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Abstract

Simulated annealing (SA) is a stochastic global
optimisation metaheuristic applicable to a wide
range of discrete and continuous variable prob-
lems. Despite its simplicity, SA hinges on care-
fully handpicked components, viz. proposal dis-
tribution and annealing schedule, that often have
to be fine tuned to individual problem instances.
In this work, we seek to make SA more effec-
tive and easier to use by framing its proposal
distribution as a reinforcement learning policy
that can be optimised for higher solution quality
given a computational budget. The result is Neu-
ral SA, a competitive and general machine learn-
ing method for combinatorial optimisation that is
efficient, and easy to design and train. We show
Neural SA with such a learnt proposal distribu-
tion, parametrised by small equivariant neural
networks, outperforms SA baselines on several
problems: Rosenbrock’s function and the Knap-
sack, Bin Packing and Travelling Salesperson
problems. We also show Neural SA scales well
to large problems (generalising to much larger
instances than those seen during training) while
getting comparable performance to popular off-
the-shelf solvers and machine learning methods
in terms of solution quality and wall-clock time.

1 INTRODUCTION

There are many different kinds of combinatorial optimisa-
tion (CO) problem, including bin packing, routing, assign-
ment, scheduling, constraint satisfaction, and more. Solv-
ing these problems while sidestepping their inherent com-
putational intractability has great importance and impact
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for the real world, where suboptimal bin packing or rout-
ing lead to wasted profit or excess greenhouse emissions
(Salimifard et al., 2012). General solving frameworks or
metaheuristics for all these problems are desirable, due to
their conceptual simplicity and ease-of-deployment, but re-
quire manual tailoring to each individual problem.

One such metaheuristic is Simulated Annealing (SA) (Kirk-
patrick et al., 1987), a simple and very popular, iterative
global optimisation technique for numerically approximat-
ing the global minimum of both continuous- and discrete-
variable problems. While SA has wide applicability, this
is also its Achilles’ Heel, leaving many design choices to
the user. Namely, a user has to design 1) neighbourhood
proposal distributions, which define the space of possible
transitions from a solution xk at time k to solutions xk+1

at time k+1, and 2) a temperature schedule, which controls
the balance of exploration to exploitation. In this work,
we mitigate the need for extensive fine-tuning of the hyper-
parameters in SA by designing a learnable proposal distri-
bution, which we show improves convergence speed while
adding little computational overhead (limited to O(N) per
step for problem size N ).

In recent years, research on approximate optimisation
methods has been inundated by works in machine learn-
ing for CO (ML4CO) (Bengio et al., 2021). A lot of the
focus has been on end-to-end neural architectures (Bello
et al., 2016; Bresson and Laurent, 2021; Khalil et al., 2017;
Emami and Ranka, 2018; Kool et al., 2018; Vinyals et al.,
2015). Other works aimed at learning good parameters for
classic algorithms, whether they be parameters of the orig-
inal algorithm (Bonami et al., 2018; Kruber et al., 2017) or
extra neural parameters introduced into the computational
graph of classic algorithms (Chen and Tian, 2019; da Costa
et al., 2020; Fu et al., 2021; Gasse et al., 2019; Gupta et al.,
2020; Kool et al., 2022; Li et al., 2018; Wu et al., 2019).
Our method, neural simulated annealing (Neural SA) can
be viewed as sitting firmly within this last category.

SA is an improvement heuristic; it navigates the search
space of feasible solutions by iteratively applying (small)
perturbations to previously found solutions. Figure 1 illus-
trates this for the Travelling Salesperson Problem (TSP),
perhaps the most classic of NP-hard problems. In this
work, we pose this as a Reinforcement Learning (RL) agent
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Figure 1: Neural SA pipeline for the TSP. Starting with a solution (tour) xk, we sample an action a=(i, j) from our
learnable proposal distribution, defining start i and end j points of a 2-opt move (replacing two old with two new edges).
Each pane shows both the linear and graph-based representations of a tour. From xk and a we form a proposal x′ which is
either accepted or rejected in a MH step. Accepted moves assign xk+1=x′; whereas, rejected moves assign xk+1=xk.

navigating an environment in search of better solutions. In
this light the proposal distribution is an optimisable quan-
tity that can learn about an entire class of problem instances
and achieve faster convergence and better solution quality
under a fixed computation budget. Our contributions are:

• We pose SA as a Markov decision process, bringing
it into the realm of RL. This allows us to optimise
the proposal distribution in a principled manner, while
preserving the convergence guarantees of vanilla SA.

• We introduce Neural SA, a general machine learning
method for combinatorial optimisation that is efficient
and easy to design and train for new problems. Still, as
we show in the experiments, Neural SA is competitive
to off-the-shelf CO tools and other ML4CO methods
on the TSP, Knapsack and Bin Packing problems, in
terms of solution quality and wall-clock time.

• We show Neural SA transfers to problems of different
sizes and also performs well on problem instances up
to 40× larger than the ones used for training.

2 RELATED WORK

Here we outline the basic simulated annealing algorithm
and its main components. Then we provide an overview of
prior works in the machine learning literature which have
sought to learn parts of the algorithm or where SA has
found uses in machine learning.

2.1 Combinatorial optimisation

A combinatorial optimisation problem is defined by a triple
(Ψ,X , E) where ψ ∈ Ψ are problem instances (city loca-
tions in the TSP), X is the set of feasible solutions given
ψ (Hamiltonian cycles in the TSP) and E : X × Ψ →
R is an energy function (tour length in the TSP). With-
out loss of generality, the task is to minimise the energy
minx∈X E(x;ψ). CO problems are in general NP-hard,
meaning that there is no known algorithm to solve them
in time polynomial in the number of bits that represents

a problem instance. Like other ML4CO methods, Neural
SA uses a finite collection of (unsolved) training instances
to learn a policy that hopefully performs well on an entire
class of problem instances Ψ. At test time, we can deploy
the learnt policy without having to fine tune any hyperpa-
rameters to individual instances.

2.2 Simulated Annealing

Simulated annealing (Kirkpatrick et al., 1987) is a meta-
heuristic for CO problems. It builds an inhomogeneous
Markov chain x0→x1→x2→· · · for xk∈X , asymptoti-
cally converging to a minimiser of E. The stochastic tran-
sitions xk→xk+1 depend on two quantities: 1) a proposal
distribution, and 2) a temperature schedule.

The proposal distribution π : X → P(X ), for P(X ) the
space of probability distributions onX , suggests new states
in the chain. It perturbs current solutions to new ones, po-
tentially leading to lower energies immediately or later on.
After perturbing a solution xk→x′, a Metropolis–Hastings
(MH) step (Metropolis et al., 1953; Hastings, 1970) is ex-
ecuted. This either accepts the perturbation (xk+1=x′) or
rejects it (xk+1=xk); see Algorithm 1 for details. The tar-
get distribution of the Metropolis–Hastings step has form
p(x|Tk) ∝ exp{−E(x)/Tk}, where Tk is the tempera-
ture at time k. In the limit Tk→0, this distribution tends
to a sum of Dirac deltas on the minimisers of the energy.
The temperature is annealed according to the temperature
schedule, T1, T2, . . ., from high to low, to steer the tar-
get distribution smoothly from broad to peaked around the
global optima. The algorithm is outlined in Algorithm 1.

