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Abstract

Given a set of discrete probability distributions,
the minimum entropy coupling is the minimum
entropy joint distribution that has the input distri-
butions as its marginals. This has immediate rel-
evance to tasks such as entropic causal inference
for causal graph discovery and bounding mu-
tual information between variables that we ob-
serve separately. Since finding the minimum en-
tropy coupling is NP-Hard, various works have
studied approximation algorithms. The work of
[Compton, 2022] shows that the greedy coupling
algorithm of [Kocaoglu et al., 2017a] is always
within log2(e) ≈ 1.44 bits of the optimal cou-
pling. Moreover, they show that it is impossible
to obtain a better approximation guarantee us-
ing the majorization lower bound that all prior
works have used: thus establishing a majoriza-
tion barrier. In this work, we break the majoriza-
tion barrier by designing a stronger lower bound
that we call the profile method. Using this profile
method, we are able to show that the greedy al-
gorithm is always within log2(e)/e ≈ 0.53 bits
of optimal for coupling two distributions (previ-
ous best-known bound is within 1 bit), and within
1+log2(e)

2 ≈ 1.22 bits for coupling any number
of distributions (previous best-known bound is
within 1.44 bits). We also examine a generaliza-
tion of the minimum entropy coupling problem:
Concave Minimum-Cost Couplings. We are able
to obtain similar guarantees for this generaliza-
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tion in terms of the concave cost function. Addi-
tionally, we make progress on the open problem
of [Kovačević et al., 2015] regarding NP mem-
bership of the minimum entropy coupling prob-
lem by showing that any hardness of minimum
entropy coupling beyond NP comes from the dif-
ficulty of computing arithmetic in the complex-
ity class NP. Finally, we present exponential-time
algorithms for computing the exactly optimal so-
lution. We experimentally observe that our new
profile method lower bound is not only help-
ful for analyzing the greedy approximation algo-
rithm, but also for improving the speed of our
new backtracking-based exact algorithm.

1 INTRODUCTION

Entropy, particularly in the context of its maximization,
has found wide application in statistics and machine learn-
ing, e.g., in the maximum entropy principle for esti-
mation [Levine and Tribus, 1979, Nigam et al., 1999], en-
tropic optimal transport [Cuturi, 2013], and, more gener-
ally, entropic regularization [Grandvalet and Bengio, 2006,
Niu et al., 2014, Haarnoja et al., 2018].

While much more challenging to optimize due to the
concavity of entropy, there recently has been increasing
interest in the minimization of entropy, particularly in the
context of the minimum entropy coupling (MEC) problem.
Recent applications of the MEC include the entropic
causal inference framework [Kocaoglu et al., 2017a,
Javidian et al., 2021, Compton et al., 2022]; commu-
nications [Sokota et al., 2022, de Witt et al., 2022];
random number generation (discussed in
[Li, 2021]); functional representation (discussed in
[Cicalese et al., 2019]); and dimensionality reduction
[Vidyasagar, 2012, Cicalese et al., 2016].
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The minimum entropy coupling problem seeks to answer
the question: Given a set S of m marginal (discrete-
valued) distributions, each with at most n states, what
is the minimum-entropy joint distribution (i.e. coupling)
that explains the marginals? While simple to state and
appealing from an information-theoretic viewpoint, algo-
rithmic optimization over a concave cost (entropy) is of-
ten difficult (e.g. [Cardinal et al., 2008]). In particu-
lar, computing the minimum entropy coupling is NP-hard
[Kovačević et al., 2015]. Despite this challenge, the mini-
mum entropy coupling problem continues to attract interest
and has seen an increasing number of applications.

By way of intuition, note that the entropy of the coupling
is related to the mutual information between the marginal
variables, through the identity I(X;Y ) = H(X) +
H(Y ) − H(X,Y ). In particular, the minimum entropy
coupling is the coupling that maximizes the mutual in-
formation, i.e. it can be viewed as the maximum mu-
tual information coupling. The perspective of maximiz-
ing mutual information has been very influential in ma-
chine learning [Viola and Wells III, 1997, Torkkola, 2003,
Tschannen et al., 2019, Sun et al., 2020]. In discrete-
valued settings, this coupling-based upper bound on mu-
tual information can be of interest, as it provides a tighter
bound than the traditional bound by the entropy of the
marginal distributions min(H(X), H(Y )). Accordingly,
the minimum entropy coupling enables one to upper bound
the mutual information between variables that are observed
separately. Additionally, couplings have immediate rele-
vance to optimal transport (OT), where the set of all cou-
plings is called the transport polytope. As remarked by
[Cicalese et al., 2019], the minimum entropy coupling is
the minimum entropy element in the transport polytope.

The entropic causal inference framework proposed
in [Kocaoglu et al., 2017a], and further developed
in [Kocaoglu et al., 2017b, Compton et al., 2020,
Javidian et al., 2021, Compton et al., 2022] addresses
the problem of orienting causal graphs when only ob-
servational data is available. In such a regime, the
data is not sufficient to orient the graph and additional
assumptions are required. Existing assumption frame-
works (e.g. additive noise models) were not amenable to
settings such as those with categorical variables, hence
[Kocaoglu et al., 2017a] introduced an empirically and in-
tuitively motivated (e.g. Occam’s razor) hypothesis that the
true causal direction between a pair of categorical variables
often has the smallest exogenous noise entropy associated
with its generative model. Finding this exogenous noise
entropy from the observed joint distribution was shown to
correspond to finding the minimum entropy coupling of
a (possibly large) set of distributions. The later work of
[Compton et al., 2020] showed an identifiability result that
if the true causal direction has low entropy exogeneous
noise, then the reverse (anticausal) direction will have

large entropy exogenous noise with high probability.
An extension to general multi-variable causal directed
acyclic graphs was presented in [Compton et al., 2022].
In all of these works, solving or approximating the
minimum entropy coupling problem is key to apply-
ing the entropic causal framework, and in practice the
greedy algorithm of [Kocaoglu et al., 2017a] is used to
approximate the minimum entropy coupling. Improved
guarantees on the accuracy of the greedy algorithm for
many distributions such as our Theorem 4.2, or improved
algorithmic approaches, are therefore useful for improving
the applicability and trustworthiness of entropic causality.

The recent work of [Sokota et al., 2022] studies Markov
coding games: a generalization of source coding and ref-
erential games. At a high level, the crux of their approach
is to combine reinforcement learning algorithms with min-
imum entropy coupling algorithms, in an effort to cre-
ate an agent that can communicate well through Markov
decision process trajectories. As an example, they de-
sign an agent that can efficiently communicate images just
through its actions in the video game Pong and still play
the game well. This agent extensively uses the coupling al-
gorithm of [Cicalese et al., 2019] to couple pairs of distri-
butions. The work of [de Witt et al., 2022] also uses min-
imum entropy coupling for communication, in the con-
text of steganography: securely encoding secret informa-
tion concealed in seemingly-regular text. They show that
under an information-theoretic model of steganography, a
procedure is secure if and only if it corresponds to a cou-
pling. Moreover, the minimum entropy coupling corre-
sponds to the maximally efficient secure procedure. They
demonstrate strong performance for the minimum entropy
coupling-based approach for perfectly secure steganogra-
phy in experiments using GPT-2 [Radford et al., 2019] and
WaveRNN [Kalchbrenner et al., 2018] as communication
channels. In doing so, they extensively utilize the greedy
coupling algorithm of [Kocaoglu et al., 2017a] to couple
pairs of distributions. Our result of Theorem 4.1 directly
improves the approximation guarantees for coupling pairs
of distributions: a crucial algorithm for both works.

The work of [Vidyasagar, 2012] directly computes the min-
imum entropy coupling (by a different name) of two distri-
butions in their metric for dimension-reduction of stochas-
tic processes. Accordingly, our result of Theorem 4.1
directly improves the best-known approximation guaran-
tee for efficiently computing this metric. The work of
[Cicalese et al., 2016] likewise uses minimum entropy cou-
pling for dimension reduction of probability distributions.

A variety of additional applications of minimum entropy
couplings are discussed in [Cicalese et al., 2019, Li, 2021].

Our contributions. Many recent works have fo-
cused on proving approximation guarantees for the
minimum entropy coupling problem. A unifying prop-
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erty of [Cicalese et al., 2019, Rossi, 2019, Li, 2021,
Compton, 2022] is that they all show their approxima-
tion guarantee in relation to the same lower bound: the
majorization lower bound. Moreover, [Compton, 2022]
shows that better guarantees for general m in relation
to the majorization lower bound are impossible: thus
establishing the majorization barrier.

In this work, we move away from the majorization strategy
and introduce a new method for lower bounding the cou-
pling entropy, which we call the “profile method.” This ap-
proach allows us to obtain stronger bounds in both the case
of coupling two distributions and for coupling an arbitrary
number of distributions, as is shown in Table 1.

We note that for all applications, the task of choosing what
coupling algorithm to use was previously unclear. Prior
to our work, there were three distinct algorithms that all
were shown to have a 1 bit additive approximation guar-
antee for coupling two distributions [Cicalese et al., 2019,
Rossi, 2019, Li, 2021]. In this sense, there was no the-
oretical rationale for using one algorithm over another.
For example, the recent work of [Sokota et al., 2022] used
the coupling algorithm of [Cicalese et al., 2019], while the
work of [de Witt et al., 2022] used the coupling algorithm
of [Kocaoglu et al., 2017a]. Our work provides clarity by
improving the approximation guarantee for the greedy cou-
pling of [Kocaoglu et al., 2017a] and providing counter-
examples that show the algorithms of [Cicalese et al., 2019,
Li, 2021] do not match its guarantees (see Appendix H).

We also observe that our profile method is not limited to
minimum entropy coupling, as we extend our approach to
general concave minimum-cost couplings.

In addition to new (highly efficient to compute) lower
bounds on the coupling, we also examine the problem of
exact computation of the minimum entropy coupling prob-
lem. First, we make progress on the open problem of
[Kovačević et al., 2015] regarding NP membership of the
minimum entropy coupling problem by providing an NP-
reduction from minimum entropy coupling to the problem
of simply calculating the Shannon entropy of a distribu-
tion. In essence, this shows that any hardness of minimum
entropy coupling beyond NP comes from the difficulty of
computing arithmetic in the complexity class NP.

We then prove a structural result that enables faster (but still
exponential-time) algorithms for exactly coupling two dis-
tributions. Namely, we propose a dynamic programming
and backtracking algorithm that are significantly faster than
the naive baseline. We observe that our profile method
lower bound mentioned above is not only helpful for anal-
ysis, but also for speeding up the backtracking algorithm.

We summarize the contributions of our paper as follows:

1. A new profile method for lower bounding the entropy
of the optimal coupling.

2. Approximation guarantee for coupling two distribu-
tions: H(GS) ≤ H(OPTS) +

log2(e)
e ≈ H(OPTS) +

0.53, where GS is the greedy coupling.

3. Approximation guarantee for coupling an arbitrary
number of distributions: H(GS) ≤ H(OPTS) +
1+log2(e)

2 ≈ H(OPTS) + 1.22.

