
Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

Victoria G. Crawford
Texas A&M University

Abstract

In this paper, we consider the optimization prob-
lem Submodular Cover (SC), which is to find a
minimum cost subset of a ground set U such that
the value of a submodular function f is above a
threshold τ . In contrast to most existing work on
SC, it is not assumed that f is monotone. Two bi-
criteria approximation algorithms are presented
for SC that, for input parameter 0 < ε < 1,
give O(1/ε2) ratio to the optimal cost and en-
sures the function f is at least τ(1−ε)/2. A lower
bound shows that under the value query model
shows that no polynomial-time algorithm can en-
sure that f is larger than τ/2. Further, the algo-
rithms presented are scalable to large data sets,
processing the ground set in a stream. Similar
algorithms developed for SC also work for the
related optimization problem of Knapsack Con-
strained Submodular Maximization (KCSM). Fi-
nally, the algorithms are demonstrated to be ef-
fective in experiments involving graph cut and
data summarization functions.

1 INTRODUCTION

Submodular set functions arise in many applications such
as summarization of data sets (Tschiatschek et al., 2014),
feature selection in machine learning (Das and Kempe,
2018), cut functions in graphs (Balkanski et al., 2018), vi-
ral marketing in a social network (Kempe et al., 2003),
and many others. Intuitively, submodularity describes a di-
minishing returns property of set functions. Formally, let
f : 2U → R be defined over subsets of a universe U of size
n. Then f is submodular if for all A ⊆ B ⊆ U and x /∈ B,
f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B). Moreover, f
is monotone if for all A ⊆ B ⊆ U , f(A) ≤ f(B). In this
paper, the Submodular Cover problem (SC) is considered.

Proceedings of the 26th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

Problem 1 (SC). Define submodular f : 2U → R≥0 over
subsets of the universe U of size n, and non-negative cost
function w : U → R≥0. Given threshold τ ≤ max{f(X) :
X ⊆ U}, find

argminX⊆U

{∑
x∈X

w(x) : f(X) ≥ τ

}
.

Let OPT refer to the cost of the optimal solution.

The SC formulation captures applications where we wish
to ensure that a submodular function f is sufficiently high,
while minimizing cost. When f is monotone, SC has been
studied extensively, e.g. Wolsey (1982); Mirzasoleiman
et al. (2015, 2016); Norouzi-Fard et al. (2016). To the best
of our knowledge, the only work to consider SC with non-
monotone f is Iyer and Bilmes (2013), discussed in Section
2 below. Therefore, non-monotone SC is relatively unex-
plored, despite such problems arising in learning applica-
tions.

For example, non-monotone submodular functions fre-
quently arise in data summarization tasks as a measure of
how effectively a subset X ⊆ U summarizes a data set U
(Gillenwater et al., 2012; Tschiatschek et al., 2014) . Data
summarization can then be formulated as an instance of SC
where we seek to pick the summary of minimum memory
(e.g. if U is images then the cost w may be the size of each
image) that reaches a constant factor of the maximum value
of f (i.e. τ = ξmaxX⊆U f(X)). As a second example,
non-monotone, submodular revenue functions may be for-
mulated on a social network (Hartline et al., 2008; Balka-
nski et al., 2018). In this context, the SC problem asks to
guarantee a certain amount of revenue with minimum cost.

The above examples demonstrate that applications of non-
monotone submodular functions require algorithms that are
able to run on very large data sets. For example, summa-
rization of massive data sets, or revenue problems involving
huge social networks. Therefore the ability of algorithms
developed for SC to scale to massive data sets is of utmost
importance. Properties of an algorithm can be used in or-
der to determine how well it will scale to large data sets in-
clude: 1) The number of queries the algorithm makes to f
because it is assumed that this is the main bottleneck as far
as time complexity; 2) Whether the algorithm can process

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

U in a stream, making a single or few passes through U ,
while requiring low memory because U may be much too
large to fit into memory at once. In many applications, the
cost function w can be interpreted as the size in memory of
an element of U . The simplest example is where w is uni-
formly 1 (Norouzi-Fard et al., 2016). Another possibility is
the data summarization application discussed above.

