiently large N , with probability at least 1− p/6,

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
H2SA

N
log

(
HSAN

p

)
.

As we will see later on, with our choice of NUCBVI, we obtain the desired regret bound in (a). Additionally, by Hoeffding’s
inequality, the average of NTS returns concentrates around the desired quantity with high probability, proving (b). Thus,
all that remains is ensuring that every α-important exit is sufficiently visited, and thus their dynamics are sufficiently
well-estimated.

Recall from the main text that the key step is demonstrating that a near-optimal policy for a task must visit its α-important
states with non-negligible probability:

Lemma A.2. Let (s, a) be α-important forM, and let π be an ε-suboptimal policy for ε < α. Then,

P ((s, a) ∈ τπ) >
1

H
(α− ε).

Proof. By α-importance,

α ≤ VM,∗
0 (s0)− VM

\(s,a),∗
0 (s0) ≤

[
VM,∗

0 (s0)− VM,π
0 (s0)

]
+
[
VM,π

0 (s0)− VM
\(s,a),∗

0 (s0)
]

≤
[
VM,π

0 (s0)− VM
\(s,a),∗

0 (s0)
]

+ ε.

Therefore, by applying Lemma A.17 and noting that {∆ ∩ τπ 6= ∅} = {(s, a) ∈ τπ}, we obtain the desired result.

Through the prior result, we can relate the UCBVI regret bound to the probability that a randomly chosen UCBVI-generated
policy visits an α-important state:
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Lemma A.3. Let (s, a) be α-important forM. Assume that UCBVI, when run for

NUCBVI = Ω

(
H2SA

α2
log2 HSA

p

)
iterations, generates policies π1, . . . , πN . If we sample π uniformly from these policies and let τ be the (random) trajectory
generated by this randomly selected policy, then

P ((s, a) ∈ τ) >
α

2H
,

conditioned on the high probability event in Lemma A.1.

Proof. By Lemma A.2, for any fixed π, we can write

P ((s, a) ∈ τπ) ≥ 1

H
(α− [V ∗0 (s0)− V π0 (s0)])+,

where x+ = x1 [x > 0]. Then, since π is chosen randomly from the policies generated by UCBVI,

P ((s, a) ∈ τ) =
1

N

N∑
k=1

P ((s, a) ∈ τπk) ≥ 1

HN

N∑
k=1

(α− [V ∗0 (s0)− V πk0 (s0)])+

≥ 1

H

[
α− 1

N

N∑
k=1

V ∗0 (s0)− V πk0 (s0)

]
.

Therefore, by applying the regret bound in Lemma A.1 and the choice of N , we find that

P ((s, a) ∈ τ) >
α

2H
.

With all of the above intermediate results, we can now prove Proposition A.1.

Proof of Proposition A.1. Throughout this proof, we condition on the high-probability event in Lemma A.1, instantiated to
occur with probability at least p/12T .

(a) By the choice of NUCBVI,

NUCBVI &
H2SA

ζ2
log2 HSAT

p
,

and thus, we obtain the desired bound by plugging this value into the regret bound provided by Lemma A.1.

(b) Note that (V̂ (i)) are i.i.d., bounded in [0, H], and for any i ∈ [NTS],

E
[

ˆV (i)
]

=
1

N

N∑
k=1

V
π
(t)
k

0 (s0).

Therefore, by applying Hoeffding’s inequality, with probability at least 1− p/12T ,∣∣∣∣∣ 1

NTS

NTS∑
i=1

V̂ (i) − 1

NUCBVI

NUCBVI∑
k=1

V
π
(t)
k

0 (s0)

∣∣∣∣∣ .
√

H2

NTS
log

T

p

The result immediately follows from the fact that NTS & (H2/ζ2) log(T/p).

(c) The result simply follows from Lemma A.16 instantiated with failure probability 1− p/12T , together with the choice
of NTS

thresh.

(d) With the choice of NUCBVI, the conclusion of Lemma A.1 can be made to hold with probability at least 1− p/24T .
Fix an α-important exit (s, a) forMt, so that the probability that (s, a) is visited by the procedure is at least α/2H .
By Lemma A.15, sampling NTS trajectories is sufficient to ensure that Nt(s, a) ≥ NTS

thresh with probability at least
1− p/24TK. Therefore, by performing a union bound over the set of α-important exits (which contains at most K
elements), Nt(s, a) ≥ NTS

thresh for any α-important exit with probability at least 1− p/24T . Thus, overall, this event
occurs with probability at least 1− p/12T .

Since each part fails with probability at most p/12T , the overall failure probability is at most p/3T , the desired result.
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A.4.2 Phase II Analysis

In this section, we provide guarantees on the dataset DRF obtained by performing reward-free RL in Algorithm 4. Formally,
we have the following high-probability result:

Proposition A.2. For any δ > 0 and failure probability p, if Algorithm 4 is run with parameters

NRF
EULER = O

(
H2S2A

δ
log3 HSA

p

)
NRF = O

[
max

(
C

ζ2
,

1

ρmin(ε, ε0)2

)
H5S2A log

A

p

].
Then, with probability at least 1− p/3:

(a) The distribution µ generating each sample in DRF satisfies

s ∈ S is δ-significant inM1(2H) =⇒ max
a,π

P ((s, a) ∈ τπ)

µ(s, a)
≤ 4SAH.

(b) The estimated dynamics model P̂0 satisfies

max
f :S→[0,H]

max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂− P)f
]

(s, a)
∣∣∣2 1 [a = ν(s)]

]
. min

(
ζ2

4 · 242C
,
ρmin(ε, ε0)2

16

)
1

H3SA
.

The details of the proof of Proposition A.2 follow that of Jin et al. (2020), which we provide here for completeness. First,
we adapt the regret bound from Zanette and Brunskill (2019) for any MDP and reward function used in Algorithm 4.

Lemma A.4. For any g ∈ S, running EULER inMg for N iterations returns N policies π1, . . . , πN satisfying the regret
bound

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
4V ∗0 (s0)

SA

N
log

SAHN

p
+
S2AH2

N
log3 SAHN

p

with probability at least 1− p.

Proof. Observe that

1

NH

N∑
k=1

Eπk

(H−1∑
h=1

r(sh, ah)− V πk0 (s0)

)2
∣∣∣∣∣∣ s0


≤ 2

NH

N∑
k=1

Eπk

(H−1∑
h=1

r(sh, ah)

)2

+ (V πk0 (s0))
2

∣∣∣∣∣∣ s0


≤ 2

NH

N∑
k=1

Eπk

[
H−1∑
h=1

r(sh, ah) + V πk0 (s0)

∣∣∣∣∣ s0

]

≤ 4

H
V ∗0 (s0).

Therefore, by applying the regret bounds from Zanette and Brunskill (2019), we obtain the regret bound

V ∗0 (s0)− 1

N

N∑
k=1

V πk0 (s0) .

√
4V ∗0 (s0)

SA

N
log

SAHN

p
+
S2A2H2

N
log3 SAHN

p

with probability at least 1− p.

With the regret bound above, we now proceed to prove Proposition A.2.
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Proof of Proposition A.2. (a) Fix a δ-significant g ∈ S . Note that for rg , V π0 (s0) = P (g ∈ τπ) for any policy π. Therefore,
via the regret bound from Lemma A.4 and the choice of NRF

EULER, we obtain

max
π

P (g ∈ τπ)− 1

NRF
EULER

NRF
EULER∑
k=1

P (g ∈ τπ) ≤ 1

2
max
π

P (g ∈ τπ)

=⇒ max
π

P (g ∈ τπ) ≤ 2

NEULER
RF

∑
π∈Φg

P (g ∈ τπ)

with probability at least 1− p/2S. Now, since π(· | g) ∼ Unif (A), we have that for any a,

max
π

P ((g, a) ∈ τπ) ≤ 2A

NEULER
RF

∑
π∈Φg

P ((g, a) ∈ τπ).

Finally, by applying the same argument above across all δ-significant g ∈ S, we have that for any (g, a),

max
π

P ((g, a) ∈ τπ) ≤
∑
g∈S

max
a,π

P ((g, a) ∈ τπ) ≤ 2SA

[
1

SNEULER
RF

∑
π∈Ψ

P ((g, a) ∈ τπ)

]

with probability at least 1− p/2. To complete the proof of (a), observe that

1

SNEULER
RF

∑
π∈Ψ

1

2H
P ((g, a) ∈ τπ) ≤ µ(s, a) =⇒ max

s,a,π

P ((s, a) ∈ τπ)

µ(s, a)
≤ 4SAH,

since conditioned on (g, a) ∈ τπ , the probability that (g, a) is sampled is at least 1/2H .

(b) The result follows by following the same proof of Lemma C.2 in Jin et al. (2020), with failure probability p/2. Note that
the dynamics are stationary, and thus we do not need to perform a union bound over the time step h ∈ [H].

A.4.3 Phase III Analysis

Having analyzed the previous two phases, we now show that Algorithm 5 successfully finds all exits during Phase III. As
part of this, we prove the following guarantee:

Proposition A.3. Assume that Algorithm 5 is at Line 5, having just arrived at this step for the first time, or after finding a
new exit. Let E = {(s, a) | ISEXIT[s, a]}. We assume:

(a) E ⊆ Ext(C).

(b) The high-probability events in Proposition A.1 (for any t ∈ [T ]) and Proposition A.2 (for δ ≤ ζ/24CH2S) both hold,
providing estimators P̂0, P̂1, . . . , P̂T .

(c) For every (s, a) ∈ E and t ∈ [T ], we have access to an estimator P̂t(· | s, a) for Pt(· | s, a) satisfying

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
.

Then, if E = Ext(C), the algorithm terminates after passing through T tasks. Otherwise, if E 6= Ext(C), the following
events hold simultaneously with probability at least 1− p/3K:

(a) For one of the next T tasks that the algorithm inspects, there exists at least one t ∈ [T ] such that∣∣∣Ṽ t − V̂t∣∣∣ > 2

3
ζ.

(b) For the task in (a), running Lines 5–5 finds at least one (s, a) ∈ Ext(C) \ E (and only (s, a) pairs in this set), and
learns an estimator P̂t(· | s, a) for Pt(· | s, a) satisfying

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
.
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To prove the above result, we will consider the following special set of MDPs:

Definition A.4 (Imaginable MDPs). Fix a taskMt. Furthermore, let E ⊆ Ext(C). For any function I : S ×A× [H]→
{0, . . . , T}, we can construct an associated MDPMI = (S,A,PI , rt, H) via

P(h)
I (· | s, a) = PI(s,a,h)(· | s, a).

We define the set of imaginable MDPs to be the set Mt(E) to be the set of MDPs generated by any I satisfying

I(s, a, h) ∈

{
{t} (s, a) ∈ E
{0} ∪

{
k
∣∣ Nk(s, a) ≥ Nthresh

}
otherwise

. �

Informally, Mt(E) is the set of obtainable MDPs by borrowing dynamics for (s, a) pairs that are not known to be exits.
This set is of particular interest in our analysis, since BOAT-VI performs a maximization over the MDPs in this set:

Lemma A.5 (Optimism). Assume the preconditions of Proposition A.3. Over the course of running Algorithm 6, the
algorithm implicitly defines an index function I : S ×A× [H]→ {0, . . . , T}. This function I satisfiesMI ∈Mt(E), and
MI is a maximizer of

max
M∈Mt(E)

max
π

V̂M,π
0 (s0).