4. An NP-reduction from minimum entropy coupling to
the problem of simply calculating the Shannon en-
tropy of a distribution.

5. Experimentally faster (still exponential-time) algo-
rithms for exactly coupling two distributions.

6. Experimental results showing that the profile method
lower bound is not only helpful for analysis, but also
for speeding up the backtracking algorithm.

Table 1: Best-Known Additive Approximation Guarantees
Prior Work This Work

m = 2
1 [Cicalese et al., 2019,
Rossi, 2019, Li, 2021]

1
e log2(e) ≈ 0.53

General m log2(e) ≈ 1.44
[Compton, 2022]

1
2 (log2(e) + 1) ≈ 1.22

Appendix D contains a more complete table with additional results for small m.

2 RELATED WORK AND
BACKGROUND

Notation: ln and log denote loge and log2, respectively.
H denotes Shannon entropy. Throughout the paper, as-
sume the states of any probability distribution p are sorted
in non-increasing order of size; that is, p(1) ≥ p(2) ≥
· · · ≥ p(|p|). We say that a probability distribution is pos-
sibly partial if the sum of its sizes may be less than one. S
denotes a set of (possibly partial) probability distributions,
all with the same total mass MASS(S). OPTS denotes an
optimal coupling of S.

Couplings: A coupling C is a joint distribution over m
input distributions p1, . . . , pm such that the marginals of
C are the input distributions. In particular, each state
of a coupling C maps to exactly one state for each of
the input distributions, where C(i1, i2, . . . , im) maps to
p1(i1), p2(i2), . . . , pm(im). Thus, the marginal condition
means that the total mass of a coupling’s states map-
ping to a particular state ik of an input distribution pk
must be equal to the mass of pk(ik), or equivalently
C(·, . . . , ik, ·) = pk(ik) for all k, ik. For simplicity of pre-
sentation, we will denote every input distribution pi as hav-
ing n states pi(1), . . . , pi(n). However, we emphasize that
all our results hold for coupling distributions with different
numbers of states; we can simply “pad” the smaller distri-
butions by appending states with probability 0.
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Greedy Coupling: Our work will analyze the greedy cou-
pling algorithm of [Kocaoglu et al., 2017a], formally de-
scribed in Algorithm 1. In words, the algorithm repeatedly
makes a greedy choice for the next state of the coupling,
where it creates a state that maps to the maximally large
state in each distribution, and has size equal to the mini-
mum of these maximums. [Kocaoglu et al., 2017b] showed
this algorithm is locally optimal, [Rossi, 2019] showed it
finds a coupling within 1 bit of the optimal entropy for cou-
pling two distributions, and [Compton, 2022] showed it is
within log(e) ≈ 1.44 bits for coupling arbitrary numbers
of distributions. We use GS to denote the sequence of sizes
of states the greedy algorithm produces. It is known that
|GS | ≤ nm− (m− 1) and GS is non-increasing.

Algorithm 1 Greedy Coupling [Kocaoglu et al., 2017a]
1: Input: Marginal distributions of m variables each with n

states, in matrix form M = [pT1 ; p
T
2 ; ...; p

T
m].

2: GS = [ ]
3: Sort each row of M in non-increasing order.
4: Find minimum of maximum of each row: r ← mini(pi(1))
5: while r > 0 do
6: Append r as the next state of GS .
7: Update maximum of each row: pi(1)← pi(1)− r, ∀i
8: Sort each row of M in non-increasing order.
9: r ← mini(pi(1))

10: end while
11: return GS .

Majorization: A distribution p is majorized by a distribu-
tion q (denoted by p ⪯ q) if and only if

∑i
j=1 p(j) ≤∑i

j=1 q(j) for all i ∈ {1, . . . , |q|} [Marshall et al., 1979].
It is known that any valid coupling must be majorized
by all distributions in S, meaning OPTS ⪯ p,∀p ∈ S
[Cicalese et al., 2019]. Consider the partial ordering in-
duced by majorization. Let

∧
S denote the “maximal” dis-

tribution in this partial ordering such that
∧
S ⪯ p, ∀p ∈

S, specifically,
∧
S(i) =

(
minp∈S

∑i
j=1 p(j)

)
−
∧

S(i−
1). It can be shown that if p ⪯ q then H(q) ≤ H(p)
(this holds for any concave function), hence by definition
H(OPTS) ≥ H(

∧
S). We thus have H(

∧
S) as a lower

bound to H(OPTS), which is itself upper bounded by the
greedy algorithm. This fact can be used to provide an ap-
proximation guarantee for the greedy algorithm, by bound-
ing the gap between H(

∧
S) and the entropy returned by

the greedy algorithm. [Compton, 2022] shows that this gap
is at most log2(e) ≈ 1.44 bits, and shows that this log2(e)
gap can be achieved for general m. Hence the bound is
tight in the sense that no better approximation guarantee is
possible for greedy coupling in terms of this H(

∧
S) gap

for general m.

3 NOVEL LOWER BOUND: THE
PROFILE METHOD

As mentioned above, prior works show guarantees for
minimum entropy coupling in relation to the majorization
lower bound H(

∧
S). Our work will introduce a stronger

lower bound that will enable us to show stronger approxi-
mation guarantees that break the majorization barrier.

Motivation. In designing a new lower bound, we begin
from first principles and examine what properties a valid
coupling must obey. For example, consider a distribution
p1 = [0.5, 0.4, 0.1]. We would like to analyze necessary
conditions for a valid coupling including p1. Any valid
coupling must have states that map to the smallest state
of p1 of size 0.1. More concretely, these coupling states
will have total size 0.1 and each such state must be of size
≤ 0.1. As such, the coupling must have at least 0.1 mass
that comes from states of size ≤ 0.1. A similar statement
is true from the coupling needing to have states that map
to the state of p1 of size 0.4: at least 0.1 + 0.4 = 0.5 mass
must come from states of size ≤ 0.4. There are accordingly
three such necessary constraints for a valid coupling:

1. At least 0.1 mass that comes from states of size ≤ 0.1.

2. At least 0.5 mass that comes from states of size ≤ 0.4.

3. At least 1.0 mass that comes from states of size ≤ 0.5.

In Figure 1(a) we visualize these constraints with the for-
mer quantity corresponding to the x dimension, and the
latter quantity as the y dimension. It is fitting that these
constraints are left-aligned to maximize their overlap, as
this corresponds to the constraints being minimally bind-
ing. If we clean this visualization by eliminating parts of
constraints that are not binding, we obtain Figure 1(b). No-
tably, this visualization provides a sketch of the distribution
p1, where the sketch is a visualization in which the i-th state
corresponds to a box of width and height p1(i). In terms
of this visualization, our necessary conditions are exactly
enforcing that the sketch of any valid coupling must not
exceed the sketch of p1. We generalize this motivation by
considering the corresponding constraints and visualization
in the presence of another distribution p2 = [0.6, 0.2, 0.2].
Combining the constraints imposed by coupling p1 and p2,
they enforce that the sketch of any valid coupling must
not exceed the lower-envelope of the input distributions’
sketches. We will call this lower-envelope the profile of the
input distributions. In Figure 1(c), these constraints are vi-
sualized along with the profile of the sketches for p1 and p2.
As an example, one valid coupling for p1 and p2 has the dis-
tribution [0.5, 0.2, 0.2, 0.1]. As visualized in Figure 1(d),
the sketch of the coupling never exceeds the profile of p1
and p2, as is required by any valid coupling.
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(a) Constraints of p1 ([0.5,0.4,0.1]) (b) Binding constraints of p1

(c) Sketches of p1 (red), p2 ([0.6,0.2,0.2], blue), and their
profile (black)

(d) Sketches of p1 (red), p2 (blue), their profile (black), and
a valid coupling ([0.5,0.2,0.2,0.1], orange)

Figure 1: Visualizations of the profile method.

More generally, the profile method will work to obtain
a lower bound for the optimal coupling by relating this
profile-related constraint on the sketch representation of
any valid coupling to the required entropy for any valid
coupling. In particular, we will observe how for a point on
the profile of height y, this will correspond to some mass of
the coupling that must come from a state of size ≤ y, and
thus must be contributing information ≥ log( 1y ). This will
enable us to integrate over the profile after such a logarith-
mic transformation to obtain a lower bound for the optimal
coupling. Note that the existing lower bound of

∧
S does

not utilize the constraints we outline in this motivation, and
it is by using the information provided by these constraints
that the profile method is able to obtain a stronger bound.

The profile method. We now more concretely describe
the profile method, starting with its sketch visualization.
For a (possibly partial) distribution p, consider visualizing
it in a way similar to a sketch, where the states are sorted
from left to right in non-decreasing order of size, and a state
is represented by a square box with width and height p(i).
We formally define it as follows:

Definition 3.1. SKETCHp(x) is defined for x ∈
(0, MASS(p)] such that SKETCHp(x) = p(i) for x ∈
(
∑

j>i p(j),
∑

j≥i p(j)].

For a particular example where S contains two distribu-
tions p1 = [0.6, 0.2, 0.2] and p2 = [0.5, 0.4, 0.1], we illus-
trate their sketches in Figure 1(c). As previously explained,
the constraints of coupling necessitate that the sketch of
any valid coupling does not exceed the sketch of any input
distribution. Another way in which sketches are insight-
ful is that we can relate the entropy of a distribution to its
sketch. As a point on a distribution’s sketch of height y
corresponds to mass contributing information log( 1y ), the

entropy of a distribution is exactly obtained by integrating
over its sketch after applying a logarithmic transformation:

Remark 1. H(p) =
∫ MASS(p)

0
log
(

1
SKETCHp(x)

)
dx.

Recall how the sketch of any valid coupling must not ex-
ceed the sketch of any input distribution. Equivalently, we
can say the sketch of any valid coupling must not exceed
the lower-envelope of the input distributions’ sketches. We
refer to this lower-envelope as the profile:

Definition 3.2. PROFILES(x) ≜ min
p∈S

SKETCHp(x).

An example of the profile is illustrated in Figure 1(c). Note
how (unlike

∧
S) the profile does not necessarily corre-

spond to a partial distribution nor does it necessarily consist
of squares. Intuitively, it is a much more flexible object that
will allow us to obtain a better lower bound for the optimal
coupling. Similar to our observation in Remark 1 that the
integral of a distribution’s sketch after a log-transformation
is equal to its entropy, we define an analogous quantity for
the profile:

Definition 3.3. Let the profile “entropy” be
H(PROFILES) ≜

∫ MASS(S)

0
log
(

1
PROFILES(x)

)
dx.

As the sketch of any valid coupling must not exceed the
profile, every point on the profile of height y can be bijec-
tively mapped to mass in the valid coupling from a state
of size ≤ y, and thus contributing ≥ log( 1y ) entropy. This
finally implies our novel lower bound for the optimal min-
imum entropy coupling (full proof in Appendix A.1):

Theorem 3.4. H(OPTS) ≥ H(PROFILES).
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4 BETTER GREEDY COUPLING
APPROXIMATION GUARANTEES

In this section, we will use this new lower bound gained
from the profile method to obtain better approximation
guarantees for the greedy coupling algorithm.

