
Efficiently Forgetting What You Have Learned in Graph Representation
Learning via Projection

Weilin Cong Mehrdad Mahdavi
The Pennsylvania State University The Pennsylvania State University

Abstract

As privacy protection receives much attention,
unlearning the effect of a specific node from a pre-
trained graph learning model has become equally
important. However, due to the node dependency
in the graph-structured data, representation un-
learning in Graph Neural Networks (GNNs) is
challenging and less well explored. In this paper,
we fill in this gap by first studying the unlearning
problem in linear-GNNs, and then introducing
its extension to non-linear structures. Given a
set of nodes to unlearn, we propose PROJECTOR
that unlearns by projecting the weight parameters
of the pre-trained model onto a subspace that is
irrelevant to features of the nodes to be forgot-
ten. PROJECTOR could overcome the challenges
caused by node dependency and enjoys a perfect
data removal, i.e., the unlearned model param-
eters do not contain any information about the
unlearned node features which is guaranteed by
algorithmic construction. Empirical results on
real-world datasets illustrate the effectiveness and
efficiency of PROJECTOR. [Code].

1 Introduction

As graph representation learning has achieved great suc-
cess in real-world applications (e.g., social networks Kipf
and Welling (2017); Hamilton et al. (2017), knowledge
graphs Wang et al. (2019a,b), and recommender sys-
tem Berg et al. (2017)), privacy protection in graph repre-
sentation learning has become equally important. Recently,
as “Right to be forgotten” gradually implemented in mul-
tiple jurisdictions, users are empowered with the right to
request any organization or company to remove the effect
of their private data from a machine learning model, which

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

is known as “machine unlearning”. For example, when a
Twitter user deletes a post, the user not only may require
Twitter to permanently remove the post from their database,
but also might require Twitter to eliminate its impact on any
machine learning models pre-trained on the deleted post, so
as to prevent the private information in the deleted post be
inferred by any malicious third party.

Existing unlearning approaches can be roughly classified
into exact unlearning and approximate unlearning. The goal
of “exact unlearning” is to exactly produce the model pa-
rameters trained without the deleted data. The most straight-
forward unlearning approach is to retrain the model from
scratch using the remaining data, which could be compu-
tationally prohibitive when the dataset is large or even in-
feasible if not all the data are available to retrain. To avoid
re-training on large data, SISA Bourtoule et al. (2021) pro-
poses to split the original dataset into multiple shards and
train a model on each data shard, then aggregate their pre-
diction during inference. Upon receiving unlearning re-
quirements, they only need to re-train the specific shard
model that the unlearned data belongs to. While being more
efficient compared to retraining from scratch, the model
performance suffers because each model has fewer data to
be trained on and data heterogeneity also deteriorates the
performance. To further reduce the computation overhead,
“approximate unlearning” is proposed to trade-off between
the unlearning efficiency and the data removal effectiveness.
For example, INFLUENCE Guo et al. (2020) proposes to
approximate the unlearned model using first-order Taylor
approximation and FISHER Golatkar et al. (2020) proposes
to directly fine-tune with Newton’s method on the remaining
data. Since approximate unlearning methods lack guaran-
tee on whether all information associated with the deleted
data is eliminated, it is necessary to inject random noise to
model parameters or objective functions to amplify privacy,
which could significantly hurt the performance of unlearned
model. Employing these methods in graph-structured data is
even more challenging due to the dependency among nodes.
Motivated by the importance of unlearning graph-structured
data, we aim at answering the following questions in the
context of GNNs:

Q1. Can existing machine unlearning methods be uti-

https://github.com/CongWeilin/Projector


Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

1

2

3 5

2
3 5

2 4 2

3

2 4

3 5 3

4

3

2 4

5

2

1 3

1 2 3 4 5
Before unlearning

Computation graph of each node
Layer 2

Layer 1

Inputs

1 2 3 4 5
After unlearning4Delete

1

1

2 1

4
Delete nodes

Affected nodes
2 3

<latexit sha1_base64="S5XPWNBWMrP79vXkcV/j3MqhL5g=">AAACAnicbVDLSsNAFJ34rPUVdSVugkVwVRIp6rLoxmUF+4AmhMl00g6dTMLMjVhCcOOvuHGhiFu/wp1/46TNQlsPDBzOuZe55wQJZwps+9tYWl5ZXVuvbFQ3t7Z3ds29/Y6KU0lom8Q8lr0AK8qZoG1gwGkvkRRHAafdYHxd+N17KhWLxR1MEupFeChYyAgGLfnmoRthGBHMs07uu0AfIMNhSAnkvlmz6/YU1iJxSlJDJVq++eUOYpJGVADhWKm+YyfgZVgCI5zmVTdVNMFkjIe0r6nAEVVeNo2QWydaGVhhLPUTYE3V3xsZjpSaRIGeLA5W814h/uf1UwgvvYyJJAUqyOyjMOUWxFbRhzVgUqflE00wkUzfapERlpiAbq2qS3DmIy+SzlndOa83bhu15lVZRwUdoWN0ihx0gZroBrVQGxH0iJ7RK3oznowX4934mI0uGeXOAfoD4/MHYNGYEw==</latexit>Va↵ect

<latexit sha1_base64="uS6wg1sF0xuqh8O5Zv6nDKper6k=">AAACAnicbVDLSsNAFJ34rPUVdSVugkVwVRIp6rLoxmUF+4A2hMnkph06eTBzI5YQ3Pgrblwo4tavcOffOH0stPXAhcM593LvPX4quELb/jaWlldW19ZLG+XNre2dXXNvv6WSTDJoskQksuNTBYLH0ESOAjqpBBr5Atr+8Hrst+9BKp7EdzhKwY1oP+YhZxS15JmHvYjigFGRtwqvh/CAeQACEArPrNhVewJrkTgzUiEzNDzzqxckLIsgRiaoUl3HTtHNqUTOBBTlXqYgpWxI+9DVNKYRKDefvFBYJ1oJrDCRumK0JurviZxGSo0iX3eOD1bz3lj8z+tmGF66OY/TDCFm00VhJixMrHEeVsAlMBQjTSiTXN9qsQGVlKFOraxDcOZfXiSts6pzXq3d1ir1q1kcJXJEjskpccgFqZMb0iBNwsgjeSav5M14Ml6Md+Nj2rpkzGYOyB8Ynz9wMZgd</latexit>Vdelete

Figure 1: An illustration of how the node representations of a 2-layer GNN (with neighbor average aggregation) are affected
after deleting the node v4 from the graph. After removing node v4, the node representation of nodes {v2, v3} are also
affected since these nodes require node v4 to compute their representations. Such dependency grows exponentially with
respect to the number of GNN layers.

lized to solve graph unlearning problem? Most of the
existing methods are designed for settings where the loss
function can be decomposed over individual training sam-
ples, and the node dependency in graph-structured data ren-
der these methods inapplicable to GNNs and makes them
sub-optimal. For example, exact graph unlearning method
GRAPHERASER Chen et al. (2021) extends Bourtoule et al.
(2021) by partitioning the original graph into multiple sub-
graphs. However, graph partitioning will result in loosing
part of the structure information due to ignorance of the
edges that span subgraphs, which could further hurt the
model performance. Moreover, the data heterogeneity issue
on homophily graphs is more severe because nodes with sim-
ilar properties/categories are more likely to be partitioned
into the same subgraph. Applying approximate unlearning
for graph structured data is also non-trivial. For example,
most of these methods require “the objective function be-
fore data deletion” could be formulated as a summation of
“the objective after data deletion” and “the loss on deleted
data”. However, this is not the case on graph-structured data
because the representation of the deleted nodes’ multi-hop
neighbors Vaffect are also affected after node deletion. Please
refer to Figure 1 on how node dependency would affect
the GNN models’ output after deleting a single node from
graph, refer to Appendix C for a detailed mathematical ex-
planation on node dependency. To overcome this issue, we
need to update all affected nodes Vaffect in parallel, which
results in massive computation overhead because |Vaffect|
grows exponentially with the number of layers.

Q2. If not, can we effectively unlearn representations in
GNNs in a computationally efficient manner? We propose
a projection-based unlearning approach for linear-GNNs
that not only “bypasses the node dependency issue” but also
“enjoys a perfect data removal guarantee”. More specifi-
cally, we propose to unlearn node features by orthogonal
projecting linear-GNN’s weight parameters to a subspace
that is irrelevant to the unlearned node features (Section 3).
The projection step guarantees our weight parameters do not
carry any information about the deleted node features, please

refer to Figure 2 for an illustration of our main idea. PRO-
JECTOR could bypass the node dependency issue because
the graph convolutions in linear-GNN can be re-formulated
as a linear combination of the input node features and the
projection-step is directly applied to the node features (Sec-
tion 3.2). Notice that this is different from most approximate
unlearning approaches because their gradient and Hessian
are computed on the output of GNN models, therefore they
are affected by the node dependency.

Q3. How to assess the effectiveness of unlearning in
GNNs? We consider two criteria to evaluate the effec-
tiveness of unlearning. Our first criterion is “the distance
between the unlearned weights to the exactly retrained
weights”. We evaluate this criterion by theoretically up-
per bound the distance of two models. We show that PRO-
JECTOR enjoys a tighter upper bound than approximate
unlearning methods Guo et al. (2020); Golatkar et al. (2020)
(Section 3.3). Although this criterion has become the de
facto way to measure the success of unlearning for approxi-
mate unlearning methods, it has been pointed out by Thudi
et al. (2021) that we cannot infer “whether the data have
been deleted” solely from it. Our theoretical explanation on
this point is deferred to the Appendix E. Therefore, we intro-
duce our second criterion by checking “whether unlearned
weights contain the deleted node features”. To achieve this,
we introduce “feature injection test” in the experiment sec-
tion to rigorously verify this criterion.

Contributions. The main contributions of the present paper
are summarized as follows:

• We propose an efficient graph representation unlearning
method PROJECTOR, which could overcome the node
dependency issue and is guaranteed to remove the trace
of the deleted node features (Section 3.2).

• We theoretically show that unlearned model of PROJEC-
TOR is closer to the model retrained from scratch than
other approximate unlearning methods, which indicates
that PROJECTOR is more preferred if only approximate
unlearning is required (Section 3.3).



Weilin Cong, Mehrdad Mahdavi

x1

x3

x2

w ∈ span{x1,x2,x3}

wp ∈ span{x1,x2}

(a) (b)
Figure 2: The orthogonal projection unlearning in PRO-
JECTOR. The original weight w exists inside the subspace
defined by node feature vectors {x1,x2,x3}. We can un-
learn x3 and obtain the new weight wp by projecting w
onto the subspace defined without x3.

• To improve the expressive of the linear-GNN used with
PROJECTOR, we introduce two unlearning-favorable ex-
tension, i.e., non-linearity extension and adaptive diffu-
sion graph convolution (Section 3.4).

• We introduce the “feature injection test” to rigorously
verify whether an unlearning method could perfectly re-
move the trace of the deleted node features. Our results
show that PROJECTOR could perfectly remove the trace
of the deleted node features, however, other approxi-
mate unlearning methods cannot, which emphasizes the
importance of PROJECTOR (Section 4).

• Empirical results on large-scale real-world datasets of
different sizes illustrate the effectiveness, efficiency, and
robustness of PROJECTOR (Section 4 and Appendix A).

2 Related work and backgrounds

Exact unlearning. The most straightforward way is to
retrain the model from scratch, which is computationally
demanding, except for some model-specific problems such
as SVM Cauwenberghs and Poggio (2000), K-means Ginart
et al. (2019), and decision tree Brophy and Lowd (2021).
To reduce the computation cost, Bourtoule et al. (2021)
proposes to split the dataset into multiple shards and train
an independent model on each data shard, then aggregate
their prediction during inference. A similar idea is ex-
plored in Aldaghri et al. (2021); He et al. (2021). GRA-
PHERASER Chen et al. (2021) extends Bourtoule et al.
(2021) to graph-structured data by proposing a graph par-
tition method that can preserve the structural information
as much as possible and weighted prediction aggregation
for evaluation. Chen et al. (2022) further generalize Chen
et al. (2021) to the recommender system. Although the data
partition schema allows for a more efficient retrain of mod-
els on a smaller fragment of data, the model performance
suffers because each model has fewer data to be trained on
and data heterogeneity can also deteriorate the performance.
Moreover, if a large set of deleted nodes are selected at
random, it could still result in massive retraining efforts.
Ullah et al. (2021) proposes to retrain at the iteration that

deleted data the first time appears, which is not suitable if it
requires iterating the full dataset multiple rounds. Neel et al.
(2020); Ullah et al. (2021); Sekhari et al. (2021) study the
unlearning from the generalization theory perspective, Fu
et al. (2022); Nguyen et al. (2022) study unlearning for
Bayesian inference, which is orthogonal to the main focus
of this paper.

Approximate unlearning. The main idea is to approximate
the model trained without the deleted data in the parameter
space. For example, Guo et al. (2020) proposes to unlearn
by removing the influence of the deleted data on the model
parameters by first-order Taylor approximation, where the
Hessian is computed on the remaining data and gradient is
computed on the deleted data. Chien et al. (2022) gener-
alize the analysis in Guo et al. (2020) to graph. A similar
idea has been explored in Wu et al. (2022) but requires an
objective function as a finite-sum formulation, which is non-
trivial to extend onto graph-structured data. Golatkar et al.
(2020) performs Fisher forgetting by taking a single step of
Newton’s method on the remaining training data. Golatkar
et al. (2021) generalizes the idea to deep neural networks by
assuming a subset of training samples are never forgotten,
which can be used to pre-train a neural network as a feature
extractor and only unlearn the last layer. Izzo et al. (2021)
speeds up Guo et al. (2020) by using the leave-one-out resid-
uals for the linear model update, which reduces the time
complexity to linear in the dimension of the deleted data and
is independent of the size of the dataset. Wu et al. (2020a)
proposes to first save all the intermediate weight parameters
and gradients during training, then utilize such informa-
tion to efficiently estimate the optimization path. Similar
idea have been explored in Wu et al. (2020b) for logistic
regression. Notice that due to the nature of approximate
unlearning, these methods only approximately unlearn the
information of deleted data, require adding random noise,
and lack of perfect data removal guarantee in practice Thudi
et al. (2021).