Under certain regularity conditions and provided the
chain is long enough, it will visit the minimisers al-
most surely (Geman and Geman, 1984). More concretely,
limk→∞ P (xk ∈ argminx∈X E(x;ψ)) = 1. Despite this
guarantee, practical convergence speed is determined by
π and the temperature schedule, which are hard to fine-
tune. There exist problem-specific heuristics for setting
these (Pereira and Fernandes, 2004; Cicirello, 2007), but
in this paper we propose to learn the proposal distribution.
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2.3 Simulated annealing and machine learning

A natural way to combine machine learning and SA is
to design local improvement heuristics that feed off each
other. Cai et al. (2019) and Vashisht et al. (2020) use RL to
find good initialisations for standard SA. Kosanoglu et al.
(2022) go a step further and alternate between a few RL
steps and complete SA runs, i.e. they run SA every few
steps to explore the region around the current RL solution.
These approaches are fundamentally different to ours, as
we augment SA with RL-optimisable components, instead
of simply using them as standalone algorithms that only
interact via shared solutions. In fact, our method is fully
compatible with theirs and any other SA application.

Other works sought to optimise components of SA or other
optimisation algorithms with RL (Beloborodov et al., 2020;
Khairy et al., 2020; Mills et al., 2020; Wauters et al., 2020;
Biedenkapp et al., 2020; Shala et al., 2020) or statistical
machine learning techniques (Blum et al., 2021). In con-
trast to these methods that optimise hyperparameters, we
frame SA itself as an RL problem, which allows us to de-
fine and train the proposal distribution as a policy.

More closely to our method, other approaches improve the
proposal distribution of SA or similar local search heuris-
tics (da Costa et al., 2020; Yolcu and Póczos, 2019). In
Adaptive Simulated Annealing (ASA) (Ingber, 1996) the
proposal distribution is not fixed but evolves throughout the
annealing process as a function of the variance of the qual-
ity of visited solutions. ASA improves the convergence of
vanilla SA but is not learnable like Neural SA and dedi-
cated to continuous optimisation problems. To the best of
our knowledge, Marcos Alvarez et al. (2012) are the only
ones to have proposed learning the proposal distribution for
SA as we do, but they relied on supervised learning instead
of RL, and thus their method requires high quality solu-
tions or good search strategies to imitate; both expensive to
compute. Conversely, Neural SA is easier to train and ex-
tend to new CO tasks, since it only requires a simple reward
function that is trivially derived from the energy function.

Simulated annealing is also akin to Metropolis-Hastings, a
popular choice for Markov Chain Monte Carlo (MCMC)
sampling. Noé et al. (2019), Albergo et al. (2019) and
de Haan et al. (2021) recently studied how to learn a pro-
posal distribution of an MCMC chain for sampling the
Boltzmann distribution of a physical system. While their
results serve as motivation for our methods, we investigate
a completely different context and set of applications.

Finally, our work falls under bi-level optimisation methods,
where an outer optimisation loop finds the best parameters
of an inner optimisation. This encompasses learning the
parameters (Rere et al., 2015) or hyperparameters of a neu-
ral network optimiser (Maclaurin et al., 2015; Andrychow-
icz et al., 2016), learning to optimise (Li and Malik, 2017),
and meta-learning (Finn et al., 2017). However, most re-

cent approaches assume differentiable losses on continuous
state spaces (Likhosherstov et al., 2021; Ji et al., 2021; Vi-
col et al., 2021), while we focus on the more challenging
CO setting. We note, however, methods in (Vicol et al.,
2021) are based on Evolution Strategies (ES) (Salimans
et al., 2017), a technique that is applicable to the discrete
setting and that we also consider in our experiments.

2.4 Markov Decision Processes

Simulated annealing naturally fits into the Markov Deci-
sion Process (MDP) framework as we explain below. An
MDP M = (S,A, R, P, γ) consists of states s ∈ S , ac-
tions a ∈ A, an immediate reward function R : S × A ×
S → R, a transition kernel P : S × A → P(S), and
a discount factor γ ∈ [0, 1]. On top of this MDP we
add a stochastic policy π : S → P(A). The policy and
transition kernel together define a length-K trajectory τ =
(s0, a0, s1, a1, ..., sK), which is a sample from the distribu-
tion P (τ |π) = ρ0(s0)

∏K−1
k=0 P (sk+1|sk, ak)π(ak|sk) and

where s0∼ρ0 is sampled from the start-state distribution
ρ0. One can then define the discounted return R(τ) =∑K−1

k=0 γtrk over a trajectory, where rk = R(sk, ak, sk+1).
We say that we have solved an MDP if we have found a pol-
icy that maximises the expected return Eτ∼P (τ |π)[R(τ)].

3 METHOD

Here we outline our approach to learn the proposal distri-
bution. First we define an MDP corresponding to SA. We
then show how the proposal distribution can be optimised
and provide a justification as to why this does not affect
convergence guarantees of the classic algorithm.

3.1 MDP Formulation

We formalise SA as an MDP, with states s = (x,ψ, T ) ∈ S
for ψ a parametric description of the problem instance as
in Section 2, and T the instantaneous temperature. Ex-
amples are in Section 4. Our actions a ∈ A perturb
(x,ψ, T ) 7→ (x′,ψ, T ), where x′ ∈ N (x) is a solution
in the neighbourhood of x. It is common to define small
neighbourhoods, to limit energy variation from one state
to the next. This heuristic discards exceptionally good and
exceptionally bad moves, but since the latter are more com-
mon than the former, it tends to improve convergence.