4.1 Coupling Two Distributions

For coupling just m = 2 distributions, the surprising state
of affairs is that there are three distinct algorithms that all
attain a 1 bit additive approximation guarantee as shown
in [Cicalese et al., 2019, Rossi, 2019, Li, 2021]. It is then
natural to wonder if this is the best possible approxima-
tion guarantee. Further, we can construct instances where
H(OPTS) ≈ H(

∧
S) + 0.66 (see Appendix H), mean-

ing it is impossible to get a better approximation guar-
antee than 0.66 bits with respect to the previously used
lower bound of H(

∧
S). Yet, with a proof relating to

the profile method lower bound, we break the majoriza-
tion barrier and show that the greedy coupling algorithm of
[Kocaoglu et al., 2017a] is always additively within ≈ 0.53
bits of the optimum:

Theorem 4.1. For m = 2, H(GS) ≤ H(PROFILES) +
log e
e ≈ H(PROFILES) + 0.53.

Proof intuition for Theorem 4.1. Let St denote the dis-
tributions of S after the t-th state of the greedy coupling.
Similarly, Gt

S represents the vector GS(1), . . . ,GS(t). We
will consider the evolution of the non-decreasing mono-
variant M t ≜ H(PROFILESt) +H(Gt

S). Initially, nothing
is coupled and we have M0 = H(PROFILES0)+H(Gt

S) =
H(PROFILES) + 0. In the end, everything is coupled
and we have M |GS | = H(PROFILES|GS |) + H(G|GS |

S ) =
0 +H(GS). We will show that the profile method implies

M t+1 ≤ M t +
log e

e
GS(t+ 1). (1)

Eq. (1) would suffice to prove the conclusion because then

H(GS) = M |GS | ≤ M0 +
log e

e

|GS |∑
t=1

GS(t)

= H(PROFILES) +
log e

e
.

We now outline the derivation of Eq. (1). Consider the
two distributions in St to be denoted by pt and qt (sorted
to be in non-increasing order). Without loss of general-
ity, suppose pt(1) ≤ qt(1). This means our greedy al-
gorithm will select GS(t + 1) = pt(1), the state pt(1)
will be fully coupled, and qt(1) will afterwards have size
qt(1)−pt(1). With some calculation, we can bound the in-
crease in our monovariant M t+1−M t by (qt(1)−pt(1)) ·
max

(
0, log( 1

qt(1)−pt(1) )− log( 1
pt(1) )

)
. We can in turn

bound this expression by

pt(1) · max
pt(1)<qt(1)<2pt(1)

[
qt(1)− pt(1)

pt(1)
log

(
pt(1)

qt(1)− pt(1)

)]
= pt(1) · max

0<r<1

[
r log

1

r

]
= pt(1) · log e

e
, (2)

where the maximum is attained at r = e−1. As GS(t+1) =
pt(1), Eq. (2) implies Eq. (1), thus concluding our proof
outline. Hence, the profile method enables us to natu-
rally analyze how the monovariant of the profile and greedy
evolves, and attain an approximation guarantee breaking
the majorization barrier. The full proof is in Appendix B.

Remark. This proof method can also show guarantees for
small m that are better than the guarantee for general m in
Theorem 4.2. More details are included in Appendix D.

4.2 Coupling an Arbitrary Number of Distributions

For coupling many distributions, the result of
[Compton, 2022] showed that the greedy coupling al-
gorithm of [Kocaoglu et al., 2017a] is within ≈ 1.44 bits
of the optimal and that it is impossible to get a better
guarantee with respect to the H(

∧
S) lower bound. Here

we use the profile lower bound to break the majorization
barrier and show the greedy coupling is always within
≈ 1.22 bits of the optimal:

Theorem 4.2. H(GS) ≤ H(PROFILES) + 1+log e
2 ≈

H(PROFILES) + 1.22.

Proof intuition for Theorem 4.2. For this proof, we will
find it helpful to upper bound the total remaining mass
to be coupled as a function of the size of the greedy’s
next state. More concretely, we will define a function
REM-MASSS(y) that corresponds to an upper bound on
the total remaining mass to be coupled if the greedy cou-
pling is about to create a state of size ≤ y. For any non-
decreasing function REM-MASSS satisfying this condition,
the following quantity upper bounds the cost of the greedy
coupling solution:

H(GS)≤
∫ 1

0

REM-MASS′S(y)·log
(
1

y

)
dy. (3)

This holds because, for any y, the increase in our remain-
ing mass upper bound denoted by REM-MASS′S(y) corre-
sponds to mass that must come from greedy states of size
≥ y. Adversarially, we say this mass contributes infor-
mation log(1/y). It remains to be answered how one can
construct a REM-MASSS that upper bounds the remaining
mass given the next greedy state is of size ≤ y. Our most
intuitive bound is:

REM-MASSSIMPLE
S (y) ≜ (4)
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max
p∈S

REM-MASSSIMPLE
p (y) ≜ max

p∈S

n∑
j=1

min(p(j), y).

We design the bound REM-MASSSIMPLE
p′ (y) for a particular

distribution p′ such that if the largest remaining state in p′ is
≤ y, then REM-MASSSIMPLE

p′ (y) will be a valid upper bound
on the total remaining mass in p′. Recall that there must be
such a p′, given how the greedy is defined in Algorithm 1.
So, consider a p′ where its largest remaining state has size
≤ y. Then the amount of mass remaining in any particu-
lar state j of p′ is ≤ min(p′(j), y), hence the bound given
in Eq. (4). As an example, if the largest remaining state
of p2 (specified in Figure 1(c)) is at most 0.3, then the re-
maining mass in p2 is at most REM-MASSSIMPLE

p2
(0.3) =

min(0.5, 0.3) + min(0.4, 0.3) + min(0.1, 0.3) = 0.7.
Through further non-trivial analysis, one can relate the
bound of Eq. (3) when using REM-MASSSIMPLE defined
in Eq. (4) to show that H(OPTS) ≤ H(PROFILES) +
log(e) ≈ H(PROFILES) + 1.44, matching the guarantee
of [Compton, 2022].

However, we can improve upon REM-MASSSIMPLE. In our
example with p2, we stated that if the largest remaining
state of p2 is at most 0.3, then the remaining mass in its
state p2(1) was ≤ min(0.5, 0.3) = 0.3. While this is true,
it is not tight. If the largest remaining state in p2 is rmax
where rmax < 0.5, then given the monotonicity in the size
of greedy states, there must have been a greedy state that re-
moved at least rmax mass from 0.5. More formally, we can
bound that the remaining mass in 0.5 is at most 0.5− rmax.
Combining this with the prior upper bound that its remain-
ing mass is ≤ rmax, we can show how the remaining mass
in p2(1) is at most max0≤rmax≤0.3 min(rmax, 0.5− rmax) =
0.25. We can generalize this reasoning as follows:

REM-MASSADVANCED
S (y)

≜ max
p∈S

REM-MASSADVANCED
p (y)

≜ max
p∈S

n∑
j=1


y y ≤ p(j)

2

p(j)/2 p(j)
2 < y < p(j)

p(j) p(j) ≤ y

(5)

In our example, this attains REM-MASSADVANCED
p2

(0.3) =
0.25 + 0.2 + 0.1 = 0.55, improving upon
REM-MASSSIMPLE

p2
(0.3) = 0.7. Through further non-

trivial analysis, one can relate the bound of Eq. (3)
when using REM-MASSADVANCED defined in Eq. (5) to
show that H(OPTS) ≤ H(PROFILES) + 1+log(e)

2 ≈
H(PROFILES) + 1.22, attaining a new best guarantee for
coupling many distributions and breaking the majorization
barrier. We defer the full proof to Appendix C.

5 COMPUTING EXACTLY OPTIMAL
SOLUTIONS

While earlier sections discuss approximating the minimum
entropy coupling, this section focuses on approaches to
compute an exact solution. This is known to be generally
intractable as it is NP-Hard. It was posed as an open prob-
lem in [Kovačević et al., 2015] whether the problem is in
NP. In viewing the minimum entropy coupling as an opti-
mization problem with linear constraints, there are expo-
nentially many (nm) variables. Perhaps surprisingly, we
show there is always an optimal coupling that uses rela-
tively few states:

Lemma 5.1. There always exists an optimal solution to
MEC with support size of at most nm− (m− 1).

Proof. We can formulate minimum entropy coupling as an
optimization problem over the d ≜ nm-dimensional poly-
tope P(i1, . . . , im):

minimize
P

∑
i=(i1,...,im)

P(i) log(1/P(i))

subject to P(i) ≥ 0,∀i;
∑
i

P(i) = 1∑
i:ij=k

P(i) = pj(k),∀1 ≤ j ≤ m, 1 ≤ k < n.

Observe that there are a total of q ≜ m(n − 1) + 1 =
nm − (m − 1) equality constraints. We have omitted the
constraints for pj(k = n) because they are linear combi-
nations of the constraint

∑
i P(i) = 1 and the constraints

for pj(k < n).

Since the objective is concave, there exists a vertex of P
at which the objective is minimized. To finish, it suffices
to show every vertex of this polytope has at most q nonzero
entries. This is true because every vertex is the unique point
in the intersection of some d constraint hyperplanes. At
least d−q of these hyperplanes must be of the form P(i) =
0, so every vertex must have at least this number of zeros.

This bound of nm − (m − 1) is particularly significant,
as we know the number of states the greedy coupling al-
gorithm uses is upper bounded by the same value (shown
in [Kocaoglu et al., 2017a]). More generally, it is notable
that there is always an optimal solution with support size
of at most nm− (m− 1), because for almost all instances
(in the measure 1 sense) there is no possible coupling that
uses fewer than nm−(m−1) states. Furthermore, this en-
ables an exponential-time algorithm (simply enumerating
over all polytope vertices). This also makes progress on the
open problem of [Kovačević et al., 2015] regarding the NP
membership of minimum entropy coupling (MEC), as one
could use the constraints identifying the polytope vertex as
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a certificate. Given the polytope vertex, all that remains
is the seemingly trivial task of computing the Shannon en-
tropy of a discrete distribution:
Corollary 5.2. MEC ≤NP COMPUTE-ENTROPY.

For reasons involving complexity of finite precision arith-
metic (e.g. [Kayal and Saha, 2012]), it is unknown whether
COMPUTE-ENTROPY is in NP, despite the fact in practice
this appears to be a simple task. We note that Corollary 5.2
assumes all inputs are represented as rational numbers.

5.1 Speeding Up Backtracking

Recent works such as [Sokota et al., 2022,
de Witt et al., 2022] have applied minimum entropy
couplings for m = 2 distributions in settings where
finding better couplings has concrete benefits. It is thus
natural to wonder how quickly we can exactly couple
two distributions. As enumerating over the exponentially
many polytope vertices is computationally expensive, we
propose other algorithms that can more efficiently couple
two distributions (although they are still exponential-time
algorithms). In Appendix F.1, we introduce a new dynamic
programming algorithm that runs in O(9n · poly(n)) time.
This approach utilizes a new characterization of couplings
as spanning trees over the distributions, similar to the
perspective of Lemma 5.3. In this section, we present a
backtracking algorithm that recursively chooses the next
state of the coupling and eliminates the smallest size
marginal the state maps to. This is a generalization of
how the greedy coupling algorithm always eliminates the
state corresponding to the minimum over all remaining
distributions’ maximums. Dynamic programming and
backtracking can be seen as two ways of leveraging
our new spanning tree perspective. While the dynamic
programming approach is relatively final, the backtracking
approach is crucially improved by new lower bounds for
coupling as they help prune its search space, meaning
better lower bounds directly improve its speed.