1.1 Contributions

In this paper, scalable bicritera approximation algorithms
for SC are developed. It is proven in Theorem 1 below that
one cannot find a feasible solution to SC in polynomially
many queries to f assuming the value oracle model. In par-
ticular, we cannot guarantee a solution X to an instance of
SC such that f(X) > τ/2 in general. This result motivates
the development of bicriteria approximation algorithms for
SC. An (α, β)-bicriteria approximation algorithm for SC
produces a solution X ⊆ U such that w(X) ≤ αOPT and
f(X) ≥ βτ ;

The algorithm MULTI is presented in Section 3.2, which
is an approximation algorithm with a bicriteria approxima-
tion guarantee of ((1 + ε)(4/ε2 + 1), (1 − ε)/2) for SC.
The guarantee of MULTI on the constraint nearly matches
the impossibility result stated in Theorem 1 and so is op-
timal in that sense. The total number of queries MULTI
makes to f is O(n ln(n)). If w is interpreted as the cost
to store an element, MULTI is a scalable algorithm for SC
in terms of memory: MULTI takes at most O(ln(OPT))
passes through U in an arbitrary order, while storing ele-
ments of total cost at most O(OPT).

The algorithm SINGLE is presented in Section 3.3, which
takes a single pass through U in an arbitrary order and
has the same bicriteria approximation guarantee as MULTI.
However, SINGLE does not have a bound on the total cost
of stored elements relative to OPT , but instead has a com-
petitive bound on the memory. The total number of queries
SINGLE makes to f isO(n2). Further, a more scalable ver-
sion of SINGLE with total number of queries O(n ln(n)) is
possible, but results in worse approximation guarantees.

The algorithm SINGLEMAX is proposed in Section 3.4
for the related problem Knapsack Constrained Submodu-
lar Maximization (KCSM) (Nemhauser et al., 1978). SIN-
GLEMAX takes a single pass through U in an arbitrary or-
der and has a bicriteria approximation guarantee of ((1 −
ε)/2, (1 + ε)(4/ε2 + 1)). Because SINGLEMAX only re-
turns an approximately feasible solution, SINGLEMAX has
a better approximation guarantee (nearly 1/2) compared to
all existing approximation algorithms for KCSM; Gharan
and Vondrák (2011) showed no approximation ratio better
than 0.491 is achievable with polynomially many queries to
f if a feasible solution must be obtained. The total cost of
all stored elements at once is at most O(κ ln(κ)), where κ
is the knapsack constraint, and SINGLEMAX makes a total

of at most O(n ln(κ)) queries to f .

MULTI and SINGLE are empirically evaluated in Section
4. MULTI and SINGLE are demonstrated to be able to run
on large data sets, using relatively little memory. Further,
MULTI and SINGLE outcompete alternative approaches to
solving SC in terms of solution quality, as well as total
number of queries.

1.2 Definitions and Notation

The following definitions and notation are used throughout
the paper. 1) The notation SC (U, f, w, τ) is used to refer
to an instance of SC with universe U , submodular func-
tion f , weight function w, and threshold τ . 2) ∆f(X,x) =
f(X ∪ {x}) − f(X). 3) w(X) =

∑
x∈X w(x) where

w : U → R≥0; 4) wmin = min{w(x) : x ∈ U} and
wmax = max{w(x) : x ∈ U}.

2 RELATED WORK

The related optimization problem Unconstrained Submod-
ular Maximization (USM) is simply to find a subset of
U that maximizes f . USM cannot be approximated in
polynomially many queries of f better than 1/2 assum-
ing the value query model (Feige et al., 2011). A number
of approximation algorithms have been proposed for USM
(Feige et al., 2011; Buchbinder et al., 2015; Buchbinder
and Feldman, 2018b). Notably, Buchbinder and Feldman
(2018b) introduced an algorithm that gives a 1/2− ε guar-
antee in O(n/ε) time.

The special case of SC where f is monotone has been con-
sidered in a number of works (Wolsey, 1982; Wan et al.,
2010; Mirzasoleiman et al., 2015, 2016; Crawford et al.,
2019). A classic result is that the standard greedy algorithm
produces a logarithmic approximation guarantee (Wolsey,
1982). However, the greedy algorithm does not have any
non-trivial approximation guarantee for SC if monotonicity
is not assumed. In addition, monotone SC has been studied
previously in a streaming-like setting (Norouzi-Fard et al.,
2016). If an upper bound εM onOPT is given, the stream-
ing algorithm of Norouzi-Fard et al. makes a single pass
through U in an arbitrary order and returns a (2/ε, 1 − ε)-
bicriteria approximate solution, storing a maximum of M
elements, and making at most O(nM) evaluations of f .