We view the MH step in SA as a stochastic transition ker-
nel, governed by the temperature of the system, with tran-
sition probabilities following a Gibbs distribution and dy-
namics

xk+1 =

{
x′, with probability p
xk, with probability 1− p,

p = min
{
1, e

− 1
Tk

(E(x′;ψ)−E(xk;ψ))
}
. (1)
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Algorithm 1 Neural simulated annealing. To get back to
vanilla SA, replace the learnable proposal distribution πθ

with a uniform distribution π over neighbourhoods N (•).
Require: Initial state s0 = (x0,ψ, T0), proposal distri-

bution π, transition function P , temperature schedule
T1 ≥ T2 ≥ T3 ≥ ..., energy function E(•;ψ)
for k = 1 : K do
a ∼ πθ(sk) {Sample action}
u ∼ Uniform(u; 0, 1) {Metropolis–Hastings step}
if u < exp {−(E(x′;ψ)− E(xk;ψ))/Tk} then
sk+1 ← (x′,ψ, Tk+1) {Accept}

else
sk+1 ← (xk,ψ, Tk+1) {Reject}

end if
end for

This defines a transition kernel P (sk+1|sk,a), where
sk+1=(xk+1,ψ, T ). For rewards, we use either the im-
mediate gain rk = E(xk;ψ)−E(xk+1;ψ) or the primal
reward rk = minx∈x1:k+1

E(x;ψ). We can learn πθ with
any policy optimisation method, but in this work we exper-
imented with Proximal Policy Optimisation (PPO) (Schul-
man et al., 2017) and Evolution Strategies (ES) (Salimans
et al., 2017). The immediate gain works best with PPO,
where at each iteration of the rollout, the immediate gain
gives fine-grained feedback on whether the previous action
helped or not. The primal reward works best with ES be-
cause it is non-local, returning the minimum along an entire
rollout τ at the very end. We explored using the acceptance
count but found that this sometimes led to pathological be-
haviours. Similarly, we tried the primal integral (Berthold,
2013), which encourages finding a good solution fast, but
found we could not get training dynamics to converge.

Arguably, this is a simple RL framework that does not in-
corporate much information about previous solutions in its
state representation or reward function. Yet, as we see
in the TSP experiments (Table 3), when combined with
SA, this simple approach is on par with more complex RL
frameworks like that of da Costa et al. (2020).

3.2 Policy Network Architecture

softmax

logitsinputs

N 
it
em
s

policyMLP

Figure 2: Policy network used in all experiments. The same
MLP is applied to all inputs pointwise.

SA chains are long. That is why we need as lightweight a
policy architecture as possible. Furthermore, this architec-
ture should have the capacity to scale to varying numbers
of inputs, so that we can transfer experience across prob-
lems of different size N . We opt for a very simple network,
shown in Figure 2. We map the state (x,ψ, T ) to a set of N
feature vectors, including global and relative information
among dimensions. For all problems we tried, there is a
natural way to do this. An MLP handles the feature vector
of each dimension independently, embedding into a logit
space, and a softmax maps all N logits to probabilities.
The complexity of this architecture scales linearly with N
and the computation is embarrassingly parallel, which is
important since we plan to evaluate it many times.

A notable property of this architecture is that it is permu-
tation equivariant (Zaheer et al., 2017). That is a key re-
quirement for the CO problems we consider since they are
all permutation invariant, e.g. the solution to the TSP is the
same regardless of the order in which the cities are pre-
sented. We would like our model to preserve this symme-
try, so we encode it directly into the architecture because
learning it from scratch would be inefficient, requiring lots
of data. In our case, the output of the model is a categor-
ical distribution over actions a (the policy), not a scalar,
so we actually want the architecture to be equivariant, i.e.,
πθ(a|s) = πθ(σ · a|σ · s) for σ a permutation of N objects.

3.3 Convergence

Convergence of SA to the optimum in the infinite time limit
requires the Markov chain of the proposal distribution to
be irreducible (Faigle and Kern, 1991; van Laarhoven and
Aarts, 1987), meaning that for any temperature, any two
states are reachable through a sequence of transitions with
positive conditional probability under π. Our neural net-
work policy satisfies this condition as long as the softmax
layer does not assign zero probability to any state, a condi-
tion which is met in practice. Thus, Neural SA inherits con-
vergence guarantees from standard simulated annealing.

4 EXPERIMENTS

We evaluate our method on 4 tasks: Rosenbrock’s function,
and the Knapsack, Bin Packing and TSP problems. We use
the same architecture and hyperparameters of Neural SA
for all tasks. This shows the wide applicability and ease
of use of our method. For each task (except for Rosen-
brock’s function) we test Neural SA on problems of dif-
ferent size N , but only train on instances of the smallest
size. Similarly, we consider rollouts of different lengths,
but only use the shortest ones during training. This acceler-
ates training and demonstrates Neural SA’s generalisation
capabilities. This type of transfer learning is one of the
challenges in ML4CO (Joshi et al., 2019b), and is a merit
of our lightweight, equivariant architecture.
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In all experiments, we start from trivial or random solutions
and adopt an exponential multiplicative cooling schedule
as originally proposed by (Kirkpatrick et al., 1987), with
Tk = αkT0. In practice, we define the temperature sched-
ule by fixing T0 and TK , and computing α according to
the desired number of steps K. That allows us to vary the
rollout length while maintaining the same range of tem-
peratures for every run. We provide further experimental
details in the appendix.

4.1 The Rosenbrock function

The Rosenbrock function is a common benchmark for op-
timisation algorithms. It is a non-convex function over Eu-
clidean space given by

E(x0, x1; a, b) = (a− x0)
2 + b(x1 − x2

0)
2, (2)

and with global minimum at x=(a, a2). Gradient-based
optimisers are naturally better suited to this problem, but
this is still a useful toy example to showcase the proper-
ties of Neural SA. Our policy is an axis-aligned Gaussian
πθ(a|s)=N (a;0, σ2

θ(sk)), where the variance σ2
θ is given

by an MLP of shape 2→16→2 with a ReLU in the middle.
Proposals are of the form x′=x+a, and states defined as
sk=(xk, a, b, Tk). Figure 3a illustrates an example rollout.

We contrast Neural SA against vanilla SA with fixed pro-
posal distribution, i.e. σ(si)=σ, for different σ averaged

(a) 2D rollout
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Figure 3: Results on Rosenbrock’s function: (a) Example
trajectory, going from red to blue, showing convergence to
the minimiser at (1,1); (b) Neural SA has higher accep-
tance ratio than the baseline, a trend observed in all experi-
ments; (c) Standard deviation of the learnt policy per itera-
tion. Large initial steps offer great gains followed by small
exploitative steps; (d) A non-adaptive SA baseline cannot
match an adaptive one, no matter the standard deviation.

over 217 problem instances. Figure 3d shows that no con-
stant variance policy can outperform an adaptive policy on
this problem. Plots of acceptance ratio in Figure 3b show
Neural SA has higher acceptance probability early in the
rollout, a trend we observed in all experiments, suggesting
its proposals are skewed towards lower energy solutions
than standard SA. Figure 3c shows the variance network
σ2
θ(si) as a function of time. It has learnt to take large steps

until hitting the basin, whereupon large moves are rejected
with high probability, and thus variance must be reduced.

4.2 Knapsack Problem
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Figure 4: Knapsack logits: Policy logits for xi = 0 and
xi = 1 are shown in each pane. Light, valuable objects are
favoured to insert. Once inserted the policy down-weights
an object’s probably of flipping state again.