Proof. To see thatMI ∈Mt(E), note that if (s, a) ∈ E, then Ih(s, a) = t for any h ∈ [H]. Otherwise, note that although
the maximum is over all indices, P̂k(s′ | s, a) = 0 for any s′ if Nt(s, a) < Nthresh. Therefore, since the estimated value
function is always positive, the maximum is effectively only over any k with Nk(s, a) ≥ 0. Thus,MI ∈Mt(E).

Now, we prove thatMI = M is a maximizer of the estimated value function, which we prove by induction. Let I ′ be
another index function satisfyingM′ =MI′ ∈Mt(E). Clearly, V̂M,∗

H (s) = 0 ≤ V̂M
′,∗

H (s). Then, for any h ∈ [H] and
(s, a),

Q̂M,∗
h (s, a) = r(s, a) + P̂I(s,a,h)V̂

M,∗
h+1 (s, a)

≥ r(s, a) + P̂I′(s,a,h)V̂
M,∗
h+1 (s, a) ≥ r(s, a) + P̂I′(s,a,h)V̂

M′,∗
h+1 (s, a)

= Q̂M
′,∗

h (s, a),

where the first inequality follows from the definition of I, and the second follows from the inductive hypothesis. Therefore,
for any s,

V̂M,∗
h (s) = max

a
Q̂M,∗
h (s, a) ≥ max

a
Q̂M

′,∗
h (s, a) = V̂M

′,∗
h (s)

Thus, by induction, V̂M,∗
0 (s0) ≥ V̂M

′,∗
0 (s0). Since the argument applies for any I ′, we have shown the desired optimality

result.

Note that M̄ is contained in Mt(E) via our assumed preconditions, suggesting that the BOAT-VI should find an MDP with
a sufficiently over-optimistic value. However, the maximization above makes use of estimated dynamics, and thus we need
to prove that every MDP in Mt(E) is sufficiently well-estimated. We now show that the preconditions of Proposition A.3
are sufficient for estimation. To this end, we recall the performance difference lemma:

Lemma A.6 (Performance Difference). Fix two MDPsM = (S,A, r,P, H) andM′ = (S,A, r,P′, H). Then, for any
policy π,

VM
′,π

0 (s0)− VM,π
0 (s0) = EM,π

[
H−1∑
h=0

[(P′h − Ph)V̂h+1](sh, ah)

∣∣∣∣∣ s0

]
.

We now present the estimation result:

Lemma A.7. For any π and t ∈ [T ], let VM,π
0 (s0) be the value of a policy π inM∈Mt(E), and V̂M,π

0 (s0) an estimate
using available quantities from the preconditions of Proposition A.3. Then,

sup
t∈[T ]

sup
π

M∈Mt(E)

∣∣∣V̂M,π
0 (s0)− VM,π

0 (s0)
∣∣∣ < ζ

6
.
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Proof. Fix a t ∈ [T ],M∈Mt(E) and policy π, with associated index function I. Lemma A.6 implies that

∣∣∣V̂M,π
0 (s0)− VM,π

0 (s0)
∣∣∣ ≤ H−1∑

h=0

EM,π

[∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(sh, ah)

∣∣∣]
≤
H−1∑
h=0

∑
(s,a)

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a).

We now define the following sets:

Uδ = {(s, a) is δ-insignificant forM1}
Bh = {(s, a) | Ih(s, a) 6= 0} \ (E ∪ Uδ)
Rh = {(s, a) | Ih(s, a) = 0} \ Uδ.

Note that Rh is estimated via reference dynamics from Phase II, while Bh is estimated using task-specific dynamics from
Phase I. Then, for a fixed h, we can decompose the inner sum above as∑

(s,a)

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

≤
∑

(s,a)∈E

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(I)

+
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(II)

+
∑

(s,a)∈Bh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(III)

+
∑

(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

︸ ︷︷ ︸
=:(IV)

Note the inequality since E ∩ Uδ is not necessarily disjoint. We now bound the four terms above separately.

Bounding (I): Dynamics Error from Known Exits. We first bound (I), which we note derives from errors in estimating
the dynamics of known exits. Recall that by precondition (c) in Proposition A.3,

sup
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ ζ

24H
.

Therefore,

(I) =
∑

(s,a)∈E

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

=
∑

(s,a)∈E

∣∣∣[(P̂t − Pt)V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H

∑
(s,a)∈E

PM,π
h (s, a)

≤ ζ

24H
.

Bounding (II): Reference Dynamics Error. Note that within Rh, Ph = P0, which we estimate via P̂0. Therefore, we
bound the error resulting from using DRF to estimate P0. This part of the proof follows that of Jin et al. (2020). First, by
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Cauchy-Schwarz,

(II) =
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

=
∑

(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a)

≤

 ∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s, a)

1/2

.

Observe that V̂ πh+1 only depends on π through timesteps h+ 1, . . . ,H − 1. Therefore,∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s, a)

≤ max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s)1 [ν(s) = a] .

By applying Assumption A.1,

PM,π
h (s) ≤ PM(s ∈ τπ) ≤ max

π
PM(s ∈ τπ) ≤ C max

π
PM1(s ∈ τπ)

≤ C max
π

PM1(2H)(s ∈ τπ) ≤ 4CHSAµ(s, a),

where we have applied Assumption 4.1 to move fromM toM1. Substituting into the earlier expression,

max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 PM,π
h (s)1 [ν(s) = a]

≤ 4CHSA max
ν:S→A

∑
(s,a)∈Rh

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]µ(s, a)

≤ 4CHSA max
ν:S→A

∑
s,a

∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]µ(s, a)

= 4CHSA max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂0 − P0)V̂ πh+1

]
(s, a)

∣∣∣2 1 [a = ν(s)]

]
.

Thus, by applying the bound on the right-hand side provided by Proposition A.2,

(II) =
∑

(s,a)∈Rh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Bounding (III): Error from Task-Specific Dynamics. Recall that on Bh, Ph = Pk for some k 6= 0. Thus, (III) is the
error resulting from dynamics estimation in Algorithm 3. By following the same argument as that used to bound (I) and
applying Proposition A.1, we find that∑

(s,a)∈Bh

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Bounding (IV): Error from δ-Insignificance. The remaining set of (s, a) pairs are those such that s is δ-insignificant in
M1. Note that

(IV) =
∑

(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ H

∑
(s,a)∈Uδ

PM,π
h (s, a)

= H
∑
s∈Uδ

PM,π
h (s).
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As a result,

PM,π
h (s) ≤ PM(s ∈ τπ) ≤ max

π
PM(s ∈ τπ) ≤ C max

π
PM1(s ∈ τπ)

≤ Cδ.

By setting δ = ζ/24CH2S when performing reward-free RL in Phase II, we thus find that∑
(s,a)∈Uδ

∣∣∣[(P̂(h) − P(h))V̂ πh+1

]
(s, a)

∣∣∣PM,π
h (s, a) ≤ ζ

24H
.

Concluding. By combining the bounds on (I) through (IV) and summing across h = 0, . . . ,H − 1, we find that∣∣∣V̂0
M,π

(s0)− VM,π
0 (s0)

∣∣∣ ≤ ζ

6
.

Note that this argument simultaneously applies to any suchM; therefore, the desired conclusion follows.

The prior estimation result, together with Assumption 4.1, suggests that BOAT-VI should find an MDP that sufficiently
overestimates the value of the task so long as not all exits have been found. This ensures that the exit-finding routine is
triggered. Formally,

Lemma A.8. Assume the preconditions of Proposition A.3, and that E 6= Ext(C). Additionally, let t ∈ [T ] be the task with
a ζ-overoptimistic value when borrowing exits Ext(C) \ E. Finally, let Ṽ t be the value function returned by Algorithm 6 on
Mt. Then,

Ṽ t0 (s0)− V̂t >
2

3
ζ.

Proof. Throughout this proof, we omit the timestep 0 and the initial state s0 for brevity. DefineM∗ and π∗ to be the
maximizers of

max
M∈Mt(E)

max
π

VM,π.

Furthermore, let M̄ be the imagined MDP guaranteed by Assumption 4.1 on top ofMt, such that V M̄,∗ > VMt,∗ + ζ.
Then, we have that

V̂M,π − VMt,∗ = (V̂M,π − V̂M
∗,π∗)︸ ︷︷ ︸

≥0

+ (V M̂
∗,π∗ − VM

∗,π∗)︸ ︷︷ ︸
>−ζ/6

+ (VM
∗,π∗ − V M̄,π̄)︸ ︷︷ ︸
≥0

+ (V M̄,π̄ − VMt,∗)︸ ︷︷ ︸
>ζ

>
5

6
ζ.

Furthermore,

VMt,∗ − V̂t =

(
VMt,∗ − 1

NUCBVI

NUCBVI∑
k=1

VMt,π
(t)
k

)
︸ ︷︷ ︸

≥0

+

(
1

NUCBVI

NUCBVI∑
k=1

VMt,π
(t)
k − V̂t

)
︸ ︷︷ ︸

≥−ζ/6

,

where the first follows from optimality, while the second follows from Proposition A.2. Thus, putting the two inequalities
together,

Ṽ t − V̂t >
2

3
ζ.

While the prior algorithm ensures that at least one of the tasks will trigger the exit condition, the actual task that triggers the
condition may not be the same one invoked in the proof above. Nevertheless, we can prove that the trigger condition ensures
that the algorithm will find a new exit.
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Lemma A.9. Assume the preconditions of Proposition A.3, and that E 6= Ext(C). Let t ∈ [T ] be a task such that the value
estimate Ṽ t returned by Algorithm 6 satisfies Ṽ t0 (s0)− V̂t > (2/3)ζ, and let π be the optimal policy for Ṽ . Then, there
exists (s, a) ∈ Ext(C) \ E such that for some t′ 6= t,

(a) Nt′(s, a) ≥ NTS
thresh and Pt(· | s, a) 6= Pt′(· | s, a).

(b) PMt((s, a) ∈ τπ) > ζ/6KH .

Proof. LetM be the implicit MDP defined by Algorithm 6 in the process of computing Ṽ t. We will prove a value gap
betweenM andMt, which implies that π must visit state-action pairs with imagined dynamics.

Note that

VM,π
0 (s0)− VMt,∗

0 (s0) =
[
VM,π

0 (s0)− Ṽ t0 (s0)
]

︸ ︷︷ ︸
≥−ζ/6

+
[
Ṽ t0 (s0)− V̂t

]
︸ ︷︷ ︸
≥(2/3)ζ

+

[
V̂t −

1

NUCBVI

NUCBVI∑
k=1

V
Mt,π

(t)
k

0 (s0)

]
︸ ︷︷ ︸

≥−ζ/6

+

[
1

NUCBVI

NUCBVI∑
k=1

V
Mt,π

(t)
k

0 (s0)− VMt,∗
0 (s0)

]
︸ ︷︷ ︸

≥−ζ/6

,

where the first inequality comes from Lemma A.7 and the last two inequalities come from Proposition A.1. Thus,
VM,π

0 (s0)− VMt,∗
0 (s0) ≥ ζ/6.