Our motivation is to enable the computation of higher-
quality couplings than the polynomial-time greedy cou-
pling in settings where enumerating over all polytope ver-
tices is computationally infeasible. Backtracking is exactly
optimal for m = 2. Further details are provided in Ap-
pendix F.2.

We use the following lemma to prove the validity of our
backtracking algorithm for m = 2.
Lemma 5.3. Consider the weighted undirected bipar-
tite graph G with vertex set {ℓ1...n, r1...n} and edge
set {(ℓi, rj ,p(i, j))) | p(i, j) > 0} induced by some
minimum-entropy coupling p. This graph is a forest, and
any edge with the maximum weight must have a leaf of the
forest as one of its endpoints.

Our backtracking algorithm is guaranteed to find any cou-

pling satisfying the lemma above, because it can repeatedly
peel away the maximum weight edge of the forest. The
proof of Lemma 5.3 is deferred to Appendix G.

Combining lower bounds. We now discuss a better
lower bound we use to improve the speed of backtracking.
Recall that the intuitions behind the lower bounds H(

∧
S)

and H(PROFILES) are somewhat different. Interestingly,
we are able to combine them to get an even better lower
bound than simply taking max(H(

∧
S), H(PROFILES)):

Definition 5.4. MAJOR-PROFILES ≜ argmin
d

H(d)

s.t. SKETCHd(x) ≤ PROFILES(x)∀x ∈ (0, MASS(S)]

Theorem 5.5. H(OPTS) ≥ H(MAJOR-PROFILES) ≥
H(PROFILES), H(

∧
S)

In words, MAJOR-PROFILES is the minimum entropy dis-
tribution whose sketch never exceeds the profile (as is
shown to be a necessary condition for a valid coupling in
the proof of Theorem 3.4). On the surface, this seems only
related to the H(PROFILES) lower bound and not H(

∧
S).

Yet, one can show that this constraint actually enforces
MAJOR-PROFILES ⪯

∧
S. This means we have a lower

bound that is always at least as good as both H(
∧
S) and

H(PROFILES). The full proof of Theorem 5.5 is deferred
to Appendix G.3.

Note that H(PROFILES) and H(MAJOR-PROFILES) can
both be efficiently computed in near-linear time, as will
be leveraged by our backtracking algorithm. Details about
their computation are deferred to Appendix F.3.

Experimental results. In Table 2 we show experiments
comparing the average running time of coupling two dis-
tributions with different (provably optimal) algorithms. All
algorithms we present have stronger performance than the
naive baseline of enumerating over all polytope vertices.
We also observe clear improvements in the speed of back-
tracking with better lower bounds than the previously best-
known lower bound of H(

∧
S). It is particularly notewor-

thy that MAJOR-PROFILES provides better performance
than PROFILES , as our theoretical approximation guaran-
tees in Sections 4.1 and 4.2 do not immediately yield any
benefit for using MAJOR-PROFILES in place of PROFILES .
This seems to indicate that MAJOR-PROFILES is a mean-
ingfully stronger lower bound for many instances, and may
be a helpful reference for future work on minimum entropy
coupling approximation guarantees. We observe the best
performance from our dynamic programming algorithm
and backtracking algorithm with MAJOR-PROFILES . Due
to the nature of its pruning, the backtracking has higher
variance. Finally, we emphasize that any future work pro-
viding new lower bounds for minimum entropy coupling
could immediately improve our backtracking method. Ad-
ditional experiment details are provided in Appendix E.
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Table 2: Average Runtime (in Seconds) for Exactly Coupling Two Distributions
nnn

Algorithm 4 5 6 7 8 9 10 11
Naive Polytope Vertex Enumeration 0.002 0.189 33.79 > 120 > 120 > 120 > 120 > 120

Backtracking [0] 0.0003 0.004 0.106 3.576 > 120 > 120 > 120 > 120
Backtracking [H(

∧
S)] 0.0001 0.001 0.013 0.256 4.907 > 120 > 120 > 120

Backtracking [H(PROFILES)] 0.0001 0.0009 0.009 0.153 2.206 > 120 > 120 > 120
Backtracking [H(MAJOR-PROFILES)] 0.00006 0.0004 0.003 0.035 0.344 5.398 > 120 > 120

Dynamic Programming 0.00007 0.0004 0.002 0.012 0.093 0.802 9.769 > 120

6 CONCLUSION

In this work, we showed advances in algorithms, lower
bounds, and approximation guarantees for the minimum
entropy coupling problem. In Appendix I, we discuss
how our methods generalize to any concave minimum-
cost coupling. We do not foresee any adverse societal
impacts of our results. There are many avenues for fu-
ture work, such as examining how previously discussed
applications of minimum entropy coupling may concretely
benefit from our results. For example, the algorithms for
entropic causal inference used in [Kocaoglu et al., 2017a,
Compton et al., 2020, Compton et al., 2022] do not use the
construction of the coupling, just the value of its entropy.
As our new lower bounds on the value are more efficient
to compute than the greedy coupling and have the same
theoretical guarantees, using these instead would directly
improve the speed of these causal discovery algorithms.
There are many remaining theoretical questions. Hard-

ness of approximation remains an open problem. It is
still unknown the best approximation guarantee that greedy
coupling achieves, or whether there exists a polynomial-
time algorithm with strictly better worst-case approxima-
tion guarantees than greedy coupling. Deriving an analy-
sis that more smoothly interpolates best-known guarantees
from m = 2 to m = ∞ is also an open question. An-
other open question is whether one can obtain a better ap-
proximation guarantee with respect to MAJOR-PROFILES

than with PROFILES . Finally, in Appendix H we provide
some discussion on gaps between various relevant quanti-
ties, with counter-examples that were computationally dis-
covered by local search. For example, we provide in-
stances where the algorithms of [Cicalese et al., 2019] and
[Li, 2021] have optimality gaps greater than log(e)/e ≈
0.53 for coupling two distributions, whereas Theorem 4.1
shows this is impossible for greedy coupling. It is our hope
that this information will help guide algorithm selection
and be insightful for future conjectures.
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Supplementary Materials for:
Minimum-Entropy Coupling Approximation Guarantees

Beyond the Majorization Barrier

A PROOFS FOR SECTION 3: THE PROFILE METHOD LOWER BOUND

A.1 Proof of Theorem 3.4

Theorem 3.4. H(OPTS) ≥ H(PROFILES).

While in our proof outline in the main text we discussed sketches and profiles, our formal proof in this section is simplified
by analyzing their “inverses,” which we define next.

Definition A.1. For a (possibly partial) distribution pi, define INV-SKETCHpi
(y) to be the non-decreasing function

INV-SKETCHpi : [0, 1] → [0, 1] such that INV-SKETCHpi(y) equals the sum of all probability masses of pi less than
or equal to y. That is,

INV-SKETCHpi
(y) ≜

|p|∑
j=1

pi(j) · [pi(j) ≤ y].

For a set of probability distributions S, we define INV-PROFS(y) as

INV-PROFS(y) ≜ max
pi∈S

INV-SKETCHpi(x).

We refer to INV-SKETCHp and INV-PROFS as “inverse sketches” and “inverse profiles,” respectively. Note that for any
S, the graph of INV-PROFS may be obtained by transposing the graph of PROFILES , though they are not strictly inverses
because neither function is strictly increasing.

We also extend the definition of entropy to inverse profiles.

Definition A.2. For an inverse profile (or inverse sketch) h, we define the entropy of h to be:

H(h) ≜
∫ 1

0

h(y)

y ln 2
dy. (6)

Lemma A.3. The definition of entropy is consistent for profiles and inverse profiles (as well as sketches and inverse
sketches); that is, H(PROFILES) = H(INV-PROFS).

Proof. Start with Definition 3.3. First, we substitute x in place of y:

PROFILES(x) = y,

x = INV-PROFS(y),

dx = INV-PROF′S(y) dy,
1

which implies that ∫ MASS(S)

0

log

(
1

PROFILES(x)

)
dx =

1

ln 2

∫ MASS(S)

0

ln

(
1

PROFILES(x)

)
dx,

=
1

ln 2

∫ 1

0

INV-PROF′S(y) ln

(
1

y

)
dy.
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Next we integrate by parts:

=
1

ln 2

(
INV-PROFS(y) ln

(
1

y

) ∣∣∣1
0
+

∫ 1

0

INV-PROFS(y)

y

)
,

=
1

ln 2

∫ 1

0

INV-PROFS(y)

y
,

as desired.

Lemma A.4. INV-SKETCHOPTS
(y) ≥ INV-PROFS(y) for all y.

Proof. By definition of INV-PROFS it suffices to show that INV-SKETCHOPTS
(y) ≥ INV-SKETCHp(y) for all p ∈ S. Note

that OPTS may be derived from p by repeatedly performing the following operation: take some state in p and split it into
two smaller states, transforming p into p′.

Suppose that an operation splits a state of mass m1 +m2 into two states of masses m1 ≤ m2. Then it is easy to see that

• INV-SKETCHp′(y) = INV-SKETCHp(y) for y < m1

• INV-SKETCHp′(y) > INV-SKETCHp(y) for m1 ≤ y < m1 +m2

• INV-SKETCHp′(y) = INV-SKETCHp(y) for m1 +m2 ≤ y.

It follows that if p′ can be derived from p via some sequence of operations, INV-SKETCHp′(y) ≥ INV-SKETCHp(y) for all
y. Substituting OPTS in place of p′ yields the desired result.

Proof of Theorem 3.4 We can now prove Theorem 3.4. By consistency of our definitions of entropy, H(OPTS) =
H(INV-SKETCHOPTS

) and H(PROFILES) = H(INV-PROFS). To finish, H(INV-SKETCHOPTS
) ≥ H(INV-PROFS) fol-

lows by combining Lemma A.4 with Definition A.2.

B PROOF OF THEOREM 4.1: BETTER GREEDY COUPLING APPROXIMATION
GUARANTEE FOR TWO DISTRIBUTIONS

Theorem 4.1. For m = 2, H(GS) ≤ H(PROFILES) +
log e
e ≈ H(PROFILES) + 0.53.

It suffices to derive Eq. (1) in the main text. As in Appendix A.1, we find it more convenient to prove our results in terms
of H(INV-PROFS) instead of H(PROFILES) (which is allowed by Lemma A.3 in Appendix A.1).

After the greedy algorithm selects GS(t+ 1) = pt(1), we have

• H(Gt+1
S ) = H(Gt

S) + pt(1) log(1/pt(1)).