The Knapsack problem is a classic CO problem in resource
allocation. Given a set of N items, each of a different value
vi>0 and weight wi>0, the goal is to find a subset of items
that maximises the sum of values while respecting a max-
imum total weight of W . This is the 0-1 Knapsack Prob-
lem, which is weakly NP-complete and has a search space
of size 2N and corresponding integer linear program

minimise E(x;ψ) = −
N−1∑
i=0

vixi,

subject to
N−1∑
i=0

wixi ≤W, xi ∈ {0, 1}. (3)

Solutions are represented as a binary vector x, with xi=0
for ‘out of the bin’ and xi=1 for ‘in the bin’. Our pro-
posal distribution flips individual bits, one at a time, with
the constraint that we cannot flip 0 7→ 1 if the bin capac-
ity will be exceeded. The neighbourhood of xk is thus all
feasible solutions at a Hamming distance of 1 from xk. We
use the proposal distribution described in Section 3.2 and
illustrated in Figure 2, consisting of a pointwise embed-
ding of each item—its weight, value, occupancy bit, the
knapsack’s overall capacity, and global temperature—into
a logit-space, followed by a softmax. Mathematically the
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Table 1: Average solutions for the Knapsack Problem across five random seeds and, in parentheses, optimality gap to best
solution found among solvers. Bigger is better. *Values as reported by (Bello et al., 2016).

Random Search Bello RL Bello AS SA Ours (PPO) Ours (ES) Greedy OR-Tools

KNAP50 17.91∗ 19.86∗ 20.07∗ 18.43 (8.40%) 19.69 (2.23%) 19.95 (0.84%) 19.94 (0.89%) 20.12 (0.00%)
KNAP100 33.23∗ 40.27∗ 40.50∗ 36.81 (8.91%) 39.54 (2.15%) 39.90 (1.26%) 40.17 (0.59%) 40.41 (0.00%)
KNAP200 35.95∗ 57.10∗ 57.45∗ 50.89 (11.73%) 55.03 (4.54%) 55.58 (3.59%) 57.30 (0.61%) 57.65 (0.00%)
KNAP500 - - 126.92 (11.95%) 138.14 (4.16%) 141.01 (2.17%) 143.77 (0.25%) 144.14 (0.00%)
KNAP1K - - - 254.45 (11.96%) 277.41 (4.01%) 282.46 (2.26%) 288.64 (0.13%) 289.01 (0.00%)
KNAP2K - - - 507.72 (12.03%) 554.32(3.97%) 563.75(2.34%) 576.89 (0.06%) 577.28 (0.00%)

policy and state–action to proposal mapping are

πθ(i|s) = softmax (z)i , zi = fθ([xi, wi, vi,W, T ]),

x′ = x+ onehot(i) (mod 2). (4)

where fθ is a small two-layer neural network 5→16→1
with ReLU activations, comprising only 112 parameters.
Actions are sampled from the categorical distribution in-
duced by the softmax and cast to one-hot vectors onehot(i).

Neural networks have been used to solve the Knapsack
Problem in (Vinyals et al., 2015), (Nomer et al., 2020), and
(Bello et al., 2016). We follow the setup of (Bello et al.,
2016), honing in on 3 self-generated datasets: KNAP50,
KNAP100 and KNAP200. KNAPN consists of N items
with weights and values generated uniformly at random in
(0, 1] and capacities C50=12.5, C100=25, and C200=25,
with CN the capacity in KNAPN . We use OR-Tools (Per-
ron and Furnon, 2019) to compute ground-truth solutions.

Results in Table 1 show that Neural SA improves over
vanilla SA by up to 10% optimality gap, and heuristic
methods (Random Search) by much more. Neural SA falls
slightly behind two methods by (Bello et al., 2016) that
use (1) a large attention-based pointer network with sev-
eral orders of magnitude more parameters in Bello RL, and
(2) this coupled with 5000 iterations of their Active Search
method. Neural SA also falls behind a greedy heuristic for
packing a knapsack based on the value-to-weight ratio. In
Figure 4 we analyse the policy network and a typical roll-
out. It has learnt a mostly greedy policy to fill its knap-
sack with light, valuable objects, only ejecting them when
full. This is in line with the value-to-weight greedy heuris-
tic. Despite not coming top among methods, Neural SA is
within 1-3% of the minimum energy, although its architec-
ture was not designed for this problem in particular.

4.3 Bin Packing Problem

The Bin Packing problem is similar to the Knapsack prob-
lem in nature. Here, one wants to pack all of N items into
the smallest number of bins possible, where each item i ∈
{1, · · · , N} has weight wi, and we assume, without loss
of generality, N bins of equal capacity W ≥ maxi(wi);
there would be no valid solution otherwise. This problem
is NP-hard and has a search space of size equal to the N th

Bell number. If xij ∈ {0, 1} denotes item i occupying bin

j, then the problem can be written as:

min. E(x;ψ) =

N−1∑
j=0

yj , sbj. to
N−1∑
i=0

wixij ≤W︸ ︷︷ ︸
bin capacity constraint

,

N−1∑
j=0

xij = 1︸ ︷︷ ︸
1 bin per item

, yj = min

(
1,

N−1∑
i=0

xij

)
︸ ︷︷ ︸

bin occupancy indicator

, (5)

where the constraints apply for all i and j. We define the
policy in two steps: we first pick an item i, and then select
a bin j to place it into. We can then write the policy as
πθ,ϕ(a=(i, j)|s)=πϕ(i|s)πθ(j|s, i), with

πθ(i|s)=softmax
(
zitem)

i
, zitem

i =fθ([wi, cb(i), T ]),

πϕ(j|s, i)=softmax
(
zbin)

j
, zbin

j =fϕ([wi, cj , T ]), (6)

where b(i) is the bin item i is in before the action (in
terms of xij , we have xib(i)=1), cj is the free capacity of
bin j (cj = W −

∑N
i=1 wixij), and both fθ and fϕ are

lightweight architectures 3→16→1 with a ReLU nonlin-
earity between the two layers. We sample from the policy
ancestrally, sampling first an item from πθ(i|s), followed
by a bin from πϕ(j|s, i). Results in Table 2 show that
our lightweight model is able to find a solution to about
1% higher energy than the minimum found by FFD (John-
son, 1973), a very strong heuristic for this problem (Rieck,
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Figure 5: Policy for the Bin Packing Problem: The learnt
policy is very sensible. The item selector looks for a light
item in an under-full bin. The bin selector then places this
in an almost-full bin. We mask bins with insufficient free
capacity, hence the triangular logit-spaces.
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Table 2: Average solutions for Bin Packing across five random seeds and, in parentheses, optimality gap to best solution
found among solvers. Lower is better. We set a time out for Or-Tools (2 min. per instance for BIN2000 and 1 min. for the
others); *only the trivial solution found before time-out.

