
Variational Boosted Soft Trees

Tristan Cinquin
University of Tuebingen1

tristan.cinquin@uni-tuebingen.de

Tammo Rukat
Deekard1

tammorukat@gmail.com

Philipp Schmidt
Amazon

phschmid@amazon.com

Martin Wistuba
Amazon

marwistu@amazon.com

Artur Bekasov
Amazon

abksv@amazon.com

Abstract

Gradient boosting machines (GBMs) based on
decision trees consistently demonstrate state-of-
the-art results on regression and classification
tasks with tabular data, often outperforming deep
neural networks. However, these models do not
provide well-calibrated predictive uncertainties,
which prevents their use for decision making in
high-risk applications. The Bayesian treatment
is known to improve predictive uncertainty cali-
bration, but previously proposed Bayesian GBM
methods are either computationally expensive, or
resort to crude approximations. Variational infer-
ence is often used to implement Bayesian neural
networks, but is difficult to apply to GBMs, be-
cause the decision trees used as weak learners
are non-differentiable. In this paper, we propose
to implement Bayesian GBMs using variational
inference with soft decision trees, a fully differ-
entiable alternative to standard decision trees in-
troduced by Irsoy et al. Our experiments demon-
strate that variational soft trees and variational soft
GBMs provide useful uncertainty estimates, while
retaining good predictive performance. The pro-
posed models show higher test likelihoods when
compared to the state-of-the-art Bayesian GBMs
in 7/10 tabular regression datasets and improved
out-of-distribution detection in 5/10 datasets.

1Work done while at Amazon.

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

Tabular data, often combining both real valued and cate-
gorical variables, is common in machine learning appli-
cations (Borisov et al., 2021; Hoang and Wiegratz, 2021;
Clements et al., 2020; Ebbehoj et al., 2021; Mustafa and
Rahimi Azghadi, 2021). A number of these applications
require uncertainty estimates, in addition to the model’s
predictions. Predictive uncertainty is particularly important
when using the model for making decisions associated with
risk, as common in healthcare (Abdullah et al., 2022; Kompa
et al., 2021) or finance (Bew et al., 2019; Gonzalvez et al.,
2019). In order to make optimal decisions, we require the
uncertainty estimates to be well-calibrated: the predictive
distribution returned by the model should capture the true
likelihood of the targets (Guo et al., 2017).

A decision tree is a predictive model that is fit by recur-
sively partitioning the feature space. These models are
fast, interpretable and support categorical data without addi-
tional pre-processing. To increase their expressivity without
exacerbating overfitting, multiple decision trees can be com-
bined into an ensemble using gradient boosting (Freund
and Schapire, 1997; Friedman, 2001). Gradient boosting
machines (GBM) are an expressive class of machine learn-
ing models trained by sequentially fitting an ensemble of
weak learners (e.g. decision trees). At each iteration, the
gradient boosting procedure fits an additional weak learner
that would minimize the training error when added to the
ensemble. These models demonstrate state-of-the-art re-
sults on tabular data (Bojer and Meldgaard, 2021; Liu et al.,
2021), often out-performing deep neural networks (Borisov
et al., 2021; Shwartz-Ziv and Armon, 2022).

While GBM models demonstrate good predictive perfor-
mance, they do not provide well-calibrated predictive un-
certainties (Niculescu-Mizil and Caruana, 2012). Bayesian
methods are known to improve predictive uncertainties by
explicitly capturing the epistemic uncertainty, a type of un-
certainty that results from learning with finite data (Kristiadi

mailto:tristan.cinquin@uni-tuebingen.de
mailto:tammorukat@gmail.com
mailto:phschmid@amazon.com
mailto:marwistu@amazon.com
mailto:abksv@amazon.com

Variational Boosted Soft Trees

et al., 2020; Mitros and Namee, 2019). Bayesian GBMs
have been proposed, and indeed improve upon the predic-
tive uncertainties of standard GBMs (Chipman et al., 1998;
Linero and Yang, 2017; Ustimenko and Prokhorenkova,
2020). Current methods rely on Markov chain Monte Carlo
(MCMC) to sample from the posterior, however, and do
not scale well to larger models and datasets. Alternative
approximate sampling methods have been proposed by He
and Hahn (2020) and Malinin et al. (2020). These methods
make the sampling procedure more efficient, but degrade
the quality of the resulting predictive uncertainties. More
scalable approximate inference methods such as the Laplace
approximation or variational inference are difficult to apply
to GBMs, because the decision trees used as weak learners
are non-differentiable.

Unlike standard decision trees that route the input to a
unique leaf based on a series of binary conditions, soft deci-
sion trees (Irsoy et al., 2012) compute a convex combination
of all leaves, weighing their values by a series of learned
gating functions. As a result, soft decision trees are fully
differentiable, and therefore amenable to scalable Bayesian
inference methods that are common in Bayesian deep learn-
ing (Blundell et al., 2015; Cobb and Jalaian, 2020; Immer
et al., 2020).

In this work we propose to implement Bayesian GBMs by
using soft trees as week learners in a GBM, and performing
variational inference on the resulting model. In particular,
we make the following contributions:

1. We propose a method for performing variational in-
ference in soft decision trees. The chosen variational
distribution allows trading-off memory and computa-
tion for a richer posterior approximation.

2. We increase the expressivity of the model by using
variational soft trees as weak learners in a GBM.

3. We run experiments to demonstrate that the pro-
posed models perform well on tabular data, yielding
useful predictive uncertainties in regression, out-of-
distribution detection and contextual bandits.

2 BACKGROUND

2.1 Bayesian inference

Bayesian inference provides a theoretical framework for
reasoning about model uncertainty, and has been shown to
improve calibration of machine learning models in prac-
tice (Mitros and Namee, 2019; Kristiadi et al., 2020). In
Bayesian inference we place a prior on the model parame-
ters θ, and use the Bayes rule to define the posterior distri-
bution having observed the data:

p(θ | D) ∝ p(D | θ)p(θ) (1)

where D = {xi, yi}ni=1 is the training data, p(θ) is the prior
distribution, and p(D | θ) the likelihood. The predictive
distribution of a new target y∗ given a feature vector x∗ is
then computed as

p(y∗ |x∗) = Eθ∼p(θ | D)[p(y
∗ |x∗, θ)] (2)

The posterior distribution in the Bayesian paradigm explic-
itly captures epistemic or model uncertainty that results from
learning with finite data. Epistemic uncertainty is one of
the two fundamental types of uncertainty (alongside the
aleatoric or data uncertainty), and capturing it was shown
to be especially important in risk-aware decision making
(Riquelme et al., 2018; Abdullah et al., 2022; Deisenroth
and Rasmussen, 2011), active learning (Kirsch et al., 2019)
and Bayesian optimisation (Gonzalvez et al., 2019; Krause
et al., 2006; Springenberg et al., 2016). Unfortunately, the
posterior distribution is typically intractable and requires
numerical approximation.

Variational inference Variational inference (VI) is an
approximate inference method which selects a distribution
q∗ within a variational family Q that best approximates the
posterior p. More formally, we select the distribution q∗

such that:

q∗ = argmin
q∈Q

DKL(q ∥ p)

= argmin
q∈Q

Eθ∼q

[
log

q(θ)

p(θ | D)

]
.

(3)

In practice, we define a parametric variational distribution
qϕ and use standard optimization methods like stochastic
gradient descent to minimize the KL loss w.r.t. ϕ. We then
use q∗(θ) instead of p(θ | D) to approximate the predictive
distribution in Equation (2). In this paper, we focus on VI
because it can capture arbitrarily complex, high-dimensional
posteriors, assuming the chosen variational family is suffi-
ciently expressive. At the same time, VI can scale to large
datasets when combined with stochastic optimisation (Hoff-
man et al., 2013; Swiatkowski et al., 2020; Tomczak et al.,
2020; Tran et al., 2015).

Other commonly used approximate inference methods are
Markov chain Monte Carlo (MCMC) (Welling and Teh,
2011) and the Laplace approximation (Immer et al., 2020).
MCMC samples from the posterior directly, but does not
scale well to large models and datasets. The Laplace ap-
proximation is more scalable, but assumes that the posterior
can be approximated well with a Gaussian distribution.