Linearity requirement in unlearning. Linearity is required
in most unlearning methods Guo et al. (2020); Golatkar
et al. (2020); Wu et al. (2020a) to verify whether the trace of
deleted data has been perfectly unlearned. Unless re-training
from scratch, it is still an open problem to theoretically or
rigorously empirically verify this in the non-linear mod-
els Thudi et al. (2021); Guo et al. (2020). Therefore, we
initiate our study on linear-GNNs in Section 3.2 and provide
its non-linearity extension in Section 3.4. We will rigor-
ously test whether the information is perfectly unlearned
on linear-GNNs and demonstrate the application of using
PROJECTOR with non-linear GNNs.

Relation between unlearning and differential privacy.
Unlearning and differential privacy (DP) are two concepts
that could be used in parallel. More specifically, DP aims to
prevent the privacy leakage issue, while unlearning seeks to
remove some data points’ effect on the pre-trained model.



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Recently, a number of approximate unlearning methods Guo
et al. (2020); Golatkar et al. (2020); Chien et al. (2022)
are inspired by DP to unlearn by injecting random noises
and derive an approximate unlearning DP-like upper bound.
However, not all unlearning methods require using random
noises and could be evaluated under a DP-like framework.
For example, Ullah et al. (2021); Chen et al. (2021) unlearn
by re-training from scratch and PROJECTOR unlearns by
orthogonal projection, therefore adding random noise is not
required. Please refer to Appendix D for more details. In
this paper, we only consider fully removing the trace of
data from the model by unlearning, but do not consider
preventing the privacy leakage issue with DP.

3 Graph representation unlearning

We first introduce backgrounds on graph learning and un-
learning in Section 3.1. Then, we introduce our graph repre-
sentation unlearning approach PROJECTOR on linear-GNN
in Section 3.2 and theoretically analyzing its effectiveness
in Section 3.3. Finally, we introduce PROJECTOR’s non-
linearity extension in Section 3.4.

3.1 Backgrounds

We consider solving semi-supervised binary node classi-
fication using the linear-GNN, which could be easily ex-
tended to multi-class classification. More specifically, given
a graph G(V, E) with n = |V| nodes and |E| edges, let
us suppose each node vi ∈ V is associated with a node
feature vector xi ∈ Rd. Let A,D ∈ Rn×n denote the
adjacency matrix and its associated degree matrix. Then,
an L-layer linear-GNN1 computes the node representa-
tion H = PLX ∈ Rn×d by applying L propagation
matrices P = D−1/2AD−1/2 to the node features ma-
trix X ∈ Rn×d. During training, only training set nodes
Vtrain ⊂ V are labeled by a binary label yi ∈ {−1,+1},
our goal is to estimate the label of the unlabeled nodes
Veval = V \ Vtrain. More specifically, we want to find the
weight parameters w ∈ Rd that minimize

F (w) =
λ

2
∥w∥22 +

1

Vtrain

∑
vi∈Vtrain

fi(w),

fi(w) = log
(
1 + exp(−yiw

⊤hi)
)
,hi = [PLX]i.

(1)

For graph representation unlearning, let Vdelete ⊂ Vtrain de-
note the set of deleted nodes and Vremain = Vtrain \ Vdelete
denote the remaining nodes. Our goal is to unlearn the node
feature information {xi | vi ∈ Vdelete} of the deleted nodes
Vdelete. In terms of the notations, we denote w as the so-
lution before unlearning, wp as the solution obtained by

1Non-linear GNNs usually add activation function and weight
matrix after each graph convolution. For example, the GCN’s
hidden representation is computed by H(ℓ) = σ(PH(ℓ−1)W(ℓ)).

PROJECTOR, and wu as the solution obtained by re-training
from scratch on the dataset without the deleted nodes.

3.2 Graph representation unlearning via PROJECTOR

The main idea behind PROJECTOR is as follows: “If the
weight parameters of linear-GNN are located inside the
linear span of all node features (precondition), then we
can unlearn a set of node features by projecting the weight
parameters onto a subspace that is irrelevant to the node
features that we want to unlearn (how to unlearn).” In the
following, we will first explain why the precondition holds
in linear-GNNs, then introduce how to unlearn, and explain
why PROJECTOR can bypass the node dependency.

Why precondition holds in linear-GNN? The precondition
holds because the graph convolution in linear-GNN is a
linear operator on node features. As a result, all gradients
are inside the linear span of all node features. Therefore, if
we optimizing linear-GNN (Eq. 1) using SGD with weight
initialization satisfying winit ∈ span{x1, . . . ,xn}, regard-
less of how many steps of gradient updates, we still have
w ∈ span{x1, . . . ,xn} holds. To see this, let us first recall
that the gradient of Eq. 1 with respect to any w is

∇F (w) = λw +
1

|Vtrain|
∑

j∈Vtrain

νjxj ,

νj =
(a)

∑
i∈Vtrain

µi[P
L]ij , µi = −yiσ(−yiw

⊤hi),
(2)

where [PL]ij denotes the i-th row j-th column of PL and
σ(·) is the Sigmoid function. Then, Eq. 2 implies that the
gradient F (w) is inside the linear span of all node features,
i.e., ∇F (w) ∈ span{x1, . . . ,xn}. Therefore, when using
gradient update rule wt+1 = wt − η∇F (wt), the weight
after gradient updates still stays inside the same subspace
defined by the linear span of all node features.

How to unlearn? Recall that our goal is to unlearn node
features Xdelete = {xi | vi ∈ Vdelete} of size m = |Vdelete|
by making sure the unlearned solution does not carry any
information about Xdelete. This can be achieved by finding
an alternative solution wp from a subspace that is irrelevant
to Xdelete. Meanwhile, we hope wp is close to w because
small changes in the input data are expected to lead to small
changes in the optimal solutions. Formally, let us define
U = span{xi | vi ∈ Vremain} as the linear subspace spanned
by all remaining samples and our goal is to find wp =
argminv∈U ∥v − w∥22. Because the vertical distance is
the shortest, we can obtain wp by orthogonal projecting w
onto the subspace U . Knowing that any projection ΠU (w)
onto U is necessarily an element of U , i.e., ΠU (w) ∈ U ,
the results after orthogonal projection can be represented
as a weighted combination of all remaining node features
wp = ΠU (w) =

∑
vi∈Vremain

αixi, where the coefficients of
the orthogonal projection α is derived in Proposition 1. An



Weilin Cong, Mehrdad Mahdavi

Algorithm 1 PROJECTOR to unlearning linear-GNN

Require: The pre-trained parameters w, (Option 1) remain
nodes’ features Xremain, (Option 2) deleted node features
Xdelete, pre-computed M = X⊤X and M† = (X⊤X)†

Ensure: Unlearned weight parameters wp

if (Option 1) Xremain is available then
Compute Mremain by

Mremain = X⊤
remainXremain

Compute M†
remain by

M†
remain = (X⊤

remainXremain)
†

else if (Option 2) Xdelete,M, M† are available then
Compute Mremain by

Mremain = M−X⊤
deleteXdelete

Compute M†
remain by

S = X⊤
delete[I−XdeleteX

⊤
delete]Xdelete

M†
remain = M† +M†SM†

end if
Compute wp = MremainM

†
remainw as final output

illustration of the projection-based unlearning is shown in
Figure 2 and the proof is provided in Appendix F.

Proposition 1 The coefficients of the orthogonal projec-
tion is computed as α = Xremain(X

⊤
remainXremain)

†w, where
Xremain = {xj | vj ∈ Vremain} is the remaining node features
and † is the pseudo-inverse operator.

The significant computation required in Proposition 1
includes computing X⊤

remainXremain ∈ Rd×d and its in-
verse with O(rd2) and O(d3) computation complexity,
where r = |Vremain| is the size of remaining nodes and
d is node feature dimension. However, if we could pre-
computed X⊤X before the unlearning requests arrive, then
we could efficiently compute X⊤

remainXremain = X⊤X −
X⊤

deleteXdelete and compute (X⊤
remainXremain)

† by applying
the Woodbury identity Golub and Van Loan (2013) on
X⊤

deleteXdelete, X
⊤X, which leads to a lower computation

complexity of O(max{m3,md2}) if m < max{r, d}. Af-
ter obtaining α, PROJECTOR computes the unlearned weight
parameters by wp = X⊤

remainα. Intuitively, the projection
step in PROJECTOR could be thought of as a re-weighting on
the remaining nodes, which allows our model to behave as
close to the model before unlearning as possible, but without
carrying any information about the deleted node features.
Therefore, the output of PROJECTOR could be interpreted
as re-training on the remaining graph under some unknown
importance sampling distribution.

To this end, we summarize PROJECTOR in Algorithm 1,
where two different types of input options are available that
lead to identical results. More specifically, we can use option
1 if only remaining node features are available, otherwise
we can use option 2 if only the features of deleted nodes
are available but pre-computing is feasible. Besides, due to
the similarity between logistic regression and SVM, PRO-
JECTOR could also be used in primal-based SVM unlearn-
ing Chu et al. (2015) to alleviate the high computation cost
of the dual-based SVM unlearning approach Cauwenberghs
and Poggio (2000). Readers could refer to Appendix J for
more details on its application to SVM.

Why node dependency is bypassed? From Eq. 2 (a), we
could tell that node dependencies in P are included inside
the finite sum weight µj , which is a constant that is mul-
tiplied with its features xj . PROJECTOR could bypass the
node dependency because our projection-step is directly
applied to the input node features, instead of the final out-
puts of GNNs. This is not the case for most approximate
unlearning methods, e.g., Guo et al. (2020); Golatkar et al.
(2020); Wu et al. (2020a), because their unlearning requires
computing the gradient or Hessian on the final layer outputs.

Extension to multi-class classification. Please notice that
PROJECTOR also works with cross-entropy loss for multi-
class classification. To see this, let us consider C categories
and N data but without considering the node dependency for
simplicity, i.e., optimizing W = [w1, . . . ,wC ] ∈ RC×d on
{x1, . . . ,xN} where wc is the c-th row of W. Then, the
softmax’s c-th class probability computed on xn is

pn,c =
exp(an,c)∑C
i=1 exp(an,i)

, an,c = w⊤
c xn.

We define the objective function as

LW = −
N∑

n=1

C∑
c=1

yn,c log(pn,c),

then its gradient is

∂LW

∂wc
=

N∑
n=1

C∑
i=1

∂LW

∂an,i

∂an,i
∂wc

=

N∑
n=1

(pn,c − yn,c)xn

because

∂LW

∂an,i
= pn,i − yn,i and

∂an,i
∂wc

=

{
xn if i = c

0 if i ̸= c.

As a result, for any j ∈ [C] we have

∂LW

∂wj
∈ span{x1, . . . ,xN},

which means each row of the W is in the span of all node
features, and we can apply PROJECTOR on each row of W
independently to unlearn.



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

3.3 On the effectiveness of PROJECTOR

In this section, we study the effectiveness of PROJECTOR by
measuring the ℓ2-norm on the difference between PROJEC-
TOR’s unlearned solution wp to the solution obtained by re-
training from scratch wu on the dataset without the deleted
nodes, and we are expecting ∥wp −wu∥2 to be small for
good unlearning methods. For unlearning, we suppose a
random subset of nodes Vdelete ⊂ Vtrain are selected and the
remaining nodes are denoted as Vremain = Vtrain \ Vdelete.
Since removing the nodes Vdelete is the same as updating the
propagation matrix from P to Pu, where all edges that are
connected to node vi ∈ Vdelete are removed in Pu, we can
write down the objective after data deletion Fu(wu) as

Fu(wu) =
1

|Vremain|
∑

vi∈Vremain

fu
i (wu),

fu
i (wu) = log

(
1 + exp(−yiw

⊤
u h

u
i )
)
+ λ∥wu∥2,

(3)

where hu
i = [PL

uX]i.

Before proceeding to our result, we make the following cus-
tomery assumptions on graph propagation matrices, node
features, and weight parameters in Assumption 1, on the
variance of stochastic gradients in Assumption 2, and on the
correlation between node feature in Assumption 3. Please
notice that Assumption 1, 2 are standard assumptions in
GNN’s theoretical analysis Cong et al. (2021); Ramezani
et al. (2022) and Assumption 3 is a mild assumption that
could be empirically verified in Table 3 on real-world
dataset, where δ could be think of as a measurement on
the closeness of the subspace defined with and without the
deleted node features. In practice, δ is small if only a small
amount of nodes are removed from the original graph.

Assumption 1 We assume each row of the propagation ma-
trices before and after node deletion is bounded by Ps ≥ 0,
i.e., maxj

∥∥[PL]j
∥∥
2
≤ Ps, maxj

∥∥[PL
u ]j
∥∥
2
≤ Ps. Be-

sides, we assume each row of the difference of the propa-
gation matrices before and after data deletion is bounded
by Pd ≥ 0, i.e., maxj

∥∥[PL
u −PL]j

∥∥
2
≤ Pd. Furthermore,

we assume the norm of any node features xi, vi ∈ V and
weight parameters w are bounded by Bx, Bw ≥ 0, i.e.,
∥xi∥2 ≤ Bx, ∥w∥2 ≤ Bw.

Assumption 2 For any deleted nodes Vdelete, the gradi-
ent variance computed on the remaining nodes Vremain =
V \ Vdelete can be upper bounded by G ≥ 0, i.e., we have
EVdelete [∥g−g̃∥2] ≤ G, where g = 1

|Vtrain|
∑

vi∈Vtrain
∇fu

i (w)

and g̃ = 1
|Vremain|

∑
vi∈Vremain

∇fu
i (w) for any w.

Assumption 3 For any node vj ∈ Vdelete, its node fea-
ture xj can be approximated by the linear combination
of all node features in the remaining node set {xi | vi ∈
Vremain} up to an error δ ≥ 0. Formally, we have
maxvj∈Vdelete minα

∥∥∑
i∈Vremain

αixi − xj

∥∥
2
≤ δ.

To this end, let us introduce our main results. From Theo-
rem 1, we know that ∥wp −wu∥2 is mainly controlled by
three key factors: 1 the difference between the propagation
matrices before and after data deletion, which is captured by
Pd in Assumption 1; 2 the variance of stochastic gradient
computed on the remaining nodes, which is captured by G
in Assumption 2; 3 the closeness of any deleted node fea-
tures that could be approximated by weighted combination
of all node features in the remaining node sets, which is
captured by δ in Assumption 3. By reducing the number of
nodes in Vdelete, all Pd, δ, G are expected to decrease. At an
extreme case with |Vdelete| = 0, we have Pd = δ = G = 0
and wp = w = wu. The proof is deferred to Appendix G.