We now leverage this value gap to show that π must use some exit (s, a) whose dynamics in M have been modified
fromMt with some probability. Formally, define the set ∆ =

{
(s, a, h)

∣∣ Pt(· | s, a) 6= PMh (· | s, a)
}

. By construction,
∆ ⊆ Ext(C)× [H], and for any (s, a, h) ∈ ∆, there exists t′ such that Nt′(s, a) ≥ NTS

thresh and Pt′(· | s, a) = PMh (· | s, a).
Furthermore, ∆ must be non-empty, as otherwise, Pt = PMh for all h, and thus VM,π

0 (s0) ≤ VMt,∗
0 (s0), a contradiction.

Therefore, by applying Lemma A.17, we find that

ζ

6H
< PMt(τπ ∩∆ 6= ∅) ≤

∑
{(s,a) | (s,a,h)∈∆}

PMt((s, a) ∈ τπ),

which implies the desired result, as {(s, a) | (s, a, h) ∈ ∆} has at most K elements.

Because of Lemma A.9, we simply need to run π enough times and threshold at the number of samples needed to reliably
determine which (s, a) pairs have an O(β) change in TV distance between tasks.

Lemma A.10. We work in the setting of Lemma A.9. Set

NED
thresh = Ω

(
S

β2
log

SAHNED

p

)
and NED = Ω

(
HK

ζ
NED

thresh +
H2K2

ζ2
log

K

p

)
.

Then, if we execute π withinMt NED and let N(s, a) be the number of times that (s, a) is played in this process, then with
probability at least 1− p/6K, the following hold:

(a) For the (s, a) pair and task t′ in Lemma A.9, N(s, a) ≥ NED
thresh and∥∥∥P̂(· | s, a)− P̂t′(· | s, a)

∥∥∥
TV

>
β

2
.

(b) For any (s, a) 6∈ Ext(C) with N(s, a) ≥ NED
thresh and t′ with Nt′(s, a) ≥ 0,∥∥∥P̂t(· | s, a)− P̂t′(· | s, a)

∥∥∥
TV
≤ β

2
.
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Proof. By the choice of NED and the lower bound PMt((s, a) ∈ τπ) > ζ/6KH from Lemma A.9, we guarantee that
N(s, a) ≥ NED

thresh with probability at least 1− p/12K. Furthermore, due to the choice of NED
thresh, with probability at least

1− p/12K, we have that for any (s, a) with N(s, a) ≥ NED
thresh,∥∥∥P̂(· | s, a)− Pt(· | s, a)

∥∥∥
TV

<
β

4
,

by applying Lemma A.16. We condition on these two events simultaneously for the rest of the proof, which occurs with
probability at least 1− p/6K.

We now prove each part separately. For brevity, we omit (s, a) wherever it is understood.

(a) By applying the triangle inequality,

‖Pt − Pt′‖TV ≤
∥∥∥Pt − P̂

∥∥∥
TV

+
∥∥∥P̂− P̂t′

∥∥∥
TV

+
∥∥∥P̂t′ − Pt′

∥∥∥
TV
≤
∥∥∥P̂− P̂t′

∥∥∥
TV

+
β

2
.

Therefore, by lower bounding the left-hand side using β-dynamics separation in Definition 4.1, we find that∥∥∥P̂(· | s, a)− P̂t′(· | s, a)
∥∥∥

TV
>
β

2
.

(b) The triangle inequality implies that∥∥∥P̂− P̂t′
∥∥∥

TV
≤
∥∥∥P̂− Pt

∥∥∥
TV︸ ︷︷ ︸

≤β/4

+ ‖Pt − Pt′‖TV︸ ︷︷ ︸
=0

+
∥∥∥Pt′ − P̂t′

∥∥∥
TV︸ ︷︷ ︸

≤β/4

≤ β

2
,

where the bound on the first term is provided by Proposition A.1.

The prior result demonstrates that if the exit-finding condition is detected at any point by the algorithm, then the algorithm
finds a previously undiscovered exit in Ext(C). At this point, all that remains is to ensure that the algorithm sufficiently
learns the dynamics of the newly-found exit in all of the meta-training tasks.

Lemma A.11. Fix an (s, a) ∈ Ext(C), which was found via exit detection, and let

NEL
thresh = Ω

[
Lmax

(
H4

ζ2
,

1

β2

)
log

SAHNELT

p

]
Assume we run the exit-learning subroutine with

NEL
EULER = Ω

[
CS2AH3

α
log3

(
SAHT

p

)]
and NEL = Ω

(
CH

α
NEL

thresh +
C2H2

α2
log

SAT

p

)
.

in each of the tasks. Then, with probability at least 1− p/6K,

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ min

(
ζ

24H
,
βH

2

)
for every t ∈ [T ].

Proof. Fix a task t ∈ [T ]. Note that Assumption 4.1 implies that (s, a) is (α/H)-significant for some task. Then, (s, a)
must be (α/CH)-significant for all of the other tasks by Assumption A.1.

By applying Lemma A.4, the set of policies found by the exit-learning subroutine for every task t ∈ [T ] satisfies

max
π

P ((s, a) ∈ τπ)− 1

NEL
EULER

NEL
EULER∑
k=1

P ((s, a) ∈ τπk)

.

√
max
π

P ((s, a) ∈ τπ)
SA

NEL
EULER

log
SAHTNEL

EULER

p
+
S2AH2

NEL
EULER

log3 SAHTN
EL
EULER

p
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with probability at least 1− p/18TK. By setting

NEL
EULER &

CS2AH3

α
log3

(
HSAT

p

)
,

we thus find that for any t ∈ [T ],

α

2CH
≤ 1

2
max
π

P ((s, a) ∈ τπ) ≤ 1

NEL
EULER

∑
π∈Φt(s,a)

P ((s, a) ∈ τπ) .

Note that the right-hand side is exactly the probability that the trajectory of a randomly chosen policy in Φt(s, a) contains
(s, a) in the trajectory. Therefore, by applying Lemma A.15, playing

NEL = Ω

(
CH2NEL

thresh

α
+
C2H4

α2
log

SAT

p

)
is sufficient to guarantee that we obtain at least NEL

thresh samples from Pt(· | s, a) with probability at least 1 − p/18TK.
Since (s, a) ∈ Ext(C), Pt(· | s, a) (and by extension, P̂t(· | s, a)) is supported on Ent(S). Therefore, we can modify the
proof in Lemma A.16 so that with probability at least 1− p/18TK we get the bound

max
f :S→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ ≤ max

f :Ent(S)→[0,H]

∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣

≤ min

(
ζ

24H
,
βH

2

)
with NEL

thresh depending linearly on L instead of S.

Note that by performing a union-bound, all events occur with probability at least 1 − p/6TK. Performing a second
union-bound over all of the available tasks results in the desired failure probability.

At this point, we have effectively proven the second half of our Phase III guarantee. All that remains is to prove that if
{(s, a) | ISEXIT[s, a]} = Ext(C), then the algorithm terminates without triggering the exit-finding condition.

Lemma A.12. Assume that E = {(s, a) | ISEXIT[s, a]} = Ext(C). Then, under the preconditions of Proposition A.3, every
task satisfies ∣∣∣Ṽ t(s0)− V̂t

∣∣∣ ≤ 2

3
ζ.

Proof. Fix a task t ∈ [T ]. Once E = Ext(C), then Mt(E) = {Mt}, since the only (s, a)-dynamics that can be substituted
from other tasks are those of non-exits, which do not change between tasks. Therefore, by Lemma A.5, Ṽ t(s0) = V̂M,∗

0 (s0).
Finally, by applying Lemma A.7, we thus find that

Ṽ t(s0)− V̂t =
[
V̂M,∗

0 (s0)− VM,∗
0 (s0)

]
+
[
VM,∗

0 (s0)− V̂t
]
<
ζ

3
.

The desired result follows since the argument holds for any task t.

A.4.4 Proof of Theorem A.1

In this section, we compile the guarantees provided by each of the three phases into a proof of Theorem A.1.

Proof of Theorem A.1. We condition on the following high-probability events:

(a) Proposition A.1 guarantees for allMt with t ∈ [T ].

(b) Proposition A.2.
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Via a union-bound, this holds with probability at least 1− (2/3)p.

To prove the theorem, we provide an induction-based analysis of Phase III. In particular, we will show that while E =
{(s, a) | ISEXIT[s, a]} ( Ext(C), Phase III will add at least one state-action pair to E that belongs to Ext(C) \ E.

Formally, let Fk denote the internal state of the algorithm after it has added k state-action pairs. Note that with k = 0,
{(s, a) | ISEXIT[s, a]} in Fk is empty. Thus, Fk satisfies the preconditions of Proposition A.3, which in turn implies that
the algorithm adds a new state-action pair in Ext(C) and sufficiently learns its dynamics for all tasks with probability at least
1− p/3K. In short, the internal state of the algorithm at time F1 also satisfies the preconditions of Proposition A.3 with
probability at least 1− p/3K. More generally, Proposition A.3 ensures that if Fk satisfies the preconditions of Proposition
A.3, then so does Fk+1. Therefore, with probability at least 1−p/3, FK satisfies the preconditions of Proposition A.3, which
necessarily implies that {(s, a) | ISEXIT[s, a]} = Ext(C) in FK , and thus the algorithm exits as desired. By performing a
union bound, all this occurs with probability at least 1− p.

A.5 Proving the Meta-Training Guarantee

Having demonstrated that Ext(C) can be successfully recovered by interacting with the environment, we now show that the
data can also be used to determine exit reachability and implement the hierarchy oracle.

We formally state our main result here:
Theorem A.2. Assume thatM1, . . . ,MT have a latent hierarchy with respect to ({Zc} ,Ent(·),Ext(·)), and assume that
these tasks satisfy the (α, ζ)-coverage condition in Assumption 4.1. Furthermore, we assume the additional assumptions in
Section A.3. Then, by running the algorithm in Section A.1 with the parameters in Table 1, with probability at least 1− p,
the collected data can be used to implement the following:

(a) An ε-suboptimal hierarchy oracle.

(b) A function AvExt(s) : Ent(S)→ P(Ext(C)) such that, given s ∈ Ent(Zs), returns Ext(Zs).

The algorithm achieves both of these with query complexity

Õ

[
S4A

min(ρmin(ε, ε0), ζ/C)
+

S2A

min(ρmin(ε, ε0)2, ζ2/C)

+ T

(
SA

min(α, ζ)2
+
KS

ζβ2
+
K2

ζ2
+
CKS2A

α
+

CKL

αmax(ζ, β)2

)]
poly(H).

A.5.1 Implementing the Hierarchy Oracle

We first show that we can implement the hierarchy oracle in this section. In particular, we have the following result:
Proposition A.4. LetM be the MDP corresponding to the tuple (x, f, r, H̃) as described in Definition 4.3. Then, given
(x, f, r, H̃), we can form the following estimator for Pf :

P̂f (· | s, a) =


δ(f(s, a)) (s, a) ∈ Ext(C)
δ(s) s ∈ {GOAL, FAIL}
P̂0(· | s, a) otherwise

,

where P̂0 is the estimator obtained from Phase II in Section A.1. Assuming that the high-probability event in Proposition A.2
holds for δ ≤ ρε/2SH2, value iteration using P̂f returns a policy π such that VM,∗

0 (x)− VM,π
0 (x0) ≤ ε.