To the best of our knowledge, Iyer and Bilmes (2013) is the
only other work to consider SC where there is no assump-
tion of monotonicity. Iyer and Bilmes proposes a method
of converting algorithms for KCSM to ones for SC. Be-
cause there is a long line of work on KCSM (Gupta et al.,
2010; Buchbinder et al., 2014, 2017), especially if the cost
is uniform, this introduces many possible algorithms. In
particular, given an (α, β) bicriteria approximation algo-
rithm for KCSM, the approach of Iyer and Bilmes produces
a ((1 + ε)β, α)-bicriteria approximation algorithm for SC

Victoria G. Crawford

with uniform cost. However, this method is limited: Even
assuming a cardinality constraint, the current best approxi-
mation algorithm for KCSM has an approximation ratio of
α = 0.385 (Buchbinder and Feldman, 2019), and it is im-
possible under the value query model in order to get a bet-
ter approximation ratio than 0.491 in polynomially many
queries of f (Gharan and Vondrák, 2011). α would need to
get arbitrarily close to 1/2 in order to outperform MULTI
and SINGLE.

A number of algorithms have been proposed for KCSM
with uniform cost in the streaming setting (Chakrabarti and
Kale, 2015; Alaluf et al., 2022). Similar to MULTI and SIN-
GLE, the algorithm of Alaluf et al. stores arriving elements
from the stream inO(1/ε) disjoint sets, and once the stream
is complete an offline algorithm is run on their union (but
not an algorithm for USM as we will propose here). See
the appendix for a more thorough comparison with Alaluf
et al..

3 ALGORITHMS AND THEORETICAL
GUARANTEES

In this section, two approximation algorithms are proposed
for SC: MULTI and SINGLE. MULTI is presented in Section
3.2, and SINGLE is presented in Section 3.3. At the core of
both of these algorithms is the subroutine STREAM, which
is presented in Section 3.1.

Before presenting the algorithms, we first consider the lim-
itations in finding feasible solutions to SC. SC is related
to USM: In particular, any (α, β)-bicriteria approximation
algorithm for SC can be converted into a β approximation
algorithm for USM. Because USM cannot be approximated
in polynomial time better than 1/2, assuming the value
query model (Feige et al., 2011), it is not possible to de-
velop an (α, β)-bicriteria approximation algorithm for SC
such that β > 1/2. This is formalized in Theorem 1, the
proof of which can be found in the appendix.

Theorem 1. For any ε > 0, there are instances of SC
where f is assumed to be symmetric such that there is
no (adaptive, possibly randomized) algorithm using fewer
than Ω(ln(1 + ε)eε

2n/ ln(n)) queries that always finds a
solution of expected f value at least (1/2 + ε)τ .

This leads us to the question of whether (α, β)-bicriteria
approximation algorithms can be developed for SC where
the best case β = 1/2 is achieved or nearly achieved. In
this section, we answer this question affirmatively by pre-
senting the bicriteria approximation algorithms MULTI and
SINGLE, both of which can get arbitrarily close to a feasi-
bility guarantee of β = 1/2.

3.1 The Algorithm STREAM

The subroutine STREAM is a key subroutine of both MULTI

S2/εS2/ε−1S1

Stream of U

Figure 1: An illustration of STREAM. Each blue dot repre-
sents an element of U . As elements of U arrive, and each
element is either discarded or stored in at most one of the
disjoint sets S1, ..., S2/ε. At the completion of reading ele-
ments from the stream, STREAM runs UNCONSMAXγ on
the union of the disjoint sets.

Algorithm 1 STREAM

Input: OPT , ε
Output: S ⊆ U

1: S1 ← ∅, ..., S2/ε ← ∅
2: for u received from stream such thatw(u) ≤ OPT do
3: if ∃j s.t. ∆f(Sj , u)/w(u) ≥ ετ/(2OPT) then
4: Sj ← Sj ∪ {u}
5: if w(Sj) > 2OPT/ε then
6: break
7: end if
8: end if
9: end for

10: S0 ←UNCONSMAXγ

(
∪2/εj=1Sj

)
11: return argmax{f(S0), ..., f(S2/ε)}

and SINGLE. STREAM takes a single pass through the uni-
verse U , choosing to store or discard each element, filtering
U down to a set of much smaller total cost. An illustration
of STREAM is presented in Figure 1, and pseudocode for
STREAM is presented in Algorithm 1.