Theorem 1 Let us suppose Assumptions 1,2,3 hold. Let us
define wp as the solution obtained by PROJECTOR, wu is the
solution obtained by re-training from scratch with objective
function Fu(w), and we assume wu is well trained such
that wu ≈ argminw Fu(w). Then, the closeness of wp to
the weight parameters wu can be bounded by

EVdelete [∥wu −wp∥2] ≤ ∆ =

Q
∑T

t=1

(
1 + η(λ+B2

xP
2
s )
)t−1

+ δηT × |Vdelete|,
(4)

where Q = η
(
(1 + BxBwPs)BxPd + G

)
and η is the

learning rate used to pre-train the weight w for T steps of
gradient descent updates. After projection, we can fine-tune
wp for K iterations with learning rate (λ + B2

xP
2
s )

−1 to
obtain w̃p that has an error Fu(w̃p) − minw Fu(w) ≤
O((λ+B2

xP
2
s )∆/K).

Besides, we know the solution of PROJECTOR is probably
closer to the model retrained from scratch compared to Guo
et al. (2020); Golatkar et al. (2020) if δ satisfies the condi-
tion in Proposition 2. In practice, the condition is very likely
to be satisfied because learning rate η, regularization term
λ, and the ratio of deleted nodes |Vdelete|/|V| are usually
very small. For example, a common choice of learning rate
and regularization is η = 0.01, λ = 10−6 for most model
training. Moreover, we empirically validate the difference
between the weight before and after unlearning in the exper-
iment section to validate our theoretical results. The proof
of Proposition 2 is deferred to Appendix H.

Proposition 2 If the approximation error in Assumption 3
satisfying δ <

(
(ληT )−1 + 1

)
Bx × |V|

|Vdelete| , then PROJEC-
TOR’s output is provably closer to re-training from scratch
then using approximate unlearning INFLUENCE Guo et al.
(2020) and FISHER Golatkar et al. (2020).

3.4 Toward a more powerful structure

To boost the model performance PROJECTOR, we first in-
troduce an unlearning-favorable non-linearity extension to
help PROJECTOR better leverage node feature information,



Weilin Cong, Mehrdad Mahdavi

then we introduce an unlearning favorable adaptive diffu-
sion graph convolution to help PROJECTOR better leverage
the graph structure information.

An extension from linear to non-linear. Recall that
the geometric view of solving logistic regression is find-
ing a hyperplane to linearly separate the node represen-
tations H computed by linear-GNN. However, node rep-
resentations computed by linear-GNNs might not be lin-
early separable. To overcome this issue, we propose to
first apply a MLP on all node features, then apply linear-
GNN onto the output of the MLP before classification, i.e.,
Z = σ(σ(XW

(1)
mlp)W

(2)
mlp), H = PLZWgnn. The above ex-

tension can be interpreted as finding a non-linear separation
in the input space. During training, we could first pre-train
on a public dataset with training samples that do not need
to be forgotten, then we only need to unlearn the linear-
GNN model by applying PROJECTOR onto the output of
the MLP. By doing so, PROJECTOR enjoys both the sepa-
ration power brought by the non-linearity of MLP and the
efficiency brought by the projection-based unlearning.

Adaptive diffusion graph convolution. To help the linear-
GNN fully take advantages of the graph structure, we pro-
pose an unlearning favorable adaptive diffusion graph con-
volution operation that take the similarity of both node fea-
ture and node label category information into consideration.
To achieve this, let us first initialize the node features as
h
(0)
i = xi, initialize node labels as z(0)i = yi if i ̸∈ Vtest and

z
(0)
i = 0 if i ∈ Vtest. Then, the forward propagation of the

adaptive diffusion graph convolution operation is computed
as

[H(ℓ+1),Z(ℓ+1)] =
(
(1− γ)I+ γD

(ℓ)
G
)
[H(ℓ),Z(ℓ)],

where we denote [·, ·] as the feature channel concatenation
operation and the i-th row j-th column of the ℓ-th diffusion
operator is defined by

[D(ℓ)(G)]i,j =
1

Z
exp(−σ2

h∥h(ℓ)
i −h

(ℓ)
j ∥22−σ2

z∥z(ℓ)i −z
(ℓ)
j ∥22),

where σh, σz ∈ R are learned during training. Intuitively,
our diffusion operator assign a higher neighbor aggregation
weight to a node if it has a similar node feature and label in-
formation. Then, we set H = [H(1),Z(1), . . . ,H(L),Z(L)]
as the final node representation for prediction. During un-
learning, we do not have to modify σh, σz since these scalars
will not leak the node feature information.

To this end, we conclude this section by showing in Propo-
sition 3 that under mild conditions on X and P, the linear-
GNN used in PROJECTOR could approximate any function
defined on the graph. Since non-linearity extension and
adaptive diffusion graph convolution could potentially al-
leviate the conditions on X and P, these extensions could
improve the expressive power of linear-GNN.

Proposition 3 Let us define U,λ as the eigenvectors and
eigenvalues of graph propagation matrix P, gw(L,X) =

∑n
ℓ=1(P

ℓ−1X)wℓ as the linear-GNN, and f(P,X) ∈
Rn×1 as the target function we want to approximate by
linear-GNN. If no elements in λ are identical and no rows
of X̃ = UX are zero vectors, then there is always exists
a set of w⋆

ℓ ∈ Rd such that gw⋆(P,X) = f(P,X). Re-
placing P with adaptive diffusion graph convolution and
replace X as the output of MLP model could potentially alle-
viate our requirement on the λ and X̃ since their values are
learned by training, therefore improving its expressiveness.

The intuition behind above proposition is that the expressive
power of the linear-GNN gw(L,X) mainly comes from its
graph convolution. Given a dataset with n nodes, using
graph convolutions with polynomial from 0 to n− 1 allows
us map each node feature to its desired value with n differ-
ent weight parameters, therefore it could approximate any
function defined on graph. Proof deferred to Appendix I.

4 Experiments

We consider GRAPHERASER as our exact graph unlearning
baseline. For approximate graph unlearning baselines, we
extend INFLUENCE and FISHER to graph structured data by
taking the node dependency into consideration and rename
them as INFLUENCE+ and FISHER+. The details on the
baselines are introduced in Appendix B.1. Moreover, since
each experiment is designed to evaluate different aspect of
unlearning, the setup of each experiment could be slightly
different (e.g., linear or non-linear, different deleted node
size, different datasets, etc). Therefore, we choose to pro-
vide a brief introduction on the experiment design and setup
at the beginning of each experiment paragraph, but defer the
detailed descriptions to Appendix B.2.

4.1 Experiment results

Feature injection test. This experiment is designed to
verify whether PROJECTOR and baselines could perfectly
unlearn the trace of deleted node features from the weight
parameters. To achieve this goal, we append an extra binary
feature to all nodes and set the extra binary feature as 1
for the deleted nodes and as 0 for other nodes. To make
sure this extra binary feature is an important feature and
is heavily used during training, we add an extra category
and change all deleted nodes to this extra category, then pre-
train on the modified dataset. We measure the effectiveness
of unlearning by checking 1 whether unlearning method
can fully unlearn by comparing weight norm of the injected
channel before and after unlearning2; 2 whether unlearning

2Since the weight parameters of logistic regression are
weighted combination of all input features used during training, the
weight norm of the injected channel before unlearning is expected
to be positive if Vdelete are used before unlearning. However, if an
unlearning method could perfectly remove the trace of Vdelete, the
weight norm of the injected channel after unlearning should be



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Figure 3: Comparison on the weight difference and model prediction (after the final layer activation function) before and
after the unlearning process.

method hurt the model performance by comparing the accu-
racy before and after unlearning; 3 the computation cost by
comparing the time required for unlearning. We randomly
select 5%, 10% of the nodes from the training set as deleted
nodes. We have the following observations from Table 1:
1 By comparing the weight norm of the injected chan-
nel, we observe that GRAPHERASER and PROJECTOR can
perfectly unlearn the deleted nodes and setting the extra-
feature channel as zero. However, INFLUENCE+, FISHER+
cannot fully unlearn the correlation because they are approx-
imate unlearning methods; 2 By comparing the wall-clock
time, PROJECTOR requires less time to unlearn because it
is one-shot unlearning approach with the least computation
cost, whereas baselines either require re-training for mul-
tiple iterations (e.g., GRAPHERASER) or require a larger
computation cost to compute Hessian inversion (e.g., IN-
FLUENCE and FISHER); 3 By comparing the accuracy
before and after unlearning, INFLUENCE+ and FISHER+
have around 2%/7% performance degradation on OGB-
Arxiv/Products dataset than re-training because a stronger
regularization is required to stabilize the unlearning process
(to make sure the Hessian inverse is bounded), and GRA-
PHERASER have around 4%/9% performance degradation
on OGB-Arxiv/Products dataset due to graph partitioning;
4 By comparing the performance of PROJECTOR with and

without adaptive diffusion, we know that adaptive diffusion
provides consistent performance boosting to linear-GNN
models; 5 When comparing with re-training from scratch,
PROJECTOR is around 0.04 ∼ 0.2% slightly better than
re-training because PROJECTOR could be thought of as a
re-weighting on the remaining nodes, which allows our
model to behave similar to the model before unlearning, but
without carrying information about the deleted nodes.

Closeness to retraining from scratch. We compare the
closeness of the unlearned solution wp to the retrained
model wu to verify our conclusion in Theorem 1 and Propo-
sition 2. We measure the difference between normalized
weight parameters ∥wu−wp∥2/∥w∥2 and distance between
the final activations Evi∈B[∥σ(w⊤

p hi)−σ(w⊤
u hi)∥2] where

zero because the features of Vdelete does not belong to the support
vectors of weight parameters.

Table 1: Comparison on the F1-score accuracy (Acc), and
the norm of extra-feature weight channel (WN) before un-
learning and after unlearning (denoted as before → after),
and wall-clock time (T) using linear GNN.

Method Metrics Delete 5% nodes Delete 10% nodes

O
G

B
-A

rx
iv

Acc (%) 73.33 → 73.39 73.25 → 73.39PROJECTOR WN (T) 21.7 → 0 (0.07 s) 56.8 → 0 (0.07 s)
Acc (%) 73.42 → 73.48 73.34 → 73.44PROJECTOR

(+ adapt diff) WN (T) 24.3 → 0 (0.07 s) 25.6 → 0 (0.07 s)
GRAPHERASER
(×8 subgraphs)

Acc (%) 70.59 → 70.56 70.55 → 70.23
WN (T) 22.3 → 0 (1, 866 s) 30.6 → 0 (1, 866 s)

INFLUENCE+ Acc (%) 71.90 → 72.73 70.40 → 72.65
WN (T) 29.2 → 14.1 (1.1 s) 21.1 → 12.1 (1.1 s)

FISHER+ Acc (%) 72.29 → 72.73 71.71 → 72.65
WN (T) 29.2 → 14.1 (0.4 s) 35.4 → 15.6 (0.3 s)

RE-TRAINING
(+ adapt diff)

Acc (%) 73.42 → 73.42 73.34 → 73.40
WN (T) 24.3 → 0 (1, 973 s) 25.6 → 0 (1, 973 s)

O
G

B
-P

ro
du

ct
s

Acc (%) 79.21 → 79.22 79.18 → 79.11PROJECTOR WN (T) 27.6 → 0 (0.06 s) 30.8 → 0 (0.06 s)
Acc (%) 79.95 → 79.93 79.96 → 79.91PROJECTOR

(+ adapt diff) WN (T) 16.4 → 0 (0.06 s) 18.6 → 0 (0.06 s)
GRAPHERASER
(×8 subgraphs)

Acc (%) 70.80 → 70.78 70.80 → 70.78
WN (T) 25.4 → 0 (598 s) 28.9 → 0 (598 s)

INFLUENCE+ Acc (%) 72.23 → 72.78 72.08 → 72.51
WN (T) 8.9 → 3.1 (1.7 s) 14.3 → 4.2 (1.9 s)

FISHER+ Acc (%) 72.23 → 72.78 72.08 → 72.51
WN (T) 8.9 → 3.1 (1.3 s) 14.3 → 4.2 (1.1 s)

RE-TRAINING
(+ adapt diff)

Acc (%) 79.95 → 79.74 79.96 → 79.71
WN (T) 16.4 → 0 (661 s) 18.6 → 0 (661 s)

B ∈ {Vdelete,Vremain,Vtest}. Ideally, a powerful unlearning
algorithm is expected to generate similar final weight pa-
rameters and activations to the retrained model. We ran-
domly select 1% of the nodes from the training set as the
deleted nodes Vdelete ⊂ Vtrain and the rest as remain nodes
Vremain = Vtrain \Vdelete. As shown in Figure 3, both the final
activation (column 1, 2, 3) and the output parameters (col-
umn 4) of PROJECTOR (blue curve) is closer to the weight
obtained by retraining from scratch compared to baseline
methods, which could reflect our result in Proposition 2.
Besides, we can observe that lower unlearning percentage
leads to a smaller difference on the output weight parame-
ters of PROJECTOR (blue curve in column 4), which could
reflect our theoretical result in Theorem 1.

Compare to non-linear models. We compare the perfor-



Weilin Cong, Mehrdad Mahdavi

Table 2: Comparison on the performance of linear GNN and
its non-linear extension with ordinary GNNs.

Method Accuracy

OGB-Arxiv

1 Linear GNN + Adap diff 73.35± 0.12
Linear GNN + Adap diff + MLP 73.41± 0.31

2 GCN 71.74± 0.29
GraphSAGE 71.49± 0.27

3 GCN + GRAPHERASER 66.52± 0.31
GraphSAGE + GRAPHERASER 62.96± 0.26

OGB-Product

1 Linear GNN + Adap diff 80.25± 0.09
Linear GNN + Adap diff + MLP 80.30± 0.40

2
GAT 79.45± 0.59
GraphSAGE 78.70± 0.36
GraphSaint 79.08± 0.24

3
GAT + GRAPHERASER 60.23± 0.71
GraphSAGE + GRAPHERASER 58.99± 0.40
GraphSaint + GRAPHERASER 59.54± 0.41

Figure 4: Comparison on the test performance with different
number of node to unlearn.

mance of non-linear GNNs (introduced in Section 3.4) and
linear GNNs, where the MLP extractor in non-linear PRO-
JECTOR is pre-trained by supervised learning on the features
of all training set nodes but except the deleted ones. We have
the following observations from Table 2: 1 By comparing
results in block 1, we know that using MLP as a feature
extractor can improve the average F1-score accuracy, but
it also increases the variance of the model performance; 2
By comparing the results in block 1 and 2, we know that
linear-GNN could achieve better performance than ordinary
GNNs; 3 By comparing results in block 2 and 3, we know
that employing GRAPHERASER with non-linear GNNs will
significantly hurt the performance of the original GNN mod-
els, which is due to the data heterogeneously and the lack
of training data for each subgraph model.