Throughout the rest of this section, we fix the tuple (x, f, r, H̃) and the corresponding MDPM. Furthermore, we write Z
for the cluster containing x.

To prove Proposition A.4, we will show thatM can be sufficiently simulated so that the value of any policy can be reasonably
estimated. Given this simulation result, we can then show that value iteration finds the desired policy. This simulation result
depends on the following intermediate result, which provides insight as to why Phase II data is sufficient:
Lemma A.13. For any s∗ ∈ Z,[

max
π

PM1(x ∈ τπ)
] [

max
π

PM(s∗ ∈ τπ)
]
≤ max

π
PM1(2H)(s∗ ∈ τπ)
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Proof. First, we note that there exists an MDP such that PM1(2H)(s∗ ∈ τπ) is the corresponding value function. In
particular, modifyingM1(2H) so that any action from s∗ leads to a terminal state and defining r(s, a) = 1 [s = s∗] results
in such an MDP.

Now, let πx and πs∗ be the policies achieving

max
π

PM1(x ∈ τπ) and max
π

PM(s∗ ∈ τπ),

respectively. Consider the concatenation of πx and πs∗ into a history-dependent policy that runs πx until the agent reaches s,
and switches to πs∗ thereafter. This policy reaches s with probability at least[

max
π

PM1(x ∈ τπ)
] [

max
π

PM(s∗ ∈ τπ)
]
.

within the modified MDP described above. Since the optimal value among all policies is achieved by a history-independent
policy, we obtain the desired inequality.

Informally, the prior result states that if x is reachable within horizon H , then any state reachable from x within Z is also
reachable inM1 within a 2H horizon. Therefore, performing reward-free RL with horizon 2H during Phase II provides
coverage over all clusters. Now, we prove the simulation result.

Lemma A.14. Assume that the Phase II guarantee in Proposition A.2 is instantiated for δ ≤ ρε/4SH2. Then, if V π is the
value of π underM, and V̂ π is its corresponding estimate under P̂f , then∣∣∣V̂ π0 (x)− V π0 (x)

∣∣∣ ≤ ε

2
.

Proof. The proof follows similarly to that of Lemma A.7. By the performance difference lemma,

∣∣∣V̂ π0 (s)− V π0 (s)
∣∣∣ ≤ H̃−1∑

h=0

EM,π

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(sh, ah)

∣∣∣]

≤
H̃−1∑
h=0

∑
(s,a)

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a).

Observe that if s ∈ S \ Z, Pπh (s, a) = 0 for any π. Furthermore, since the dynamics within {GOAL, FAIL} are known,
(P̂f − Pf )V̂ πh+1(s, a) = 0 for s ∈ {GOAL, FAIL}. Therefore, we can restrict the sum to be over Z ×A.

Now, let Zδ denote the set of δ-significant (s, a) pairs in Z ×A from x, for some δ to be determined. For a fixed h ∈ [H̃],
we can decompose the inner sum as∑

(s,a)

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

≤
∑

(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

︸ ︷︷ ︸
(I)

+
∑

(s,a) 6∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

︸ ︷︷ ︸
(II)

.

Bounding (II): Error from δ-Insignificance By the definition of δ-significance,

(II) =
∑

(s,a) 6∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a) ≤ H
∑
s 6∈Zδ

Pπh (s) ≤ HSδ ≤ ε

4H
,

where the last inequality follows from setting δ = ε/4SH2.
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Bounding (I): Reference Dynamics Error. By the Cauchy-Schwarz inequality,

(I) =
∑

(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣Pπh (s, a)

≤

 ∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s, a)

1/2

.

Then, ∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s, a)

≤ max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s)1 [ν(s) = a] .

Since x is ρ-significant in M1(2H) by Definition A.2, Lemma A.13 together with δ-significance in M implies ρδ-
significance inM1(2H). Therefore,

Pπh (s) ≤ max
π

PM(s ∈ τπ) ≤ 1

ρ
max
π

PM1(2H)(s ∈ τπ) ≤ 4HSA

ρ
µ(s, a),

where the last inequality follows by part (a) of the Phase II guarantee in Proposition A.2. Substituting into the prior
expression,

max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 Pπh (s)1 [ν(s) = a]

≤ 4HSA

ρ
max
ν:S→A

∑
(s,a)∈Zδ

∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]µ(s, a)

≤ 4HSA

ρ
max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]

]
.

Thus by applying part (b) of the Phase II guarantee in Proposition A.2, we have that

(I) ≤

√
4HSA

ρ
max
ν:S→A

E(s,a)∼µ

[∣∣∣[(P̂f − Pf
)
V̂ πh+1

]
(s, a)

∣∣∣2 1 [ν(s) = a]

]
≤ ε

4H
.

Concluding. By combining the bounds on (I) and (II), we obtain the desired result.

With this estimation result, we can now prove Proposition A.4.

Proof of Proposition A.4. Let π be the policy found by value iteration using P̂f , which achieves the maximal value in the
corresponding MDP. Then, by Lemma A.14

V ∗0 (x)− V π0 (x) ≤
[
V ∗0 (s0)− V̂ π

∗

0 (s0)
]

︸ ︷︷ ︸
≤ε/2

+
[
V̂ π
∗

0 (s0)− V̂ π̂0 (s0)
]

︸ ︷︷ ︸
≤0

+
[
V̂ π̂0 (s0)− V π̂0 (s0)

]
︸ ︷︷ ︸

≤ε/2

≤ ε.

A.5.2 Determining Available Exits

In this section, we prove that we can determine the set of available exits. We have the following formal result:

Proposition A.5. Assume access to the ε-suboptimal hierarchy oracle from the previous section and that the guarantee in
Theorem A.1 holds. Then, we can implement the function AvExt(s) : Ent(S) → P(Ext(C)) which, given s ∈ Ent(Zs),
returns the subset of Ext(Zs) that is reachable from s.
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Proof. Fix an input x ∈ Ent(S), which we assume belongs to some cluster Zx. It suffices to demonstrate that we can
implement 1 [e ∈ Zx] for any fixed e ∈ Ent(S). Define

fe(s, a) =

{
GOAL (s, a) = e

FAIL otherwise

and re(s, a) = 1 [(s, a) = e]. By Definition A.3, the MDPM corresponding to the tuple (x, fe, re, H) has optimal value
V ∗ = ε01 [e ∈ Zx ∧ e reachable from x]. Additionally, by Lemma A.14, |V π0 (s) − V̂ π0 (x)| ≤ ε/2. We now proceed by
cases. If e 6∈ Zx or e is not reachable from x, then V π0 (x) = 0 for any policy π, and thus value iteration can only find a
policy π with V̂ π0 (x) ≤ ε0/3. Otherwise, for e ∈ Zx, V ∗0 (x) = ε0, and thus value iteration necessarily must find a π with
V̂ π0 (x) ≥ 2ε0/3. Putting these together, if V̂ is the optimal estimated value inM, then

1 [e ∈ Zx] = 1

[
V̂ ≥ 2

3
ε0

]
.

Note that this is implementable for all e ∈ Ext(C) (and returns a subset of Ext(Zx) for the query above) since the set of
exits are already known.

A.5.3 Finalizing the Guarantee: Query Complexity

In this section, we finalize the proof of the meta-training guarantee by computing the query complexity.

Proof of Theorem A.2. As demonstrated by Proposition A.4 and Proposition A.5, running the algorithm in Section A.1 with
the parameters in Table 1 provides the desired guarantees with probability at least 1− p.

To compute the query complexity, observe that we perform the following number of trajectories while executing the
algorithm in Section A.1.

O
[
T (NUCBVI +NTS) +NRF

EULER +NRF +KNED + TK(NEL
EULER +NEL)

]
.

Ignoring terms that do not depend on T or ε, we obtain the claim.

A.6 Brute-Force Learning of the Hiearchy

Algorithm 11 Brute-force learning of the latent hierarchy.

Require: (M1, . . . ,MT ), NEULER iterations, N policy samples, threshold Nthresh

1: for all t ∈ [T ], s ∈ S do
2: Create MDPMs

t so P (	 | s, a) = 1 for any a.
3: r̃s(s

′, a′)← 1 [s′ = s].
4: Ψs

t ← EULER(Ms
t , r,NEULER)

5: end for
6: for all t ∈ [T ], s ∈ S, a ∈ A do
7: Modify policies in Ψs

t to play a on s.
8: for all n ∈ [N ] do
9: Sample π ∼ Unif (Ψs

t ).
10: Play π inMt, collect sample (s, a, s′n) if (s, a) is encountered
11: end for
12: Nt(s, a)← number of times (s, a) is encountered above.
13: P̂t(· | s, a)← estimate of (s, a) dynamics in t.
14: end for
output

{
(s, a)

∣∣∣ (∃t 6= t′)
∥∥∥P̂t − P̂t′

∥∥∥
TV

> β/2,min(Nt(s, a), Nt′(s, a)) ≥ Nthresh

}
.

Theorem A.3. Assume that Algorithm 11 is run with parameters satisfying

NEULER = Ω

(
CH3S2A

α
log3 SAHT

p

)
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and

Nthresh = Ω

(
S

β2
log

SAHNT

p

)
and N = Ω

(
CH

α
Nthresh +

C2H2

α2
log

SAT

p

)
Then, the set returned by the algorithm is exactly Ext(C) with probability at least 1−p. Furthermore, the algorithm achieves
this result with query complexity

Õ

[
T

(
CS4A

α
+
CS2A

αβ2

)]
poly(H).

Proof. For any (s, a) ∈ Ext(C), Lemma A.2 implies that s is α/H-significant for some task t ∈ [T ]. Therefore, s is
α/CH-significant for any task t ∈ [T ], by Assumption A.1.

Now, by an argument similar to that used in the proof of Lemma A.2, we have that with probability at least 1− p/3T , the
choice of NEULER implies

1

NEULER

∑
π∈Ψst

PMt(s ∈ τπ) ≥ α

2CH

for any exit (s, a) ∈ Ext(C) and a fixed task t ∈ [T ]. Therefore, by a union-bound over the tasks, the same guarantee holds
for all tasks simultaneously with probability at least 1− p/3.

Now, for any fixed (α/CH)-significant (s, a) pair, sampling from Ψs
t at least N times guarantees that with probability at

least 1− p/3SAT , Nt(s, a) ≥ Nthresh. Therefore, once again performing the necessary union-bound, we obtain the same
result uniformly over any (α/CH)-significant (s, a) and t ∈ [T ] with probability at least 1− p/3.

Finally, for a fixed (s, a) and t, the estimator for Pt(· | s, a) satisfies the property that when N(s, a) > 0,

∥∥∥P̂t(· | s, a)− Pt(· | s, a)
∥∥∥

TV
≤

√
H2S

Nt(s, a)
log

SAHNT

p
+

HS

Nt(s, a)
log

SAHNT

p

with probability at least 1− p/3SAT , using an argument similar to that used in Lemma A.16. Again, by a union bound, the
same guarantee holds for any (s, a) and t ∈ [T ]. In particular, for any (s, a) with Nt(s, a) ≥ Nthresh,∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV
≤ β

4
.