2.2 Decision trees

Decision trees are predictive models trained by recursively
partitioning the input space and fitting a simple model (often
constant) in each partition (leaf). At each non-terminal
node of the tree, the model forwards the input to a child

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

based on a binary condition. For example, at a particular
node the model might route the input x to the left sub-tree
if x[i] ≤ τ , and to the right sub-tree otherwise, where i
indexes a particular feature and τ is a threshold. The splits
are determined by greedily optimizing a chosen criterion at
each node. For instance, in the regression setting the feature
index i and threshold τ could be selected to minimize the
sum of square errors of the induced partition. The splitting
hyperplanes are always parallel to the axes of the feature
space. Predictions are made by forwarding x to a unique
leaf and outputting the class (for classification) or the real
value (for regression) associated with this particular leaf.

Soft decision trees First introduced by Irsoy et al. (2012),
soft decision trees use sigmoid gating functions to “soften”
the binary routing at each node. More formally, the output
f(x) of a soft decision tree is computed as the sum of the
leaf outputs fl(x) weighted by the probability pl(x) that the
input x is routed to the leaf l:

f(x) =
∑
l∈L

pl(x)fl(x), (4)

where L is the set of leaf nodes. The probability pl(x)
is defined as the product of probabilities returned by the
soft gating functions on the path from the root to the leaf
l. Details on the exact form of pl and fl are provided in
Section 4.1. The sigmoid gating functions allow learning
non-axis-aligned decision boundaries and smooth functions.
This results in a differentiable model that can be trained
by gradient descent, and yet performs well on tabular data
(Feng et al., 2020; Irsoy et al., 2012; Linero and Yang, 2017;
Luo et al., 2021). Computing the prediction of a soft tree
requires evaluating all the leaves, and is therefore more
expensive than doing so for the standard decision tree. In
practice, however, a shallow soft decision tree can match the
performance of a deep hard decision tree, which alleviates
some of the computational overhead (Irsoy et al., 2012).

Multiple variations of a soft decision tree exist. The tree
depth can be fixed (Feng et al., 2020; Kontschieder et al.,
2015; Luo et al., 2021) or adjusted dynamically by greedily
adding new nodes while the validation loss decreases (Irsoy
et al., 2012). Furthermore, the sigmoid gating functions can
be based on linear models (Feng et al., 2020; Frosst and Hin-
ton, 2017; Irsoy et al., 2012; Luo et al., 2021), multi-layer
perceptrons (Feng et al., 2020; Kontschieder et al., 2015),
or convolutional neural networks (Ahmetoğlu et al., 2018).
Likewise, the leaves of the tree can output constant values
(Feng et al., 2020; Frosst and Hinton, 2017; Kontschieder
et al., 2015; Luo et al., 2021), or be defined using complex
models such as neural networks (Ahmetoğlu et al., 2018).
To address the exponential increase in prediction cost as the
soft tree grows, Frosst and Hinton (2017) propose to only
consider the most probable path from the root to a leaf. This
method requires special regularization encouraging nodes
to make equal use of each sub-tree to work and performs

worse than averaging over all leaves, but is more efficient.

In addition to state-of-the-art performance on tabular data,
soft decision trees can be preferred to neural networks due
to their greater interpretability (Frosst and Hinton, 2017).
As soft trees rely on hierarchical decisions, one can examine
the weights of the soft gating functions and gain insight into
the learned function. In prior work, neural networks have
been distilled into into soft trees to make their decisions ex-
plainable, both in the context of image classification (Frosst
and Hinton, 2017) and reinforcement learning (Coppens
et al., 2019).

Soft decision trees are similar to hierarchical mixtures of
experts (HME, Jordan and Jacobs, 1993). While HMEs and
soft decision trees share the same architecture, HMEs explic-
itly model the assignment of each input to a leaf using latent
variables. Therefore, HMEs are trained using the expecta-
tion maximisation algorithm (EM, Dempster et al., 1977),
rather than by maximising the log-likelihood. Jordan and
Jacobs find that, when compared to the standard maximum
likelihood with backpropagation, fitting an HME using EM
requires fewer passes over the data, but the resulting models
demonstrate higher test error.

2.3 Gradient boosting machines

A gradient boosting machine (GBM) (Friedman, 2001) se-
quentially combines a set of weak learners (e.g. decision
trees) into an ensemble to obtain a stronger learner. At each
iteration, a weak learner is trained to minimize the error
of the existing ensemble, and is subsequently added to the
ensemble. More formally, at iteration t the GBM combines
the existing ensemble ft(x) =

∑t
j=1 γjhj(x) with an ad-

ditional learner ht+1 ∈ H from some function class H s.t.
ft+1(x) = ft(x) + γt+1ht+1(x) minimizes the training
loss. Finding the optimal weak learner ht+1 is intractable in
general, so the optimization problem is simplified by taking
a step in the direction of the steepest decrease of the loss L
in function space:

ft+1(x) = ft(x)− γt+1

n∑
i=1

∇ftL(ft(xi), yi), (5)

where D = {xi, yi}ni=1 is the training data. In
other words, each weak learner ht+1 is fit to match
−γt+1

∑n
i=1 ∇ftL(ft(xi), yi). Taking multiple gradient

boosting steps minimizes the training loss and yields an
accurate model. GBMs demonstrate state-of-the-art perfor-
mance on tabular data for both classification and regression
tasks: models that win Kaggle1 competitions are commonly
based on GBMs (Bojer and Meldgaard, 2021; Liu et al.,
2021).

1https://www.kaggle.com

https://www.kaggle.com

Variational Boosted Soft Trees

3 RELATED WORK

Bayesian hierarchical mixture of experts Prior work
performed Bayesian inference on the parameters of HMEs
using variational inference. These methods consider an ap-
proximate posterior which factorizes the parameters into
groups (leaf function, node gating function, latent variables,
prior parameters) and places isotropic Gaussian priors on
the leaf and node model parameters, as well as Gamma
hyper-priors. Waterhouse et al. (1995) perform inference by
iteratively optimizing the VI objective with respect to each
group of parameters separately, keeping the others fixed.
However, for tractability they use the Laplace approxima-
tion on the node gating function parameters and hence do
not get a lower bound on the evidence. Ueda and Ghahra-
mani (2002) propose to model the joint distribution over
both input and output variables, which allows to derive the
variational posterior without approximations for a tree of
height 1. However, capturing the input distribution is both
expensive and unnecessary for regression and classification.
Also this method does not apply to deeper trees. Finally,
Bishop and Svensen (2012) derive a tractable lower bound
on the variational inference objective, which is then opti-
mised by iteratively updating the parameters of each factor
of the variational posterior, keeping the others fixed.

In contrast, we consider a simpler model which does not
explicitly capture the assignment of data samples to leaves
with latent variables. Furthermore, our proposed variational
posterior is more expressive and can capture correlations
between all the parameters of the model. Finally, we fit
our model to optimise the variational objective using the
reparameterization trick from Kingma and Welling (2013)
and stochastic gradient descent.

Bayesian gradient boosted trees Previous work on
Bayesian GBMs uses MCMC to sample from the Bayesian
posterior. Chipman et al. (1998) suggest performing infer-
ence in a GBM using a Gibbs sampler which iteratively
samples each tree conditioned on the other trees in the en-
semble. This method, BART, requires a long burn-in period
(≈1000 iterations). Pratola et al. (2017) improve BART
with a heteroscedastic noise model at the cost of making
inference slower, as it is performed on both the mean and
noise models. In order to speed up the convergence of the
BART sampler, He and Hahn (2020) propose Accelerated
BART (XBART). Rather than making small changes to a
given tree at each iteration, XBART grows an entirely new
tree. This speeds up mixing considerably requiring only 15
burn-in iterations. As a mechanism for variable selection,
the authors also propose placing a Dirichlet prior on the
input features, improving performance on high-dimensional
data.

In parallel, Ustimenko and Prokhorenkova (2020) draw
analogies between gradient boosting and MCMC, and prove
that a set of modifications is enough to cast gradient boosting

with Gaussian noise as stochastic gradient Langevin dynam-
ics in function space. The resulting algorithm, stochastic
gradient Langevin boosting (SGLB), allows to draw multi-
ple samples from the posterior by training an ensemble of
GBMs with targets perturbed by Gaussian noise. To reduce
the memory and time complexity of SGLB, Malinin et al.
(2020) introduce virtual ensembles. Taking advantage of
the additive structure of GBMs, virtual ensembles collect
multiple sub-ensembles by running a single SGLB model.
However, faster training comes at the cost of higher corre-
lation among models, thus reducing the effective sample
size.