Robustness of PROJECTOR. We study the change of test-
ing accuracy as we progressively increase the unlearning
ratio from 1% to 20%, where a more stable model per-
formance is preferred in real-world scenarios. As shown
in Figure 4, the change of testing accuracy in PROJEC-
TOR is smaller (e.g., on the OGB-Arvix dataset the test
accuracy of PROJECTOR changes around 0.5% while the
GNNs change around 0.8% ∼ 1% ), more stable (i.e., the

test accuracy fluctuate less when the fraction of unlearn-
ing nodes increases), and with accuracy even better than
re-training ordinary GNNs.

Evaluation on the δ term in Assumption 3.

The performance of PROJECTOR’s unlearned solution is
highly dependent on the correlation between node features,
which is captured by the δ term in Assumption 3. Therefore,
we report the δ by computing

δ = max
vi∈V

∥∥xi −X⊤
remainXremain(X

⊤
remainXremain)

†xi

∥∥
2
,

(5)
where Xremain = [x1, . . . ,xi−1,xi+1, . . . ,xn] is the stack
of all remaining node features. As shown in Table 3, the δ
value is relatively small compared to the norm of average
node features, which indicates the realism of our assumption
and guarantees the performance of PROJECTOR’s unlearned
solution (even without finetuning). Besides, we can observe
that the δ value on the Cora dataset is larger than other
datasets, this is because the feature of the Cora dataset is a
binary-valued vector of size 1433 which is very close to the
total number of nodes in the graph (2708 nodes). When the
node feature dimension is large and all values are either 0
or 1, representing any vectors with others becomes difficult,
therefore resulting in a larger δ.

Table 3: Evaluation δ on real-world datasets.

OGB-Arvix OGB-Product Cora Pubmed
δ 0.3815 0.0915 0.2984 0.0049

∥ 1
n

∑n
i=1 xi∥2 9.6369 161.4997 0.6923 0.5546

More experiment results. More experiment results are
deferred to the appendix. We compare PROJECTOR with
re-training non-linear GNNs under different node deletion
schemes in Appendix A.1. We evaluate unlearning with
membership inference attack in Appendix A.2. We ablation
study the effectiveness of fine-tuning on PROJECTOR in
Appendix A.3.

5 Conclusion

In this paper, we study graph representation unlearning by
proposing a projection-based unlearning approach PROJEC-
TOR. PROJECTOR unlearns the deleted node features by
projecting the weight parameters of a pre-trained model
onto a subspace that is irrelevant to the deleted node fea-
tures. Empirical results on real-world dataset illustrate its
effectiveness, efficiency, and robustness.

Acknowledgements

This work was supported in part by NSF grant 2008398.



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

References
Aldaghri, N., Mahdavifar, H., and Beirami, A. (2021).

Coded machine unlearning. IEEE Access.

Berg, R. v. d., Kipf, T. N., and Welling, M. (2017). Graph
convolutional matrix completion. In International Con-
ference on Knowledge Discovery & Data Mining.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N.
(2021). Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP).

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex
optimization. Cambridge university press.

Brophy, J. and Lowd, D. (2021). Machine unlearning for
random forests. In International Conference on Machine
Learning.

Cauwenberghs, G. and Poggio, T. (2000). Incremental and
decremental support vector machine learning. Advances
in neural information processing systems, 13.

Chen, C., Sun, F., Zhang, M., and Ding, B. (2022). Recom-
mendation unlearning. arXiv preprint arXiv:2201.06820.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M.,
and Zhang, Y. (2021). Graph unlearning. arXiv preprint
arXiv:2103.14991.

Chien, E., Pan, C., and Milenkovic, O. (2022). Certified
graph unlearning. arXiv preprint arXiv:2206.09140.

Chu, B.-Y., Ho, C.-H., Tsai, C.-H., Lin, C.-Y., and Lin, C.-
J. (2015). Warm start for parameter selection of linear
classifiers. In Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 149–158.

Cong, W., Ramezani, M., and Mahdavi, M. (2021). On
provable benefits of depth in training graph convolutional
networks. Advances in Neural Information Processing
Systems.

Diehl, C. P. and Cauwenberghs, G. (2003). Svm incremental
learning, adaptation and optimization. In Proceedings of
the International Joint Conference on Neural Networks,
2003., volume 4, pages 2685–2690. IEEE.

Fey, M. and Lenssen, J. E. (2019). Fast graph representation
learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Fu, S., He, F., and Tao, D. (2022). Knowledge removal
in sampling-based bayesian inference. In International
Conference on Learning Representations.

Gâlmeanu, H. and Andonie, R. (2008). Implementation
issues of an incremental and decremental svm. In Inter-
national Conference on Artificial Neural Networks, pages
325–335. Springer.

Ginart, A., Guan, M. Y., Valiant, G., and Zou, J. (2019).
Making ai forget you: Data deletion in machine learning.
arXiv:1907.05012.

Golatkar, A., Achille, A., Ravichandran, A., Polito, M.,
and Soatto, S. (2021). Mixed-privacy forgetting in deep
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Golatkar, A., Achille, A., and Soatto, S. (2020). Eternal
sunshine of the spotless net: Selective forgetting in deep
networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition.

Golub, G. H. and Van Loan, C. F. (2013). Matrix computa-
tions. JHU press.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. (2020). Certified data removal from machine learn-
ing models. In International Conference on Machine
Learning.

Hamilton, W. L., Ying, Z., and Leskovec, J. (2017). Induc-
tive representation learning on large graphs. In Advances
in Neural Information Processing Systems.

He, Y., Meng, G., Chen, K., He, J., and Hu, X. (2021).
Deepobliviate: A powerful charm for erasing data resid-
ual memory in deep neural networks. arXiv preprint
arXiv:2105.06209.

Izzo, Z., Smart, M. A., Chaudhuri, K., and Zou, J. (2021).
Approximate data deletion from machine learning models.
In International Conference on Artificial Intelligence and
Statistics.

Karasuyama, M. and Takeuchi, I. (2009). Multiple incre-
mental decremental learning of support vector machines.
Advances in neural information processing systems, 22.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Klicpera, J., Bojchevski, A., and Günnemann, S. (2018).
Predict then propagate: Graph neural networks meet per-
sonalized pagerank. arXiv preprint arXiv:1810.05997.

Laskov, P., Gehl, C., Krüger, S., Müller, K.-R., Bennett,
K. P., and Parrado-Hernández, E. (2006). Incremental
support vector learning: Analysis, implementation and
applications. Journal of machine learning research, 7(9).

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. (2020).
Descent-to-delete: Gradient-based methods for machine
unlearning. arXiv preprint arXiv:2007.02923.

Nguyen, Q. P., Oikawa, R., Divakaran, D. M., Chan, M. C.,
and Low, B. K. H. (2022). Markov chain monte carlo-
based machine unlearning: Unlearning what needs to be
forgotten. arXiv preprint arXiv:2202.13585.

Olatunji, I. E., Nejdl, W., and Khosla, M. (2021). Mem-
bership inference attack on graph neural networks. In
2021 Third IEEE International Conference on Trust, Pri-
vacy and Security in Intelligent Systems and Applications
(TPS-ISA), pages 11–20. IEEE.

Platt, J. (1998). Sequential minimal optimization: A fast
algorithm for training support vector machines.



Weilin Cong, Mehrdad Mahdavi

Ramezani, M., Cong, W., Mahdavi, M., Kandemir, M. T.,
and Sivasubramaniam, A. (2022). Learn locally, correct
globally: A distributed algorithm for training graph neural
networks. ICLR.

Sekhari, A., Acharya, J., Kamath, G., and Suresh, A. T.
(2021). Remember what you want to forget: Algorithms
for machine unlearning.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A.
(2011). Pegasos: Primal estimated sub-gradient solver
for svm. Mathematical programming, 127(1):3–30.

Thudi, A., Jia, H., Shumailov, I., and Papernot, N. (2021).
On the necessity of auditable algorithmic definitions for
machine unlearning. arXiv preprint arXiv:2110.11891.

Tsai, C.-H., Lin, C.-Y., and Lin, C.-J. (2014). Incremen-
tal and decremental training for linear classification. In
Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
343–352.

Ullah, E., Mai, T., Rao, A., Rossi, R., and Arora, R. (2021).
Machine unlearning via algorithmic stability.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.

Wang, H., Zhang, F., Zhang, M., Leskovec, J., Zhao, M.,
Li, W., and Wang, Z. (2019a). Knowledge-aware graph
neural networks with label smoothness regularization for
recommender systems. In International Conference on
Knowledge Discovery & Data Mining.

Wang, X., He, X., Cao, Y., Liu, M., and Chua, T. (2019b).
KGAT: knowledge graph attention network for recom-
mendation. In International Conference on Knowledge
Discovery & Data Mining.

Wang, X. and Zhang, M. (2022). How powerful are spectral
graph neural networks. arXiv preprint arXiv:2205.11172.

Wang, Y., Jin, J., Zhang, W., Yu, Y., Zhang, Z., and Wipf, D.
(2021). Bag of tricks for node classification with graph
neural networks. arXiv preprint arXiv:2103.13355.

Wu, G., Hashemi, M., and Srinivasa, C. (2022). Puma:
Performance unchanged model augmentation for training
data removal. arXiv preprint arXiv:2203.00846.

Wu, Y., Dobriban, E., and Davidson, S. (2020a). Delta-
grad: Rapid retraining of machine learning models. In
International Conference on Machine Learning.

Wu, Y., Tannen, V., and Davidson, S. B. (2020b). Priu: A
provenance-based approach for incrementally updating
regression models. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018). How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Kannan, R.,
Prasanna, V., Jin, L., Malevich, A., and Chen, R. (2020).
Deep graph neural networks with shallow subgraph sam-
plers.

Zeng, H., Zhang, M., Xia, Y., Srivastava, A., Malevich, A.,
Kannan, R., Prasanna, V., Jin, L., and Chen, R. (2021).
Decoupling the depth and scope of graph neural networks.
In Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,
J. W., editors, Advances in Neural Information Processing
Systems.



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Table of contents

1 Introduction 1

2 Related work and backgrounds 3

3 Graph representation unlearning 4
3.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Graph representation unlearning via PROJECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 On the effectiveness of PROJECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Toward a more powerful structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Experiments 7
4.1 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Conclusion 9

A More experiment results 13
A.1 Linear vs non-linear GNN under different deleted nodes selection schemes . . . . . . . . . . . . . . . . . 13
A.2 Evaluation by Membership Inference Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A.3 Performance Before and After Finetuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B Missing details from Section 4 (experiment section) 16
B.1 Details on baseline methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
B.2 Details on experiment setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C Dependency issue in applying existing unlearning approaches 17

D Connections between differential privacy and machine unlearning 19

E Why checking the closeness to re-trained solution along is not enough for unlearning? 20

F Proof of Proposition 1 21

G Proof of Theorem 1 23
G.1 Upper bound on ∥wu(T )−w(T )∥2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

G.2 Upper bound on ∥wp −w(T )∥2 for PROJECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

G.3 Convergence rate for fune-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

H Proof on Proposition 2 27

I Proof of Proposition 3 28

J Connection and potential application to SVM unlearning 29
J.1 Existing SVM unlearning and its limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

J.2 PROJECTOR for SVM unlearning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



Weilin Cong, Mehrdad Mahdavi

A More experiment results

In this section, we provide more empirical evaluation results.

• Appendix A.1: We compare PROJECTOR with re-training non-linear GNNs under different node deletion schemes.

• Appendix A.2: We conduct experiments using membership inference attack framework.

• Appendix A.3: We ablation study the effectiveness of fine-tuning on PROJECTOR’s unlearned model.

Code to reproduce the experiment results can be found at [Repository].

A.1 Linear vs non-linear GNN under different deleted nodes selection schemes

In this section, we compare the model performance of PROJECTOR against re-training 2-layer GNNs from scratch under dif-
ferent unlearning settings. We consider GCN Kipf and Welling (2017), GraphSAGE Hamilton et al. (2017), APPNP Klicpera
et al. (2018), and GAT Veličković et al. (2017) as the baseline 2-layer GNNs. Notice that using a 2-layer is a common choice
in graph representation learning to balance between computation cost, training accuracy, and generalization. To scale for
large-graph training, we utilize the K-hop shadow sampler Zeng et al. (2021) implemented in Pytorch Geometric Fey and
Lenssen (2019). We consider two different unlearning settings, i.e., unlearning 10% training set nodes with the largest node
degree (i.e., “delete dense nodes” in Table 4) and unlearning 10% training set nodes with the smallest node degree (i.e.,
“delete sparse nodes” in Table 4), to simulate the potential real-world node deletion scenario.

Table 4: Compare the model performance PROJECTOR with re-training 2-layer GNNs from scratch under different deleted
nodes selection schemes.

Before node deletion Delete dense nodes Delete sparse nodes

Flickr (avg node degree 10)

GCN Re-train 50.01± 0.13 (241.08s) 49.35± 0.10 (194.75s) 49.79± 0.18 (234.93s)
GraphSAGE Re-train 51.34± 0.14 (243.00s) 50.23± 0.22 (195.49s) 50.93± 0.20 (236.77s)
APPNP Re-train 50.04± 0.09 (244.53s) 49.03± 0.17 (200.34s) 49.60± 0.06 (239.71s)
GAT Re-train 51.01± 0.11 (409.51s) 49.78± 0.23 (313.75s) 50.76± 0.22 (392.77s)

Re-train 49.21± 0.23 (268.09s) 51.84± 0.13 (316.76s)Linear-GNN Projector 52.71± 0.14 (374.50s)
50.63± 0.19 (0.06s) 51.90± 0.11 (0.05s)

Reddit (avg node degree 50)

GCN Re-train 93.04± 0.09 (1174.12s) 92.95± 0.06 (910.51s) 91.47± 0.09 (1129.89s)
GraphSAGE Re-train 94.68± 0.06 (1005.13s) 94.90± 0.07 (775.80s) 94.45± 0.06 (917.80s)
APPNP Re-train 93.73± 0.06 (1010.02s) 94.08± 0.10 (780.10s) 93.09± 0.08 (925.56s)
GAT Re-train 92.82± 0.10 (1431.56s) 93.12± 0.05 (1228.95s) 92.41± 0.10 (1297.23s)

Re-train 95.03± 0.03 (1290.16s) 94.58± 0.02 (1532.51s)Linear-GNN Projector 94.72± 0.08 (1630.53s)
95.09± 0.03 (0.24s) 94.66± 0.07 (0.32s)

We have the following observations From Table 4:

• Linear-GNNs could achieve even better performance than non-linear GNNs. For example, linear-GNN is around
0.1 ∼ 1% better than 2-layer GNNs on Flickr and Reddit dataset. This also verifies the arguments in Proposition 3
that the expressive power of linear-GNNs mainly comes from its weight combination of multi-hop graph convolution
operators. Besides, since linear-GNN has lower model complexity, it could generalize better than multi-layer GNNs.