SA Ours (PPO) Ours (ES) OR-Tools (SCIP) FFD

BIN50 30.38 (13.74%) 27.32 (2.28%) 27.24 (1.98%) 26.71 (0.00%) 27.10 (1.46%)
BIN100 60.66 (14.65%) 53.53 (1.17%) 53.38 (0.88%) 53.91 (1.89%) 52.91 (0.00%)
BIN200 121.27 (16.32%) 105.63 (1.32%) 105.43 (1.13%) 109.19 (4.74%) 104.25 (0.00%)
BIN500 302.84 (17.82%) 259.08 (0.80%) 259.09 (0.80%) 267.63 (4.13%) 257.02 (0.00%)
BIN1000 605.23 (18.79%) 512.66 (0.63%) 512.66 (0.63%) 1000∗ 509.46 (0.00%)
BIN2000 1209.72 (18.84%) 1017.88 (0.00%) 1017.88 (0.00%) 2000∗ 1028.67 (1.06%)

2021). We even see that we very often beat the SCIP (Gam-
rath et al., 2020) optimiser in OR-Tools, which timed out on
most problems. Moreover, the learnt policy shown in Fig-
ure 5 converges much faster than the vanilla version (see
Figure 6 in the appendix). Once more, we see that our
method, albeit simple, is competitive with hand-designed
alternatives, while vanilla SA is not.

4.4 Travelling Salesperson Problem

Imagine you will make a round road-trip through N cities
and want to plan the shortest route visiting each city once;
this is the Travelling Salesperson Problem (TSP) (Apple-
gate et al., 2006). The TSP has been a long time favourite
of computer scientists due to its easy description and NP-
hardness (the base search space has size equal to the facto-
rial of the number of cities). Here we use it as an example
of a difficult CO problem. Given cities i ∈ {0, 1, ..., N−1}
with spatial coordinates ci ∈ [0, 1]2, we wish to find
a linear ordering of the cities, called a tour, denoted by
the permutation vector x = (x0, x1, ..., xN−1) for xi ∈
{0, 1, ..., N − 1} to optimise the following objective:

minimise E(x;ψ) =

N−1∑
i=0

∥cxi+1 − cxi∥2

subject to xi ̸= xj for all i ̸= j, (7)

where we have defined xN = x0 for convenience of nota-
tion. Our action space consists of so-called 2-opt moves
(Croes, 1958), which reverse contiguous segments of a
tour. An example of a 2-opt move is shown in Figure 1. We
have a two-stage architecture, like in Bin Packing, which
selects the start and end cities of the segment to reverse.
Denoting i as the start and j as the end cities, we have
πθ,ϕ(a=(i, j)|s) = πϕ(i|s)πθ(j|s, i), parametrised as

πθ(i|s) = softmax (z)i , zi = fθ([cx[i−1:i+1]
, T ]),

πϕ(j|s, i) = softmax (z)j ,

zj =fϕ([cx[i−1:i+1]
, cx[j−1:j+1]

, T ]), (8)

where x[i−1:i+1] are the indices of city i and its tour neigh-
bours i − 1 and i + 1. Like in the other problems we con-
sider, this is a natural and straightforward state representa-

tion, in sharp contrast to other machine learning approaches
to the TSP (Kool et al., 2018; da Costa et al., 2020).

Again, we use simple MLPs: fθ has architecture 7→16→1
and fϕ, 13→16→1. We test on publicly available
TSP20/50/100 with 10K problems each (Kool et al., 2018)
and generate TSP200/500 with 1K tours each. Results, in
Table 12, show Neural SA improves on vanilla SA. We also
compared Neural SA to the TSP-specific Adaptive SA al-
gorithm of Geng et al. (2011). We used the same hyper-
parameters reported by the authors but skipped the greedy
search step they proposed, since it is too costly and applica-
ble to any method, including ours. Even with less compute
time, Neural SA (ES) matched their results, while Neural
SA (PPO) largely surpassed them. Albeit not outperform-
ing the model by Fu et al. (2021), Neural SA is neck-to-
neck with other neural improvement heuristics methods,
GAT-T{1000} (Wu et al., 2019) and Costa{500} (da Costa
et al., 2020). Since Neural SA is not custom designed for
the TSP as the competing methods, we view this as surpris-
ingly good. A more complete comparison, including other
neural approaches, is given in the appendix, Table 12.

5 DISCUSSION

Neural SA is a general ML4CO method that achieves com-
petitive results, despite relying only on a simple RL frame-
work and compact neural architectures with straightfor-
ward input features. This makes it easy to design and train
Neural SA for new problems, requiring only a training set
of problem instances (no solutions needed). In this section,
we discuss some of the main features of Neural SA.

Computational Efficiency In its current form, with a
compact equivariant architecture, Neural SA requires lit-
tle computational resources; the cost of each step scales
linearly in the problem size, since the architectures are em-
barrassingly parallel. In terms of running times, Neural SA
is on par with and often faster than other TSP solvers (see
Tables 3 and 12 in the appendix). For the Knapsack and Bin
Packing problems, we compare running times against OR-
Tools in Table 4, where we see Neural SA lags behind in
the Knapsack problem, for which a fast branch-and-bound
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Table 3: Comparison of Neural SA against competing methods with similar running times on TSP. We report running times
for solving all problems of each class (10K instances for TSP20/50/100; 1K instances for TSP200/500). Lower is better.
*Values as reported in respective works (Wu et al., 2019; da Costa et al., 2020; Fu et al., 2021).

TSP20 TSP50 TSP100 TSP200 TSP500
Cost Gap Time Cost Gap Time Cost Gap Time Cost Gap Time Cost Gap Time

CONCORDE 3.836 0.00% 48s 5.696 0.00% 2m 7.764 0.00% 7m 10.70 0.00% 38m 16.54 0.00% 7h58m
LKH-3 3.836 0.00% 1m 5.696 0.00% 14m 7.764 0.00% 1h 10.70 0.00% 21m 16.54 0.00% 1h15m

SA 3.881 1.17% 5s 5.943 4.34% 37s 8.343 7.45% 3m 11.98 11.87% 9m 20.22 22.25% 56m
GENG ET AL. 3.844 0.21% 46m 5.814 2.07% 68m 8.156 5.06% 131m 11.74 9.72% 33m 20.00 20.93% 3h29m
OURS (PPO) 3.838 0.05% 9s 5.734 0.67% 1m 7.874 1.42% 9m 11.00 2.80% 16m 17.64 6.65% 2h16m
OURS (ES) 3.840 0.10% 9s 5.828 2.32% 1m 8.191 5.50% 9m 11.74 9.72% 16m 20.27 22.55% 2h16m

OR-TOOLS* 3.86 0.85% 1m 5.85 2.87% 5m 8.06 3.86% 23m - - - - - -
GAT-T{1000}* 3.84 0.03% 12m 5.75 0.83% 16m 8.01 3.24% 25m - - - - - -
Costa {500}* 3.84 0.01% 5m 5.72 0.36% 7m 7.91 1.84% 10m - - - - - -
Fu et al.* 3.84 0.00% 1m 5.70 0.01% 8m 7.76 0.04% 15m - - - - - -

solver is known. Yet, for the Bin Packing problem, Neural
SA is faster than the available Mixed-Integer Programming
solver, which only found trivial solutions for N≥1000. Fi-
nally, Neural SA is fast to train; only a few minutes with
PPO and a few hours with ES. This can be attributed to its
low number of parameters and to its generalisation ability;
in all experiments, we could get away with training only on
the smallest instances with very short rollouts.