Soft gradient boosting machine Just like decision trees,
soft decision trees can be combined into ensembles to im-
prove their predictive performance. Gradient boosting is
a particularly successful method for doing so, hence Luo
et al. (2021) experiment with combining soft trees using
gradient boosting, and find the resulting method to be highly
effective on tabular data. Similarly, Feng et al. (2020) sug-
gest to fit soft GBMs by directly minimizing the gradient
boosting loss using stochastic gradient descent. As each
weak learner is updated in parallel, this method diverges
significantly from the gradient boosting framework.

An alternative line of research aims to arrive at a Bayesian
soft GBM by making BART “smoother”. Linero and Yang
(2017) propose soft BART (SBART), a model which replaces
the standard decision trees in BART with soft trees. Empiri-
cally, fitting the resulting method is significantly slower than
BART. Maia et al. (2022) suggest putting Gaussian process
priors on each leaf in a BART model, demonstrating that
this method performs better than BART and SBART, but is
also slower.

4 METHODS

4.1 Variational soft trees

In this section we propose a variational soft tree (VST), a
model that has the same architecture as a fixed depth soft
decision tree (Figure 1), but where we perform variational
inference to approximate the full posterior distribution. We
then sample from the posterior approximation to compute
the predictive distribution in Equation (2) by Monte Carlo
integration. We consider two variations of the variational
soft tree: one with constant leaves as in (Feng et al., 2020;
Frosst and Hinton, 2017; Kontschieder et al., 2015; Luo
et al., 2021), and another with linear leaves, where each leaf
outputs an affine function of the input. Linear leaves allow
the model to represent piecewise linear functions, which are
strictly more expressive than piecewise constant functions.
In fact, a piecewise linear function can represent any dif-
ferentiable scalar function in the limit of infinite pieces by
setting each piece to the derivative of the function. Linear
leaves use two additional parameter vectors per leaf, and in

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

(a) Soft tree (b) Bayesian soft tree

Figure 1: Standard vs. Bayesian soft decision tree. In a
standard soft tree each weight is assigned a fixed value,
while in a Bayesian soft tree each weight is a distribution.

our experiments had a marginal effect on the computation
cost. To our knowledge, we are the first to consider soft
decision trees with linear leaves.

Likelihood We define the likelihood of the soft tree as

p(y |x, θ) =
∑
l∈L

P (l |x, ϕ)p(y |x, l, ψ), (6)

where L is the set of tree leaves (terminal nodes) and θ =
{ϕ, ψ} are the parameters of the soft tree.

P (l |x, ϕ), the first term inside the sum in Equation (6), is
the probability that the input x is routed to the leaf l, defined
as:

P (l |x, ϕ) =
∏

n∈Path(l)

[
P (r |n, x, ϕ)n↘l

P (¬r |n, x, ϕ)l↙n
]
, (7)

where Path(l) the set of tree nodes on the path from the root
to the leaf l, n↘l = 1 if the leaf l is in the right subtree of
node n, l↙n = 1 if it is in the left subtree, and P (r |n, x, ϕ)
is the probability that x is routed to the right subtree at
the node n, with P (¬r |n, x, ϕ) = 1 − P (r |n, x, ϕ). We
parametrize P (r |n, x, ϕ) using a soft gating function fϕ:

P (r |n, x, ϕ) = fϕ(x, n), (8)

restricting fϕ(x, n) ∈ [0, 1] for all x and n. In this work,
we choose a simple linear gating function (Feng et al., 2020;
Frosst and Hinton, 2017; Irsoy et al., 2012; Luo et al., 2021):

fϕ(x, n) = σ
(
β
(
wT

nx+ bn
))
, (9)

where σ is the standard sigmoid function, β is an inverse
temperature parameter used to regularize the function during
training (Frosst and Hinton, 2017), and ϕ = {(wn, bn)}n∈N

are the parameters of the function for the set of tree nodes
N .

The second term inside the sum in Equation (6),
p(y |x, l, ψ), is the predictive probability when the input
x is routed to the leaf l. In this work, we consider two varia-
tions of this term: a constant leaf model, and a linear leaf

model. In the constant leaf model, the output at each leaf is
independent of the input:

p(y |x, l, ψ) = p(y | l, ψ) (10)

= N
(
y |µl, softplus(αl)

2
)
, (11)

where ψ = {(µl, αl)}l∈L. In the linear leaf model, on the
other hand, the parameters of the Gaussian are linear in the
input:

p(y |x, l, ψ) = N
(
y |µl(x), σ

2
l (x)

)
(12)

µl(x) = wT
l x+ bl (13)

σl(x) = softplus
(
ŵT

l x+ b̂l

)
(14)

where ψ =
{
(wl, bl, ŵl, b̂l)

}
l∈L

and softplus(x) =

log(1 + exp(x)). We use softplus functions to constrain
the standard deviation parameters to remain strictly positive,
while ensuring numerical stability (Blundell et al., 2015).

Prior We use a spherical, zero centered Gaussian prior for
the model parameters:

p(θ) = N
(
θ | 0, τ2I

)
. (15)

Note that for a constant leaf model we put this prior on the
inverse softplus of the standard deviation at each leaf, which
restricts the variance to stay strictly positive.

Variational posterior We use the variational distribution
proposed by Tomczak et al. (2020), which is a Normal
distribution with a low-rank covariance matrix:

q(θ) = N
(
θ |µ, diag[σ2] + V V T

)
(16)

where σ ∈ Rp and V is a matrix of rank k. The hyperpa-
rameter k determines the rank of the covariance matrix, and
hence the expressivity of the posterior. If θ ∈ Rp, choosing
k = p allows learning arbitrary covariance matrices, but
increases the memory requirements and computational cost.
As a result, in our experiments we typically choose k < p.
This choice of the variational posterior and the prior admits
an analytical KL-divergence which is detailed in Section 1.1
in the supplementary material.

4.2 Gradient boosted variational soft trees

In order to increase the expressivity of the variational soft
tree, we propose to use these models as weak learners in a
gradient boosting machine that we refer to as a variational
soft GBM (VSGBM). More formally, the model is defined
as

Fθ(x) =

T∑
t=1

fθt(x) + ϵ where ϵ ∼ N
(
ϵ | 0, σ2

)
(17)

Variational Boosted Soft Trees

Algorithm 1: Gradient boosted variational soft trees
Input: Prior parameters aσ and bσ

T the number of soft trees in the GBM
Data: {X, y}
Fit variational soft tree fθ1 to {X, y}
for t ∈ [2, . . . T] do

Sample parameters for all models fθj : θj ∼ qj for
j = 1 . . . t− 1

Compute the residual vector:
rt = y −

∑t−1
j=1 fθj (X)

Fit the new model fθt to {X, rt}
end
Sample parameters θ = {θj}Tj=1 where θj ∼ qj
Compute final residuals r = y − Fθ(X)
Sample σ2 ∼ inverse-Gamma(aσ + n, bσ + rT r)

where fθt is a variational soft tree with parameters θt, T is
the number of trees in the ensemble and σ is a scale param-
eter. We consider variational soft trees fθt that output the
estimated mean value of the target and no standard devia-
tion. Hence the variational soft GBM has a homoskedastic
(input-independent) variance model. Heteroskedastic (input-
dependent) uncertainty could in principle be modeled by
returning the predictive variances from the weak learners
alongside the predictive means, and combining them up-
stream. In our early experiments this configuration proved
to be costly to train (it doubles the number of model param-
eters), and made the training unstable (the gradient boosting
loss had high variance). In prior work Pratola et al. (2017)
train a separate ensemble to capture aleatoric uncertainty,
likely to avoid this instability.

Inspired by He and Hahn (2020), we place an
inverse-Gamma(aσ, bσ) prior on σ2, yielding an
inverse-Gamma(aσ + n, bσ + rT r) posterior, where
n is the number of data samples and r = y − Fθ(X)
is the residual vector. The variational soft GBM is fit
following the procedure described in Algorithm 1. Once
trained, samples from the approximate posterior of the
variational soft GBM are obtained by drawing parameters
from the variational distribution of each variational soft tree
model in the ensemble. The predictive distribution is then
approximated by Monte Carlo integration of the likelihood
as per Equation (2), i.e. by aggregating the predictions of
the variational soft trees as defined by Equation (17) for
different posterior samples.