• Interestingly, according to the second column of our results, we found that removing dense nodes on the sparser graph
(e.g., Flickr) hurt the model performance to around 1 ∼ 2%, however, removing dense nodes on the denser graph (e.g.,
Reddit) it will improves the model performance to around 1%. This is potentially because those dense nodes provide
too much redundant information on the denser graph than on a sparser graph or due to the over-smoothing Xu et al.
(2018) issue caused by aggregating too many neighbors in the original graph.

• The performance of PROJECTOR is around 0.06 ∼ 0.1% better than re-training on the graph without the deleted nodes.
This is potential because the output of PROJECTOR could be interpreted as re-training on the remaining graph under
some unknown importance sampling distribution, while this importance distribution help PROJECTOR learn better from
the remaining data.

https://github.com/CongWeilin/Projector


Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

A.2 Evaluation by Membership Inference Attack

In this section, we conduct membership inference attack Olatunji et al. (2021) to test whether GNN models could potentially
leak information about the deleted nodes’ membership information and whether PROJECTOR could alleviate the information
leakage issue. In the following, we will first give a brief introduction on the GNN membership inference attack settings used
in Olatunji et al. (2021) then provide details on our experiment results.

Gvtm(Vvtm, Evtm) Gadv(Vadv, Eadv)

G Random Split−−−−−−−→ Gadv, Gvtm
GNN(Gadv)

Step 1. Train adversary: Gadv
Train GNNadv−−−−−−−−→ Hadv = GNNadv(Gadv)

Train−−−
Step 2. Train victim: Gvtm

T−−
Step 3. Apply adversary model on victim model:

Gadv
Train GNNadv−−−−−−−−→ Hadv = GNNadv(Gadv)

Train MLPadv−−−−−−−→ MLPadv(Hadv)

Gvtm
Train GNNvtm−−−−−−−−→ Hvtm = GNNvtm(Gvtm)

MLPadv(Hvtm)
Is trained?−−−−−−→

Figure 5: An overview on the workflow of membership inference attack.

Membership inference attack setting. An overview of the membership inference attack is introduced in Figure 5, which
follows the implementation of the graph membership inference attack that is proposed in Olatunji et al. (2021). Let us denote
G(V, E) as the full graph. In the membership inference attack, a necessary assumption is the graphs used by adversaries and
victims are from the same distribution. To achieve this goal, we randomly split all nodes into adversary’s node sets Vadv ⊂ V
and victim’s node sets Vvtm = V \ Vadv. Then, we define the subgraph induced by the two node sets as adversary subgraph
Gadv and victim subgraph Gvtm. This process is illustrated at the top of Figure 5. On the adversary side, the adversary first
pre-trains a GNN model GNNadv on Gadv by only using a subset of nodes as training sets and extract the node representation
as Hadv. Then, a binary classifier MLPadv is trained on Hadv to classify whether a node has been used for training for not.
On the victim side, the victim only need to train a GNN model GNNvtm on Gvtm by only use a subset of nodes as training
sets and extract the node representation as Hvtm. During the membership inference attack, the adversary applies MLPadv
onto Hvtm to distinguish if a node is used for training. Membership inference attack is more challenging on graph data
because the adversary classifier MLPadv is applied to the node representation, and the node representation of some nodes
might be very similar if they share the same neighborhood information.

Table 5: Comparison on the membership inference attack accuracy before and after unlearning.
Method / Phase Vdelete as untrained Vafter

train as trained V \ Vbefore
train as untrained Vbefore

train

Cora
BEFORE-UNLEARN 46.35± 16.99 52.31± 16.31 63.17± 12.12 57.79± 2.84
RE-TRAINING 59.37± 11.82 56.30± 16.56 62.98± 14.01 58.79± 1.83
PROJECTOR 58.38± 11.75 51.64± 16.23 63.84± 12.14 57.76± 2.15

Citeseer
BEFORE-UNLEARN 47.33± 31.21 38.52± 32.73 68.30± 29.97 54.97± 2.32
RE-TRAINING 66.33± 25.60 54.04± 30.86 55.53± 28.94 55.20± 3.08
PROJECTOR 67.33± 27.50 38.22± 32.68 68.97± 29.56 55.05± 2.17

Results. We compare the accuracy of MLPadv classifies each node representation Hvtm as training or non-training set nodes
before and after unlearning. Let us denote Vbefore

train ⊂ Vvictm as the subset of nodes used for training before node deletion,
denote Vafter

train ⊂ Vbefore
train as the subset of nodes used for training after node deletion, and denote Vdelete = Vbefore

train \ Vafter
train

as the nodes for deletion. Two victim models are trained on training set nodes Vbefore
train ,Vafter

train . We report the accuracy on
Vafter

train ,Vdelete,Vvtm \ Vbefore
train before and after unlearning. We are using the re-trained model as a baseline. In terms of the

size of node sets, we set |Vbefore
train | = 0.5× |Vvictim| and |Vdelete| = 0.9× |Vbefore

train |. We have the following observations from
Table 5:

• By comparing the BEFORE-UNLEARN with RE-TRAINING and PROJECTOR , we know that both re-training and
our proposal could increase the probability that MLPadv classify Vdelete at “untrained”. More specifically, when applying
MLPadv on the model before-unlearning, since Vdelete are used before unlearning, the probability of classifying Vdelete



Weilin Cong, Mehrdad Mahdavi

as “untrained” should be lower than 50%. However, after re-training or using our unlearning approach, the probability
of classifying Vdelete as “untrained” increases as the information on Vdelete are removed during the unlearning process.

• By comparing the BEFORE-UNLEARN with PROJECTOR at each column, we can observe that the prediction of
MLPadv on Vafter

train and V \ Vbefore
train are almost unchanged. This is also expected as our projection step only remove the

trace of the deleted nodes and will preserve its model performance/behavior as much as possible according to our
method design in Section 3.

A.3 Performance Before and After Finetuning

The experiment results in Section 4 are reported without the fine-tuning process as mentioned in Theorem 1. For the
completeness of our discussion, we provide further results on the comparison of the training, validation, and testing accuracy
of the unlearned model both with and without the fine-tuning process.

Setup. In this experiment, we randomly select 1% of the nodes from the training set to unlearn. During both training
and fine-tunings, we early stop if the validation accuracy does not increase within 10 iterations on the OGB-Arvix dataset
and 1, 000 iterations on the OGB-Products dataset. We repeat the experiment 5 times. Other setup remains the same as
introduced in Section B.2.

Results. According to our result in Figure 6, we have the following observations: 1 By looking at the blue curve, we know
that both the training and validation accuracy dropped after unlearning, which is expected as part of the information related to
the deleted nodes are removed; 2 By looking at the orange curve, we can observe that the fine-tuning training accuracy indeed
improves progressively but the improvement is relatively small, this is because the solution after PROJECTOR unlearning is
already close to the optimal solution, which could be partially explained by the hypothesis that small changes on the dataset
will not results in massive changes on the optimal solution. 3 By comparing the orange curve and green curve, we know
that fine-tuning on the unlearned solution (orange curve) could save a lot of time comparing to re-training from scratch
(green curve). Furthermore, we compare the F1-score on the test set in Table 6 and have the following observations: 1
When without the adaptive diffusion operation, the generalization performance on the testing set between fine-tuning to
re-training are relatively close; 2 However, if using the adaptive diffusion operation, the unlearning solution (no matter with
or without the fine-tuning step) always outperform re-training from stretch. This is potentially because more data are used
to tune the scatter parameters in the adaptive diffusion, which leads to a better generalization ability; 3 The performance
before and after the fine-tuning is relatively close, which indicates the impressive generalizability of our unlearning solution.

Figure 6: Evaluation on effect of finetuning on the training accuracy before and after 1% of the node from training set
deleted.



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Table 6: Comparison of F1-score on the testing set before unleanring, after unlearning, after fine-tuning, and re-training with
1% of the node from training set deleted on OGB datasets.

Arxiv Status Test F1-score (%) Products Status Test F1-score (%)

PROJECTOR

Before unlearning 73.25± 00.23

PROJECTOR

Before unlearning 79.11± 00.08
After unlearning 72.97± 00.24 After unlearning 78.96± 00.06
After fine-tuning 73.03± 00.11 After fine-tuning 79.06± 00.06
Re-training 73.02± 00.11 Re-training 78.78± 00.14

PROJECTOR
(+ adapt diff)

Before unlearning 73.35± 00.12
PROJECTOR
(+ adapt diff)

Before unlearning 80.25± 00.09
After unlearning 73.09± 00.12 After unlearning 79.95± 00.12
After fine-tuning 73.13± 00.12 After fine-tuning 80.02± 00.37
Re-training 73.00± 00.12 Re-training 79.87± 00.47

B Missing details from Section 4 (experiment section)

B.1 Details on baseline methods

In this paper, we consider exact unlearning method GRAPHERASER Chen et al. (2021), approximate unlearning method
INFLUENCE+ Guo et al. (2020) and FISHER+ Golatkar et al. (2020) as baseline methods.

Details on GRAPHERASER. GRAPHERASER is an exact unlearning method. GRAPHERASER proposes to split the
original graph into multiple shards (i.e., subgraphs) and train an independent model on each data shard. During inference,
GRAPHERASER averages the prediction of each shard model as the final prediction. Upon receiving unlearning requests,
GRAPHERASER only needs to re-train the specific shard model where the deleted data belongs to. In the experiment, we
split all nodes into 8 shards using graph partition algorithm METIS and use mean average for model aggregation. Each shard
model is trained with enough epochs and we return the epoch model with the highest validation score. Our implementation
is based on their official implementation3 and is general enough to captured the main spirit of GRAPHERASER, i.e., split
data into multiple shards and train a shard model on each shard. METIS allows us to split the original graph into multiple
subgraphs while preserving the original graph structure as much as possible. We also test their official implementation with
different model aggregation and graph partition strategies, but their performance is not as good as the METIS partitioning
and mean aggregation on the more challenging OGB datasets.

Details on INFLUENCE+. INFLUENCE+ is approximate unlearning method and is implemented based on its official code4.
INFLUENCE+ proposes to unlearn by removing the influence of the deleted data on the model parameters. Formally, let
Dd ⊂ D denote the deleted subset of training data, Dr = D \ Dd denote the remaining data, L(w) is the objective function,
and w is the model parameters before unlearning. Then, INFLUENCE+ unlearn by wu = w +H−1

r gd, which is derived
from the first-order Taylor approximation on gradient, where wu is the parameters after unlearning, Hr = ∇2L(w,Dr)
is the Hessian computed on the remaining data, and gd = ∇L(w,Dd) is the gradient computed on the deleted data. To
mitigate the potential information leakage, INFLUENCE+ utilizes a perturbed objective function L(w) + b⊤w, where b
is the random noise. INFLUENCE+ requires the loss function as logistic regression, we use the one-vs-rest strategy splits
the multi-class classification into one binary classification problem per class and train with logistic regression. Besides,
INFLUENCE+ requires the i.i.d. data and cannot handle graph structured data, we opt to update both the deleted and affected
nodes in parallel. A reader who is interesting the mathematically details could refer to Section C.

Details on FISHER+. FISHER+ is approximate unlearning method and is edited based on their official code5. FISHER+
performs Fisher forgetting by taking a single step of Newton’s method on the remaining training data, then performing noise
injection to model parameters to mitigate the potential information leaking. The model parameters after unlearning is given
by wu = w −H−1

r gr +H
−1/4
r b, where Hr = ∇2L(w,Dr) is Hessian and gr = ∇L(w,Dr) is gradient computed on

the remaining data Dr, and b is the random noise.

Details on multi-layer GNNs. For experiments on OGB datasets, we take their code from the Open Graph Benchmark’s
online public implementation and use the same hyper-parameters as originally provided. For example, the implementations
on OGB-Arxiv is based on the code at here and the implementation on OGB-Products is based on code at here. For
experiments on other datasets, we take the example code from PyTorch Geometric at here and use the same hyper-parameters

3https://github.com/MinChen00/Graph-Unlearning
4https://github.com/facebookresearch/certified-removal
5https://github.com/AdityaGolatkar/SelectiveForgetting

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/arxiv
https://github.com/snap-stanford/ogb/tree/master/examples/nodeproppred/products
https://github.com/pyg-team/pytorch_geometric/tree/master/examples
https://github.com/MinChen00/Graph-Unlearning
https://github.com/facebookresearch/certified-removal
https://github.com/AdityaGolatkar/SelectiveForgetting


Weilin Cong, Mehrdad Mahdavi

as originally provided.

B.2 Details on experiment setups

Experiment environment. We conduct experiments on a single machine with Intel i9 CPU, Nvidia RTX 3090 GPU,
and 64GB RAM memory. The code is written in Python 3.7 and we use PyTorch 1.4 on CUDA 10.1 for model training.
We repeat the experiment 5 times and report the average results (for all experiments) and its standard deviation (for all
experiment results except the Table 1 due to space limit).

Model configuration. For fair comparision, the same linear-GNN is used for PROJECTOR and baseline methods is used: we
use 3-layer linear-GNN with shallow-subgraph sampler Zeng et al. (2020) for OGB-Arxiv and OGB-Products dataset, use
2-layer linear-GNN with full-batch training for Cora and Pubmed dataset. During training, label reuse tricks in Wang et al.
(2021) are used that leverage the training set node label information for inference. In terms of the linear GNN model we
used in PROJECTORand all other baselines, we train the linear-GNN using SGD with momentum with learning rate selected
from {0.1, 1.0}, momentum as 0.9, adaptive aggregation step size γ = 1, and regularization as 10−6. Besides, we choose
the regularization term λ in INFLUENCE+ and FISHER+ to balance the performance before and after unlearning: when λ is
small, we are facing the gradient exploding issue where the gradient norm is an order of magnitude larger than the weight
norm, such that the unlearned model cannot generate meaningful predictions. However, a larger λ will hurt model’s learning
ability and results in a poor performance before unlearning.