• INV-SKETCHpt+1(x) =

{
INV-SKETCHpt(y) y < pt(1)

INV-SKETCHpt(y)− pt(1) pt(1) ≤ y

• INV-SKETCHqt+1(y) =


INV-SKETCHqt(y) y < qt(1)− pt(1)

INV-SKETCHqt(y) + qt(1)− pt(1) qt(1)− pt(1) ≤ y < qt(1)

INV-SKETCHqt(y)− pt(1) qt(1) ≤ y

From the above equations, we conclude that:

1Technically, INV-PROF′
S is not defined at the points where INV-PROFS is discontinuous. We can circumvent this issue by letting

INV-PROF′
S take on the value of the appropriate multiple of the Dirac delta function at such points.
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INV-PROFSt+1(y)


= INV-PROFSt(y) y < qt(1)− pt(1)

≤ INV-PROFSt(y) + qt(1)− pt(1) qt(1)− pt(1) ≤ y < pt(1)

= INV-PROFSt(y)− pt(1) = MASS(St+1) pt(1) ≤ y

, (7)

which in turn implies

H(INV-PROFSt+1) ≤ H(INV-PROFSt)− pt(1) log(1/pt(1)) +

{
(qt(1)− pt(1))

∫ pt(1)

qt(1)−pt(1)
1

y ln 2 dy qt(1) < 2pt(1)

0 otherwise

≤ H(INV-PROFSt)− pt(1) log(1/pt(1)) +

{
qt(1)−pt(1)

ln 2 · ln pt(1)
qt(1)−pt(1) qt(1) < 2pt(1)

0 otherwise
.

Combining this inequality with our expression for H(Gt+1
S ) gives

M t+1 ≤ M t + pt(1) · max
p<q<2p

1

ln 2
· q − pt(1)

pt(1)
ln

pt(1)

q − pt(1)

= M t + GS(t+ 1) · 1

ln 2
· max
0<r<1

[r ln(1/r)] . (8)

As the function in brackets is concave, we can attempt to maximize it by setting its derivative to 0:

0 =
d

dr
(r ln(1/r)) = ln(1/r)− 1 =⇒ r = e−1.

Since e−1 ∈ (0, 1), this maximizes the function in brackets in the specified range. Plugging this value of r into Eq. (8)
gives

M t+1 ≤ M t + GS(t+ 1) · 1

e ln 2
= M t + GS(t+ 1) · log e

e
,

as desired.

C PROOF OF THEOREM 4.2: BETTER GREEDY COUPLING APPROXIMATION
GUARANTEE FOR ARBITRARILY MANY DISTRIBUTIONS

Theorem 4.2. H(GS) ≤ H(PROFILES) +
1+log e

2 ≈ H(PROFILES) + 1.22.

We prove this theorem using the following three lemmas. The first step is to upper bound H(GS) by an integral.

Lemma C.1. Let CS(x) : [0, 1] → [0, 1] be any non-decreasing function such that if there is x mass left while running
the greedy algorithm on S, the next state created by the greedy algorithm has mass at least CS(x). Then H(GS) ≤∫ 1

0
log 1

CS(x) dx.

Proof. First rewrite H(GS) = H(SKETCHGS
). Next, we show that CS lower bounds SKETCHGS

. By definition of CS ,
CS(x) ≤ SKETCHGS

(x) whenever x = 1 −
∑i

j=1 GS(j). Since CS is non-decreasing and SKETCHGS
(x) is constant on

the interval (1−
∑i+1

j=1 GS(j), 1−
∑i

j=1 GS(j)], it follows that CS(x) ≤ SKETCHGS
(x) for all x ∈ (0, 1]. The conclusion

now follows from recalling the definition of H(SKETCHGS
).

We next aim to design a CS . First, recall our definition of REM-MASSADVANCED
S (y).

REM-MASSADVANCED
S (y)
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≜ max
p∈S

REM-MASSADVANCED
p (y)

≜ max
p∈S

n∑
j=1


y y ≤ p(j)

2

p(j)/2 p(j)
2 < y < p(j)

p(j) p(j) ≤ y

Informally, recall that REM-MASSS(y) is designed to correspond to an upper bound on the total remaining mass to be
coupled if the greedy coupling is about to create a state of size ≤ y. Now, we describe our choice of CS .

Lemma C.2. Define CS(x) ≜ argminy [REM-MASSADVANCED
S (y) ≥ x] . Then CS satisfies the preconditions of

Lemma C.1.

Proof. Suppose that there is x mass remaining while running the greedy algorithm, and then the greedy algorithm allocates
a state of mass y. Then there exists pi′ ∈ S such that the maximum mass remaining over all states of pi′ is equal to y.
Observe that showing REM-MASSADVANCED

pi′
(y) ≥ x suffices to prove the lemma.

We can naively bound that the amount of mass remaining in the j-th state of pi′ is at least min(y, pi′(j), giving the bound∑n
j=1 min(y, pi′(j)) ≥ x. However, this alone is not sufficient to obtain the above inequality. We can improve this

bound by noting that the masses of the states allocated by the greedy algorithm are non-increasing. Hence for all j with
pi′(j) > y, we must have previously subtracted at least y from it. Therefore, the j-th state of pi′ will have at least pi′(j)
mass remaining if pi′(j) ≤ y, and otherwise will have at least min(y, pi′(j) − y) mass remaining. In total, this gives the
bound

n∑
j=1

{
pi′(j) pi′(j) ≤ y

min(y, pi′(j)− y) pi′(j) > y
≥ x.

We finish by observing that REM-MASSADVANCED
pi′

(x) is at least the LHS of this inequality.

Remark 2. While CS corresponds to SKETCHGS
, REM-MASSADVANCED

S corresponds to INV-SKETCHGS
.

Finally, we prove Theorem 4.2 by upper bounding the integral from Lemma C.1 by H(INV-PROFS) plus a small constant.

Lemma C.3. Let CS be as defined in Lemma C.2. Then∫ 1

0

log
1

CS(x)
dx ≤ H(INV-PROFS) +

1 + log e

2
. (9)

Proof. As CS is defined in terms of REM-MASSADVANCED
S , we need to upper bound REM-MASSADVANCED

S (y) in terms of
INV-PROFS . Defining INV-SKETCHp(y) ≜ 1 for y > 1, we can check that

REM-MASSADVANCED
p (y) = INV-SKETCHp(y) +

1

2
(INV-SKETCHp(2y)− INV-SKETCHp(y))

+ y

∫ 1

2y

INV-SKETCH′
p(t)/t dt

=
INV-SKETCHp(y) + INV-SKETCHp(2y)

2
+ y

∫ 1

2y

INV-SKETCH′
p(t)/t dt (10)

As Equation (10) holds for all p ∈ S, it follows that REM-MASSADVANCED
S (x) is bounded above by the analogous expression

with INV-PROFS in place of INV-SKETCHp. Now we finish by computing the integral:∫ 1

0

log

(
1

CS(x)

)
dx =

∫ 1

0

REM-MASSADVANCED
S

′
(y) log(1/y) dy (11)

= REM-MASSADVANCED
S (y) log(1/y)

∣∣∣1
y=0

+

∫ 1

0

REM-MASSADVANCED
S (y)

y ln 2
dy

=

∫ 1

0

REM-MASSADVANCED
S (y)

y ln 2
dy
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≤ 1

ln 2

∫ 1

0

INV-PROFS(y) + INV-PROFS(2y)

2y
+

(∫ 1

2y

INV-PROF′S(t)/t dt

)
dy

=
1

2
H(INV-PROFS) +

1

2
H(INV-PROFS) +

1

ln 2

∫ 1

1/2

1

2y
dy +

1

2 ln 2

∫ 1

0

INV-PROF′(y) dy

= H(INV-PROFS) +
1

2
+

1

2 ln 2

= H(INV-PROFS) +
1 + log e

2
.

D COUPLING GUARANTEES FOR SMALL m

We need to generalize Eq. (7) to the setting of general m. Without loss of generality assume pt1(1) ≤ pt2(1) ≤ · · · ≤ ptm(1).
Then

INV-SKETCHpt+1
i

(y) =


INV-SKETCHpt

i
(y) y < pti(1)− pt1(1)

INV-SKETCHpt
i
(y) + pti(1)− pt1(1) pti(1)− pt1(1) ≤ y < pti(1)

INV-SKETCHpt
i
(y)− pt1(1) pti(1) ≤ y

and Eq. (7) becomes

INV-PROFSt+1

{
≤ INV-PROFSt(y) + pti(1)− pt1(1) pti(1)− pt1(1) ≤ y < min(pti+1(1)− pt1(1), p

t
i(1))

= INV-PROFSt(y)− pt(1) = MASS(St+1) pti(1) ≤ y

Letting di ≜
pt
i(1)−pt

1(1)
pt
1(1)

for i ∈ [2,m] and dm+1 = 1, we then find that the generalization of Eq. (8) is as follows:

M t+1 ≤ M t + GS(t+ 1) · max
0<d2<d3<···<dm+1=1

1

ln 2

m∑
i=2

di ln(di+1/di)

= M t + GS(t+ 1) · max
0<d2<d3<···<dm+1=1

1

ln 2

m∑
i=2

di (ln(1/di)− ln(1/di+1)) .

The quantity

m∑
i=2

di (ln(1/di)− ln(1/di+1)) (12)

can be more intuitively interpreted as follows: “Given m− 1 rectangles indexed from 2 . . .m all with lower-left corner at
the origin, and the i-th has width di and height ln(1/di), what is the maximum possible area of their union?”

Remark 3. As m → ∞, Eq. (12) approaches 1
ln 2

∫ 1

0
ln(1/x) dx = 1

ln 2 (x− x lnx)
∣∣∣1
0
= log e ≈ 1.44.
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Table 3: Best-Known Additive Approximation Guarantees

Prior Work This Work

m = 2 1 [Cicalese et al., 2019, Rossi, 2019, Li, 2021] 1
e
log2(e) ≈ 0.53

m = 3 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<d3<d4=1

∑3
i=2 di log2(di+1/di) ≈ 0.77

m = 4 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d5=1

∑4
i=2 di log2(di+1/di) ≈ 0.90

m = 5 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d6=1

∑5
i=2 di log2(di+1/di) ≈ 0.99

m = 6 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d7=1

∑6
i=2 di log2(di+1/di) ≈ 1.06

m = 7 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d8=1

∑7
i=2 di log2(di+1/di) ≈ 1.10

m = 8 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d9=1

∑8
i=2 di log2(di+1/di) ≈ 1.14

m = 9 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d10=1

∑9
i=2 di log2(di+1/di) ≈ 1.17

m = 10 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d11=1

∑10
i=2 di log2(di+1/di) ≈ 1.19

m = 11 log2(e) ≈ 1.44 [Compton, 2022] max0<d2<···<d12=1

∑11
i=2 di log2(di+1/di) ≈ 1.21

General m log2(e) ≈ 1.44 [Compton, 2022] 1
2
(log2(e) + 1) ≈ 1.22

E EXPERIMENT DETAILS

Experiments were run on a laptop with a 3.49GHz 8-Core Apple M2 processor. Each entry of Table 2 corresponds to
the average of 100 runs over the specified configuration. If any of the runs exceeded 120 seconds, the entry is marked
as “> 120”. In Table 5, we provide a corresponding experiment when coupling two distributions with different numbers
of states n1, n2. In Table 4, we provide the same data as Table 2, but accompanied with the standard deviation. Each
input distribution was sampled from the Dirichlet distribution with parameter 1 (meaning, uniform over the simplex). The
algorithm “Naive Polytope Vertex Enumeration” corresponds to naively enumerating over all vertices in the correspond-
ing optimization polytope. We were particularly generous to this baseline, and implemented it using insights regarding
induced spanning trees (that were not discussed before our work) to avoid requiring it to solve systems of linear equations.
Essentially, this would run even slower if done extremely naively. Rows of the form “Backtracking [X]” denotes using the
backtracking algorithm of Appendix F.2 with the lower bound X for its subroutine that helps prune the search space. The
algorithm “Dynamic Programming” corresponds to Appendix F.1. All code is implemented in C++.