STREAM takes as input ε ∈ (0, 1), and a guess of the cost
of the optimal solution, OPT . It will become clear how
OPT is chosen when MULTI and SINGLE are presented.
STREAM makes a single pass through the universe U in a
stream of arbitrary order, and stores elements of total cost
at most (4/ε2+1)OPT . The stored elements are organized
into 2/ε disjoint sets, S1, ..., S2/ε. An element u is stored
in at most one set Sj if both of the following are true: (i) u
has sufficiently low cost; (ii) adding u is sufficiently bene-
ficial to increasing the f value of Sj . If no such Sj exists,
u is discarded. If the total cost of one of the disjoint sets
goes over 2OPT/ε before all elements ofU have been read
in, then STREAM stops reading in elements. Once read-
ing from the stream is complete, STREAM runs UNCON-
SMAXγ on the union of the disjoint sets to get the set S0,
where UNCONSMAXγ is an algorithm for Unconstrained
Submodular Maximization (Feige et al., 2011) with a de-
terministic γ approximation ratio. STREAM returns as its
solution argmax{f(S0), ..., f(S2/ε)}.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

3.1.1 Theoretical Guarantees of STREAM

Several useful theoretical properties of STREAM are pre-
sented in Lemmas 1 and 2 below.

Lemma 1. STREAM has the following properties: (i)
w(S) ≤ (4/ε2 + 1)OPT where S is the returned solution;
(ii) The total cost of all elements stored at once is at most
(4/ε2 + 1)OPT ; (iii) The total number of queries to f is
at most 2n/ε+T ((4/ε2 + 1)OPT/wmin), where T (m) is
the number of queries to f of UNCONSMAXγ on an input
set of size m.

Proof. Consider the state of STREAM at the beginning of
an iteration of the for loop on Line 2, when an element
x has been read in but not yet added to any of the sets
S1, ..., S2/ε. Then the if statement on Line 5 ensures that
for all i ∈ {1, ..., 2/ε}, w(Si) ≤ 2OPT/ε. At the end of
the iteration, u has been added to at most a single set Sj ,
and the condition that w(u) ≤ OPT on Line 2 to add u en-
sures that w(Sj) ≤ (2/ε + 1)OPT . Further S0 is a subset
of ∪2/εi=1Si. Therefore, at any point in STREAM before Line
10,

w
(
∪S2/ε

i=0

)
≤

2/ε∑
i=0

w(Si)

≤ (4/ε2 + 1)OPT .

Therefore the bound on the total weight at any point in
STREAM stated in Lemma 1 (i) holds. Because the solution
returned by STREAM is a subset of ∪S2/ε

i=1, the bound on its
weight stated in Lemma 1 (ii) is the same as the bound on
its total memory.

As each element arrives in the stream, STREAM makes
at most 2/ε queries. Once the stream has been read in,
STREAM runs UNCONSMAXγ on ∪S2/ε

i=1 which is of to-
tal cost at most (4/ε2 + 1)OPT , and therefore at most
(4/ε2 + 1)OPT/wmin elements. The number of queries
stated in Lemma 1 (iii) is then proven.

Lemma 2. Suppose that STREAM is run with OPT ≥
OPT . Let S be the set returned by STREAM. Then f(S) ≥
γ(1− ε)τ .

Proof. The loop on Line 2 of STREAM completes in one of
two ways: (i) The if statement on Line 5 has been satisfied;
or (ii) All of the elements of U have been read from the
stream, and Line 5 was never satisfied. The proof of Lemma
2 is broken up into each of these two events.

First suppose event (i) above occurs. Then at the comple-
tion of the loop there exists some r ∈ {1, ..., 2/ε} such that
w(Sr) ≥ 2OPT/ε. Let Sr(`) be Sr after the `th element
was added to it and Sr(0) = ∅. Then at the completion of

STREAM

f(Sr)
(a)

≥ f(Sr)− f(∅)

=

|Sr|∑
`=1

(f(Sr(`))− f(Sr(`− 1)))

(b)

≥
∑
x∈Sr

w(x)ετ/(2OPT)

= w(Sr)ετ/(2OPT)

(c)

≥ τ

where (a) is because f(∅) ≥ 0; (b) is by the con-
dition on Line 3; and (c) is by the assumption that
w(Sr) ≥ 2OPT/ε. Therefore at the completion of
STREAM max{f(S0), ..., f(S2/ε)} ≥ f(Sr) ≥ τ.

Now suppose that event (ii) above occurs. Then at the end
of STREAM, w(Sj) < 2OPT/ε for all j ∈ {1, ..., 2/ε}.
For this case, we need the following claim which is proven
in the appendix, and is based on a result from Feige et al.
(2011) which is stated as Lemma 3 in the appendix.

Claim 1. Let A1, ..., Am ⊆ U be disjoint, and B ⊆ U .
Then there exists i ∈ {1, ...,m} such that f(Ai ∪ B) ≥
(1− 1/m)f(B).