Details on dataset. We summarize the datasets that are used for experiments in Table 7.

Table 7: Statistics of the datasets used in our experiments.

# Nodes # Edges # Features # Classes
OGB-Arxiv 169,343 1,166,243 128 40
OGB-Products 2,449,029 61,859,140 100 47
Cora 2,708 10,556 1,433 7
Pubmed 19,717 88,648 500 3
Flickr 89,250 899,756 500 7
Reddit 232,965 114,615,892 602 41

C Dependency issue in applying existing unlearning approaches

Most unlearning approaches Wu et al. (2020a); Guo et al. (2020); Izzo et al. (2021) are designed for the settings where
the loss function can be decomposed over individual training samples. Directly generalizing the aforementioned general
machine unlearning methods to graph structured data is infeasible due to the node dependency. In other word, one cannot
directly unlearn a specific node vi, but have to remove the effect of all its multi-hop neighbors in parallel if using these
methods.

In the following, we use Guo et al. (2020) as an example to illustrate the key issue. The discussion also applied to other
machine unlearning methods that require the loss function to be decomposed over individual training samples. In the
following, we first recall how the influence function is used to update the weight parameters in Guo et al. (2020), then
highlight why node dependency makes applying Guo et al. (2020) to graph-structured data challenging and introduce a
solution to alleviate this issue.

Influence function in Guo et al. (2020). The influence function used in Guo et al. (2020) captures the change in model
parameters due to removing a data point from the training set. Let L(w) denote the finite-sum objective function computed
on the full training set {xi}ni=1 with optimal solution

w⋆ = argmin
w

L(w),where L(w) =

n∑
i=1

ℓ(w⊤xi, yi) (6)



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

and L\n(w) denote the objective function without data point (xn, yn) with optimal solution

w\n = argmin
w

L\n
(w),where L\n

(w) =

n−1∑
i=1

ℓ(w⊤xi, yi) = L(w)− ℓ(w⊤xn, yn). (7)

From w\n = argminw L\n
(w) and the convexity of the objective function L\n

, we know that ∇L\n(w\n) = 0. Therefore,
we have

0 = ∇L(w\n)−∇ℓ(w⊤
\nxn, yn)

≈
(a)

[
∇L(w⋆) +∇2L(w⋆)(w\n −w⋆)

]
−
[
∇ℓ(w⊤

⋆ xn, yn) +∇2ℓ(w⊤
⋆ xn, yn)(w\n −w⋆)

]
=
[
∇L(w⋆)−∇ℓ(w⊤

⋆ xn, yn)
]
+
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
(w\n −w⋆)

=
(b)

[
−∇ℓ(w⊤

⋆ xn, yn)
]
+
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
(w\n −w⋆),

(8)

where (a) is the first-order Taylor expansion and (b) due to ∇L(w⋆) = 0 for w⋆ = argminw L(w). Re-arranging the
above equation we have

w\n ≈ w⋆ +
[
∇2L(w⋆)−∇2ℓ(w⊤

⋆ xn, yn)
]
∇ℓ(w⊤

⋆ xn, yn)︸ ︷︷ ︸
influence function

,
(9)

where the second term on the right hand side is the so called influence function.

Challenges due to dependency in graph. Please notice that the objective function in Eq. 6 and Eq. 7 are finite-sum
formulation. In the following, we will show that directly using the second-order method in Guo et al. (2020) is not allowed
due to the node dependency in graph. Before getting started, let me first introduce some notations:

• Let us denote the graph before node deletion as G, where the graph structure is captured by adjacency matrix
A ∈ {0, 1}n×n and node feature matrix is X. The row normalized propagation matrix us computed as P = D−1A.

• Let us denote the graph after node deletion as G\n, where the graph structure is captured by adjacency matrix
A\n ∈ {0, 1}(n−1)×(n−1) and node feature matrix is X\n ∈ R(n−1)×d. The row normalized propagation matrix us
computed as P\n = D−1

\nA\n.

For simplicity, let us only consider 1-hop SGC, which is already enough to illustrate why node dependency makes applying
machine unlearning methods to graph structured data challenging. In graph structured data, let F (w) denote the objective
function computed on the full training graph G with optimal solution

w⋆ = argmin
w

L(w),where L(w) =

n∑
i=1

ℓ(w⊤[PX]i, yi) (10)

and L\n(w) denote the objective function computed on graph G\n without node n , with optimal solution

w\n = argmin
w

L\n
(w),where L\n

(w) =

n−1∑
i=1

ℓ(w⊤[P\nX]i, yi)

̸=
(a)

L(w)− ℓ(w⊤[PX]n, yn).

(11)

Due to the inequality of (a), we cannot directly use the second-order method in Guo et al. (2020) to approximate w\n from
w⋆. Please notice that this equality is important in Eq. 8 before using first-order Taylor expansion.

Get around this issue by deleting more nodes. One way to alleviate this issue is to update all the affected nodes Vaffect =
{vn} ∪N (vn) in parallel. To see this, according to the definition of Vaffect, we know [PX]i = [P\nX\n]i, ∀vi ∈ V \ Vaffect
because all the final-layer output of any node in V \ Vaffect are remaining the same after node deletion. Then, we can define



Weilin Cong, Mehrdad Mahdavi

the new objective function L\Vaffect(w) on node set V \ Vaffect

L\Vaffect(w) =
∑

i∈V\Vaffect

ℓ(w⊤[P\nX\n]i, yi)

=
∑

i∈V\Vaffect

ℓ(w⊤[PX]i, yi)

=
(a)

L(w)−
∑

i∈Vaffect

ℓ(w⊤[PX]i, yi) +
∑

i∈Vaffect\{n}

ℓ(w⊤[P\nX\n]i, yi),

(12)

where the equality in (a) is what we are looking for and is similar to the last term in Eq. 7. To this end, let us define
w\Vaffect = argminw L\Vaffect(w), then we have

0 = ∇L(w\Vaffect)−
∑

i∈Vaffect

∇ℓ(w⊤
\Vaffect

[PX]i, yi) +
∑

i∈Vaffect\{n}

∇ℓ(w⊤[P\nX\n]i, yi)

≈

∇L(w⋆)−
∑

i∈Vaffect

∇ℓ(w⊤
⋆ [PX]i, yi) +

∑
i∈Vaffect\{n}

∇ℓ(w⊤
⋆ [P\nX\n]i, yi)


+

∇2L(w⋆)−
∑

i∈Vaffect

∇2ℓ(w⊤
⋆ [PX]i, yi) +

∑
i∈Vaffect\{n}

∇2ℓ(w⊤
⋆ [P\nX\n]i, yi)

 (w\Vaffect −w⋆)

=
(a)

− ∑
i∈Vaffect

∇ℓ(w⊤
⋆ [PX]i, yi) +

∑
i∈Vaffect\{n}

∇ℓ(w⊤
⋆ [P\nX\n]i, yi)


︸ ︷︷ ︸

v

+

∇2L(w⋆)−
∑

i∈Vaffect

∇2ℓ(w⊤
⋆ [PX]i, yi) +

∑
i∈Vaffect\{n}

∇2ℓ(w⊤
⋆ [P\nX\n]i, yi)


︸ ︷︷ ︸

H

(w\Vaffect −w⋆).

(13)

As a result, we can approximate w\Vaffect by
w\Vaffect = w⋆ +H−1v, (14)

where both Hessian H and gradient v are defined in Eq. 13, which might induced massive computation cost as the number
of affected nodes |Vaffect| goes exponentially with respect to the number of layers.

D Connections between differential privacy and machine unlearning

The biggest difference between differential privacy and unlearning is whether the effect of data is removed from the
model parameters. Please notice that the two methods can be used in parallel. For example, when using approximate
unlearning Guo et al. (2020); Golatkar et al. (2020, 2021), since these methods could not guarantee a perfect data removal
but just approximately removed, they propose to use differential privacy with their approximation unlearning method to
further protect information leakage. More specifically,

• Differential privacy is designed to protect against the privacy leakage issue. In particular, they want to make a model
trained on two different datasets behave similarly. The most widely accepted method is to control how much a model
learned from each training example by adding random noise.

• Machine unlearning is designed to remove the effect of a data point on the pre-trained. For example in approximate
unlearning Guo et al. (2020); Golatkar et al. (2020); Wu et al. (2020a), we want to make the re-training from scratch
model wu behaves similar to the model after unlearning wp, but whether data are perfectly removed are not guaranteed;
in exact unlearning Chen et al. (2021), we want to make the re-training from scratch model wu behaves similar to the
model after unlearning wp, but guarantee the data are perfectly removed.

In the following, we will answer two questions related to differential privacy and unlearning:



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Q1: Do we need to unlearning if a model is (ϵ, δ)-differential privacy?

If we looking for approximately remove the trace of private data, then a differential privacy method is enough (but may not
be as efficient as approximate unlearning methods Guo et al. (2020)). However, if we are looking for perfectly remove the
trace of private data, then differential privacy is not enough. To see this, let us first recall the definition of (ϵ, δ)-differential
privacy.

Definition 1 ((ϵ, δ)-differential privacy) Let ϵ > 0 be a positive real number, D,D′ denote any two datasets that differ
one a single element, A be a randomized algorithm that takes a dataset D,D′ as input, S denote any subset of the image of
A. Then, we say A is (ϵ, δ)-differential privacy if

P [A(D) ∈ S] ≤ exp(ϵ) · P [A(D′) ∈ S] + δ.

To generalize the differential privacy definition to machine unlearning, let us think of D be the original dataset and
D′ = D\{(xi, yi)} be the remaining dataset after delete data (xi, yi). Then, we can think of A as a composition of learning
and unlearning algorithm:

A(D) = Unlearn
(

Learn(D), (xi, yi)
)
,A(D′) = Unlearn

(
Learn(D′), (xi, yi)

)
(15)

More specifically, A(D) can be think of as first training a model on D then unlearn to produce the unlearned solution wp;
A(D′) can be think of as re-training from scratch on D′ with wu = A(D′) since D′ does not contain (xi, yi). In other
word, differential privacy algorithm can also guarantee the behavior of the the unlearning solution wp similar to re-training
from scratch solution wu, which leads to our approximate unlearning goal. However, wp ≈ wu not necessarily means
wp perfectly unlearn all the information related to the deleted data (xi, yi). Therefore, we cannot say a model is perfectly
unlearned by using differential privacy method.

Q2: Can we have a differential privacy-like bounds for PROJECTOR? A reader familiar with differential privacy might ex-
pect a differential privacy-like bound similar to Definition 1. To understand why it is infeasible, let us first recall that ϵ term
is the private budget that is related to the random noise distribution. Since our method is exact unlearning which can be
shown from the algorithm level (i.e., "the support of the unlearned weight does not include the deleted node feature" could
be guaranteed by the algorithm design), we don’t need random noise and therefore we cannot show this kind of inequality.
The reason why the approximate unlearning method Guo et al. (2020); Chien et al. (2022) has such a similar guarantee to
differential privacy is because they are approximate unlearning method that use differential privacy type of random noise to
unlearn.

E Why checking the closeness to re-trained solution along is not enough for unlearning?

Most approximate unlearning algorithms aim to generate the approximate unlearned model that is close to an exactly
retrained model Wu et al. (2020a); Aldaghri et al. (2021); Izzo et al. (2021). However, as pointed out by Thudi et al. (2021);
Guo et al. (2020), one cannot infer “whether the data have been deleted” solely from “the closeness of the approximately
unlearned and exactly retrained model”. In fact, Thudi et al. (2021) empirically shows that one can even unlearn the
data without modifying the parameters, which highlights the importance of showing the data removal guarantee from the
algorithmic-level. In Theorem 2 below, we provide theoretical justification for the empirical observation in Thudi et al.
(2021) under the binary classification setting and the proof is deferred to Appendix E.

Theorem 2 Consider a general binary classification problem using logistic regression

min
w∈Rd

fLR(w) =
λ

2
∥w∥22 +

N∑
i=1

log
(
1 + exp(−yiw

⊤xi)
)
.

Upon receiving any request to unlearn xi, if it is misclassified by the optimal weight w⋆ = argminw fLR(w), i.e.,
yiw

⊤
⋆ xi < 0, we can unlearn without modifying the optimal weight w⋆ as the optimally conditions are still satisfied.

An immediate implication of above theorem is that one could exactly unlearn a misclassified data point even without
changing the model parameters. However, approximate unlearning methods Guo et al. (2020); Golatkar et al. (2020) cannot
realize this from their algorithmic-level, which will output an estimated solution that is not only different from the exact
unlearning solution but also could not fully unlearn the sensitive information. Although these methods borrow ideas from
differential privacy (unlearning is different from the differential privacy, please refer to Appendix D for details) to add a



Weilin Cong, Mehrdad Mahdavi

noise to unlearned model to avoid information leakage, this could also potentially deteriorate the accuracy of the unlearned
model. Such observations highlights the importance of an algorithmic-level data removal guarantee over approximate
unlearning.

The proof follows from standard optimality conditions. Let us consider a binary classification problem with N training
samples using regularized logistic regression with the following empirical risk:

min
w∈Rd

f(w) =
λ

2
∥w∥22 +

N∑
i=1

log
(
1 + exp(−yiw

⊤xi)
)
. (16)

By utilizing the following inequality

log(1 + exp(−z)) ≥
(
− α logα− (1− α) log(1− α)

)
− αz, ∀α ∈ [0, 1], (17)

we can lower bound the objective in Eq. 16 by

f(w) =
λ

2
∥w∥22 +

N∑
i=1

log
(
1 + exp(−yiw

⊤xi)
)

≥ λ

2
∥w∥22 +

N∑
i=1

(
−αi logαi − (1− αi) log(1− αi)− αiyiw

⊤xi

)
= L(w,α),

(18)

where the right hand size of inequality can be think of as a function of parameters w and α.

Optimal solution lies in linear span of input features. From the stationarity condition of the KKT conditions Boyd et al.
(2004), we know that the gradient of L(w,α) with respect to w at the optimal point w⋆ equals to zero, i.e.,

∂L(w⋆,α)

∂w
= λw −

N∑
i=1

αiyixi = 0 ⇒ w⋆ =
1

λ

N∑
i=1

αiyixi, (19)

which implies that the optimal solution, regardless of the initialization, is a linear combination of all training samples
{x1, . . . ,xN}.