Table 4: Average Runtime and Standard Deviation (in Seconds) for Exactly Coupling Two Distributions
nnn

Algorithm 4 5 6 7 8 9 10 11
Naive Polytope Vertex Enumeration 0.002 ± 0.0006 0.189 ± 0.002 33.79 ± 0.240 > 120 > 120 > 120 > 120 > 120

Backtracking [0] 0.0003 ± 0.0001 0.004 ± 0.002 0.106 ± 0.041 3.576 ± 1.839 > 120 > 120 > 120 > 120
Backtracking [H(

∧
S)] 0.0001 ± 0.00006 0.001 ± 0.0005 0.013 ± 0.010 0.256 ± 0.196 4.907 ± 3.896 > 120 > 120 > 120

Backtracking [H(PROFILES)] 0.0001 ± 0.00006 0.0009 ± 0.0005 0.009 ± 0.008 0.153 ± 0.133 2.206 ± 1.995 > 120 > 120 > 120
Backtracking [H(MAJOR-PROFILES)] 0.00006 ± 0.00003 0.0004 ± 0.0002 0.003 ± 0.003 0.035 ± 0.035 0.344 ± 0.352 5.398 ± 7.761 > 120 > 120

Dynamic Programming 0.00007 ± 0.00002 0.0004 ± 0.00002 0.002 ± 0.00004 0.012 ± 0.0003 0.093 ± 0.001 0.802 ± 0.016 9.769 ± 0.278 > 120

Table 5: Average Runtime (in Seconds) for Exactly Coupling Two Distributions with Different Cardinalities
n1, n2n1, n2n1, n2

Algorithm 6,3 7,3 8,3 9,3 10,4 11,4 12,4 13,5 14,5 15,5 16,6
Naive Polytope Vertex Enumeration 0.0003 0.038 0.219 1.172 > 120 > 120 > 120 > 120 > 120 > 120 > 120

Backtracking [0] 0.0001 0.002 0.008 0.030 1.147 4.538 19.841 > 120 > 120 > 120 > 120
Backtracking [H(

∧
S)] 0.00008 0.0008 0.003 0.010 0.157 0.498 2.139 > 120 > 120 > 120 > 120

Backtracking [H(PROFILES)] 0.00009 0.0008 0.003 0.008 0.104 0.295 1.066 > 120 > 120 > 120 > 120
Backtracking [H(MAJOR-PROFILES)] 0.00006 0.0005 0.001 0.005 0.046 0.139 0.566 5.855 19.927 > 120 > 120

Dynamic Programming 0.00005 0.0003 0.0008 0.002 0.011 0.031 0.084 0.724 2.509 8.984 > 120
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F ALGORITHMS FOR SECTION 5: EXACTLY COUPLING TWO DISTRIBUTIONS,
AND EFFICIENT LOWER BOUNDS

F.1 Dynamic Programming

First, we note that by Lemma 5.3, any minimum-entropy coupling of p can be associated with some spanning forest of the
unweighted graph with vertex set V = {ℓ1...n, r1...n}; then we can add 0-weight edges to change this forest into a spanning
tree.

Our dynamic programming solution searches over all possible spanning trees. It keeps track of O(22n ·n) states: for every
S ⊆ V and v ∈ S, we store the minimum entropy over all partial couplings of S such that v is the only vertex in S with any
mass remaining in dp[S][v]. Note that the remaining mass of v must equal

∑
w∈S(−1)side(w)̸=side(v)orig mass(w) across

all such partial couplings. Effectively, the state (S, v) corresponds to all partial couplings that induce a spanning tree on S
rooted at v.

There are two types of transitions between states: the first attaches a new root to a spanning tree (taking O(22n · n2) time),
while the second merges two spanning trees with the same root (taking O(32n · n) time). The minimum entropy over all
couplings is dp[V ][v] for any v ∈ V .

F.2 Backtracking

Algorithm 2 Backtracking Algorithm
1: Input: Marginal distributions of m = 2 variables each with n states {p,q}.
2: Initialize best entropy =∞.
3: Backtrack({p,q}, entropy so far = 0, last mass =∞).
4: return best entropy.
5: procedure BACKTRACK({p,q}, entropy so far, last mass)
6: if entropy so far +X({p,q}) ≥ best entropy then
7: return
8: end if
9: if Mass({p,q}) = 0 then

10: best entropy = min(best entropy, entropy so far).
11: return
12: end if
13: for (i, j) s.t. 0 < min(p(i),q(j)) ≤ last mass do
14: m = min(p(i),q(j)). p′ = p. q′ = q.
15: p′(i)−= m. q′(j)−= m.
16: Backtrack({p′,q′}, entropy so far +m log(1/m),m).
17: end for
18: return
19: end procedure

Now we argue that this algorithm is correct. First, note that line 6 does not affect the correctness of the algorithm as long as
X({p, q}) ≤ OPT({p, q}), so we can ignore it. Next, we show that as long as p(i, j) is some minimum entropy coupling,
our algorithm will construct it. Let (i, j) be some pair such that p(i, j) is maximized. Then by Lemma 5.3, our algorithm
will compute m = min(p(i), q(j)) on the (i, j)-th iteration of step 4. Then by induction, our algorithm will construct the
remainder of p after recursing into {p′, q′} on that loop iteration.

F.3 Lower Bounds in Almost-Linear Time

Computing PROFILES . Recall from Definition 3.1 that for all p ∈ S and i ≤ |p|, we must have
PROFILES

(∑
j≥i p(j)

)
≤ p(i). We can compute PROFILES using the following procedure:

1. Define T = {(0, 0)} ∪ {(
∑

j≥i p(j), p(i)) | p ∈ S, 1 ≤ i ≤ |p|}.

2. For each pair (x, y) ∈ T in decreasing order of x, if y is greater or equal to the smallest y seen so far, remove the
pair from T . In other words, there exists another pair (x′, y′) ∈ T such that x′ ≥ x and y′ ≤ y, so the pair (x, y) is
redundant and removing it does not affect the profile.
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3. Reverse T . Now the entries of T are increasing in both x and y.

Now H(PROFILES) is the sum of (x2 − x1) log(1/y2) over all adjacent pairs (x1, y1) and (x2, y2) in T . The time com-
plexity is Õ(nm).

Computing MAJOR-PROFILES . Assume we have already computed T = [(x1, y1), . . . , (x|T |, y|T |)] as in the previous
part. Then it suffices to describe how to implement the algorithm described in Appendix G.3 in O(|T |) additional time. We
recall that the algorithm essentially asks us to answer the following query for at most |T | values of t in decreasing order:
how large can the side length of a square with lower-right corner at (t, 0) be without the square exceeding the profile?

We first describe how to answer each query in O(|T |) time, resulting in an O(|T |2) algorithm. If we are growing a square
with lower-right corner at (t, 0), then its side length must be

min
(x,y)∈T

max(y, t− x) = min
(x,y)∈T

{
t− x x+ y ≤ t

y x+ y > t
, (13)

which can be evaluated in O(|T |) time.

We can speed up the above algorithm by noting that T is sorted in increasing order of x+y. Then define j be the minimum
index such that xj + yj > t. Now Equation (13) simplifies to:

min
(x,y)∈T

{
t− x x+ y ≤ t

y x+ y > t
= min

(
min
1≤i<j

t− xi, min
j≤i≤|T |

yj

)
= min(t− xj−1, yj).

As the queries come in decreasing order of t, j must stay the same or decrease between queries. Thus the time required
to answer all queries is proportional to the number of queries plus the number of times j moves between queries, both of
which are O(|T |).

G PROOFS FOR SECTION 5: EXACTLY OPTIMAL SOLUTIONS

G.1 Proof of Corollary 5.2

Corollary 5.2. MEC ≤NP COMPUTE-ENTROPY.

By Lemma 5.1 it suffices to provide the coordinates of some vertex v ∈ P at which the objective is minimized. We note
that Lemma 5.1 shows that every vertex has at most e ≤ nm − m + 1 nonzero coordinates. Furthermore, if the input
probabilities are rational numbers with bounded bit complexity, then v′ (the vector consisting only of the nonzero entries
of v) must be the unique solution to a linear system of the form Av′ = b, where A consists solely of zeros and ones, and A
has shape e× e. The solution to this system can easily be seen to have bit complexity bounded above by the bit complexity
of p times poly(nm).

G.2 Proof of Lemma 5.3

Lemma 5.3. Consider the weighted undirected bipartite graph G with vertex set {ℓ1...n, r1...n} and edge set
{(ℓi, rj ,p(i, j))) | p(i, j) > 0} induced by some minimum-entropy coupling p. This graph is a forest, and any edge
with the maximum weight must have a leaf of the forest as one of its endpoints.

For the first part of the lemma, it suffices to check that G cannot contain any cycles. Suppose for the sake of contradiction
that G contains a simple cycle (i1, j1, i2, j2, . . . , ik, jk), and define δ > 0 to be the minimum weight along the cycle. Then
because entropy is concave, we can obtain a smaller entropy by alternately adding and subtracting δ along the edges of the
cycle.

For the second part, suppose for the sake of contradiction that there exists an edge (i, j) of the maximum weight such that
i is connected to some other vertex j′ and j is connected to some other vertex i′ in G. Let the weights w(i, j), w(i, j′), and
w(i′, j) be a, b, and c, respectively; WLOG a ≥ b ≥ c. Then we claim that the entropy would decrease if we perform the
following four modifications:

1. increase w(i, j) by c
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2. decrease w(i, j′) by c

3. increase w(i′, j′) by c

4. set w(i′, j) = 0

Indeed, the change in entropy is upper bounded by

[(a+ c) log(1/(a+ c)) + (b− c) log(1/(b− c)) + c log(1/c)]− [a log(1/a) + b log(1/b) + c log(1/c)]

= [(a+ c) log(1/(a+ c)) + (b− c) log(1/(b− c))]− [a log(1/a) + b log(1/b)] ,

which is negative because because (a+ c, b− c) majorizes (a, b).