Table 4: Comparison of running times (at test time) for
Neural SA (PPO/ES) against OR-tools for the Knapsack
and Bin Packing Problems. We report the average time to
evaluate one instance for different problem sizes.

Knapsack Bin Packing
Ours OR-Tools Ours OR-Tools

50N < 1s < 1s < 1s 54s
100N 1s < 1s 1s 56s
200N 2s < 1s 3s ≥ 1m
500N 6s 1s 10s ≥ 1m
1000N 18s 2s 29s ≥ 1m
2000N 1m5s 8s 1m43s ≥ 2m

PPO vs ES Neural SA can be trained with any policy op-
timisation method making it highly extendable. We found
no winner between PPO and ES, apart from on the TSP,
where PPO excelled and generalised better to larger in-
stances. We also noted PPO converged ∼10× faster than
ES, but ES policies were more robust, still performing well
when we switched to greedy sampling, for example. Cu-
riously, the acceptance rate over trajectories was problem
dependent and always higher in Neural SA (PPO and ES)
than in vanilla SA, contradicting conventional wisdom that
it should be always close to 0.44 (Lam and Delosme, 1988).

Generalisation Our experiments show Neural SA gen-
eralises to different problem sizes and rollout lengths; a
remarkable feat for such a simple pipeline, since transfer
learning is difficult in RL and CO. Many ML4CO meth-
ods do handle problems of different sizes but underperform

when tested on larger instances than the ones seen in train-
ing (Kool et al., 2018; Joshi et al., 2019b) (see appendix,
Table 9). Fu et al. (2021) did achieve better generalisa-
tion for the TSP but had to resort to a suite of techniques
to allow a small supervised model to be applied to larger
problems. These are not easy to implement, TSP-specific,
and consist only the first step in a complex pipeline that still
relies on a tailored Monte-Carlo tree search algorithm.

Solution Quality In all problems we considered, Neu-
ral SA, with little to no fine-tuning of its hyperparameters,
outperformed vanilla SA and could get within a few per-
centage points or less of global minima. Conversely, state-
of-the-art SA variants are designed by searching a large
space of different hyperparameters (Franzin and Stützle,
2019), a costly process that Neural SA helps us mitigate.
In fact, on the TSP it outperforms the manually designed
SA algorithm of Geng et al. (2011). Neural SA did not
achieve state-of-the-art results, but that was not to be ex-
pected nor our main goal. Instead, we envision Neural SA
as a general purpose solver, allowing researchers and prac-
titioners to get a strong baseline quickly without the need
to fine-tune classic CO algorithms or design and train com-
plex neural networks. Given the good performance, small
computational resources, and fast training across a diverse
set of CO problems, we believe Neural SA is a promis-
ing solver that can strike the right balance among solution
quality, computing costs and development time.

6 CONCLUSION

We presented Neural SA, neurally augmented simulated an-
nealing, where the SA chain is a trajectory from an MDP.
In this light, the proposal distribution could be interpreted
and optimised as a policy. This has numerous benefits:
1) accelerated convergence of the chain, 2) ability to con-
dition the proposal distribution on side-information 3) no
need of ground truth data to learn the proposal distribu-
tion, 4) lightweight architectures that can be run on CPU
unlike many contemporary ML4CO methods, 5) scalabil-
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ity to large problems due to its lightweight computational
overhead, 6) generalisation across different problem sizes.
These contributions show augmenting classic, time-tested
(meta)heuristics with learnable components is a promising
direction for future ML4CO research. In contrast to costly
end-to-end methods, this could be a shorter path to models
capable of solving a wide range of CO problems. As we
show in this paper, this approach can yield solid results for
diverse problems and retain theoretical guarantees of ex-
isting CO algorithms, while requiring only simple neural
architectures that can be easily trained on small problems.

The ease of use and flexibility of Neural SA do come with
drawbacks. In all experiments we were not able to achieve
the minimum energy, although we could usually get within
a percentage point. Also, the model has no built-in termi-
nation condition, neither can it provide a certificate on the
quality of solutions found. There is still also the question of
how to tune the temperature schedule, which we did not at-
tempt in this work. These shortcomings are all points to be
addressed in upcoming research. We are also interested in
extending the framework to multiple trajectories, such as in
parallel tempering (Swendsen and Wang, 1986) or genetic
algorithms (Holland, 1992). For these, we would maintain
a population of chains, which could exchange information.
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Supplementary Material

A GENERAL INFORMATION

Implementation Our code was implemented in Pytorch 1.9 (Paszke et al., 2019) and run in a standard machine with a
single GPU RTX2080. The code will be made publicly available upon publication.

Architectures In all experiments, the proposal distribution is parametrised by a two-layer neural network, with ReLU
activation and 16 neurons in the hidden layer: input size→ 16→ 1, where the size of the input is problem specific. More
precisely, our architectures had 384 parameters for the TSP, 160 for the Bin Packing problem, and 112 for the Knapsack
problem. When using PPO, we also need a critic network to estimate the state-value function so that we can compute
advantages using Generalised Advantage Estimator (GAE) (Schulman et al., 2016). The critic network does not share any
parameters with the proposal distribution (actor) but has the exact same architecture. The only difference is that the actor
outputs logits of the proposal distribution, while the critic outputs action values from which we compute state values.

Our architecture defines a permutation equivariant set-to-set mapping. Similar architectures have been proposed (Za-
heer et al., 2017) and studied (Wagstaff et al., 2019) for set data. These models rely on functions of the form
f({x1, . . . ,xn}) = g(h(x1), . . . , h(xn)) with h an arbitrary neural network applied to each coordinate xi individually,
and g a symmetric function (e.g. sum or max operation). It is common to aggregate different functions like f to construct
global set representations, e.g. PointNets (Qi et al., 2017), but in our model we found input features encoding global in-
formation (e.g. Knapsack capacity) and relative node information (e.g. distance to neighbouring cities in a TSP tour) to be
sufficient, and thus we opt for a simple architecture with h an MLP, and g a softmax operation. That maintains the compu-
tational complexity of our model linear in the number of items (nodes), allowing us to scale to large problems despite the
typically long Markov chains in simulated annealing.

Training We train Neural SA using both Proximal Policy Optimisation (PPO) (Schulman et al., 2017) and Evolution
Strategies (ES) (Salimans et al., 2017). We did little to no fine-tuning of hyperparameters and, in fact, kept most of the
hyperparameters of both methods the same across all experiments, as detailed below.

• PPO: We optimise both actor and critic networks using Adam (Kingma and Ba, 2015) with learning rate of 2e−4,
weight decay of 1e−2 and β = (0.9, 0.999). For PPO, we set the discount factor and clipping threshold to γ = 0.9
and ϵ = 0.25, respectively, and compute advantages using GAE (Schulman et al., 2016) with trace decay λ = 0.9.