Therefore, by a similar argument to Lemma A.10, the following are true:

(a) If (s, a) ∈ Ext(C), then there exists t, t′ for which∥∥∥P̂t(· | s, a)− P̂t′(· | s, a)
∥∥∥

TV
>
β

2
.

(b) If (s, a) 6∈ Ext(C), then for any t 6= t′ with Nt(s, a), Nt′(s, a) ≥ Nthresh,∥∥∥P̂t(· | s, a)− P̂t(· | s, a)
∥∥∥

TV
≤ β

2
,

Putting everything together, we see that the set returned by Algorithm 11 is exactly Ext(C), with probability at least
1− p.

A.7 Technical Lemmas

Lemma A.15. Let X1, . . . , XM be i.i.d. Ber (p) random variables. Then, if

M = Ω

(
N

p
+

1

p2
log

1

δ

)
,

then with probability at least 1− δ,
M∑
i=1

1 [Xi = 1] ≥ N.
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Proof. By applying Hoeffding’s inequality,

P

(
M∑
i=1

1 [Xi = 1] < N

)
= P

(
1

M

M∑
i=1

1 [Xi = 1]− p < N

M
− p

)

= P

(
1

M

M∑
i=1

1 [Xi = 0]− (1− p) > p− N

M

)

≤ exp

[
−2M

(
p− N

M

)2
]

Setting the final expression to the failure probability δ and solving, we obtain the quadratic inequality

p2M2 −
(

2Np+
1

2
log

1

δ

)
M +N2 ≥ 0.

Finally, via solving this inequality for M , we find that

M ≥ 2N

p
+

1

2p2
log

1

δ

is sufficient to guarantee the desired event with failure probability δ, as desired.

Lemma A.16 (Dynamics estimation error bound). Fix a policy π, MDP with stationary dynamicsM = (S,A,P, r,H),
and N ∈ N. Assume that π is played N times inM, and all transitions are used to form an estimator P̂(· | s, a) using
empirical averages. For any (s, a) ∈ S ×A, let N(s, a) be the number of times (s, a) is encountered in this process. Then,
with probability at least 1− p, any (s, a) with N(s, a) > 0 satisfies

sup
f :S→[0,H]

∣∣∣[(P̂− P
)
f
]

(s, a)
∣∣∣ ≤√ H2S

N(s, a)
log

SAHN

p
+

HS

N(s, a)
log

SAHN

p
.

Proof. Assume that the obtained samples are given by {(sk, ak, s′k) | k ∈ [HN ]}, so that (sHn+r, aHn+r, s
′
Hn+r+1) is the

rth time step in the nth execution of π inM for any 0 ≤ n ≤ N − 1 and 0 ≤ r ≤ H − 1.

Fix any (s, a) ∈ S ×A, and assume that (s(j), a(j), s
′
(j)) is the jth sample from P(· | s, a). Furthermore, let mj(s, a) denote

the index at which the jth sample is obtained. We claim that for any s∗ ∈ S and 0 < M ≤ HT ,∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

P(s′ | s, a)

M
log

S

δ
+

1

M
log

S

δ
.

Let Fi be defined as the σ-algebra induced by the set of random variables{(
mj(a),1

[
s′(j) = s∗

]) ∣∣∣ j ≤ i} .
Clearly, (Fi) is a filtration such that the jth term in the sum above is measurable with respect to Fj . Furthermore, observe
that

E
[
1 [mj(s, a) ≤ HT ]

(
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

) ∣∣∣ Fj−1

]
= E

[
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

∣∣∣ Fj−1,mj(s, a) ≤ HT
]
P (mj(s, a) ≤ HT )

= 0.
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Therefore, the random variables in the sum forms martingale difference sequence. Furthermore, the sequence is bounded in
[−1, 1], and satisfies

Var
[
1 [mj(s, a) ≤ HT ]

(
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

) ∣∣∣ Fj−1

]
= E

[
Var

[
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

∣∣∣ Fj−1,mj(s, a) ≤ HT
] ∣∣∣ Fj−1

]
≤ P(s∗ | s, a).

Therefore, by applying Azuma-Bernstein, we have that∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

2P(s′ | s, a)

M
log

SAHN

δ
+

2

M
log

SAHN

δ
.

with probability at least 1− p/SAHN .

By applying a union bound on (s, a, s∗) and M , we thus have that with probability at least 1− p,∣∣∣∣∣∣ 1

M

M∑
j=1

1 [mj(s, a) ≤ HT ]
(
1
[
s′(j) = s∗

]
− P(s∗ | s, a)

)∣∣∣∣∣∣
≤
√

2P(s′ | s, a)

M
log

SAHN

δ
+

2

M
log

SAHN

δ

holds for any (s, a, s∗) and M . Conditioned on this event, we thus have that for any (s, a) with N(s, a) > 0,∥∥∥P̂t(· | s, a)− Pt(· | s, a)
∥∥∥

TV
=

1

2

∑
s′∈S

∣∣∣P̂t(s′ | s, a)− Pt(s′ | s, a)
∣∣∣

.
∑
s′∈S

√
P(s′ | s, a)

N(s, a)
log

SAHN

δ
+

S

N(s, a)
log

SAHN

δ

.

√
S

N(s, a)
log

SAHN

δ
+

S

N(s, a)
log

SAHN

δ
.

The final result follows simply by noting that∣∣∣[(P̂t − Pt)f
]

(s, a)
∣∣∣ . ∥∥∥P̂t(· | s, a)− Pt(· | s, a)

∥∥∥
TV
‖f‖∞ .

Lemma A.17. Fix two MDPsM = (S,A,P, r,H) andM′ = (S,A,P′, r,H). Let ∆ denote the subset of S ×A× [H]
for which Ph(· | s, a) 6= P′h(· | s, a). Then, for any policy π,

VM
′,π

0 (s0)− VM,∗
0 (s0) > ρ =⇒ PM (τπ ∩∆ 6= ∅) = PM′ (τπ ∩∆ 6= ∅) >

ρ

H
.

Proof. Write q = PM′ (τπ ∩∆ 6= ∅). Note that VM
′,π

0 (s0) can be decomposed as

VM
′,π

0 (s0) = qEM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ 6= ∅

]

+ (1− q)EM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]

≤ qH + (1− q)EM′
[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]
.
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Since P and P′ agree on (S ×A× [H]) \∆, the dynamics ofM andM′ agree up until π performs an action in ∆, and thus

PM (τπ ∩∆ 6= ∅) = PM′ (τπ ∩∆ 6= ∅)

EM

[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]
= EM′

[
H−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩∆ = ∅

]

Furthermore,

(1− q)E

[
h−1∑
h=0

rh(sh, ah)

∣∣∣∣∣ τπ ∩ δ = ∅

]
≤ VM,π

0 (s0) ≤ VM,∗
0 (s0).

Putting everything together,
VM

′,π
0 (s0) ≤ qH + VM,∗

0 (s0) =⇒ q >
ρ

H
.
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B META-TEST PROOFS

We now provide an analysis of the regret incurred by a learner using an approximately learned hierarchy at meta-test time.
We first show that the hierarchy oracle from the source tasks can provide useful temporally extended behavior. We then show
that using these policies results in bounded suboptimality and achieves a better regret bound compared to standard UCB-VI.

Throughout this section, we fix an optimal π∗ satisfying the conditions of Assumption 5.1. Furthermore, we assume that we
have access to a hierarchy oracle that provides ε-suboptimal policies as defined in Definition 4.3.

B.1 Using the Hierarchy Oracle

In this section, we show that the hierarchy oracle can be used to implement two useful behaviors: (1) reaching exits and (2)
behaving optimally within a cluster.

B.1.1 Near-Optimal Goal Reaching

Assume that the agent is currently at a state z ∈ {s0} ∪ Ent(S) at time step h, and intends to exit the current cluster Z via
exit g = (s∗, a∗) ∈ Ext(Z). We obtain a policy implementing the high-level intent as follows:

(1) Define the termination for any (s, a) ∈ Ext(C) as:

fg(s, a) :=

{
GOAL (s, a) = g

FAIL otherwise

(2) Define reward as rGOAL(s, a) := 1 [s = GOAL]

(3) Provide (z, fg, rGOAL, H − h) to the hierarchy oracle and obtain a policy πz,g,h.

For simplicity, we will write T hier
H−h(z, g) for Tπz,g,hH−h (z, g) throughout our analysis. The following proposition quantifies the

performance of the obtained policy:

Proposition B.1. T hier satisfies the following inequality:

E
[
T hier
H−h(z, g)

]
≤ T ∗H−h(z, g) + ε.

Proof. Due to the definition of Pfg and r, observe that for any π,

V π0 (z) = E

[
H−h∑
h=0

r(sh, ah)

∣∣∣∣∣ s0 = z

]
= (H − h)− E

[
TπH−h(z, g)

]
.

Therefore,

(H − h)− T ∗H−h(z, g)− ε ≤ (H − h)− E
[
T hier
H−h(z, g)

]
=⇒ E

[
T hier
H−h(z, g)

]
≤ T ∗H−h(z, e) + ε.

B.1.2 Near-Optimal Within-Cluster Behavior

Assume that the agent is currently at a state z ∈ {s0} ∪ Ent(S) at time h, and intends to remain in the current cluster Z
while maximizing a given reward function r. We obtain a policy for this high-level intent as follows:

(1) Define transition dynamics for any (s, a) ∈ Ext(Z) as P(· | s, a) = δ(FAIL).

(2) Provide P, r, and planning horizon H − h to the hierarchy oracle, and obtain a policy π.
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B.2 Formal Learning Procedure

In this section, we describe the procedure for learning a policy using the oracle-provided policies described in the previous
section. Formally, we construct a surrogate MDP whose dynamics are determined byM and the oracle. We can then apply
any tabular learning method to this new MDP (in our case, EULER), obtaining a policy in the surrogate MDP that readily
translates into a policy inM.

The components defining the surrogateMhl = (Z,G,Phl, Rhl, Heff) are as follows:

Meta-state space Z . We set
Z :=

(
Ent(S)×

{
0, . . . , H̄ + 1

})
∪ {	} ,

where H̄ is a high-probability bound on the time to move through Heff exits (to be determined later). We incorporate
the time step into the meta-state to ensure that both the dynamics and reward are computable from the state information
(ensuring thatMhl is indeed an MDP).

Meta-action space G. Given a current meta-state (s, h) where s ∈ Z, the available meta-actions G can be identified with
Ext(Z) ∪ {	}.

Algorithm 12 Performing a Meta-Transition

Require: (z, g) ∈ Z × G
{Executes the desired meta-transition in the original MDPM.}

1: if z = 	 then
2: Return 	
3: else if z = (s, h) then
4: if h ≤ H̄ then
5: if s ∈ Z∗ or g = 	 then
6: Execute within-cluster policy from oracle until termination.
7: Return 	
8: else
9: Execute πz,g,h obtained from oracle until g is performed or h = H̄ .