G.3 Proof of Theorem 5.5

Theorem 5.5. H(OPTS) ≥ H(MAJOR-PROFILES) ≥ H(PROFILES), H(
∧
S)

We first describe how to construct MAJOR-PROFILES . In general, we define MAJOR-PROFILES(i) in
terms of MAJOR-PROFILES(1), MAJOR-PROFILES(2), . . . , MAJOR-PROFILES(i − 1). Specifically, if∑i−1

j=1 MAJOR-PROFILES(j) < MASS(S), then MAJOR-PROFILES(i) is defined to be the maximum positive real
ri such that PROFILES(x) ≥ ri for all x > MASS(S) −

∑i−1
j=1 MAJOR-PROFILES(j) − ri. Intuitively, this corresponds

to growing a square with side length ri × ri and lower-right corner at (1 −
∑i−1

j=1 MAJOR-PROFILES(j), 0) until it
touches PROFILES . Note that ri+1 > ri would lead to a contradiction, because setting ri = ri+1 would lead to the square
associated with ri lying below the profile, meaning that ri could have been larger. Thus ri ≥ ri+1, meaning that our
construction produces the elements of a probability distribution in non-increasing order.

Next, we show that MAJOR-PROFILES majorizes any distribution p such that SKETCHp(x) ≤ PROFILES(x) for all x using
induction. Suppose that we have already proven that

∑i
j=1 p(j) ≤

∑i
j=1 MAJOR-PROFILES(j); it remains to show this

inequality for i+ 1. Indeed, the inequality for i+ 1 rearranges to

ri ≥
i+1∑
j=1

p(j)−
i∑

j=1

MAJOR-PROFILES(j).

This inequality is true because the entirety of the square with lower-right corner at (1−
∑i

j=1 MAJOR-PROFILES(j), 0) and

side length max
(∑i+1

j=1 p(j)−
∑i

j=1 MAJOR-PROFILES(j), 0
)

is contained within the square with lower-right corner at

(
∑i

j=1 p(j), 0) and side length p(i+ 1). The entirety of this second square lies below PROFILES by the assumption on p.

Now we are ready to show the inequalities in Theorem 5.5.

• Because SKETCHOPTS
lies below PROFILES , the work above shows that OPTS is majorized by MAJOR-PROFILES .

Thus, H(OPTS) ≥ H(MAJOR-PROFILES).

• Next,

H(MAJOR-PROFILES) =

∫ 1

0

log (1/SKETCHMAJOR-PROFILES
(x)) dx

≥
∫ 1

0

log (1/PROFILES(x)) dx

= H(PROFILES),

where the inequality holds because SKETCHMAJOR-PROFILES
(x) ≤ PROFILES(x) for all x.

• Finally, we claim that H(MAJOR-PROFILES) ≥ H(
∧

S) because
∧

S majorizes MAJOR-PROFILES . Sup-
pose for the sake of contradiction that

∧
S does not majorize MAJOR-PROFILES ; then there exists p ∈ S

such that p does not majorize MAJOR-PROFILES . This in turn implies that there exists some i such that∑i
j=1 p(j) ≥

∑i
j=1 MAJOR-PROFILES(j) and

∑i+1
j=1 p(j) <

∑i+1
j=1 MAJOR-PROFILES(j). But then there exists

some x such that SKETCHMAJOR-PROFILES
(x) > SKETCHp(x) ≥ PROFILES(x), contradicting the assumption that

SKETCHMAJOR-PROFILES
(x) ≤ PROFILES(x) for all x. Thus,

∧
S must majorize MAJOR-PROFILES .
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Remark 4. It is natural to ask whether we can in fact show that H(PROFILES) ≥ H(
∧

S), particularly given that this
inequality often holds for randomly generated instances (e.g. all the runs included in Table 4). It turns out that this is not
true in general; S = {[0.5, 0.5], [0.75, 0.05, 0.05, 0.05, 0.05, 0.05]} is a counterexample.

H OPTIMALITY GAPS: BOUNDS ON POSSIBLE IMPROVEMENT

In this section, we examine the open landscape of upper bounds for greedy coupling in reference to particular lower
bounds. In Table 6, we recall the best-known proven upper bounds on the entropy of the greedy coupling with respect
to particular lower bounds. Whether or not these bounds can be improved (and if so, by how much) are important open
questions. In the first column (“Lower Bound on H(GS)”) of Table 7, we detail counter-examples that show limits for
how much the upper bounds of the greedy algorithm in Table 6 can be improved. In the second column (“Lower Bound
on H(OPTS)”) of Table 7, we detail counter-examples that show limits for how much the upper bounds of any algorithm
can be improved. The counter-examples are a mixture of results from prior work, new hand-constructed instances, and
instances we computationally discovered with a local search. Note that the entries in the first and fifth row of the second
column of Table 7 correspond to the majorization barrier. Finally, in Appendix H.4 we discuss counter-examples that
show the algorithms of [Cicalese et al., 2019, Li, 2021] for coupling m = 2 distributions do not match the approximation
guarantee for the greedy coupling we show in Theorem 4.1.

We emphasize that for all upper bounds in Table 7 it is open whether they can be improved (other than H(
∧

S) for general
m, which is tight). We note that this section shows how the gap for improving the upper bound of H(GS)−H(OPTS) for
m = 2 is comparatively small, as we are able to provide an input where H(GS) −H(OPTS) = 0.40, which is relatively
close to the upper bound provided by Theorem 4.1 (≈ 0.53). On the other hand, for general m, we were unable to generate
instances with H(GS) −H(OPTS) > 0.71, which is relatively far away from the upper bound provided by Theorem 4.2
(≈ 1.22). We did not bound H(OPTS)−H(PROFILES) or H(OPTS)−H(MAJOR-PROFILES) for general m due to how
it is computationally infeasible to compute optimal solutions for general m (making local search similarly infeasible).

Please note that all lower bounds in Table 7 are simply the best counter-examples that are currently known (some by a
fairly limited computational search), and do not correspond to any conjecture of the best lower bound.

Reference Lower Bound m Best Upper Bound on H(GS)
H(
∧

S) m = 2 H(GS) ≤ H(
∧

S) + 1 [Rossi, 2019]
H(PROFILES) m = 2 H(GS) ≤ H(PROFILES) + 0.53 (Theorem 4.1)

H(MAJOR-PROFILES) m = 2 same as above
H(OPTS) m = 2 same as above
H(
∧

S) general m H(GS) ≤ H(
∧

S) + 1.44 [Compton, 2022]
H(PROFILES) general m H(GS) ≤ H(PROFILES) + 1.22 (Theorem 4.2)

H(MAJOR-PROFILES) general m same as above
H(OPTS) general m same as above

Table 6: Upper Bounds on Greedy

Reference Lower Bound m Lower Bound on H(GS) Lower Bound on H(OPTS)
H(

∧
S) m = 2 H(GS) ≈ H(

∧
S) + 0.66 (Appendix H.2) H(OPTS) ≈ H(

∧
S) + 0.66 (Appendix H.2)

H(PROFILES) m = 2 H(GS) ≈ H(PROFILES) + 0.46 (Appendix H.1) H(OPTS) ≈ H(PROFILES) + 0.39 (Appendix H.2)
H(MAJOR-PROFILES) m = 2 same as above H(OPTS) ≈ H(MAJOR-PROFILES) + 0.35 (Appendix H.2)

H(OPTS) m = 2 H(GS) = H(OPTS) + 0.40 (Appendix H.2) =
H(

∧
S) general m H(GS) ≈ H(

∧
S) + 1.44 [Compton, 2022] H(OPTS) ≈ H(

∧
S) + 1.44 [Compton, 2022]

H(PROFILES) general m H(GS) ≈ H(PROFILES) + 0.89 (Appendix H.1) same as m = 2
H(MAJOR-PROFILES) general m same as above same as m = 2

H(OPTS) general m H(GS) ≈ H(OPTS) + 0.71 (Appendix H.3) =

Table 7: Lower Bounds on Greedy and OPT

H.1 Gaps Between H(GS) and H(PROFILES)

Our lower bounds are achieved by letting PROFILES = SKETCHp∗ , where p∗ ∈ S is a uniform distribution. We note that
H(PROFILES) = H(MAJOR-PROFILES) = H(p∗).
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Let Us denote the uniform distribution over s states.

Case m = 2. We used S = {UFt
, ULt−1

}. Here, Fn = round
(

φn

√
5

)
denotes the n-th Fibonacci number, while Ln =

round (φn) denotes the n-th Lucas number. For t = 12, we have Ft = 144, Lt−1 = 199, and H(GS)−H(p∗) > 0.457.

Case general m. We started with S = {U1, U2, . . . , Un}, where n = 2000. This construction already gives H(GS) −
H(p∗) > 0.805. To construct instances where H(GS) −H(p∗) is even greater, we first state an inequality characterizing
the behavior of the greedy algorithm on S:

GS(t+ 1) ≥ min

(
1−

∑t
i=1 GS(i)

min(t, n)
,
1

n

)
. (14)

The first expression in the right hand side of Equation (14) comes from all p ∈ S with |p| ≤ t, while the second expression
comes from all p ∈ S with |p| > t. Thus, GS majorizes the distribution G′

S satisfying G′
S(t+1) = min

(
1−

∑t
i=1 G′

S(i)

min(t,n) , 1
n

)
for all t ≥ 0. If we add to S a distribution pt with |pt| = t to make Equation (14) tight for each t ∈ (1000, 1414] , then we
obtain H(GS)−H(p∗) > 0.887. It is likely possible to construct instances with even greater gaps between GS and p∗, as

H(GS)−H(PROFILES) ≤ H(G′
S)−H(PROFILES) ≈ 1.082. (15)

However, Equation (14) cannot be made tight for t = 1415, so we cannot have equality in Equation (15). It is unclear what
the value of H(GS)−H(PROFILE) is if we let S consist of all distributions with sketches lying above SKETCHp∗ .

H.2 Local Search for m = 2

In this section, we detail “counter-examples” found with a computational local search, i.e. example distributions achieving
large gaps between various coupling entropy bounds. These example empirical gaps provide limits on any future theoretical
bounds on the size of these gaps. At a high-level, this search works by repeatedly making random perturbations to the input
distributions and accepting changes that increase the gap we are finding a lower bound for.

H(GS)−H(
∧

S) ≈ 0.662463

p1 = [0.3199940773, 0.3199844734, 0.1200540976, 0.1200022716, 0.1199650801]
p2 = [0.2000218248, 0.2000211548, 0.2000202369, 0.1999737730, 0.1999630105]

H(OPTS)−H(
∧

S) ≈ 0.662405.
p1 = [0.3199940773, 0.3199844734, 0.1200540976, 0.1200022716, 0.1199650801]
p2 = [0.2000218248, 0.2000211548, 0.2000202369, 0.1999737730, 0.1999630105]

H(OPTS)−H(PROFILES) ≈ 0.389941.
p1 = [0.2128275903, 0.2122898591, 0.2119627146, 0.2119384365, 0.1509813995]
p2 = [0.2747693214, 0.2739951951, 0.2739769942, 0.1161585898, 0.0610998995]

H(OPTS)−H(MAJOR-PROFILES) ≈ 0.354485.
p1 = [0.2128275903, 0.2122898591, 0.2119627146, 0.2119384365, 0.1509813995]
p2 = [0.2747693214, 0.2739951951, 0.2739769942, 0.1161585898, 0.0610998995]

H(GS)−H(OPTS) ≈ 0.395053.
p1 = [0.4081266587, 0.3060949942, 0.1530474970, 0.0765237476, 0.0382618746, 0.0179452279]
p2 = [0.3060949942, 0.2040633294, 0.2040633294, 0.1530474970, 0.0765237476, 0.0382618746, 0.0179452278]

We can modify this last example to obtain H(GS)−H(OPTS) = 0.4 exactly. Specifically, we can let
p1 = [0.4, 0.3, 0.15, 0.075, 0.0375, . . . ]
p2 = [0.3, 0.2, 0.2, 0.15, 0.075, 0.0375, . . . ]

where the dots represent a geometric sequence with ratio 0.5. Then OPTS = p2, but GS replaces one occurrence of 0.2 in
OPTS with [0.1, 0.05, 0.025, . . . ].