5 EXPERIMENTS

In this section we evaluate the variational soft tree and varia-
tional soft GBM on regression, out-of-distribution detection
and multi-armed bandits. Although we are not measuring
model calibration directly, like prior work we assume that
model calibration and performance on these tasks are corre-

lated. When reporting results, we bold the highest score, as
well as any score if its error bar and the highest score’s error
bar overlap, considering the difference to not be statistically
significant.

5.1 Regression

We consider a suite of regression datasets used by Malinin
et al. (2020) described in Table 4 in supplementary material.
We perform 10-fold cross validation on the training data
and report the mean and standard deviation of the test log-
likelihood and root mean square error (RMSE) of our mod-
els across the folds. We compare our variational soft deci-
sion trees (VST) and variational soft GBM (VSGBM) with
two Bayesian GBMs (XBART (He and Hahn, 2020) and
SGLB (Ustimenko and Prokhorenkova, 2020)), an ensem-
ble of neural networks, and XGBoost (Chen and Guestrin,
2016). When comparing models to VSTs, we consider base-
lines with an ensemble size of one, and otherwise multiple
ensemble members when comparing with the VSGBM. The
only exception is the ensemble of deep neural networks for
which we always use an ensemble of ten models to measure
epistemic uncertainty.

Variational soft decision tree We find that our model
performs well in terms of test log-likelihood and RMSE
across the considered datasets (see Tables 1 and 6), which
confirms that soft decision trees are well-suited to tabular
data (Luo et al., 2021). VSTs outperform the baselines on
7/10 datasets in terms of log-likelihood, and 3/10 datasets in
terms of RMSE, also matching the log-likehood and RMSE
of best performing baselines on 1/10 and 3/10 datasets re-
spectively. In addition, soft decision trees with linear leaves
perform better than equivalent constant leaf models on 8/10
datasets in terms of log-likelihood and 5/10 in terms of
RMSE, bringing evidence that linear leaf models are more
expressive than constant leaf models.

VSTs are less competitive when trained on small datasets
like boston (506 training examples) and yacht (308 training
examples). We hypothesize that in these cases the model
underfits the data due to the choice of the prior. The param-
eters of the prior were chosen by hyper-parameter tuning
with the validation ELBO objective, and the underfitting
behavior could be an artifact of this tuning procedure. An al-
ternative hypothesis is that a normal prior is simply ill-suited
to this model. Choosing priors for complex, deep models
is difficult, and is an active research direction in Bayesian
deep learning (Flam-Shepherd, 2017; Fortuin et al., 2021;
Krishnan et al., 2020; Vladimirova et al., 2018).

Variational soft GBM VSGBMs perform competitively
in terms of log-likelihood compared to the baselines (see
Tables 1 and 6), yielding the best log-likelihood on 7/10
datasets. The VSGBMs perform on par with baselines on
power and boston, worse on yacht but better on the other

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

Table 1: Test log-likelihood of evaluated methods on regression datasets. We find that variational soft decision trees (VST)
and variational soft GBMs (VSGBM) perform strongly compared to baselines in terms of test log-likelihood, both methods
out-performing them on 7/10 datasets.

MODEL POWER PROTEIN BOSTON NAVAL YACHT SONG CONCRETE ENERGY KIN8NM WINE

DEEP ENSEMBLE -1.404 ± 0.001 -1.422 ± 0.000 -1.259 ± 0.007 -1.412 ± 0.000 -1.112 ± 0.009 -1.415 ± 0.001 -1.390 ± 0.001 -1.677 ± 0.073 -1.416 ± 0.000 -1.725 ± 0.075

XBART (1 TREE) -0.096 ± 0.003 -1.136 ± 0.003 -0.508 ± 0.042 -0.485 ± 0.419 1.110 ± 0.021 -1.151 ± 0.006 -0.793 ± 0.079 -0.848 ± 0.567 -1.153 ± 0.014 -1.250 ± 0.008
SGLB (1 TREE) -1.425 ± 0.027 -1.499 ± 0.002 -1.361 ± 0.044 -1.410 ± 0.009 -0.891 ± 0.047 -1.305 ± 0.007 -1.748 ± 0.050 -1.078 ± 0.006 -1.659 ± 0.015 -1.559 ± 0.033
VST (CONST.) -0.032 ± 0.010 -0.719 ± 0.005 -0.920 ± 0.002 -0.555 ± 0.088 0.193 ± 0.024 -0.733 ± 0.010 -0.999 ± 0.006 -0.710 ± 0.280 -0.877 ± 0.014 1.458 ± 0.615
VST (LINEAR) 0.024 ± 0.002 -0.631 ± 0.011 -0.682 ± 0.004 -0.335 ± 0.026 -0.754 ± 0.005 -0.579 ± 0.002 -0.461 ± 0.070 0.377 ± 0.123 -0.707 ± 0.012 3.067 ± 1.168

XBART -0.001 ± 0.006 -1.136 ± 0.003 -0.462 ± 0.054 0.008 ± 0.130 1.116 ± 0.023 -1.018 ± 0.002 -0.581 ± 0.024 -0.462 ± 0.054 -1.057 ± 0.007 -1.251 ± 0.010
SGLB -0.500 ± 0.001 -1.204 ± 0.002 -0.504 ± 0.013 -0.877 ± 0.004 -0.018 ± 0.009 -0.907 ± 0.001 -0.931 ± 0.010 -0.232 ± 0.009 -1.125 ± 0.002 -1.220 ± 0.006
VSGBM (CONST.) -0.002 ± 0.011 -1.039 ± 0.005 -0.567 ± 0.062 0.573 ± 0.311 0.045 ± 0.912 -0.933 ± 0.008 -0.465 ± 0.040 -0.227 ± 0.038 -0.457 ± 0.021 -1.192 ± 0.007
VSGBM (LINEAR) -0.015 ± 0.011 -1.051 ± 0.012 -0.462 ± 0.054 0.542 ± 0.295 -0.033 ± 0.049 -0.729 ± 0.019 -0.591 ± 0.079 0.057 ± 0.134 -0.363 ± 0.031 -1.167 ± 0.004

(a) Variational soft tree (b) XBART (c) SGLB

Figure 2: Variational soft trees (VST) show high uncertainty in the tails outside of the data support while closely agreeing
with the mean inside the support. Sampled function show more diversity in tails with VSTs than with XBART and SGLB.
The VST uses linear leaves, while XBART and SGLB use constant leaves.

datasets. However, VSGBMs are less competitive in terms
of RMSE when compared to XGBoost that yields smaller
RMSE on all but three datasets. Compared to other base-
lines, VSGBM consistently outperforms the deep ensem-
ble, and performs favorably when compared to SGLB and
XBART. In addition, we find that VSGBMs with linear
leaves perform slightly better than equivalent constant leaf
models, outperforming them on 4/10 datasets in terms of
log-likelihood and 3/10 in terms of RMSE, while also match-
ing the log-likelihod and RMSE of constant leaves on 5/10
and 6/10 datasets respectively.

Compared to a VST, a VSGBM performs better in terms
of RMSE on all datasets but two where both models score
equally well. However, VSTs obtain higher log-likelihoods
than VSGBMs on 5/10 datasets, equivalent scores on 2/10
and performs worse on 3/10. We explain this by the simpler
variance model used in the VSGBM, which does not allow
for heteroskedastic (input dependent) uncertainty.

Uncertainty estimation visualization An important prop-
erty of a reliable predictive model is its increased predictive
uncertainty for inputs in regions with little training data.
To understand if VSTs demonstrate this behavior, we plot
functions sampled from the variational posterior for simple
synthetic datasets, and compare them to functions sampled
from XBART and SGLB posteriors. We plot the sampled
functions in Figures 2 and 5.

We find that VSTs indeed capture the uncertainty outside of

the support of the data better than both XBART and SGLB:
functions agree with the true mean within the support of the
data, but diverge outside of it.

5.2 OOD detection

Out-of-distribution (OOD) data is data that is sampled from
a distribution that is sufficiently different from the train-
ing data distribution. It has been observed in prior work
(Ma and Hernández-Lobato, 2021; Tomczak et al., 2020)
that an effective Bayesian model will show high epistemic
uncertainty when presented with OOD data, so we further
evaluate our models by testing if their epistemic uncertainty
is predictive of OOD data.