Unlearning without modifying the parameters. By using the complementary slackness conditions of the KKT conditions,
we know that for any i ∈ {1, . . . , N}, we have

αi = 0 ∨ yiw
⊤
⋆ xi = − logαi −

(
−1 +

1

αi

)
log(1− αi) > 0. (20)

From Eq. 20, we know that αi ̸= 0 if and only if xi can be correctly classified by optimal weight w⋆, i.e., yiw⊤
⋆ xi > 0;

otherwise, we have αi = 0 if xi cannot be correctly classified by optimal weight w⋆, which can be directly unlearned
without requiring to modify the weight parameter w⋆. When removing data xi with dual variable as αi = 0, the KKT
optimality condition still hold, similar to the main idea of SVM unlearning Cauwenberghs and Poggio (2000), therefore
further updating the weight parameters is not required.

F Proof of Proposition 1

To find the coefficients of the orthogonal projection, let us write down the following r = |Vremain| simultaneous conditions
on linear equations:

⟨xi,w −ΠU (w)⟩ = 0, ∀i ∈ Vremain. (21)

For notation simplicity, let Xremain = [xr+1, . . . ,xN ] ∈ Rr×d denote the remaining node features and α =
[αr+1, . . . , αN ] ∈ RR denote the vectorized coordinates, then the Eq. 21 can be formulated as Xremain(w −X⊤

remainα) = 0.
As a result, we have

Xremain(w −X⊤
remainα) = 0 ⇒ α = (XremainX

⊤
remain)

†Xremainw. (22)



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

However, notice that XremainX
⊤
remain is an r × r matrix and the computation of its inverse requires O(r3) computation cost,

which is computational prohibitive. As an alternative, we reconsider Eq. 22 from a different perspective by viewing it as the
limit of the Ridge estimator with the Ridge parameter going to zero, i.e.,

(XremainX
⊤
remain)

†Xremainw = lim
ϵ→0

(ϵIN +XremainX
⊤
remain)

†Xremainw. (23)

Then, by using the Woodbury identity Golub and Van Loan (2013) we have

(ϵIN +XremainX
⊤
remain)

†Xremainw

=
(1
ϵ
IN −Xremain(IN + ϵX⊤

remainXremain)
†X⊤

remain

)
Xremainw

=
1

ϵ
Xremainw −Xremain(IN + ϵX⊤

remainXremain)
†X⊤

remainXremainw

=
1

ϵ
Xremainw − 1

ϵ
Xremain(IN + ϵX⊤

remainXremain)
†(ϵX⊤

remainXremain)w

=
1

ϵ
Xremainw − 1

ϵ
Xremain(IN + ϵX⊤

remainXremain)
†(IN + ϵX⊤

remainXremain − IN )w

=
1

ϵ
Xremainw − 1

ϵ
Xremainw +

1

ϵ
Xremain(IN + ϵX⊤

remainXremain)
†w

= Xremain(ϵId +X⊤
remainXremain)

†w.

(24)

By taking the limit on both side, we have

α = Xremain(X
⊤
remainXremain)

†w, (25)

where X⊤
remainXremain is an d× d matrix and its inverse requires O(d3), which is much cheaper.



Weilin Cong, Mehrdad Mahdavi

G Proof of Theorem 1

Let us define w(t), wu(t) as the weight parameters obtained by using full-batch GD training from scratch on Vtrain, Vremain
for t epochs with the same initialization w(0) = wu(0), and wp(t) denote the weight parameters obtained by applying
PROJECTOR on w(t). To help reader better understand the proof strategy used in this section, we provide an overview on
our proof strategy of Theorem 1. As shown in Figure 7, we derive the upper bound of ∥wu(T )−wp∥2 by first expanding
the formula into two terms

∥wu(T )−wp∥2 ≤ ∥wu(T )−w(T )∥2 + ∥w(T )−wp∥2. (26)

Then, we derive the upper bound of the first term in Appendix G.1 and the second term in Appendix G.2, and obtain the
upper bound of ∥wu(T )−wp∥2. Then, by following the standard convergence analysis of smooth convex function, we
obtain the upper bound training error Fu(w̃p)−minw Fu(w) in Appendix G.3.

w(0) w(T ) wp

wu(T )

=

Train for 𝑇 iterations on 𝒢

Train for 𝑇 iterations on 𝒢!

Unlearn w̃p
Finetune for 𝐾 iterations on 𝒢!

Appendix D.1

Appendix D.2 Appendix D.3

Figure 7: An illustration on the proof strategy of Theorem 1, where G stands for the graph used before node deletion and Gu

stands for the graph after the node deletion.

G.1 Upper bound on ∥wu(T )−w(T )∥2

Let first recall that the gradient of Eq. 1 and Eq. 3 are computed as

∇F (w) =
1

|Vtrain|
∑

i∈Vtrain

∇fi(w), ∇fi(w) = −yiσ(−yiw
⊤hi)hi + λw,

∇Fu(w) =
1

|Vremain|
∑

i∈Vremain

∇fu
i (w), ∇fu

i (w) = −yiσ(−yiw
⊤hu

i )h
u
i + λw,

(27)

where σ(x) = 1
1+exp(−x) is the Sigmoid function. From Eq. 27, we know that fi(w), fu

i (w) is (λ+ P 2
sB

2
x)-smoothness,

which is shown as follows

∥∇fi(w1)−∇fi(w2)∥2 =
∥∥−yiσ(−yiw

⊤
1 hi)hi + yiσ(−yiw

⊤
2 hi)hi + λ(w1 −w2)

∥∥
2

≤ ∥yihi∥2 · |σ(−yiw
⊤
1 hi) + σ(−yiw

⊤
2 hi)|+ λ∥w1 −w2∥2

≤ ∥yihi∥2 · ∥yiw⊤
1 hi − yiw

⊤
2 hi∥2 + λ∥w1 −w2∥2

≤ ∥yihi∥22 · ∥w1 −w2∥2 + λ∥w1 −w2∥2
≤
(
max

i

∥∥[PLX]i
∥∥2
2

)
∥w1 −w2∥2 + λ∥w1 −w2∥2

≤ (λ+ P 2
sB

2
x)∥w1 −w2∥2,

∥∇fu
i (w1)−∇fu

i (w2)∥2 ≤
(
max

i

∥∥[PL
uX]i

∥∥2
2

)
∥w1 −w2∥2 + λ∥w1 −w2∥2

≤ (λ+ P 2
sB

2
x)∥w1 −w2∥2.

(28)



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

We can upper bound the difference of the gradient computed before and after data deletion by

E [∥∇F (w)−∇Fu(w)∥2]

= E

∥∥∥∥∥ 1

|Vtrain|
∑

i∈Vtrain

∇fi(w)− 1

|Vremain|
∑

i∈Vremain

∇fu
i (wu)

∥∥∥∥∥
2


≤
(a)

∥∥∥∥∥ 1

|Vtrain|
∑

i∈Vtrain

∇fi(w)− 1

|Vtrain|
∑

i∈Vtrain

∇fu
i (w)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

|Vtrain|
∑

i∈Vtrain

∇fu
i (w)− 1

|Vremain|
∑

i∈Vremain

∇fu
i (wu)

∥∥∥∥∥
2

 ,

(29)

where (a) is achieved by adding and subtracting the same term and ∥a+ b∥2 ≤ ∥a∥2 + ∥b∥2 and the expectation on the
randomness the deleted node selection.

The first term on the right hand side of inequality (a) can be further upper bounded by∥∥∥∥∥ 1

|Vtrain|
∑

i∈Vtrain

yiσ(−yiw
⊤hi)hi −

1

|Vtrain|
∑

i∈Vtrain

yiσ(−yiw
⊤hu

i )h
u
i

∥∥∥∥∥
2

≤
(a)

1

|Vtrain|
∑

i∈Vtrain

∥∥yiσ(−yiw
⊤hi)hi − yiσ(−yiw

⊤hi)h
u
i

∥∥
2
+

+
1

|Vtrain|
∑

i∈Vtrain

∥∥yiσ(−yiw
⊤hi)h

u
i − yiσ(−yiw

⊤hu
i )h

u
i

∥∥
2

≤ 1

|Vtrain|
∑

i∈Vtrain

|yiσ(−yiw
⊤hi)| ∥hi − hu

i ∥2 +

+
1

|Vtrain|
∑

i∈Vtrain

∥yihu
i ∥2 |σ(−yiw

⊤hi)− σ(−yiw
⊤hu

i )|

≤
(b)

1

|Vtrain|
∑

i∈Vtrain

(∥hi − hu
i ∥2 + ∥hu

i ∥2∥w∥2∥hi − hu
i ∥2)

=
1

|Vtrain|
∑

i∈Vtrain

(1 + ∥hu
i ∥2∥w∥2) ∥hi − hu

i ∥2,

(30)

where (a) is due to ∥a+b∥2 ≤ ∥a∥2+∥b∥2 and (b) is due to |yi| = 1 and |σ(x)−σ(y)| ≤ |x−y|. By using the definition
of hu

i and hi and Assumption 1, we have for any i

∥hi − hu
i ∥2 = max

j
∥[PLX−PL

uX]j∥2

≤ max
j

∥xj∥2 ·max
j

∥∥[PL −PL
u ]j
∥∥
2

≤ BxPd,

∥hu
i ∥2 = max

j
∥[PL

uX]j∥2

≤ max
j

∥xj∥2 ·max
j

∥∥[PL
u ]j
∥∥
2

≤ BxPs.

(31)

Besides, the upper bound of the second term on the right hand side of inequality (a) is from Assumption 2. By plugging the
results back to the right hand side of inequality (a), we have

∥∇F (w)−∇Fu(w)∥2 ≤ (1 +BxBwPs)BxPd +G. (32)



Weilin Cong, Mehrdad Mahdavi

Therefore, according to the gradinet update rule in gradient descent, we can bound the change of model parameters wu(t)
and w(t) by

∥wu(t+ 1)−w(t+ 1)∥2
= ∥wu(t)− η∇Fu(wu(t))−w(t) + η∇F (w(t))∥2
≤ ∥wt

u −wt∥2 + η∥∇Fu(wu(t))−∇F (wu(t)) +∇F (wu(t))−∇F (w(t))∥2
≤ (1 + η(λ+B2

xB
2
s ))∥wt

u −wt∥2 + η∥∇Fu(wu(t))−∇F (wu(t))∥2
≤
(a)

(1 + η(λ+B2
xB

2
s ))∥wt

u −wt∥2 + η
(
(1 +BxBwPs)BxPd +G

)
,

(33)

where (a) is due to Eq. 28 and Eq. 32. Then after T iterations, we can bound the different between two parameters as

∥wu(T )−w(T )∥2 ≤ η
(
(1 +BxBwPs)BxPd +G

) T∑
t=1

(1 + η(λ+B2
xB

2
s ))

t−1. (34)

G.2 Upper bound on ∥wp −w(T )∥2 for PROJECTOR

From Proposition 1 we know that there exist a set of coordinates {βi | i ∈ V} such that w(T ) =
∑

j∈V βjxj holds. Besides,
by using Eq. 27, we have

∇F (w(t)) =
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(t)hi)hi + λw(t)

=
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(t)hi)[P

LX]i + λw(t)

=
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(t)hi)

∑
j∈V

[PL]ijxj

+ λw(t)

=
∑
j∈V

(
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(t)hi)[P

L]ij

)
xj + λw(t).

(35)

Then, according to the gradient descent update rule w(t+ 1) = w(t)− η∇F (w(t)), we have

w(t+ 1) = (1− ηλ)×w(t)− η
∑
j∈V

(
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(t)hi)[P

L]ij

)
xj

=

t∑
k=0

η(1− ηλ)t−k

∑
j∈V

(
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(k)hi)[P

L]ij

)
xj

 (36)

Then, we know that after T iterations of gradient updates, for any j ∈ V we have

w(T ) =
∑
j∈V

βjxj , where βj ≤ ηT · max
i∈Vtrain

[PL]ij ≤ ηT, (37)

the first inequality is due to λη < 1, |yi| = 1, 0 < σ(x) < 1 and the second inequality hold because any element
0 ≤ [PL]ij ≤ 1.

After projection, we find another set of {αi | i ∈ Vremain} and construct the unlearned weight parameter by wp =



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

∑
i∈Vremain

αixi. Then, the upper bound on ∥wp −w(T )∥2 can be written as

∥wp −w(T )∥2 = min
α

∥∥∥∥∥ ∑
i∈Vremain

αixi −
∑
i∈V

βixi

∥∥∥∥∥
2

= min
α

∥∥∥∥∥ ∑
i∈Vremain

(αi − βi)xi −
∑

i∈Vdelete

βixi

∥∥∥∥∥
2

≤
∑

i∈Vdelete

βj ·min
α

∥∥∥∥∥ ∑
i∈Vremain

αi − βi

βj
xi − xj

∥∥∥∥∥
2

≤ |Vdelete| · max
j∈Vdelete

βj ·min
α

∥∥∥∥∥ ∑
i∈Vremain

αi − βi

βj
xi − xj

∥∥∥∥∥
2

≤ ηT |Vdelete| · max
j∈Vdelete

min
α

∥∥∥∥∥ ∑
i∈Vremain

αi − βi

βj
xi − xj

∥∥∥∥∥
2︸ ︷︷ ︸

(a)

.

(38)

Notice that (a) is equivalent to finding another set of coefficient γ that

max
j∈Vdelete

min
γ

∥∥∥∥∥ ∑
i∈Vremain

γixi − xj

∥∥∥∥∥
2

≤ δ, (39)

where the upper bound is due to Assumption 3. Therefore, we have

∥wp −w(T )∥2 ≤ δηT |Vdelete|. (40)

G.3 Convergence rate for fune-tuning

Let wp(k) denote fune-tuning on wp for k iterations, where wp(0) = wp and wp(K) = w̃p as we used in Theorem 1.. By
knowing Fu is (λ+B2

xP
2
s )-smoothness, we have

Fu(wp(k + 1))

≤
(a)

Fu(wp(k)) + ⟨∇Fu(wp(k)),wp(k + 1)−wp(k)⟩+
(λ+B2

xP
2
s )

2
∥wp(k + 1)−wp(k)∥22

= Fu(wp(k))− η∥∇Fu(wp(k))∥22 +
η2(λ+B2

xP
2
s )

2
∥∇Fu(wp(k))∥22

= Fu(wp(k))− η

(
1− ηk(λ+B2

xP
2
s )

2

)
∥∇Fu(wp(k))∥22,

(41)

where inequality (a) is due to the update rule wp(k + 1) = wp(k)− η∇Fu(wp(k)).