Let S∗ be an optimal solution to the instance of SC. By
Claim 1, there exists t ∈ {1, ..., 2/ε} such that (1−ε/2)τ ≤
f(S∗∪St). DefineX1 = S∗∩(∪2/εi=1Si) andX2 = S∗\X1.
Then,

(1− ε/2)τ ≤ f(S∗ ∪ St)
= f(X1 ∪ St) + f(S∗ ∪ St)− f(X1 ∪ St)
(a)

≤ f(X1 ∪ St) +
∑
x∈X2

∆f(X1 ∪ St, x)

(b)

≤ f(X1 ∪ St) +
∑
x∈X2

∆f(St, x) (1)

where (a) and (b) are both due to submodularity. In addi-
tion, ∑

x∈X2

∆f(St, x)
(a)
<
∑
x∈X2

w(x)ετ/(2OPT)

= w(X2)ετ/(2OPT)

(b)

≤ w(X2)ετ/(2OPT)

(c)

≤ ετ/2 (2)

where (a) is by submodularity and the condition on Line 3;
(b) is because OPT ≥ OPT ; (c) is because X2 ⊆ S∗ im-
plies that w(X2) ≤ OPT . Then by combining Inequalities

Victoria G. Crawford

1 and 2, we have that

(1− ε)τ ≤ f(X1 ∪ St)
(a)

≤ max
Y⊆∪2/ε

i=1Si

f(Y)

(b)

≤ 1

γ
f(S0)

where (a) is becauseX1∪St ⊆ ∪2/εi=1Si; (b) is because S0 is
an γ-approximate maximum of f over ∪2/εi=1Si. Therefore
max{f(S0), ..., f(S2/ε)} ≥ f(S0) ≥ γ(1− ε)τ.

As presented in Lemma 1 (iii), the number of queries
STREAM makes to f depends on the run time of UNCON-
SMAXγ . If a linear time algorithm is used for USM such
as that of Buchbinder and Feldman (2018b), then the over-
all number of queries to f that STREAM makes is linear. In
addition, the guarantee of Lemma 2 assume that UNCON-
SMAXγ has a deterministic approximation ratio. Alterna-
tively, randomized approximation algorithms for UNCON-
SMAXγ can be run O(ln(n)) times in order to ensure their
guarantee holds with high probability. This possibility is
described in more detail in the appendix.

3.2 The Algorithm MULTI

We now present the constant factor bicriteria approxima-
tion algorithm MULTI for SC, which takes O(ln(OPT))
passes through the universe U , stores elements of total cost
O(OPT) at once, and makes O(n ln(OPT)) queries to f
if a linear time algorithm is used for USM as a subroutine
(Buchbinder and Feldman, 2018a).

MULTI works by sequentially running STREAM for in-
creasingly large guesses of OPT , each guess correspond-
ing to a pass through the universe U . By the time that a
guess is an upper bound for OPT , Lemma 2 implies that
MULTI has found a solution S such that f(S) ≥ γ(1− ε)τ ,
where γ is the approximation ratio of the algorithm used
for USM, and then MULTI exits. MULTI does not make
guesses that are much higher than OPT , and as a result of
Lemma 1 (ii) the total cost of elements stored at one time is
low. An illustration of MULTI is presented in Figure 2, and
pseudocode for MULTI is presented in Algorithm 2.

MULTI takes as input a parameter ε ∈ (0, 1). MULTI makes
a sequence of runs of STREAM with increasing guesses of
OPT . The first guess is OPT = wmin (notice that wmin
can be computed in a preliminary pass). At the end of each
run of STREAM, the solution S returned by STREAM is
tested as to whether f(S) ≥ γ(1−ε)τ . If f(S) ≥ γ(1−ε)τ ,
then S is returned and MULTI terminates. Otherwise, the
guess is increased by a multiplicative factor of 1 + ε and
STREAM is run again.

Guess OPT STREAM Check f(S)

< γ(1− ε)τ

≥ γ(1− ε)τ

Return S

Figure 2: An illustration of the algorithm MULTI. MULTI
makes increasingly large guesses for OPT , and runs an
instance of STREAM for each guess. Once STREAM returns
a solution with sufficiently high f value, MULTI returns
this solution.

Algorithm 2 MULTI

Input: ε
Output: S ⊆ U

1: OPT ← wmin
2: while true do
3: S ← STREAM(OPT , ε)
4: if f(S) ≥ γ(1− ε)τ then
5: return S
6: end if
7: OPT ← (1 + ε)OPT
8: end while

3.2.1 Theoretical Guarantees of MULTI

We now present the theoretical guarantees of MULTI in
Theorem 2.