Following the setup of Malinin et al. (2020), we define
OOD data by selecting a subset of data from a different
dataset. To perform OOD detection, we compute the epis-
temic uncertainty of each sample under our models and
evaluate how well a single splitting threshold separates the
epistemic uncertainty of in-distribution and OOD samples,
as proposed by Mukhoti et al. (2021). Epistemic uncertainty
is measured as the variance of the mean prediction with
respect to samples from the posterior or the ensemble. The
detection performance is quantified using the area under
the receiver operating characteristic curve (AUROC). We
report the mean and standard deviation of the AUROC of
each model across 10 folds of cross-validation. As before,
we compare our VSTs and VSGBMs with XBART, SGLB

Variational Boosted Soft Trees

Table 2: OOD detection AUROC scores with variational soft trees (VST) and variational soft GBMs (VSGBM) against
baselines (higher is better). Variational soft decision trees and variational soft GBMs perform well on out of distribution
detection, yielding the best score on 6/10 and 5/10 datasets respectively.

MODEL POWER PROTEIN BOSTON NAVAL YACHT SONG CONCRETE ENERGY KIN8NM WINE

DEEP ENSEMBLE 0.540 ± 0.015 0.504 ± 0.003 0.545 ± 0.023 1.000 ± 0.000 0.691 ± 0.088 0.510 ± 0.007 0.767 ± 0.042 0.554 ± 0.036 0.508 ± 0.005 0.547 ± 0.019

XBART (1 TREE) 0.562 ± 0.018 0.684 ± 0.015 0.656 ± 0.042 0.578 ± 0.050 0.603 ± 0.021 0.608 ± 0.033 0.671 ± 0.028 0.852 ± 0.141 0.525 ± 0.010 0.548 ± 0.016
SGLB (1 TREE) 0.593 ± 0.025 0.760 ± 0.018 0.732 ± 0.039 0.770 ± 0.021 0.607 ± 0.035 0.589 ± 0.035 0.723 ± 0.018 0.969 ± 0.003 0.519 ± 0.005 0.571 ± 0.021
VST (CONST.) 0.591 ± 0.025 0.866 ± 0.018 0.712 ± 0.020 0.884 ± 0.024 0.718 ± 0.048 0.560 ± 0.025 0.677 ± 0.049 0.863 ± 0.045 0.529 ± 0.016 0.796 ± 0.010
VST (LINEAR) 0.618 ± 0.024 0.920 ± 0.019 0.698 ± 0.020 1.000 ± 0.000 0.655 ± 0.015 0.601 ± 0.015 0.840 ± 0.013 0.996 ± 0.003 0.586 ± 0.011 0.742 ± 0.036

XBART 0.572 ± 0.011 0.678 ± 0.016 0.741 ± 0.041 0.912 ± 0.033 0.607 ± 0.026 0.565 ± 0.013 0.818 ± 0.020 0.837 ± 0.146 0.541 ± 0.011 0.549 ± 0.021
SGLB 0.600 ± 0.011 0.874 ± 0.006 0.738 ± 0.027 0.907 ± 0.011 0.662 ± 0.036 0.697 ± 0.029 0.763 ± 0.024 0.973 ± 0.007 0.508 ± 0.004 0.613 ± 0.019
VSGBM (CONST.) 0.569 ± 0.018 0.890 ± 0.011 0.775 ± 0.101 1.000 ± 0.000 0.663 ± 0.055 0.586 ± 0.014 0.666 ± 0.033 0.901 ± 0.018 0.562 ± 0.015 0.625 ± 0.019
VSGBM (LINEAR) 0.571 ± 0.010 0.950 ± 0.016 0.795 ± 0.025 1.000 ± 0.000 0.618 ± 0.020 0.602 ± 0.006 0.763 ± 0.023 0.993 ± 0.008 0.608 ± 0.012 0.688 ± 0.027

Figure 3: OOD detection AUROC score vs. the rank of the
variational posterior covariance matrix in variational soft
trees (VST). The quality of the OOD detection generally
increases with the rank of the approximate posterior covari-
ance. As we consider a large number of different model and
dataset configurations, we only present the ones for which
the increase in AUROC is most significant. The rightmost
point of each plot corresponds to a full rank covariance ap-
proximation.

and a deep ensemble.

We find that variational soft decision trees perform well on
OOD detection, outperforming baselines on 6/10 datasets
and tying on others (see Table 2). VSGBMs also perform
well, yielding the best scores on 5/10 datasets and addition-
ally matching best baselines on 2/10 (see Table 2). However,
the improvements over the top baselines are less significant
than with variational soft decision trees. As expected, we
find that increasing the rank of the approximate variational
posterior increases the OOD performance, although the sig-
nificance of the improvement depends on the dataset (see
Figure 3). This effect is most prominent with variational
soft decision trees, and is less so in VSGBMs.

5.3 Bandits

We further evaluate the VST by using it in Thompson sam-
pling (Thompson, 1933) on four different multi-armed ban-
dit problems (see Section 2.3 in the supplementary material
for more detail on the datasets), comparing to XBART and

Table 3: Cumulative regret of the bandits using variational
soft trees (VST) vs. baselines. We find that VST performs
competitively compared to baselines, achieving the lowest
cumulative regret on 2/4 bandits.

BANDIT FINANCIAL EXPLORATION MUSHROOM JESTER

RANDOM POLICY 1682.05 ± 20.23 18904.95 ± 24.37 1791.28 ± 29.61 7845.28 ± 26.99
VST 357.47 ± 34.32 7054.60 ± 748.79 1412.55 ± 5.64 6048.99 ± 42.26
SGLB 613.12 ± 45.96 9469.07 ± 1197.60 DOESN’T WORK 5762.89 ± 82.10
XBART 984.86 ± 47.59 5039.93 ± 322.63 1577.70 ± 61.56 6305.43 ± 31.97

SGLB as before. We do not experiment with VSGBMs in
the bandit setting due to computational cost. In this set-
ting, the model has to be re-trained after every update, and
training a VSGBM is expensive: boosting is sequential by
nature, and VST weak learners require a number of gradient
descent iterations to converge. Each bandit simulation is run
five times with different random seeds, and we report the
mean and the standard deviation of the cumulative regret
across the simulations.

The predictive uncertainty of VST is competitive in this
setting as well, as shown in Table 3. The VST obtains the
lowest cumulative regret on the mushroom and financial
datasets, converging to near zero instantaneous regret on
the latter (see Figure 4). On the jester dataset, the VST
demonstrates second best cumulative regret, although the
performance of all three models is comparable to the random
policy. We explain this by the difficulty of the regression
problem in this particular dataset. Finally, just like on jester,
the VST shows second best cumulative regret on the explo-
ration dataset.

6 DISCUSSION

In this work we proposed to perform variational inference
to approximate the Bayesian posterior of a soft decision
tree. We use a variational distribution that allows trading off
memory and computation for a richer posterior approxima-
tion. Using soft decision trees models as weak learners, we
build a variational soft GBM that is more expressive than the
individual trees, but preserves their well-calibrated predic-
tive uncertainty. We find that both variational soft trees and
variational soft GBMs perform well on tabular data com-
pared to strong baselines, and provide useful uncertainty

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

(a) Financial (b) Mushroom (c) Jester (d) Exploration

Figure 4: Bandit results. We find that the variational soft tree (VST) converges to near zero instantaneous regret on the
financial bandit and performs competitively compared to baselines in the bandit setting.

estimates for OOD detection and multi-armed bandits.

An important direction for future work is to speed up the
training of variational soft trees and GBMs. This is es-
pecially important when working in the low-data regime
(<104 samples), where our models are slower than the base-
line based on standard decision trees, and in the context
of multi-armed bandits, where the model needs to be up-
dated repeatedly. For the latter, an alternative direction is
to adapt our models for continual learning by implement-
ing an efficient Bayesian update, which would accelerate
sequential learning tasks like multi-armed bandits, Bayesian
optimization and active learning. Finally, addapting VST
and VSGBM to the classification setting is an interesting
direction for future work. Classification with tabular data
is important in many applications, many of which might
also benefit from well-calibrated predictive uncertainties
(Ebbehoj et al., 2021; Mustafa and Rahimi Azghadi, 2021).

References

Abdullah, A., Hassan, M., and Mustafa, Y. (2022). A review
on Bayesian deep learning in healthcare: Applications
and challenges. IEEE Access, 10:1–1.