Let w⋆ = argminw Fu(w). By choosing η = 2
(λ+B2

xP
2
s )

, we have(
Fu(wp(k + 1))− Fu(w⋆)

)
−
(
Fu(wp(k))− Fu(w⋆)

)
≤ − 1

2(λ+B2
xP

2
s )

∥∇Fu(wp(k))∥22. (42)

Since function Fu is convex, we know the following inequality holds:

Fu(wp(k + 1))− Fu(w⋆) ≤ ⟨∇Fu(wp(k)),wp(k)−w⋆⟩
≤ ∥Fu(wp(k))∥2∥wp(k)−w⋆∥2.

(43)



Weilin Cong, Mehrdad Mahdavi

By plugging it back to Eq. 42, we have

Fu(wp(k + 1))− Fu(w⋆)

≤ (Fu(wp(k))− Fu(w⋆))

(
1− Fu(wp(k))− Fu(w⋆)

2(λ+B2
xP

2
s )∥wp(k)−w⋆∥22

)
≤
(a)

(Fu(wp)− Fu(w⋆))

(
1− Fu(wp(T ))− Fu(w⋆)

2(λ+B2
xP

2
s )∥wp −w⋆∥22

)
,

(44)

where inequality (a) is due to 1 ≤ k ≤ K. Since Fu(wp(k))− Fu(w⋆) ≤ 2(λ+B2
xP

2
s )∥wp −w⋆∥2, we have

1

Fu(wp(k + 1))− Fu(w⋆)
≥ 1

Fu(wp(k))− Fu(w⋆)
+

1

2(λ+B2
xP

2
s )∥wp −w⋆∥22

. (45)

Telescoping from k = T, . . . , T +K, we get

1

Fu(w̃p)− Fu(w⋆)
≥ 1

Fu(wp)− Fu(w⋆)
+

T

2(λ+B2
xP

2
s )∥wp −w⋆∥22

, (46)

which implies
1

Fu(w̃p)− Fu(w⋆)
≤ 2(λ+B2

xP
2
s )(F

u(wp − Fu(w⋆))∥wp −w⋆∥22
T (Fu(wp − Fu(w⋆)) + 2(λ+B2

xP
2
s )∥wp −w⋆∥22

. (47)

By using the smoothness at w⋆, we have

Fu(wp)− Fu(w⋆) ≤
(λ+B2

xP
2
s )

2
∥wp −w⋆∥22. (48)

Plugging back to Eq. 47, suppose T is large enough and wu(T ) ≈ w⋆, we have

Fu(w̃p)− Fu(w⋆) ≤
2(λ+B2

xP
2
s )∥wp −w⋆∥22

K + 4

≈ O
(
(λ+B2

xP
2
s )∥wp −wu(T )∥22

K

)
.

(49)

H Proof on Proposition 2

The influence-based unlearning approach Guo et al. (2020) unlearn by using second-order gradient update on the weight
parameters. To apply Guo et al. (2020) onto a L-layer linear GNN, due to the node dependency, we have to unlearn all the
L-hop neighbors of the deleted nodes. Therefore, the generalization of Guo et al. (2020) to graph requires updating the
weight parameters by

wp = w(T )−
[
∇2F (w(T ), VL

remain)
]−1 ∇F (w(T ), VL

delete), (50)

where VL
delete = unique{vj | SPD(vi, vj) < L, vi ∈ Vdelete} denotes the set of nodes that has shortest path distance

(SPD) less than L to nodes in Vdelete, VL
remain = V \ VL

delete, ∇2F (w, VL
remain) denote computing the Hessain on VL

remain, and
∇F (w, VL

delete) denote computing the gradient on VL
remain.

To prove Proposition 2, we need to first analyze the upper bound on ∥wp −w(T )∥2 for INFLUENCE Guo et al. (2020) by

∥wp −w(T )∥2 =
∥∥∥[∇2F (w(T ), VL

remain)
]−1 ∇F (w(T ), VL

delete)
∥∥∥
2

≤
∥∥∥[∇2F (w(T ), VL

remain)
]−1
∥∥∥
2

∥∥∇F (w(T ), VL
delete)

∥∥
2
.

(51)



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

Let us first upper bound
∥∥∇F (w(T ), VL

delete)
∥∥
2

by∥∥∇F (w(T ), VL
delete)

∥∥
2

=

∥∥∥∥∥∥
∑
j∈V

(
1

|Vdelete|
∑

i∈Vdelete

−yiσ(−yiw
⊤(T )hi)[P

L]ij

)
xj + λw(T )

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
j∈V

(
1

|Vdelete|
∑

i∈Vdelete

−yiσ(−yiw
⊤(T )hi)[P

L]ij

)
xj

∥∥∥∥∥∥
2

+ λ∥w(T )∥2

≤
(a)

Bx|V|+ λ∥w(T )∥2,

(52)

where (a) is due to |yi| = 1, 0 < σ(x) < 1, and [PL]ij ≤ 1. Meanwhile, from Eq. 36, we can upper bound ∥w(T )∥2 by

∥w(T )∥2 =

∥∥∥∥∥∥
T−1∑
k=0

η(1− ηλ)T−1−k

∑
j∈V

(
1

|Vtrain|
∑

i∈Vtrain

−yiσ(−yiw
⊤(k)hi)[P

L]ij

)
xj

∥∥∥∥∥∥
2

≤ ηT ×Bx|V|

(53)

By plugging the result back, we have ∥∥∇F (w(T ), VL
delete)

∥∥
2
≤ (1 + ληT )Bx|V|. (54)

Knowing that
∥∥∇2F (w(T ), VL

delete)
∥∥
2
> λ due to the strongly convexity of objective function F (w), we have

(∥∥∇2F (w(T ), VL
delete)

∥∥
2

)−1 ≤ 1

λ
(55)

Therefore, we know that

∥wp −w(T )∥2 ≤ (1 + ληT )Bx|V|
λ

. (56)

By comparing Eq. 40 and Eq. 56, we know that if

δ <

(
1

ληT
+ 1

)
Bx × |V|

|Vdelete|
(57)

the solution of PROJECTOR if provable closer to the retraining from scratch than Guo et al. (2020). Moreover, the above
discussion also holds for Golatkar et al. (2020) by replacing the variable Vdelete in Eq. 50, 51, and 52 as Vremain.

I Proof of Proposition 3

The proof is an application of the proof of Theorem 4.1 in Wang and Zhang (2022) to the linear-GNN structure gw(L,X) =∑n
ℓ=1(P

ℓ−1X)wℓ that we used in the experiment. Please notice that gw(L,X) is equivalent to first concatenating all
polynomial graph convolutions then apply a single weight vector

gw(L,X) = [X || PX || . . . || Pn−1X]w,

where [A ||B] ∈ Rn×2d is concatenating matrices A,B ∈ Rn×d along their feature dimension. We assume y = f(P,X) ∈
Rn×1 as the target function we want to approximate by linear-GNN.

Let us define U,λ as the eigenvectors and eigenvalues of graph propagation matrix P. Then, the linear-GNN could be
written as

gw(L,X) =

n∑
ℓ=1

(Pℓ−1X)wℓ =

n∑
ℓ=1

UΛℓ−1UXwℓ, where [Λℓ−1]i,i = λℓ−1
i

Since we assume all rows in UX is non-zero vectors, we know that there always exists a set of wℓ, ∀ℓ ∈ {1, . . . , k} such



Weilin Cong, Mehrdad Mahdavi

that all elements in UXwℓ, ∀ℓ ∈ {1, . . . , k} is non-zero. For example, we can select wℓ from Rd that is not orthogonal to
all vectors in UX and not equal to zero vector. Let us denote zℓ = UXwℓ ∈ Rn×1, then our linear-GNN could be written
as

gw(L,X) =

n∑
ℓ=1

U
(
λℓ−1 · zℓ

)
= U

(
n∑

ℓ=1

(
λℓ−1 · zℓ

))
,

where a · b is element-wise dot product between a,b.

In order to use gw(L,X) approximate any function y = f(P,X) ∈ Rn×1, we have to make sure

U

(
n∑

ℓ=1

(
λℓ−1 · zℓ

))
= y →

(
n∑

ℓ=1

(
λℓ−1 · zℓ

))
= U⊤y,

Let us write as wℓ = w · αℓ, then we have the following equality
1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2
...

...
...

...
...

1 λn λ2
n . . . λn−1

n


︸ ︷︷ ︸

M∈Rn×n


α1

α2

...
αn

 =


[U⊤y]1/[UXw]1
[U⊤y]2/[UXw]2

...
[U⊤y]n/[UXw]n



If no elements in λ is identical, M is inversible and there is always exists a unique set of αi, i ∈ {1, . . . , n} that satisfy the
above equality.

J Connection and potential application to SVM unlearning

The KKT-based unlearning has been studied in the SVM unlearning Cauwenberghs and Poggio (2000); Karasuyama and
Takeuchi (2009); Gâlmeanu and Andonie (2008); Diehl and Cauwenberghs (2003) dated back to the last two decades. Due to
the great similarity between SVM and logistic regression, it is interesting to compare it with our projection-based unlearning.
Although generalizing the KKT-based unlearning from SVM to logistic regression is non-trivial, the other way around is
possible according to Proposition 4.

Proposition 4 When training SVM using primal gradient descent with the initial solution w0 ∈ span{x1, . . . ,xN} (e.g.,
Pegasos Shalev-Shwartz et al. (2011)) or using dual coordinate ascent (e.g.,SMO Platt (1998)), the corresponding primal
solution after t iterations always satisfy wt ∈ span{x1, . . . ,xN}.

Therefore, we limit our following discussion to linear SVM unlearning, where the primal objective function is defined as

fSVM(w) =
λ

2
∥w∥22 +

N∑
i=1

max(0, 1− yiw
⊤xi), (58)

and its dual objective function is defined as

gSVM(α) = − 1

2λ

N∑
i=1

N∑
j=1

αiαjyiyj⟨xi,xj⟩+
N∑
i=1

αi,

subject to
N∑
i=1

αiyi = 0, αi ∈ [0, 1].

(59)

J.1 Existing SVM unlearning and its limitation

SVM unlearning Cauwenberghs and Poggio (2000) investigates how to maintain the KKT optimality condition when data
are slightly changed. They propose to quickly identify the dual variable αi for each data point xi and solve the linear system
that maintain the KKT optimality condition. In practice, they require maintaining a N ×N kernel matrix for enlarging or
shrinking, which is memory consuming and engineering effort prohibitive when N is large Laskov et al. (2006). Moreover,



Efficiently Forgetting What You Have Learned in Graph Representation Learning via Projection

their method requires multiple iterations to unlearn a single data point, which could potentially be inefficient. To see this, let
us first classify all data points into three categories according to its geometric position to the marginal hyperplanes:

• Outside the marginal hyperplanes O = {i | yiw⊤
⋆ xi > 1, αi = 0},

• On the marginal hyperplanes M = {i | yiw⊤
⋆ xi = 1, 0 ≤ αi ≤ 1},

• Between the marginal hyperplanes I = {i | yiw⊤
⋆ xi < 1, αi = 1}.

Besides, according to the KKT condition, the optimal primal solution w⋆ and its prediction on any data point ŷi can be
expanded as

w⋆ =
1

λ

N∑
i=1

αiyixi and ŷi = w⊤
⋆ xi =

1

λ

∑
j∈M∪I

αjyj⟨xi,xj⟩. (60)

To delete data point (xc, yc), Cauwenberghs and Poggio (2000) needs to decrease the corresponding Lagrangian parameters
αc to 0, meanwhile keep the optimal conditions of other parameters satisfied, i.e., for any i ∈ M we have

∆αcyc⟨xi,xc⟩+
∑

j∈M
∆αjyj⟨xi,xj⟩ = 0, (61)

where ∆αj denote the amount of the change of variable αj . The update direction of each dual variable can be obtained by
solving the linear system with respect to each ∆αj . The update step size is selected as the largest step length under the
condition that no element moves across M,O, and I . When any αj , ∀j ∈ M∪ {c} is increased to 1 or decreased to 0, we
have to move one point from one set to another, and repeat the above process multiple iterations until stable. Since every
iteration only one element is moving across M,O, and I, we have to solve |M| linear equations multiple iterations6, each
of which requires to inverse a |M| × |M| matrix, which could result in computation overhead of O(|M|3) for unknown
number of iterations, which is not guaranteed to be faster than re-training the data from scratch Tsai et al. (2014).

J.2 PROJECTOR for SVM unlearning

As an alternative, under the assumption that slightly dataset change only cause minor change on the optimal weight
parameters, we propose to apply PROJECTOR directly to primal solution of SVM and then fine-tune for several iterations
using gradient descent methods (e.g., Pegasos Shalev-Shwartz et al. (2011)). We note that our primal SVM unlearning
method shares the same spirit with Tsai et al. (2014), in which they propose an approximate unlearning method that directly
finetune the primal solution on the new dataset (without the deleted data points), therefore the sensitive information are not
guaranteed to be perfectly removed. In contrast, our projection-based method could provide such guarantee for Tsai et al.
(2014). We leave this an an interesting future direction which could explore the idea in the future.

6However, the number of iterations is unknown, which could be extremely large when comparing to |M|.


	Introduction
	Related work and backgrounds
	Graph representation unlearning
	Backgrounds
	Graph representation unlearning via Projector
	On the effectiveness of Projector 
	Toward a more powerful structure

	Experiments
	Experiment results

	Conclusion
	More experiment results
	Linear vs non-linear GNN under different deleted nodes selection schemes
	Evaluation by Membership Inference Attack
	Performance Before and After Finetuning

	Missing details from Section 4 (experiment section)
	Details on baseline methods
	Details on experiment setups

	Dependency issue in applying existing unlearning approaches
	Connections between differential privacy and machine unlearning
	Why checking the closeness to re-trained solution along is not enough for unlearning?
	Proof of Proposition 1
	Proof of Theorem 1
	Upper bound on  wu(T) - w(T)2
	Upper bound on  wp - w (T)2 for Projector 
	Convergence rate for fune-tuning

	Proof on Proposition 2
	Proof of Proposition 3
	Connection and potential application to SVM unlearning
	Existing SVM unlearning and its limitation
	Projector for SVM unlearning