10: s′, h′ ← current state and time step
11: if g was performed then
12: Return (s′, h′)
13: else
14: Return (s, H̄ + 1)
15: end if
16: end if
17: else
18: if s ∈ Z∗ or g = 	 then
19: Return 	
20: else
21: Return (s, h)
22: end if
23: end if
24: end if

Meta-dynamics Phl. Fix (z, g) ∈ Z × G for some z 6= 	, so that z = (s, h). We consider the procedure in Algorithm
12 for generating the meta-dynamics. Intuitively, we execute a meta-action g 6= 	 by running the oracle-provided policy
until the learner encounters g, or has acted for H̄ timesteps in the current episode. On the other hand, if g = 	, the agent
executes the oracle-provided ε-suboptimal policy that remains within the current cluster and acts for H − h timesteps.

Formally, the next state z′ is given by

z′ =


	 s ∈ Z∗ or g = 	
(s′, h′) h ≤ H̄
(s, h) otherwise

,
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where s′ and h′ are generated given T hier
H−h(s, g) as

h′ | T hier
H−h(s, g) = min(h+ T hier

H−h(s, g), H̄ + 1)

s′ | h′ ∼

{
P(· | g) h′ ≤ H̄
δ(s) otherwise

.

Note that the learner can only execute meta-actions while h ≤ H̄ . Furthermore, given access toM, one can easily simulate
the dynamics ofMhl.

Meta-reward Rhl. Fix ((s, h), g) ∈ Z × G. Recall that the reward function ofM is supported on Ext(C) ∪ (Z∗)◦. Thus,
this reward function can be lifted ontoMhl. Formally, we define the following reward function:

Rhl(z, g) =


Wh(s) z = (s, h), s ∈ Z∗ and h ≤ H̄
r(g) z = (s, h), s 6∈ Z∗ and h′ ≤ H̄
0 otherwise

,

where Wh(s) is the random sum of rewards obtained by playing a within-cluster policy starting from s′ for the rest of
the episode. Note that Rhl depends on Phl and is thus random. Furthermore, this reward function is consistent with how
meta-transitions are performed in Algorithm 12.

Meta-horizon Heff . Recall that there exists an optimal policy that encounters at most Heff exits with high probability.
Accordingly, we limit the learner to being able to choose Heff high-level actions, which recall can be choices of exits.

SolvingMhl. To obtain the desired policy, we apply EULER toMhl. By the construction in Algorithm 12, the policy set
returned by EULER easily translates into policies onM. Furthermore, the value of this policy is the same on both MDPs.

B.3 Proving the Regret Bound

Having defined the procedure for learning a policy using the hierarchy, we now proceed with the regret analysis. Our
analysis proceeds by constructing a policy expressible inMhl that achieves near-optimal returns by imitating the high-level
decisions made by π∗. We then use this policy as a comparator policy when applying EULER regret bounds toMhl.

To formally construct the desired comparator policy, we need to first define the notion of a meta-history, which contains the
set of high-level decisions made by any policy:

Definition B.1. Fix a policy π, which given some horizon L, generates a (random) trajectory (s0, a0, . . . , sL). Let Ext(π)
be the number of exits performed in the trajectory, i.e.

Ext(π) =

L−1∑
h=0

1 [(sh, ah) ∈ Ext(C)] .

The meta-historyHhl(π) corresponding to this trajectory is the sequence

(z0, g0, z1, g1, . . . , zExt(π)) = (si0 , (sj0 , aj0), si1 , (sj1 , aj1) . . . , siExt(π)
),

where

in :=

{
0 n = 0

jn−1 + 1 otherwise

jn := min
h=in,...,L−1

1 [(sh, ah) ∈ Ext(C)] .

Note that zi ∈ Ent(S) and gi ∈ Ext(C) for all i = 0, . . . ,Ext(π). We omit π in writingHhl when the underlying policy π
is understood. �

Informally,Hhl tracks all entrances and exits contained in a trajectory generated by π. We define the length of a meta-history
Hhl, denoted as |Hhl|, as the number of exits contained inHhl.
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B.3.1 Policy Construction

We now proceed with constructing the desired policy. Intuitively, the comparator imitates the distribution over Hhl(π
∗),

conditioned on |Hhl(π
∗)| ≤ Heff . To see why this is sufficient for near-optimality, recall that the reward on MTg is

supported on Ext(Z∗) ∪ (Z∗)◦. Consequently, by imitating the distribution over meta-histories, the policy is expected to
obtain roughly the same sum of rewards in expectation from the exits. Therefore, all that remains is to ensure that the learner
collects roughly the same sum of rewards from Z∗, which is the same as ensuring that this policy does not take too long to
reach Z∗.

Construction. LetH be the running meta-history, containing k ≤ Heff actions. The optimal policy induces a distribution
q(· | H) over Ahl representing the next exit it takes9. We then define π as

π(· | z,H) =

{
q(· | H) z = (s, h), h < H̄

	 otherwise.

Observe that π terminates the episode upon reaching H̄ . Furthermore, this policy is dependent on the meta-history. However,
sinceMhl is an MDP, there exists a stationary policy that achieves at least the same value.

B.3.2 Suboptimality Analysis

In this section, we prove that π achieves bounded suboptimality. Rather than analyzing π directly inMhl, we construct
a new M̃hl and π̃ to better track the meta-history. In particular, conditioned on the event that π requires more than H̄
time steps to execute, then the agent would not be able to imitate the full meta-history generated by π∗, even after having
performed less than Heff exits.

Constructing a surrogate for analysis. We now formalize the construction of the surrogate MDP M̃hl and the policy
π̃ corresponding to π in this MDP. To obtain M̃hl, we redefine the dynamics fromMhl so that s′ | h′ ∼ P(· | g) in M̃hl.
In effect, we allow the policy to continue performing transitions beyond H̄ , although without any reward. Accordingly,
we define π̃ as π̃(· | z,H) = q(· | H). The following lemma formalizes how π̃ and M̃hl have desirable properties for the
analysis:

Lemma B.1 (Surrogate Policy Characterization). Let µ∗ denote the distribution ofHhl(π
∗) | |Hhl(π

∗)| ≤ Heff inMTg,
and µ̃ the distribution ofH(π̃) in M̃hl. Then, (1− ζ)µ∗ ≤ µ̃.

Proof. Let ν∗ be the distribution induced by the following procedure:

(1) Sample a meta-history from the distributionHhl(π
∗) | |Hhl(π

∗)| > Heff .

(2) Truncate the obtained meta-history to length Heff .

It is easy to see from the definition of π̃ that µ̃ = (1− ζ)µ∗ + ζν∗. The desired result follows.

Thus, we have indeed shown the desired property that π̃ properly tracks the (truncated) meta-history generated by π∗. To
justify performing our analysis on (M̃hl, π̃), we have the following result, which shows that any result on the value of the
pair above applies to the value of π inMhl.

Lemma B.2. As constructed above, V M̃hl,π̃
0 (s0) = VMhl,π

0 (s0).

Proof. We writeM :=Mhl andM′ := M̃hl. Similarly, we write π′ := π̃. We proceed by proving a chain of equalities.

(V π
′,M′(s0) = V π,M

′
(s0)). We omitM′ in this part of the argument for clarity. By the performance difference lemma, we

have that for any k ∈ [Heff ] and z ∈ Shl,

V π0 (s0)− V π
′

0 (s0) =

Heff−1∑
j=0

Ez∼dπj
[
Aπ
′

j (z, π)
]
.

9The distribution q can return 	 if the learner stays in the cluster until episode termination.
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Let ∆ :=
{
z ∈ Shl

∣∣ z = (s, h), s 6∈ Z∗, h ≥ H̄
}

, which is the set on which π and π′ disagree. Observe that for any π and
k, V πk (z) = 0 for any z ∈ ∆, and thus Aπ

′

k (z, π) = 0 for all such states. For any other z, Aπ
′

k (z, π) is clearly 0. Thus, we
obtain the desired result.

(V π,M
′
(s0) = V π,M(s0)) We omit π in this part of the argument for clarity. Using the simulation lemma,

VM0 (s0)− VM
′

0 (s0) =

Heff−1∑
j=0

E(z,g)∼dM′j

[
[(PM − PM′)VMj+1](z, g)

]
.

Observe that the behavior of the two MDPs are identical conditioned on h′ ≤ H̄ . On the other hand, conditioned on h′ > H̄ ,
π can no longer receive rewards from either MDP. Therefore, [(PM − PM′)VMj ](z, g) = 0 for any j, z, g by decomposing
the relevant expectations along the two events. We thus obtain the desired result.

Analyzing the surrogate. With the results above, we now proceed to analyze the difference in values

V
MTg,∗
0 (s0)− V M̃hl,π̃

0 (s0),

which then implies the desired suboptimality result. First, we have the following lemma characterizing the time π̃ requires
to fully execute a given meta-history in the base MDPM:

Lemma B.3. Fix anyHhl = (z0, g0, . . . ) such that |Hhl| ≤ Heff . Furthermore, define the sequence of reaching times

T0 := 0 and Tk := Tk−1 + T hier
H−Tk−1

(zk−1, uk−1).

We define T hier(Hhl) to be the time required by the hierarchy to execute Hhl, which is formally given by T|Hhl| in the
sequence above. Then,

(a) E
[
T hier(Hhl)

]
≤ [1 + (1 + γ)W + ε]Heff .

(b) Let σ2 := κ2[(1 + γ)W + ε]2Heff . Then, for any t > 0,

P
(
T hier(Hhl) ≥ [1 + (1 + γ)W + ε]Heff + t

)
≤ e−t

2/2σ2

.

Proof. We prove the two parts separately:

(a) We will prove via induction that E [Tk] ≤ k [1 + (1 + γ)W + ε]. For any k and Tk−1,

E
[
T hier
H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]
≤ E

[
T ∗H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]
+ ε

= 1 + E
[
T ∗H−Tk−1

(zk−1, s(gk−1))
∣∣∣ Tk−1

]
+ ε

≤ 1 + (1 + γ)W + ε,

where the first inequality uses properties of the hierarchy oracle, while the final inequality follows by combining
Definition 5.2(b) and Assumption 5.2. Therefore, by linearity and the tower property of expectation,

E [Tk] = E [Tk−1] + E
[
T hier
H−Tk−1

(zk−1, gk−1)
]

= E [Tk−1] + E
[
E
[
T hier
H−Tk−1

(zk−1, gk−1)
∣∣∣ Tk−1

]]
≤ E [Tk−1] + 1 + (1 + γ)W + ε.

The desired result then follows by induction.

(b) Let Bk := k [1 + (1 + γ)W + ε] and fk(t) := E
[
T hier
H−t(zk, gk)

]
. Note that for any k and t, Bk−1 + fk−1(t) ≤ Bk,

by following the argument in (a). Therefore, for any λ > 0,

E [exp {λ (Tk −Bk)}]
= E [E [exp {λ (Tk −Bk)} | Tk−1]]

≤ E
[
E
[
exp

{
λ
(
Tk−1 + T hier

H−Tk−1
(zk−1, gk−1)−Bk−1 − fk−1(Tk−1)

)} ∣∣∣ Tk−1

]]
,
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where the last inequality uses the monotonicity of the exponential function. Therefore, by applying the sub-Gaussian
condition given in Definition 5.2,

E [exp {λ (Tk −Bk)}]

≤ E
[
exp {λ (Tk−1 −Bk−1)}

E
[
exp

{
λ
(
T hier
H−Tk−1

(zk−1, gk−1)− fk−1(Tk−1)
)} ∣∣∣ Tk−1

]]
≤ E [exp {λ(Tk−1 −Bk−1)}] exp

[
λ2C2/2

]
,

where we have used the fact that T hier
H−Tk−1

(zk−1, s(gk−1)) has a sub-Gaussian upper tail with variance proxy

C2 = κ2E
[
TπH−Tk−1

(zk−1, s(gk−1))
∣∣∣ Tk−1

]2
≤ κ2 [(1 + γ)W + ε]

2
.