Ahmetoğlu, A., İrsoy, O., and Alpaydın, E. (2018). Convolu-
tional soft decision trees. In Kůrková, V., Manolopoulos,
Y., Hammer, B., Iliadis, L., and Maglogiannis, I., edi-
tors, Artificial Neural Networks and Machine Learning
– ICANN 2018, pages 134–141, Cham. Springer Interna-
tional Publishing.

Bew, D., Harvey, C. R., Ledford, A., Radnor, S., and Sin-
clair, A. (2019). Modeling analysts’ recommendations
via Bayesian machine learning. The Journal of Financial
Data Science, 1(1):75–98.

Bishop, C. M. and Svensen, M. (2012). Bayesian hierarchi-
cal mixtures of experts.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra,
D. (2015). Weight uncertainty in neural networks.

Bojer, C. S. and Meldgaard, J. P. (2021). Kaggle forecast-
ing competitions: An overlooked learning opportunity.
International Journal of Forecasting, 37(2):587–603.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk,
M., and Kasneci, G. (2021). Deep neural networks and
tabular data: A survey.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. (2018). JAX: Com-
posable transformations of Python+NumPy programs.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable
tree boosting system. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 785–794.

Chipman, H. A., George, E. I., and McCulloch, R. E. (1998).
Bayesian cart model search. Journal of the American
Statistical Association, 93(443):935–948.

Clements, J. M., Xu, D., Yousefi, N., and Efimov, D. (2020).
Sequential deep learning for credit risk monitoring with
tabular financial data.

Cobb, A. D. and Jalaian, B. (2020). Scaling Hamiltonian
Monte Carlo inference for Bayesian neural networks with
symmetric splitting.

Coppens, Y., Efthymiadis, K., Lenaerts, T., and Nowé, A.
(2019). Distilling deep reinforcement learning policies in
soft decision trees. In IJCAI 2019.

Deisenroth, M. and Rasmussen, C. (2011). Pilco: A model-
based and data-efficient approach to policy search. pages
465–472.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. JOURNAL OF THE ROYAL STATISTICAL
SOCIETY, SERIES B, 39(1):1–38.

Dua, D. and Graff, C. (2017). UCI machine learning reposi-
tory.

Ebbehoj, A., Thunbo, M., Andersen, O. E., Glindtvad, M. V.,
and Hulman, A. (2021). Transfer learning for non-image
data in clinical research: a scoping review. medRxiv.

Feng, J., Xu, Y.-X., Jiang, Y., and Zhou, Z.-H. (2020). Soft
gradient boosting machine.

Variational Boosted Soft Trees

Flam-Shepherd, D. (2017). Mapping Gaussian process pri-
ors to Bayesian neural networks.

Fortuin, V., Garriga-Alonso, A., Ober, S. W., Wenzel, F.,
Rätsch, G., Turner, R. E., van der Wilk, M., and Aitchison,
L. (2021). Bayesian neural network priors revisited.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119–139.

Friedman, J. H. (2001). Greedy function approximation:
A gradient boosting machine. The Annals of Statistics,
29(5):1189 – 1232.

Frosst, N. and Hinton, G. (2017). Distilling a neural network
into a soft decision tree.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001).
Eigentaste: A constant time collaborative filtering algo-
rithm. Information Retrieval, 4:133–151.

Gonzalvez, J., Lezmi, E., Roncalli, T., and Xu, J. (2019). Fi-
nancial applications of Gaussian processes and Bayesian
optimization.

Graf, F., Kriegel, H.-P., Schubert, M., Pölsterl, S., and Cav-
allaro, A. (2011). 2D image registration in CT images
using radial image descriptors. Medical image computing
and computer-assisted intervention : MICCAI ... Inter-
national Conference on Medical Image Computing and
Computer-Assisted Intervention, 14 Pt 2:607–14.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017).
On calibration of modern neural networks. In Interna-
tional conference on machine learning, pages 1321–1330.
PMLR.

He, J. and Hahn, P. R. (2020). Stochastic tree ensembles for
regularized nonlinear regression.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. (2020).
Haiku: Sonnet for JAX.

Hoang, D. and Wiegratz, K. (2021). Machine learning
methods in finance: Recent applications and prospects.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference. Journal of Ma-
chine Learning Research, 14(40):1303–1347.

Immer, A., Korzepa, M., and Bauer, M. (2020). Improving
predictions of Bayesian neural nets via local linearization.

Irsoy, O., Yildiz, O., and Alpaydın, E. (2012). Soft decision
trees. pages 1819–1822.

Jordan, M. and Jacobs, R. (1993). Hierarchical mixtures of
experts and the EM algorithm. In Proceedings of 1993
International Conference on Neural Networks (IJCNN-
93-Nagoya, Japan), volume 2, pages 1339–1344 vol.2.

Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational Bayes.

Kirsch, A., van Amersfoort, J., and Gal, Y. (2019). Batch-
bald: Efficient and diverse batch acquisition for deep
Bayesian active learning.

Kompa, B., Snoek, J., and Beam, A. (2021). Second opinion
needed: communicating uncertainty in medical machine
learning. npj Digital Medicine, 4.

Kontschieder, P., Fiterau, M., Criminisi, A., and Rota Bulò,
S. (2015). Deep neural decision forests. pages 1467–
1475.

Krause, A., Guestrin, C., Gupta, A., and Kleinberg, J. (2006).
Near-optimal sensor placements: Maximizing informa-
tion while minimizing communication cost. In 2006 5th
International Conference on Information Processing in
Sensor Networks, pages 2–10.

Krishnan, R., Subedar, M., and Tickoo, O. (2020). Specify-
ing weight priors in Bayesian deep neural networks with
empirical Bayes. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4477–4484.

Kristiadi, A., Hein, M., and Hennig, P. (2020). Being
Bayesian, even just a bit, fixes overconfidence in ReLU
networks.

Linero, A. R. and Yang, Y. (2017). Bayesian regression tree
ensembles that adapt to smoothness and sparsity.

Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon,
I., Hong, S., Hutter, F., Ji, R., Jacques Junior, J. C. S., Li,
G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu,
K., Pan, C., Stoll, D., Treguer, S., Wang, J., Wang, P., Wu,
C., Xiong, Y., Zela, A., and Zhang, Y. (2021). Winning
solutions and post-challenge analyses of the ChaLearn
AutoDL challenge 2019. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Luo, H., Cheng, F., Yu, H., and Yi, Y. (2021). SDTR: Soft
decision tree regressor for tabular data. IEEE Access,
9:55999–56011.

Ma, C. and Hernández-Lobato, J. M. (2021). Functional
variational inference based on stochastic process gener-
ators. In Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W., editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages
21795–21807. Curran Associates, Inc.

Maia, M., Murphy, K., and Parnell, A. C. (2022). GP-
BART: A novel Bayesian additive regression trees ap-
proach using Gaussian processes. arXiv e-prints, page
arXiv:2204.02112.

Malinin, A., Prokhorenkova, L., and Ustimenko, A. (2020).
Uncertainty in gradient boosting via ensembles.

Mitros, J. and Namee, B. M. (2019). On the validity of
Bayesian neural networks for uncertainty estimation.

Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P. H. S.,
and Gal, Y. (2021). Deep deterministic uncertainty: A
simple baseline.

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

Mustafa, A. and Rahimi Azghadi, M. (2021). Automated
machine learning for healthcare and clinical notes analy-
sis. Computers, 10(2).

Niculescu-Mizil, A. and Caruana, R. A. (2012). Obtaining
calibrated probabilities from boosting.

Pratola, M., Chipman, H., George, E., and McCulloch, R.
(2017). Heteroscedastic BART using multiplicative re-
gression trees.

Riquelme, C., Tucker, G., and Snoek, J. (2018). Deep
Bayesian bandits showdown: An empirical comparison
of Bayesian deep networks for Thompson sampling.

Shwartz-Ziv, R. and Armon, A. (2022). Tabular data: Deep
learning is not all you need. Information Fusion, 81:84–
90.

Springenberg, J. T., Klein, A., Falkner, S., and Hutter, F.
(2016). Bayesian optimization with robust Bayesian neu-
ral networks. In Lee, D., Sugiyama, M., Luxburg, U.,
Guyon, I., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems, volume 29. Curran
Associates, Inc.