Theorem 2. Suppose that MULTI is run for an instance of
SC. Then MULTI:

(i) Returns S such that f(S) ≥ γ(1 − ε)τ and w(S) ≤
(1 + ε)(4/ε2 + 1)OPT ;

(ii) Makes at most ln(OPT/wmin)/ ln(1 + ε) passes
through U ;

(iii) The total cost of all elements stored at once is at most
(1 + ε)(4/ε2 + 1)OPT ;

(iv) Makes at most

ln
(
OPT
wmin

)
ln(1 + ε)

(
2n

ε
+ T

(
(1 + ε)

(
4
ε2 + 1

)
OPT

wmin

))
queries of f , where T (m) is the number of queries to
f of UNCONSMAXγ on an input set of size m.

Proof. Define q ∈ Z>0 to be the unique value where

(1 + ε)q−1wmin < OPT ≤ (1 + ε)qwmin. (3)

By Lemma 2, if the loop on Line 2 reaches OPT =
(1 + ε)qwmin, STREAM will return a set S that satisfies
f(S) ≥ γ(1− ε)τ . Then the if statement on Line 4 will be
satisfied, and MULTI will terminate with solution S. Fur-
ther, by Lemma 1, w(S) ≤ (4/ε2 + 1)(1 + ε)qwmin ≤
(4/ε2 + 1)(1 + ε)OPT . Therefore item (i) is proven.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

Each iteration of the loop on Line 2 corresponds to one
pass through U . Since the loop on Line 2 stops before or
once κ reaches (1 + ε)qwmin (as explained above), there
are at most ln(OPT/wmin)/ ln(1 + ε) passes through U .
Therefore item (ii) is proven.

Over the course of MULTI, κ increases from wmin to
(1 + ε)qwmin (as explained above). Further, each iteration
of the for loop on Line 2 stores elements only needed in
the corresponding call of STREAM. By Lemma 1, therefore
the total weight of all elements stored at once is at most
(4/ε2 + 1)(1 + ε)qwmin ≤ (4/ε2 + 1)(1 + ε)OPT . There-
fore item (iii) is proven.

Item (iv) is a result of Lemma 1, and the fact that STREAM
is run at most ln(OPT/wmin)/ ln(1 + ε) times with
OPT ≤ (1 + ε)OPT .

3.3 The Algorithm SINGLE

We now present the constant factor bicriteria approxima-
tion algorithm SINGLE for SC, which takes a single pass
through the universe U . SINGLE is more useful for appli-
cations where U is received in a stream but is never stored,
making multiple passes impossible. SINGLE provides the
same bicriteria approximation guarantees as MULTI, but
has weaker guarantees on the total cost of elements stored
and runtime.

SINGLE works in a similar way to MULTI, except SINGLE
essentially runs the instances of STREAM for each guess of
OPT in parallel instead of sequentially. In the single pass
setting, new difficulties arise because without seeing the
entire ground set U it is difficult to determine a useful up-
per bound onOPT (see the appendix for further discussion
on this problem). Since the guess of OPT determines the
upper limit on the total cost of elements stored by STREAM
at once (see Lemma 1), too large of a guess of OPT may
result in too high of total cost of elements stored. In Theo-
rem 3, we instead present a competitive bound on the total
cost of elements stored at once by SINGLE, where the cost
is bounded relative to the optimal solution if the instance
of SC were restricted only to the elements of the universe
received from the stream so far. Pseudocode for SINGLE is
provided in Algorithm 3.

SINGLE takes as input ε ∈ (0, 1), and an upper bound
on OPT , B. SINGLE runs instances of a modified ver-
sion of STREAM in parallel. In particular, the sets for
the instance of STREAM corresponding to guess σ are
S[σ, 1], ..., S[σ, 2/ε]. The modified version of STREAM
runs UNCONSMAXγ on ∪Si after each element is received
from the stream, instead of after the entire stream has been
read in. Each instance of STREAM therefore is associated
with a set at any point of time that is the output of UNCON-
SMAXγ , which we will call its best solution. In particular,
the instance of STREAM corresponding to guess σ has best

Algorithm 3 SINGLE

Input: ε, and B
Output: S ⊆ U

1: S[(1 + ε)i, j]← ∅ ∀i ∈ Z, j ∈ {0, ..., 2/ε}
2: L← −1
3: for u received from stream do
4: if f(u)/w(u) > ετ/(2L) then
5: L← ετw(u)/(2f(u))
6: end if
7: for σ in {(1 + ε)i : i ∈ Z, L ≤ (1 + ε)i ≤ B} do
8: if w(S[σ, i]) < 2σ/ε ∀i and w(u) ≤ σ then
9: if ∃i s.t. ∆f(S[σ, i], u) ≥ w(u)ετ/(2σ) then