Note that we have once again used the properties of the hierarchy oracle, and Assumption 5.2. Therefore, by induction,
E [exp {λ (Tk −Bk)}] ≤ E

[
λ2(
√
kC)2/2

]
, from which the desired tail bound follows by making use of Chernoff’s

inequality.

As we have shown that π̃ closely tracks the meta-history of π∗ and have analyzed the distribution of time it takes to execute
a given meta-history, we can now analyze its suboptimality:

Lemma B.4. There exists a policy π expressible inMhl such that

V
MTg,∗
0 (s0)− VMTg,π

0 (s0) . (1 +Heff + κ
√
Heff)ε+

[
γHeff + κ(1 + γ)

√
Heff

]
W + ζH.

Proof. Assume that π∗ generates a (random) meta-history of lengthN given byHhl = (z0, g0, z1, g1, . . . , zN ). Furthermore,
let T ∗ denote the (random) time π∗ takes to reach zN . Then, givenHhl and T ∗, observe that we can write

V ∗0 (s0) = E [R∗T∗(Hhl)] , where R∗T (Hhl) := V ∗T (zN )1 [zN ∈ Z∗] +

N−1∑
k=0

r(gk),

using the assumptions on the reward function and condition (a) in Assumption 5.1. Subsequently, letting E be the event
{N ≤ Heff}, we can bound the right-hand side as

V ∗0 (s0) = E [R∗T∗(Hhl)] ≤ (1− ζ)E [R∗T∗(Hhl) | E] + ζH,

where we have used Assumption 5.1 to bound the probability that N > Heff .

Our goal for the rest of this proof is to transform the expectation on the right-hand side into a form that lower bounds
V π0 (s0). To this end, we define

Rhier
T (Hhl) := V hier

T (zN )1 [zN ∈ Z∗] +

N−1∑
k=0

r(gk),

and the sequence of times
T0 = 0 and Tk := Tk−1 + T hier

H−Tk−1
(zk, gk).

Note that Rhier and TN are analogous to R∗ and T ∗, respectively. Then, letting F be the event
{
TN ≤ H̄

}
, note that

V ∗0 (s0) ≤ (1− ζ)E [R∗T∗ | E] + ζH

= (1− ζ)E
[
R∗T∗ −Rhier

TN +Rhier
TN

∣∣ E]+ ζH

≤ E
[(
R∗T∗ −Rhier

TN

)
1 [F ]

∣∣ E]︸ ︷︷ ︸
(I)

+ (1− ζ)E
[
Rhier
TN 1 [F ]

∣∣ E]︸ ︷︷ ︸
(II)

+
[
ζ + P

(
FC

∣∣ E)]H.
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We bound (I) and (II) separately.

Bounding (I). Let G be the event E ∩ {zN ∈ Z∗}. Then, if we define

Tmin =

N−1∑
k=0

Tmin(zk, uk) ≤ N(W + 1)

as the minimum time needed to executeHhl, we then have that

E
[(
R∗T∗ −Rhier

TN

)
1 [F ]

∣∣ E] ≤ E
[
R∗T∗ −Rhier

TN

∣∣ E]
≤ E

[
V ∗T∗(zN )− V hier

TN (zn)
∣∣ G]

≤ E
[
V ∗Tmin

(zN )− V hier
TN (zN )

∣∣ G]
≤
∫ H

0

P
(
V ∗Tmin

(zN )− V hier
TN (zN ) > α

∣∣ G) dα.

Note that the bound on Tmin follows from Assumption 5.2. To convert the different in values into a difference of times,
observe that if TN − Tmin ≤ α− ε, then

V ∗Tmin
(zN )− V hier

TN (zN ) = V ∗Tmin
(zN )− V ∗TN (zN ) + V ∗TN (zN )− V hier

TN (zN )

≤ (T̄ − Tmin) + ε

≤ α.

Therefore, ∫ H

0

P
(
V ∗Tmin

(zN )− V hier
TN (zN ) > α

∣∣ G) dα

≤
∫ H

0

P (TN − Tmin > α− ε | G) dα

≤ E

[∫ H

0

P (TN − Tmin > α− ε | Hhl) dα

∣∣∣∣∣ G
]

≤ E

[∫ H

0

P (TN − [1 + (1 + γ)W + ε]Heff > α− ε−Heff(γW + ε) | Hhl) dα

∣∣∣∣∣ G
]

≤ ε+Heff(γW + ε) + E
[∫ ∞

0

P (TN − [1 + (1 + γ)W + ε]Heff > α | Hhl) dα

∣∣∣∣ G]
. ε+Heff(γW + ε) + κ[(1 + γ)W + ε]

√
Heff ,

where the final inequality integrates the tail bound provided in Lemma B.3. Overall, we have that by rearranging,

(I) . (1 +Heff + κ
√
Heff)ε+

[
γHeff + κ(1 + γ)

√
Heff

]
W.

Bounding (II). By the characterization of π̃ in Lemma B.1,

(1− ζ)E
[
Rhier
TN (Hhl(π

∗))1 [F ]
∣∣ E] ≤ E

[
Rhier
TN (Hhl(π̃))1 [F ]

]
≤ V π̃0 (s0),

where the final inequality uses the fact that R̄T̄ (Hhl(π̃)) is the return of π̃ in M̃hl, given F .

Concluding. Putting all of the previous bounds together, we find that

V ∗0 (s0) ≤ V π̄0 (s0) + (1 +Heff + κ
√
Heff)ε+

[
γHeff + κ(1 + γ)

√
Heff

]
W

+
[
ζ + P

(
FC

∣∣ E)]H.
By setting H̄ to

H̄ = Heff [1 + (1 + γ)W + ε] + κ[(1 + γ)W + ε]

√
2Heff log

1

ζ
� H,
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sub-Gaussian tail bounds on TN implies that P
(
FC

∣∣ E) ≤ ζ. Finally, by Lemma B.2,

V M̃hl,π̃
0 (s0) = VMhl,π

0 (s0) = V
MTg,π
0 ,

where the last equality follows by the construction ofMhl. We thus obtain the desired suboptimality bound.

B.3.3 Regret Analysis

As earlier suggested, we now make use of π̃ as a comparator policy in order to prove a regret bound on a learner making use
of the procedure outlined in Section B.2.

Theorem B.1. Assume that EULER generates policies π1, . . . , πN onMhl, as constructed in Section B.2. Then, we have
the following regret bound:

N∑
k=1

V ∗0 (s0)− V πk0 (s0) .
√
H2H̄LMN +Nεsubopt,

where

εsubopt := (1 +Heff + κ
√
Heff)ε+

[
γHeff + κ(1 + γ)

√
Heff

]
W + ζH.

Proof. Throughout the proof, we consider applying EULER toMhl where the rewards are scaled by 1/H to ensure that
rewards are bounded in [0, 1]. As a result, we can bound G ≤ 1 in the EULER regret bound in Zanette and Brunskill (2019),
since the sum of rewards inMhl is also the sum of rewards inM, and scaling by 1/H gives the desired bound on G.
Therefore,

N∑
k=1

V ∗,Mhl

0 (s0)− V πk0 (s0) . H

√
1

Heff
H̄LMHeffN =

√
H2H̄LMN.

Furthermore,

V ∗0 (s0)− V ∗,Mhl

0 (s0) ≤ V ∗0 (s0)− V π0 (s0) + V π,Mhl

0 (s0)− V ∗,Mhl

0 (s0) ≤ εsubopt.

We thus obtain the desired result.

B.4 An Exponential Regret Separation for a Hierarchy-Oblivious Learner

In this section, we provide proof of the exponential regret separation between a hierarchical learner and a learner oblivious
to the hierarchy. The overall idea behind our proof is the reduction of solving the family of minimax instances described in
Domingues et al. (2021) to a particular family of task distributions.

B.4.1 The Hard Task Distribution Family

In this section, we describe the family of task distributions that forces any meta-training-oblivious learner to incur exponential
regret. For any string s, we write |s| for its length.

We now define the family of binary tree room MDPs MW of depth W . We index a member of this family by a
tuple (`∗, a∗, e∗), where `∗ is a binary string of length W − 1, and a∗, e∗ ∈ {0, 1}. The MDP M(`∗,a∗,e∗) =
(S,A,P(`∗,a∗,e∗), r,H) corresponding to this tuple is constructed as follows:

State Space S. We create a root state sroot, 2W − 1 states indexed by binary strings of length at most W − 1 collected
into a set T = {s0, s1, s00, s01, . . . }, a gate state sgate, and terminal states 	trap, GOAL, FAIL.

Action Space A. The set of available actions at every state is the set {0, 1}.
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Transition Dynamics P(`∗,a∗,e∗). We define the dynamics as follows:

P(`∗,a∗,e∗)(· | s, a) =



δ(sa) s = sroot

δ(sta) s = st ∈ T, |t| < W − 1

bδ(sgate) + (1− b)δ(	trap) s = st ∈ T, |t| = W − 1,

s 6= s`∗ , b ∼ Ber (1/2)

bδ(sgate) + (1− b)δ(	trap) s = s`∗ , b ∼ Ber (1/2 + ε1 [a = a∗])

δ(GOAL) s = sgate, a = e∗

δ(FAIL) s = sgate, a 6= e∗.

Reward Function r. The reward function is r(s, a) = 1 [s = GOAL] + 1 [s = sgate, a = a∗].

Having described all the components of every member of MW , all that remains is to construct the family of task distributions
TW . Each member of this family will be indexed by (`∗, a∗), where `∗ and a∗ are as described above. Then, the task
distribution T(`∗,a∗) ∈ TW chooses uniformly within the set

{
M(`∗,a∗,0),M(`∗,a∗,1)

}
. Note that this implicitly defines the

latent hierarchy so that the clusters are {sroot, sgate,	trap} ∪ T , {GOAL}, and {FAIL}. Furthermore, the set of exits for the
first cluster is {(sgate, 0), (sgate, 1)}.

B.4.2 A Family of Hard Instances

In this section, we describe the family of hard instances which we reduce to solving the task distribution above. Intuitively,
if an algorithm incurs low regret throughout MW , then it must be able to quickly find a policy to reliable reach the gate state
sgate for any MDP in the family.

Constructing the hard instances. Accordingly, we define a new MDP family NW , which now is only indexed by (`∗, a∗),
and is constructed similarly as any member of MW , but ignoring states outside {sroot, sgate,	trap} ∪ T . Additionally, we
redefine the reward function r for any member to be r(s, a) := 1 [s = sgate]. We note that this is exactly the set of hard
tasks used to prove a minimax regret bound in Domingues et al. (2021).

The lower bound. We state the lower bound result from Domingues et al. (2021), in a slightly more restricted form for
ease of proof and presentation. In particular, we consider the following more restricted definition of an algorithm:

Definition B.2. Let Hn be the trajectory data generated by playing a policy πn in an MDP M. That is, Hn =

Algorithm 13 The reduction PA of learning NW to learning MW in Section B.4.3.