Swiatkowski, J., Roth, K., Veeling, B. S., Tran, L., Dillon,
J. V., Snoek, J., Mandt, S., Salimans, T., Jenatton, R., and
Nowozin, S. (2020). The k-tied normal distribution: A
compact parameterization of Gaussian mean field posteri-
ors in Bayesian neural networks.

Thompson, W. R. (1933). On the likelihood that one un-
known probability exceeds another in view of the evi-
dence of two samples. Biometrika, 25(3-4):285–294.

Tomczak, M., Swaroop, S., and Turner, R. (2020). Effi-
cient low rank Gaussian variational inference for neural
networks. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H., editors, Advances in Neural
Information Processing Systems, volume 33, pages 4610–
4622. Curran Associates, Inc.

Tran, D., Ranganath, R., and Blei, D. M. (2015). The
variational Gaussian process.

Ueda, N. and Ghahramani, Z. (2002). Bayesian model
search for mixture models based on optimizing variational
bounds. Neural Networks, 15(10):1223–1241.

Ustimenko, A. and Prokhorenkova, L. (2020). SGLB:
Stochastic gradient Langevin boosting.

Vladimirova, M., Verbeek, J., Mesejo, P., and Arbel, J.
(2018). Understanding priors in Bayesian neural networks
at the unit level.

Waterhouse, S., MacKay, D., and Robinson, A. (1995).
Bayesian methods for mixtures of experts. In Touretzky,
D., Mozer, M., and Hasselmo, M., editors, Advances in
Neural Information Processing Systems, volume 8. MIT
Press.

Welling, M. and Teh, Y. W. (2011). Bayesian learning via
stochastic gradient Langevin dynamics. In Proceedings of

the 28th International Conference on International Con-
ference on Machine Learning, ICML’11, page 681–688,
Madison, WI, USA. Omnipress.

Variational Boosted Soft Trees

1 Additional method details

1.1 Variational inference

We use the variational distribution proposed by Tomczak et al. (2020), which is a normal distribution with a low-rank
covariance matrix:

q(θ) = N
(
θ |µ, diag[σ2] + V V T

)
(18)

where µ ∈ Rp is the mean of the normal distribution over parameters, diag[σ2] ∈ Rp×p is the diagonal component of the
covariance with σ ∈ Rp, and V ∈ Rp×k is the rank k component of the covariance. The hyperparameter k determines
the rank of the covariance matrix, and hence the expressivity of the posterior. Choosing k = p allows learning arbitrary
covariance matrices, but increases the memory requirements and computational cost. As a result, in our experiments we
typically choose k < p. We fit the variational soft tree by maximizing the evidence lower bound (ELBO):

ELBO = Eθ∼q(θ)[log p(y |x, θ)]−DKL(q(θ) ∥ p(θ)). (19)

We compute a Monte Carlo estimate of the expectation:

Eθ∼q[log p(y |x, θ)] ≈
1

m

m∑
i=1

log p
(
y |x, θ(i)

)
, (20)

where θ(i) ∼ q(θ). For the chosen posterior in Equation (18) and an isotropic Gaussian prior p(θ) = N (θ | 0, γI), the KL
divergence term is available in a closed form:

DKL(q(θ) ∥ p(θ)) =
1

2

[
p∑

d=1

(
σ2
d

γ
− log σ2

d

)
+

1

γ

k∑
i=1

||vi||22 −∆+
1

γ
||µ||22 + p(log γ − 1)

]
, (21)

where V = [v1, . . . vk] ∈ Rp×k, σ ∈ Rp and ∆ = log det(Ik + V T diag[σ2]−1V).

2 Experimental details

2.1 Regression

We consider a suite of regression datasets from Malinin et al. (2020) to measure the expressivity of our model. Table 4
summarizes the number of examples and features in each dataset. We preprocess the datasets by encoding categorical
variables as one-hot vectors and normalizing each feature to have zero mean and unit variance. We further split the datasets
into train (80%) and test (20%) data, and perform 10-fold cross validation on the training data. We report the mean and the
standard deviation of the test log-likelihood and root mean square error (RMSE) across all folds.

Table 4: Regression dataset description

DATASET BOSTON NAVAL POWER PROTEIN YACHT SONG CONCRETE ENERGY KIN8NM WINE

NUMBER SAMPLES 506 11 934 9 568 45 730 308 514 345 1 030 768 8 192 1 599
NUMBER FEATURES 13 16 4 9 6 90 8 8 8 11

2.2 OOD detection

Following the setup from Malinin et al. (2020), we consider the test data to be the in-distribution (ID) data, and create a
dataset of OOD data by taking a subset of the song dataset of the same size. We select a subset of features from the song
dataset in order to match the feature dimension of the ID dataset. The only exception is the song dataset itself, for which we
use the Relative location of CT slices on axial axis dataset from Graf et al. (2011) as OOD data. In both settings, categorical
features are encoded as one-hot vectors, and all features are normalized to have zero mean and unit variance. We use a
one-node decision tree to find the splitting threshold for the epistemic uncertainty that would separate ID and ODD data.

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

2.3 Bandit

We consider the following datasets for our bandit experiments:

Financial The financial bandit (Riquelme et al., 2018) was created by pulling the stock prices of d = 21 publicly traded
companies in NYSE and Nasdaq, for the last 14 years for a total of n = 3713 samples. For each day, the context was the
price difference between the beginning and end of the session for each stock. The arms are synthetically created to be a
linear combination of the contexts, representing k = 8 different portfolios.

Jester This bandit problem is taken from Riquelme et al. (2018). The Jester dataset (Goldberg et al., 2001) provides
continuous ratings in [−10, 10] for 100 jokes from 73 421 users. The authors find a complete subset of n = 19 181 users
rating all 40 jokes. We take d = 32 of the ratings as the context of the user, and k = 8 as the arms. The agent recommends
one joke, and obtains the reward corresponding to the rating of the user for the selected joke.

Exploration The exploration bandit tests the extent to which the models explore the different arms. The reward function
of each arm is sparse and requires maintaining high uncertainty to discover the context values for which the reward is high.
The reward given input x and selected arm a is given by:

r(x, a) = σ(β(x+ α− offset[a]))− σ(β(x− α− offset[a])) + ϵ (22)

where σ(x) = 1 / (1 + e−x) is the sigmoid function, α, β ∈ R are constants, ϵ ∼ N(0, δ2), and offset[a] is a function
mapping each arm a to a particular offset. Intuitively, this reward is composed of a smooth unit valued “bump” per arm
and is otherwise 0. The positions of the “bumps” across arms are disjoint and barely overlap. Furthermore, the context is
sampled uniformly at random in the interval [−1, 1]. We run this bandit for 20 000 steps.

Mushroom This bandit problem is taken from Riquelme et al. (2018). The Mushroom Dataset (Dua and Graff, 2017)
contains n = 7310 samples, 22 attributes per mushroom, and two classes: poisonous and safe. The agent must decide
whether to eat a given mushroom or not. Eating a safe mushroom provides reward of 5. Eating a poisonous mushroom
delivers reward 5 with probability 1/2 and reward -35 otherwise. If the agent does not eat a mushroom, then the reward is 0.

2.4 Implementation

We implement the variational soft decision tree and variational soft GBM using the Jax (Bradbury et al., 2018) and DM-
Haiku (Hennigan et al., 2020) Python libraries. We fit our models using the Adam (Kingma and Ba, 2014) optimizer.
Hyperparameter optimization was conducted using Amazon SageMaker’s2 automatic model tuning that uses Bayesian
optimisation to explore the hyperparameter space. We define the set of hyperparameters that the Bayesian optimisation
needs to explore, as well as the optimization objective. The service then runs a series of model tuning jobs with different
hyperparameters to find the set of values which minimize the objective. We use the same hyperparameter ranges as (He and
Hahn, 2020) and (Ustimenko and Prokhorenkova, 2020), summarized in Table 5.

Table 5: Hyperparameter tuning ranges.