10: S[σ, i]← S[σ, i] ∪ {u}
11: end if
12: end if
13: S[σ, 0]←UNCONSMAXγ (∪2/εi=1Sσ,i)
14: if max{f(S[σ, i]) : i ∈ {0, ..., 2/ε}} ≥ γ(1 −

ε)τ} then
15: B ← σ
16: end if
17: end for
18: end for
19: return argmax{f(S[B, i]) : i ∈ {0, ..., 2/ε}}

solution S[σ, 0]. A lower bound on the guesses ofOPT , L,
is updated lazily as SINGLE runs. In particular, if element
u arrives from the stream such that f(u)/w(u) > ετ/(2L),
then L is set to be ετw(u)/(2f(u)). The guesses of OPT
are {(1 + ε)i : i ∈ Z, L ≤ (1 + ε)i ≤ B}. An upper bound
on the guesses of OPT , B, is initially given as an input.
In the case of streaming algorithms for monotone SC, an
upper bound is also assumed as input (Norouzi-Fard et al.,
2016). B is updated to be the smallest guess of OPT for
which the corresponding parallel instance of stream has a
best solutionX such that f(X) ≥ γ(1−ε)τ , i.e.B is main-
tained such that there does not exist a guess σ such that
σ < B and max{f(S[σ, i]) : i ∈ 2/ε} ≥ γ(1 − ε)τ . Any
instances of STREAM corresponding to guesses of OPT
above the upper bound are assumed to be discarded. Once
SINGLE has read in U from the stream, the best solution of
the instance of STREAM corresponding to B is returned as
a solution.

3.3.1 Theoretical Guarantees of SINGLE

The theoretical guarantees of SINGLE are presented in The-
orem 3. Items (iv) and (v) are competitive guarantees in the
sense that they are with respect to the optimal solution over
the set of elements seen so far in the stream. In contrast,
items (ii) and (iii) are guarantees in terms of the input up-
per bound on OPT , B, which could be quite bad. Items
(iv) and (v) are stronger than items (ii) and (iii), provided
the conditions of the former are met.

Relative to MULTI, SINGLE makes many more calls to UN-

Victoria G. Crawford

CONSMAXγ . Therefore if a linear time algorithm is used
for UNCONSMAXγ , SINGLE potentially makes Ω(n2) total
queries to f . However, a randomly chosen set is a constant
time randomized approximation algorithm for USM (Feige
et al., 2011), but the approximation guarantee is only 1/4.
Despite this, such an algorithm for UNCONSMAXγ may be
practical if we seek to minimize runtime. The proof of The-
orem 3 can be found in the appendix.

Theorem 3. Suppose that SINGLE is run for an instance of
SC, and input B ≥ OPT . Define the following two func-
tions:

m(x) = (1 + ε)(4/ε2 + 1)
x ln (2x/(ετξ))

ln(1 + ε)

q(x) =
ln (2x/(ετξ))

ln(1 + ε)

(
2

ε
+
T ((4/ε2 + 1)x)

wmin

)
where ξ = minu∈U w(u)/f({u}), and T (m) is the num-
ber of queries of UNCONSMAXγ on an input set of size m.
Then, SINGLE:

(i) Returns a set S such that f(S) ≥ γ(1 − ε)τ and
w(S) ≤ (1 + ε)(4/ε2 + 1)OPT ;

(ii) The total cost of all elements stored at once is at most
m(B);

(iii) Makes at most q(B) queries of f per arriving element
of the stream.

Let u1, ..., un be the order that the elements of U arrive in,
and Ui = {u1, ..., ui}. If the instance SC(Ui, f, w, τ) is
feasible and has optimal cost OPTi, then from the end of
the ith iteration of the loop in SINGLE onwards:

(iv) The total cost of all elements stored at once is at most
m(OPTi);

(v) At most q(OPTi) queries of f are made per arriving
element of the stream.

Proof. Consider an alternate version of STREAM where in-
stead of running UNCONSMAXγ on ∪Si after receiving all
elements in the stream (Line 10), UNCONSMAXγ is run at
the end of each iteration of the loop on Line 2 of STREAM.
Notice that this does not change any of the properties of
STREAM detailed in Lemmas 1 and 2 except the number
of queries to f . From this point on in the proof, we will
consider this alternative version of STREAM.

Consider the value of B at the end of some iteration of the
for loop on Line 3 of SINGLE. It is now shown that without
loss of generality, one can assume that up to this point SIN-
GLE is running STREAM in parallel with guesses of OPT
{(1 + ε)i : i ∈ Z, (1 + ε)i ≤ B}. B is only decreasing
throughout STREAM, and so changes in B only result in
removing instances of STREAM, not adding them. There-
fore we only need to show that guesses of OPT smaller
than B are w.l.o.g. running in parallel.