Require: M∈ NW
1: InitializeH0 = ∅
2: for all n ∈ [N ] do
3: Obtain πn = A(H0, . . . ,Hn−1).
4: Play πn inM, get history Gn = ((s0, a0, r0, s1), . . . , (sH−1, aH−1, rH−1, sH)).
5: if sW+1 = sgate then
6: s′W+1 ← sW+1

7: for all h = W + 1, . . . ,H − 1 do
8: if h = W then
9: s′h+1 ← GOAL if ah = 1 else FAIL.

10: r′h ← 1 [ah = 1]
11: else
12: s′h+1 ← s′h, r′h ← rh
13: end if
14: Replace (sh, ah, rh, sh+1) with (s′h, ah, r

′
h, s
′
h+1) in Gn

15: end for
16: end if
17: Hn ← Gn.
18: end for
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((s0, a0, r0, s1), (s1, a1, r1, s2), . . . , (sH−1, aH−1, rH−1, sH)), where s0 and a0 are fixed, rh = r(sh, ah), and sh+1 ∼
PM(· | sh, ah). Additionally, we setH0 = ∅.

Then, a valid algorithm A for our purposes is one which, for the nth episode, outputs a deterministic, non-stationary policy
π that is solely a function of the current state and

⋃n−1
i=1 Hi. That is, A does not output policies that adapt to the current

running episode. �

We again emphasize that this restriction is not necessary but that many algorithms nevertheless satisfy this condition
(including UCBVI and EULER). We then have the following hardness result:
Theorem B.2 (Domingues et al. (2021), Theorem 9, restated). Assume thatW ≥ 2 andH ≥ 3W . Then, for every algorithm
A, there exists an MDPM∈ NW such that

EM,A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N.

B.4.3 Proving the Hardness Result

We now use the hardness result in the previous section to demonstrate that no algorithm can incur sub-exponential regret in
W on all tasks in MW . We do so by proving that an algorithm solving all tasks in MW can be used to construct an algorithm
for solving all tasks in NW .

Formally, let A be any algorithm for learning any MDP in MW . We then construct an algorithm PA for learning any MDP
in NW as in Algorithm 13.

Given this reduction, we aim to prove the following result:
Proposition B.2. For anyM(`∗,a∗) ∈ NW , we have that

EM(`∗,a∗),PA

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
≤ EM(`∗,a∗,1),A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
.

To prove this result, we first prove that PA can simulateM(`∗,a∗,1):
Lemma B.5. For any n, the distribution over (H0, . . . ,Hn) induced by running Algorithm 13 overM(`∗,a∗) ∈ NW is
equal to that induced by running A overM(`∗,a∗,1) ∈MW .

Proof. We proceed by induction. The result holds trivially for n = 0.

Now, assume that the result holds for some n. We condition on the histories (H0, . . . ,Hn) Then, note that both algorithms
play the same policy πn+1, since PA uses A to obtain the next policy. As a result, by the construction ofM(`∗,a∗) and
M(`∗,a∗,1), the distribution over (sh, ah, rh, sh+1) are equal for h ≤W . Furthermore, Lines 6− 14 simulates the dynamics
ofM(`∗,a∗,1) conditioned on sW+1 = sgate, while conditioned on sW+1 = 	trap, the dynamics of the two MDPs are the
same. Therefore, conditioned on any (H0, . . . ,Hn), the distribution overHn+1 induced by the two algorithms are also the
same. Thus, the claim holds by induction.

Finally, we can prove Proposition B.2.

Proof of Proposition B.2. Throughout this proof, we omit the starting state sroot and the timestep 0 in the value. We prove
the result by induction. Clearly, the result holds for N = 0.

Assume that the bound holds for some N . Then, we have that

EM(`∗,a∗),PA

[
N+1∑
n=1

V ∗ − V πn
]

= EM(`∗,a∗),PA

[
N∑
n=1

V ∗ − V πn
]

+ EM(`∗,a∗),PA [V ∗ − V πN+1 ]

≤ EM(`∗,a∗,1),A

[
N∑
n=1

V ∗ − V πn
]

+ EM(`∗,a∗),PA [E [V ∗ − V πN+1 | (H0, . . . ,HN )]] ,
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where the final inequality uses the inductive hypothesis and the tower property of expectation. Now, recall from Lemma B.5
that

EM(`∗,a∗),PA [E [V ∗ − V πN+1 | (H0, . . . ,HN )]]

= EM(`∗,a∗,1),A [E [V ∗ − V πN+1 | (H0, . . . ,HN )]] .

We emphasize that the value functions are still with respect toM(`∗,a∗). However, for any policy π output by A,

V ∗ − V π = EM(`∗,a∗),π [(H −W − 1)1 [sW+1 6= sgate]]

≤ EM(`∗,a∗),π [(H −W − 1)1 [sW+1 6= sgate or aW+1 6= 1]]

≤ EM(`∗,a∗,1),π [(H −W − 1)1 [sW+1 6= sgate or aW+1 6= 1]] .

Note that the right-hand side is the regret inM(`∗, a∗, 1) for playing π. Therefore, since both algorithms play the same
policy πN+1, we thus obtain the desired result by induction.

With Proposition B.2, we can now formally state and prove the separation result:
Theorem B.3. There exists a task distribution T(`∗,a∗) ∈ TW such that an algorithm A, without access to the meta-training
tasks (and thus without access to the hierarchy), incurs expected regret lower bounded as

EM∼T(`∗,a∗) [RegretN (M,A)] & 2W/2
√
H2N.

On the other hand, for any task distribution in the family, the hierarchy-based learner P in Section B.2, with access to a
0-suboptimal hierarchy oracle, achieves regret bounded by

√
H2N with high probability on any sampled task.

Proof. Fix any algorithm A. Using Theorem B.2, there existsM(`∗,a∗) such that

EM(`∗,a∗),PA

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N

Thus, by Proposition B.2,

EM(`∗,a∗,1),A

[
N∑
n=1

V ∗0 (sroot)− V πn0 (sroot)

]
& 2W/2

√
H2N.

Note that the proof in Proposition B.2 can be extended forM(`∗,a∗,0) with appropriate modifications to PA, and thus the
same inequality holds. Consequently,

EM∼T(`∗,a∗) [RegretN (A)] & 2W/2
√
H2N.

On the other hand, with access to the 0-suboptimal hierarchy oracle, observe that the learner only has to plan at timesteps 0
and W + 1, allowing us to obtain tighter bounds (as Shl is smaller than the construction in Section B.2). Furthermore, the
suboptimality of planning with the hierarchy oracle is 0 for any task distribution in the family. We thus obtain the desired
bound.

B.5 A Discussion of Definition 5.2

In this section, we discuss why the values defined in Definition 5.2 control the suboptimality of the hierarchical learner. In
particular, we provide examples of MDPs that satisfy Assumption 5.1, and are thus in a sense tasks that are “compatible
with the hierarchy”, but nevertheless force a hierarchy-based learner to incur O(H) suboptimality.

B.5.1 (η, κ)-unreliability

Consider the MDP in Figure 9 with horizon H + 2 and two actions a∗ and a1. The optimal policy chooses a∗ at every step,
achieving a value of H −O(1), since

V ∗H+1(s0) =
1

2
H +

1

2
V ∗H(s1) =

1

2
H +

1

4
(H − 1) +

1

4
V ∗H−1(s2)

= H

H∑
h=1

1

2h
− 1

2

H∑
h=1

h

2h
= H −O(1).
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Now, assume that the MDP has a latent hierarchy so that the set of exits are given by (ti, a) for any i ∈ [H] and a ∈ A.
Clearly, the optimal hierarchy-based learner would always choose (t0, a

∗) or (t0, a1) as its high-level action. However, if
the agent fails to transition to t0 at the first timestep due to stochasticity, it will go to the end of the chain, back to s0 and try
a∗ once more. This is because it already has set a meta-action, and does not replan until an exit is performed. Thus, the
optimal agent on the meta-MDP achieves a value of H/2, and is therefore O(H)-suboptimal, even with a 0-suboptimal
hierarchy oracle.

Intuitively, hierarchy-based learners as formulated in Section B.2 fail on the MDP in Figure 9 because such learners commit
to a skill until completion. Thus, when such skills exhibit high variance in completion times, hierarchy-based learners fare
worse than other learners which are able to replan based on the current state (e.g., in this case, choose another exit if a∗ fails
to take the agent to the current subgoal). Thus, (η, κ)-reliability serves to eliminate such MDPs, ensuring that the skills
corresponding to reaching exits are reliable.

s0 s1 · · · sH−1 sH

t0 t1 · · · tH−1 tH

s∗

1, r = 1

1

0.5 0.5 0.5 0.5

1 1 1 1

0.5 0.5 0.5 1

1

1 1
1

Figure 9: An MDP that does not satisfy low (η, κ)-unreliability, where a∗ is in blue, and a1 is in
red (and purple for both actions). State shading represents state clusters, and rewards are 0 unless

indicated otherwise.

B.5.2 γ-goal-reaching suboptimality

In this section, we show that even when a hierarchy-based learner has access to highly reliable skills as in the previous
section, the learner may still incur high hierarchical sub-optimality. Consider the MDP in Figure 10, where we focus on a
single room for simplicity. Furthermore, assume that there are two exits, one from lH/2 and one from rH/2. Note that a
0-suboptimal hierarchy oracle has highly reliable goal-reaching policies for reaching both of these exit states, requiring
exactly H/2 timesteps with no stochasticity.

However, given the values assigned to lH/2 and rH/2, the optimal policy would opt to take the state t, which transitions to
either state with probability at least 1/2 in only two environment steps. Therefore, the optimal policy achieves an optimal
value of H −O(1). However, the optimal policy, in having to commit to exactly one of the exits, will achieve a value of
H/2, and thus be O(H)-suboptimal despite having a perfect hierarchy oracle.

Hierarchy-based learners fail on the MDP in Figure 10 because an optimal policy for goal-reaching does not necessarily
reach a goal as quickly as possible. Thus, γ-goal-reaching suboptimality is a regularity condition that ensures that this is
indeed the case.
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s0 r1 · · · rH/2l1· · ·lH/2

t

V ∗h (rH/2) = H − hV ∗h (lH/2) = H − h

0.5 0.5

Figure 10: An MDP that does not satisfy low γ-goal-reaching suboptimality, with three actions
indicated by red, blue, and purple, and exits lh and rh. The MDP satisfies (∞, 0)-unreliability, yet

nevertheless exhibits high hierarchical suboptimality.
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C EXPERIMENTS

Figure 11: The tasks that were made available to the exit-learning algorithm.

We ran our proposed exit-detection algorithm on the tasks illustrated in Figure 11. Note that we used UCBVI instead of
EULER in our implementation of the algorithm wherever it was used. Our algorithm was able to successfully detect all four
gates with the parameters provided in Table 2 over 10 repeated trials, with no false positives in all trials.

Parameter Value Parameter Value

NUCBVI 10000 NED
thresh 50

NTS
thresh 50 NED 50

NTS 100 NEL 100

NRF
UCBVI 10000 NEL

UCBVI 1000

NRF 5000

Table 2: Table of parameters.
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