• ES: We use a population of 16 perturbations sampled from a Gaussian of standard deviation 0.05. Updates are fed
into an SGD optimizer with learning rate 1e−3 and momentum 0.9.

Testing The randomly generated datasets used for testing can be recreated by setting the seed of Pytorch’s random
number generator to 0. Similarly, we evaluate each configuration (problem size, number of steps) 5 times and report the
average as well as the standard deviation across the different runs. For reproducibility, we also seed each of these runs
(seeds 1, 2, 3, 4 and 5).

B KNAPSACK PROBLEM

Data We consider different problem sizes. We use KNAPN to denote a knapsack problem with N items, each with a
weight wi and value vi sampled from a uniform distribution, wi, vi ∼ U(0:1). Each problem has also an associated capacity
CN , that is, the maximum weight the knapsack in KNAPN can comport. Here we follow Bello et al. (2016) and set
C50=12.5, C100=25 and C200=25. However, for larger problems we set CN = N/8.
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Initial Solution We start with a feasible initial solution corresponding to an empty knapsack, that is, x = 0. That is the
trivial (and worst) feasible solution, so our models do not require any form of initialisation, pre-processing or heuristic.

Training We train only on KNAP50 with short rollouts of length K = 100 steps. The model is trained for 1000 epochs
each of which is run on 256 random problems generated on the fly as described in the previous section. We set initial and
final temperatures to T0 = 1 and TK = 0.1, and compute the temperature decay as α = (TK/T0)

1
K .

Testing We evaluate Neural SA on a test set of 1000 randomly generated Knapsack problems, while varying the length
of the rollout. For each problem size N , we consider rollouts of length K = N , K = 2N , K = 5N and K = 10N . The
initial and final temperatures are kept fixed to T0 = 1 and TK = 0.1, respectively, and the temperature decay varies as
function of K, with α = (TK/T0)

1
K .

We compare our methods against one of the dedicated solvers for the knapsack problem in OR-Tools (Perron and Furnon,
2019) (Knapsack Multidimension Branch and Bound Solver). We also compare sampled and greedy variants of Neural
SA. The former samples actions from the proposal distribution while the latter always selects the most likely action.

Table 5: ES results on the Knapsack benchmark. Bigger is better. Comparison among rollouts of different lengths: 1, 2, 5
or 10 times the dimension of the problem.

Greedy Sampled OR-Tools
×1 ×1 ×2 ×5 ×10

KNAP50 16.59± .00 19.45± .01 19.70± .00 19.86± .00 19.95± .00 20.12
KNAP100 31.15± .00 39.07± .01 39.49± .01 39.76± .01 39.90± .01 40.41
KNAP200 55.96± .00 53.72± .02 55.21± .02 56.22± .02 56.58± .01 57.65
KNAP500 135.92± .00 134.20± .05 137.89± .03 140.20± .02 141.01± .03 144.14
KNAP1K 259.20± .00 269.21± .04 276.48± .05 280.94± .02 282.46± .03 289.01
KNAP2K 489.02± .00 537.53± .08 551.92± .07 560.75± .07 563.75± .02 577.28

Table 6: PPO results on the Knapsack benchmark. Bigger is better. Comparison among rollouts of different lengths: 1, 2,
5 or 10 times the dimension of the problem.

Greedy Sampled OR-Tools
×1 ×1 ×2 ×5 ×10

KNAP50 19.52± .00 19.37± .01 19.42± .01 19.55± .01 19.69± .01 20.12
KNAP100 38.97± .00 38.64± .01 38.81± .01 39.20± .01 39.54± .01 40.41
KNAP200 48.58± .00 48.99± .06 51.00± .04 53.57± .03 55.03± .01 57.65
KNAP500 119.38± .00 122.40± .03 128.46± .05 134.95± .03 138.14± .04 144.14
KNAP1K 238.18± .00 246.54± .09 259.15± .08 271.68± .05 277.41± .03 289.01
KNAP2K 472.67± .00 493.47± .07 519.27± .08 543.72± .11 554.32± .04 577.28

C BIN PACKING PROBLEM

Data We consider problems of different sizes, with BINN consisting of N items, each with a weight (size) sampled from
a uniform distribution, wi ∼ U(0:1). Without loss of generality, we also assume N bins, all with unitary capacity. Each
dataset BINN in Tables 7 and 8 contains 1000 such random Bin Packing problems that are not seen during training and are
used to evaluate the methods at test time.

Initial Solution We start from the solution where each item is assigned to a different bin, e.g. xij = i.

Training We train only on BIN50 with short rollouts of length K = 100 steps. The model is trained for 1000 epochs
each of which is ran on 256 random problems generated on the fly as described in the previous section. We keep the same
temperature decay with α = (TK/T0)

1
K , but use different initial and final temperatures for PPO and ES. For PPO, we set

T0 = 1 and TK = 0.1, whereas for ES we set T0 = 0.1 and TK = 1e− 4.
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Testing We evaluate Neural SA on a test set of 1000 randomly generated Bin Packing problems, while varying the length
of the rollout. For each problem size N , we consider rollouts of length K = N , K = 2N , K = 5N and K = 10N . The
initial and final temperatures are kept the same as in training, and the temperature decay parameter varies as function of
K, with α = (TK/T0)

1
K .

We compare Neural SA against First-Fit-Decreasing (FFD) (Johnson, 1973), a powerful heuristic for the Bin Packing
problem, and against OR-Tools (Perron and Furnon, 2019) MIP solver powered by SCIP (Gamrath et al., 2020). The
OR-Tools solver can be quite slow on Bin Packing so we set a time out of 1 minute per problem for BIN50-1000 and of 2
minutes for BIN2000 to match Neural SA running times (see Table 4).

We also compare sampled and greedy variants of Neural SA. The former naturally samples actions from the proposal
distribution while the latter always selects the most likely action.

Table 7: ES results on the Bin Packing benchmark. Lower is better.

Greedy Sampled OR-Tools FFD
×1 ×1 ×2 ×5 ×10

BIN50 27.62±.00 27.43±.01 27.36±.01 27.29±.00 27.24±.01 26.71 27.10
BIN100 53.80±.00 53.63±.00 53.54±.01 53.44±.01 53.38±.01 53.91 52.91
BIN200 105.63±.00 105.78±.02 105.64±.01 105.51±.01 105.43±.01 109.19 104.25
BIN500 259.09±.00 260.86±.03 260.65±.01 260.42±.02 260.27±.02 267.63 257.02
BIN1K 512.66±.00 517.87±.02 517.46±.02 517.08±.02 516.84±.01 1000∗ 509.46
BIN2K 1017.88± .00 1030.66±.01 1029.89±.01 1029.11±.02 1028.67±.02 2000∗ 1028.67

Table 8: PPO results on the Bin Packing benchmark. Lower is better.