VSGBM XBART XGBOOST DEEP ENSEMBLE VST SGLB

LEARNING RATE [0.0001, 0.001] S [1, 300] LEARNING RATE [0.001, 0.1] LEARNING RATE [0.0001, 0.001] LEARNING RATE [0.0001, 0.001] LEARNING RATE {0.001, 0.01, 0.1}
PRIOR SCALE [0.01, 2.5] TAU [1, 300] TREE DEPTH {1, . . . , 6} NUM. LAYERS {2, . . . , 5} PRIOR SCALE [0.01, 2.5] TREE DEPTH {3, . . . , 6}
MAX. DEPTH {1, . . . , 5} BETA [0.75, 2] LAMBDA [0.001, 1] HIDDEN DIM. {10, . . . , 50} MAX. DEPTH {1, . . . , 5} NUM. LEARNERS {1, . . . , 1000}
BETA [1, 50] NUM. LEARNERS [1, 100] ALPHA [0.001, 1] DROPOUT RATE [0.1, 0.4] BETA [1, 50]
NUM. LEARNERS {1, . . . , 10} BURN-IN {15} NUM. LEARNERS {1, . . . , 1000} PRIOR SCALE [0.001, 2.5]
PRIOR SIGMA ALPHA [2.5, 5] ALPHA {0.95}
PRIOR SIGMA BETA [0.1, 5] KAPPA {3}

3 Additional experimental results

3.1 Regression

In this section we present additional regression results reporting the root mean square error (RMSE) of evaluated methods
across the considered baselines, see Table 6. We find that the VST performs well in terms of test RMSE across datasets:

2https://aws.amazon.com/sagemaker/

https://aws.amazon.com/sagemaker/

Variational Boosted Soft Trees

Table 6: Test RMSE of evaluated methods on regression datasets. We find that variational soft decision trees (VST)
compares well with baselines in terms of test RMSE, out-performing them on 3/10 datasets and matching the RMSE of the
best baselines on three. Variational soft GBM (VSGBM) performs competitively in terms of RMSE compared to SGLB,
deep ensemble and XBART, but is generally weaker than XGBoost. This is unsurprising as XGBoost is the state-of-the-art
for fitting tabular data.

MODEL POWER PROTEIN BOSTON NAVAL YACHT SONG CONCRETE ENERGY KIN8NM WINE

DEEP ENSEMBLE 0.986 ± 0.001 1.003 ± 0.001 0.870 ± 0.004 0.993 ± 0.001 0.685 ± 0.002 0.999 ± 0.001 0.972 ± 0.001 1.007 ± 0.009 0.998 ± 0.001 1.013 ± 0.011

XBART (1 TREE) 0.243 ± 0.001 0.693 ± 0.003 0.356 ± 0.026 0.339 ± 0.125 0.052 ± 0.003 0.680 ± 0.007 0.474 ± 0.046 0.406 ± 0.267 0.703 ± 0.013 0.815 ± 0.006
SGLB (1 TREE) 0.280 ± 0.006 0.869 ± 0.002 0.483 ± 0.025 0.830 ± 0.007 0.405 ± 0.007 0.958 ± 0.007 0.541 ± 0.010 0.193 ± 0.003 0.740 ± 0.002 0.827 ± 0.004
XGBOOST (1 TREE) 0.242 ± 0.003 0.828 ± 0.001 0.397 ± 0.077 0.703 ± 0.001 0.056 ± 0.006 0.795 ± 0.003 0.454 ± 0.021 0.059 ± 0.005 0.776 ± 0.010 0.854 ± 0.020
VST (CONST.) 0.239 ± 0.001 0.827 ± 0.008 0.538 ± 0.004 0.359 ± 0.033 0.477 ± 0.027 0.710 ± 0.010 0.592 ± 0.005 0.483 ± 0.099 0.550 ± 0.010 0.788 ± 0.009
VST (LINEAR) 0.242 ± 0.001 0.798 ± 0.011 0.469 ± 0.003 0.376 ± 0.002 0.500 ± 0.004 0.633 ± 0.006 0.423 ± 0.066 0.281 ± 0.044 0.530 ± 0.018 0.781 ± 0.008

XBART 0.233 ± 0.001 0.692 ± 0.003 0.303 ± 0.022 0.152 ± 0.045 0.051 ± 0.003 0.576 ± 0.003 0.355 ± 0.012 0.292 ± 0.295 0.590 ± 0.007 0.815 ± 0.008
SGLB 0.453 ± 0.001 0.822 ± 0.001 0.583 ± 0.004 0.649 ± 0.002 0.300 ± 0.004 0.834 ± 0.001 0.593 ± 0.002 0.318 ± 0.002 0.778 ± 0.001 0.857 ± 0.002
XGBOOST 0.173 ± 0.003 0.614 ± 0.004 0.261 ± 0.012 0.057 ± 0.001 0.041 ± 0.006 0.450 ± 0.001 0.285 ± 0.014 0.050 ± 0.001 0.479 ± 0.019 0.735 ± 0.014
VSGBM (CONST.) 0.238 ± 0.001 0.652 ± 0.006 0.363 ± 0.025 0.111 ± 0.060 0.142 ± 0.107 0.563 ± 0.004 0.347 ± 0.016 0.227 ± 0.015 0.348 ± 0.009 0.781 ± 0.008
VSGBM (LINEAR) 0.242 ± 0.001 0.663 ± 0.012 0.297 ± 0.009 0.074 ± 0.018 0.134 ± 0.005 0.483 ± 0.007 0.341 ± 0.014 0.183 ± 0.037 0.316 ± 0.010 0.769 ± 0.006

(a) VST (b) XBART (c) SGLB

Figure 5: In-between uncertainty. Variational soft trees (VST) show high uncertainty between the two blobs of data while
closely agreeing with the true mean inside of the data support. The plot for the VST was generated with the linear leaf
model.

our model outperforms the baselines on 3/10 datasets and matching the RMSE of the top baselines on 3/10. This further
confirms that soft decision trees perform well on tabular data (Luo et al., 2021).

We observe that VSGBMs are generally weaker in terms of RMSE compared to XGBoost. XGBoost yields a smaller RMSE
on all but three datasets, where VSGBM performs better on one and ties on two. This result is not surprising as XGBoost is
the gold standard for fitting tabular data. Compared to other baselines, VSGBM systematically outperforms deep ensembles,
and performs favorably compared to SGLB and XBART. Compared to a single variational soft tree, VSGBMs perform
better in terms of RMSE on all datasets but two where they ties.

3.2 Uncertainty visualization

In order to demonstrate the quality of the predictive uncertainty of our model, we present additional plots of functions
sampled from the VST, comparing these to samples from XBART and SGLB. See Figure 2 and Figure 5. We find that
variational soft decision trees model the uncertainty outside of the support of the data better than XBART and SGLB:
functions agree with the true mean within the support of the data, but diverge outside of it.

3.3 Regression visualization

To test the flexiblity of the VST in the regression setting, we fit our model to a step function (Figure 6) and a Daubechies
wavelet (Figure 7) as done in (Linero and Yang, 2017), and plot functions sampled from our model. We see that the VST
captures the non-smooth step function as well as the hard decision trees used in XBART and SGLB. On the Daubechies
wavelet, however, we find that a VST of a reasonable depth (5) underfits. VSGBM visually improves the fit over a VST, but
still underfits the data compared to SGLB and XBART. We hypothesize that this effect is due to the choice of zero mean
Gaussian prior on the node weights wn in VSTs and VSGBMs, which encourages smooth functions. This phenomenon is
particularly visible when fitting the Daubechies wavelet, a complex function that fluctuates at different frequencies and
amplitudes. As expected, increasing the amount of training data reduces underfitting.

T. Cinquin, T. Rukkat, P. Schmidt, M. Wistuba, A. Bekasov

(a) VST (RMSE: 0.2121) (b) XBART (RMSE: 0.0982) (c) SGLB (RMSE: 0.3014)

Figure 6: Step function. The variational soft decision tree (VST) can fit this non-smooth function. The plot for the VST
was generated with the linear leaf model.

(a) VST (RMSE: 0.2346) (b) VSGBM (RMSE: 0.2534)

(c) XBART (RMSE: 0.1186) (d) SGLB (RMSE: 0.1503)

Figure 7: Daubechies wavelet. The variational soft tree (VST) and variational soft GBM (VSGBM) underfit this complex
function.

	INTRODUCTION
	BACKGROUND
	Bayesian inference
	Decision trees
	Gradient boosting machines
	RELATED WORK
	METHODS
	Variational soft trees
	Gradient boosted variational soft trees

	EXPERIMENTS
	Regression
	OOD detection
	Bandits

	DISCUSSION

	Additional method details
	Variational inference

	Experimental details
	Regression
	OOD detection
	Bandit
	Implementation
	Additional experimental results
	Regression
	Uncertainty visualization
	Regression visualization