H.3 Gap Between H(GS) and H(OPTS) for General m

We can generate instances where H(GS) and H(OPTS) differ by starting with S = {OPTS} and repeatedly inserting into
S any probability distribution generated by combining states of OPTS . We generated 2000 instances with |OPTS | = 10
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from the simplex and m = 4001. The instance that resulted in the maximum difference between H(GS) and H(OPTS)
gave H(GS) ≈ H(OPTS) + 0.707147.

H.4 Counter-Examples for Other Algorithms

The works of [Cicalese et al., 2016, Li, 2021] introduce algorithms for coupling m = 2 distributions. Prior to our work, the
algorithms of [Kocaoglu et al., 2017a, Cicalese et al., 2019, Li, 2021] all had the best additive guarantee of 1 bit. By The-
orem 4.1, we show the greedy coupling algorithm of [Kocaoglu et al., 2017a] is always within log(e)/e ≈ 0.53 bits of the
optimum. We provide a counter-example where the algorithms of [Cicalese et al., 2016, Li, 2021] do not meet this approx-
imation guarantee (found with local search). We do not conjecture whether these algorithms have counter-examples where
their optimality gap is larger. Interestingly, for this counter-example, the algorithms of [Cicalese et al., 2016, Li, 2021]
both produce a coupling with the same output, where both algorithms have an optimality gap of ≈ 0.6265549682 for:
p1 = [0.5540050843, 0.1984459548, 0.1288780486, 0.0396890356, 0.0789189118, 0.0000629649]
p2 = [0.2770967899, 0.2769100227, 0.1984729975, 0.1288783386, 0.0789194408, 0.0397224105]

I GENERALIZING TO CONCAVE MINIMUM-COST COUPLINGS

We emphasize that our methods in all previous sections are not unique to the entropy function but broadly apply to
concave functions. These methods also have the flexibility to yield multiplicative guarantees for functions where an
additive approximation guarantee is unexpected. We will define the cost function for coupling with distribution p as
Fcost(p) ≜

∑
i fcost(p(i)). The necessary assumptions are that fcost is non-negative and concave and fcost(0) = 0. Note

that entropy is a specific example of this where fcost(x) = x log(1/x). The corresponding lower bound given by the profile
is Fcost(PROFILES) =

∫ 1

0
fcost(PROFILES(x))

PROFILES(x) dx.

For cost functions of the form fcost(x) = xc where c ∈ (0, 1), we can use the same methods as Section 4.1 and Section 4.2
to show that the cost achieved by the greedy algorithm is within a multiplicative factor of the optimum.

Theorem I.1. For m = 2, let r ≜ max0<q<p≤1
fcost(q)
fcost(p)

− q
p . If r < 1, then the greedy algorithm achieves a 1

1−r -
multiplicative approximation.

Theorem I.2. For general m, when fcost(x) = xc, the greedy algorithm obtains a
(
1
2 + 1

c2c

)
-multiplicative approximation.

Corollary I.3. For fcost(x) =
√
x, the greedy algorithm obtains a 4/3-multiplicative approximation for m = 2 and a

≈ 1.91-multiplicative approximation for general m.

Proof. For m = 2, substituting fcost into Theorem I.1, we obtain r = (q/p)0.5− q/p. This is maximized when q/p = 1/4,
which gives us r = 1/4. Thus, the greedy algorithm gives us a 1

1−1/4 = 4
3 -multiplicative approximation. For general m,

we simply substitute c = 0.5 into Theorem I.2, giving a ( 12 +
√
2)-multiplicative approximation.

We note that the part of Corollary I.3 corresponding to m = 2 can easily be generalized to other cost functions of the form
fcost(x) = xc for c ∈ (0, 1). For general m, one could obtain guarantees for general concave costs by integrating over∫ 1

0
REM-MASSADVANCED

S (y) · fcost(y)
y dy, analogous to Eq. (3).

I.1 Proof of Theorem I.1

We first extend the definition of Fcost to inverse sketches (and profiles):

Fcost(INV-SKETCHp) ≜ INV-SKETCHp(1)funit(1) +

∫ 1

0

INV-SKETCHp(y)(−f ′
unit(y)) dy (16)

=

∫ 1

0

INV-SKETCH′
p(y)funit(y) dy. (17)

We can verify that Eq. (16) is consistent with Fcost(p):

Fcost(INV-SKETCHp) =

n∑
j=1

pj

(
funit(1) +

∫ 1

pj

(−f ′
unit(y)) dy

)
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=

n∑
j=1

pjfunit(pj) =

n∑
j=1

fcost(pj) = Fcost(p).

The proof is very similar to that of Theorem 4.1 after replacing all occurrences of H , x ln(1/x), and ln(1/x) with Fcost,
fcost(x), and funit(x), but this time we declare the monovariant to be M = Fcost(INV-PROFS) + (1 − r)Fcost(GS), where
r ∈ (0, 1) will be chosen such that the monovariant is nonincreasing. After the greedy step, Fcost(GS) increases by
fcost(p(1)) and Fcost(INV-PROFS) increases by at most

−fcost(p(1)) +

{
(q(1)− p(1)) (funit(q(1)− p(1))− funit(p(1)) q(1) < 2p(1)

0 otherwise
.

So M increases by at most

fcost(p(1)) + max
p(1)<q(1)<2p(1)

(q(1)− p(1))(funit(q(1)− p(1))− funit(p)) + (1− r)fcost(p(1))

= −rfcost(p(1)) + max
0<a<p(1)

a(funit(a)− funit(p(1))).

Now it is clear that we must choose

r ≥ max
0<a<p(1)

a(funit(a)− funit(p(1)))

fcost(p(1))
= max

0<a<p(1)

afunit(a)− afunit(p(1))

pfunit(p)
= max

0<a<p(1)

[
fcost(a)

fcost(p)
− a

p

]
,

as desired.

I.2 Generalization of Corollary I.3

Corollary I.4. When m = 2 andfcost(x) = xc, the greedy algorithm obtains a
(
1− c1/(1−c)(1/c− 1)

)−1
-multiplicative

approximation.

Note that for c = 1
2 this is consistent with Corollary I.3.

Proof. To apply Theorem I.1 we need to compute r = max0<q<p≤1(q/p)
c − q/p. Letting t = q/p ∈ (0, 1), we find

r = tc − t

dr

dt
= ctc−1 − 1.

As dr
dt is a decreasing function of t, we find that r is maximized when t = c1/(1−c). Then r = t(tc−1−1) = c1/(1−c)(1/c−

1). By Theorem I.1, the greedy algorithm obtains a (1− r)−1-multiplicative approximation, done.

I.3 Proof of Theorem I.2

We use the same CS and REM-MASSADVANCED
S as in the proof of Theorem 4.2. Mirroring the steps of the proof starting

from Eq. (11), the cost of the solution found by the greedy algorithm is bounded above by∫ 1

0

funit(CS(x)) dx =

∫ 1

0

REM-MASSADVANCED
S

′
(y)funit(y) dy

= REM-MASSADVANCED
S (y)funit(y)

∣∣∣1
y=0

+

∫ 1

0

REM-MASSADVANCED
S (y)(−f ′

unit(y)) dy

= fcost(1) +

∫ 1

0

REM-MASSADVANCED
S (y)(−f ′

unit(y)) dy (18)

= fcost(1) +
(∫ 1

0

INV-PROFS(y) + INV-PROFS(2y)

2
(−f ′

unit(y)) + (−f ′
unit(y))y

∫ 1

2y

INV-PROF′S(t)/t dt dy
)
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=
1

2

(
fcost(1) +

∫ 1

0

INV-PROFS(y)(−f ′
unit(y)) dy

)
+

1

2

(
fcost(1) +

∫ 1

0

INV-PROFS(2y)(−f ′
unit(y)) dy

)
+

∫ 1

0

INV-PROF′S(t)

t
·
∫ t/2

0

−f ′
unit(y)y dy dt. (19)

It remains to show that each of the three summands is bounded above by a multiple of Fcost(INV-PROFS).

1. Using Eq. (16), twice the first summand equals Fcost(INV-PROFS).

2. Twice the second summand is

fcost(1) +

∫ 1

0

INV-PROFS(2y)(−f ′
unit(y)) =

∫ 1

0

INV-PROF′S(y)funit(y/2) dy

= 21−c

∫ 1

0

INV-PROF′S(y)funit(y) dy

= 21−cFcost(INV-PROFS),

where the first equality holds using integration by parts, the second by assuming funit(y) = yc−1, and the third by
Eq. (17).

3. First we can write ∫ t/2

0

−f ′
unit(y)y dy =

∫ t/2

0

(1− c)yc−1 dy =
1− c

c
yc
∣∣∣t/2
0

=
1− c

c2c
fcost(t).

So using Eq. (17), the third summand simplifies to

1− c

c2c

∫ 1

0

INV-PROF′(t)funit(t) dt =
1− c

c2c
Fcost(INV-PROFS).

Putting these three summands together gives

(19) =

(
1

2
+

1

2c
+

1− c

c2c

)
Fcost(INV-PROFS) =

(
1

2
+

1

c2c

)
Fcost(INV-PROFS).

Remark 5. For fcost(x) = x log(1/x), we were able to show an additive rather than a multiplicative guarantee because
twice the second summand was bounded above by Fcost(INV-PROFS) plus a constant, and the third summand was bounded
above by a constant.

Corollary I.5. For general fcost, we can use the method in the above proof to show that the greedy algorithm achieves a

(1 + a/2 + b) multiplicative guarantee if a and b are constants such that funit(y/2)
funit(y)

≤ a and
∫ t/2
0 −f ′

unit(y)y dy
fcost(t)

≤ b for all
values of y ∈ (0, 1] and t ∈ (0, 1], respectively.

Corollary I.6. For any a < 2 such that funit(y/2)
funit(y)

≤ a for all y ∈ (0, 1], the greedy algorithm achieves an O
(

1
1−a/2

)
-

multiplicative guarantee.

Proof. First, using integration by parts,
∫ t/2

0
−f ′

unit(y)y dy = −fcost(t/2) +
∫ t/2

0
funit(y) dy. The latter summand can be

rewritten as
∑∞

j=1

∫ t/2j

t/2j+1 funit(y) dy, which in turn is bounded above by a geometric series with ratio a/2 and leading term∫ t/2

t/4
funit(y) dy ≤ a2t/4 · funit(t) ≤ O (fcost(t)). Thus we can take b ≤ O

(
1

1−a/2

)
in Corollary I.5.