Greedy Sampled OR-Tools FFD
×1 ×1 ×2 ×5 ×10

BIN50 27.62± .00 27.95± .01 27.71± .01 27.45± .01 27.32± .01 26.71 27.10
BIN100 53.80± .00 54.88± .02 54.27± .02 53.75± .01 53.53± .01 53.91 52.91
BIN200 105.63± .00 108.51± .01 107.20± .01 106.21± .01 105.86± .01 109.19 104.25
BIN500 259.08± .00 268.42± .02 264.79± .01 262.66± .02 261.98± .01 267.63 257.02
BIN1K 512.66± .00 533.97± .04 526.23± .02 522.30± .03 521.22± .02 1000∗ 509.46
BIN2K 1017.88± .00 1064.74± .11 1048.80± .06 1041.02± .01 1039.09± .04 2000∗ 1028.67
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Figure 6: Plot of the BIN50 primal objective comparing convergence speed of Neural SA with vanilla SA and a third
option, Greedy Neural SA, which uses argmax samples from the policy; 25th, 50th, and 75th percentiles shown.
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D TRAVELLING SALESPERSON PROBLEM (TSP)

Data We generate random instances for 2D Euclidean TSP by sampling coordinates uniformly in a unit square, as done
in previous research (Kool et al., 2018; Chen and Tian, 2019; da Costa et al., 2020). We assume complete graphs (fully-
connected TSP), which means every pair of cities is connected by a valid route (an edge).

Initial Solution We start with a random tour, which is simply a random permutation of the city indices. This is likely to be
a poor initial solution, as it ignores any information about the problem, namely the coordinates of each city. Nevertheless,
Neural SA achieves competitive results in spite of this, and it is reasonable to expect an improvement in its performance
(at least in running time) when using better initialisation methods, like in LKH-3 (Helsgaun, 2000) for instance.

Training We train only on TSP20 with very short rollouts of length K = 40. Just like in the other problems we consider,
we train using 256 random problems generated on the fly for each epoch. We also maintain the same initial temperature
and cooling schedule with T0 = 1 and α = (TK/T0)

1
K , but use lower final temperatures for the TSP. We set TK = 1e−2

for PPO and TK = 1e−4 for ES, which we empirically found to work best with the training dynamics of each of these
methods. We also use different number of epochs for each training method, 1000 for PPO and 10000 for ES, as the latter
has slower convergence.

Testing We evaluate Neural SA on TSP20, TSP50 and TSP100 using the 10K problem instances made available in (Kool
et al., 2018). This allows us to directly compare our methods to previous research on the TSP. We also consider larger
problem sizes, namely TSP200 and TSP500 to showcase the scalability of Neural SA. For each of these, we randomly
generate 1000 instances by uniformly sampling coordinates in a 2D unit square. For each problem size N , we consider
rollouts of length K = N2, K = 2N2, K = 5N2 and K = 10N2. That is different from the other CO problems we study
since the complexity in the TSP is related to the number of edges N2 rather than the number of cities N . We also compare
sampled and greedy variants of Neural SA. The former naturally samples actions from the proposal distribution while the
latter always selects the most likely action.

We compare Neural SA against standard solvers LKH-3 (Helsgaun, 2000) and Concorde (Applegate et al., 2006), which
we have run ourselves. We also compare against the self-reported results of other Deep Learning models that have targeted
TSP and relied on the test data provided by (Kool et al., 2018): GCN (Joshi et al., 2019b), GAT (Kool et al., 2018), GAT-T
(Wu et al., 2019), and the works of da Costa et al. (2020) and Fu et al. (2021).

Note that Fu et al. (2021) also provide results for TSP200 and TSP500, but given that we do not know the exact test
instances they used, it is hard to make a direct comparison to our results, especially regarding running times; they use a
dataset of 128 instances, while we use 1000. For that reason, we omitted these results from Table 3 in the main text, but
for the sake of completeness, presented them in Table 12.

Generalisation We always train Neural SA only on the smallest of problem sizes we consider. In Table 9, we compare
Neural SA with other models in the literature that have been evaluated the same way: trained only on TSP20 and tested
on TSP20, 50 and 100. While not outperforming the model by Fu et al. (2021), Neural SA, especially with PPO, does
generalise better than previous end-to-end methods (Kool et al., 2018).

Table 9: Optimality gap for models trained on TSP20 and evaluated on the test instances provided by Kool et al. (2018)
for TSP20/50/100; *Values taken from respective papers.

TSP20 TSP50 TSP100

(Kool et al., 2018)* 0.34% ∼ 5.0% > 14.0%
(Fu et al., 2021)* 0.00% 0.01% 0.04%

SA 1.17% 4.34% 7.43%
Neural SA (PPO) 0.42% 1.16% 1.85%
Neural SA (ES) 0.10% 2.32% 5.50%
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Table 10: ES results on the TSP benchmark. Lower is better

Greedy Sampled LKH-3 Concorde
×1 ×1 ×2 ×5 ×10

TSP20 3.868± .000 3.868± .001 3.854± .000 3.844± .000 3.840± .000 3.836 3.836
TSP50 6.020± .002 6.022± .002 5.947± .001 5.871± .000 5.828± .001 5.696 5.696
TSP100 8.659± .003 8.660± .002 8.477± .001 8.298± .002 8.191± .002 7.764 7.764

Table 11: PPO results on the TSP benchmark. Lower is better

Greedy Sampled LKH-3 Concorde
×1 ×1 ×2 ×5 ×10

TSP20 3.864± .000 3.865± .000 3.850± .000 3.841± .000 3.838± .000 3.836 3.836
TSP50 5.828± .001 5.828± .000 5.786± .000 5.752± .001 5.734± .001 5.696 5.696
TSP100 8.074± .001 8.073± .001 7.986± .001 7.912± .001 7.874± .000 7.764 7.764
TSP200 11.41± .00 11.41± .00 11.23± .00 11.09± .00 11.00± .00 10.70 10.70
TSP500 18.44± .002 18.43± .001 18.07± .003 17.79± .006 17.64± .003 16.54 16.54
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Figure 7: Policy for the Travelling Salesperson Problem. At each step, an action consists of selecting a pair of cities (i, j),
one after the other. The figure depicts a TSP problem layed out in the 2D plane, with the learnt proposal distribution over
the first city i in the left, and in the right, the distribution over the second city j, given i = 12. We mask out and exclude the
neighbours of i (0 and 14) as candidates for j because selecting those would lead to no changes in the tour. It is clear the
model has a strong preference towards a few cities, but otherwise the probability mass is spread almost uniformly among
the other nodes. However, once i is fixed, Neural SA strongly favours nodes j that are close to i. That is a desirable
behaviour that even features in popular algorithms like LKH-3 (Helsgaun, 2000). That is because a 2-opt move (i, j)
actually adds edge (i, j) to the tour, so leaning towards pairs of cities that are close to each other is more likely to lead to
shorter tours.
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