Consider any (1+ε)i ≤ B. Consider any previous iteration
of the loop on Line 3 such that for the first time an u has
arrived such that ∆f(∅, u) ≥ w(u)ετ/(2(1 + ε)i) (i.e. the
first time an element should be added to S[(1 + ε)i, j] for
some j ∈ {1, ..., 2/ε}), and we are at the beginning of the
loop on Line 3. If L > (1 + ε)i, then

f(u)/w(u) ≥ ∆f(∅, u)/w(u)

≥ ετ/(2(1 + ε)i)

> ετ/(2L).

Therefore the if statement on Line 4 will be true, L will be
reset to ετw(u)/(2f(u)), and (1 + ε)i added to the guesses
of OPT since

(1 + ε)i ≥ w(u)ετ/(2∆f(∅, x))

≥ L.

Item (i) is now proven. By Lemma 2, if there exists a run
of STREAM with a guess of OPT that is at least as big,
then the set returned by STREAM has f value at least γ(1−
ε)τ . Therefore by the end of SINGLE, any run of STREAM
corresponding to a guess of OPT that is at least as big
as OPT must have triggered the if statement on Line 14.
Initially B ≥ OPT , and only decreases if the if statement
on Line 14 is true, it must be that the solution S of SINGLE
has f(S) ≥ γ(1 − ε)τ . In addition, the above discussion
implies that B is no greater than (1 + ε)OPT at the end of
SINGLE, then Lemma 1 implies the remaining part of item
(i).

Item (ii) is now proven. By Lemma 1, the total cost of all
elements stored by each run of STREAM with input (ε, σ)
is (4/ε2 + 1)σ, which is bounded above by (4/ε2 + 1)B.
In addition, L ≥ ετξ/2, and therefore there are at most
ln(2B/(ετξ))/ ln(1+ε) parallel instances of STREAM run-
ning in SINGLE. This proves item (iii).

Item (iii) is now proven. Since B is the biggest guess of
OPT , the alternative versions of STREAM that SINGLE is
running makes at most 2/ε+T ((4/ε2 +1)OPT/wmin) ≤
2/ε + T ((4/ε2 + 1)B/wmin) queries to f per element,
which can be proven using the same argument as in Lemma
1. Combining this with the fact that there are at most
ln(2B/(ετξ))/ ln(1+ε) parallel instances of STREAM run-
ning proves item (iii).

Finally, item (iv) and (v) are proven. Suppose the iteration
of the for loop on Line 3 corresponding to element ui is
complete. By a nearly identical argument to that used for
item (i), one can see that the largest guess of OPT is no
bigger than (1 + ε)OPTi from this point on. Therefore the
largest memory for any run of STREAM from this point on
is (1 + ε)(4/ε2 + 1)OPTi, and any run will make at most
2/ε + T ((4/ε2 + 1)OPTi/wmin) queries per element re-
ceived, which can be proven using the same argument as
in Lemma 1. There are at most ln(2OPTi/(ετξ)) parallel

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

instances of STREAM running in SINGLE. Altogether this
implies items (iv) and (v).

3.4 The Algorithm SINGLEMAX

A related optimization problem to SC is Knapsack Con-
strained Submodular Maximization (KCSM), defined as
follows:
Problem 2 (KCSM). Define submodular f : 2U → R≥0
over subsets of the universe U of size n, and non-negative
cost function w : U → R≥0. Given budget κ, find

argmaxX⊆U

{
f(X) :

∑
x∈X

w(x) ≤ κ

}
.

A bicriteria approximation algorithm that uses STREAM as
a subroutine, SINGLEMAX, can also be used for KCSM in
order to get an arbitrarily close to 1/2 approximation guar-
antee (but not necessarily feasible). A description of SIN-
GLEMAX and its theoretical guarantees are presented in
this section, but details are relegated to the appendix. Note
that the algorithm described here is not the same as con-
verting algorithms for SC to ones for KCSM as described
by Iyer and Bilmes (2013).

In KCSM, the f value of the optimal solution is unknown.
SINGLEMAX runs a variant of STREAM in parallel for
guesses of the f value of the optimal solution. Because
the cost of the optimal solution is known to be at most κ
in KCSM, the total stored cost at once for every instance
of STREAM is bounded by (4/ε2 + 1)κ (see Lemma 1).
For this reason, we avoid difficulties of having too high to-
tal stored cost as we did in SINGLE. SINGLEMAX lazily
keeps track of an upper and lower bound for the f value
of the optimal solution as elements arrive from the stream
in a similar manner as the lower bound L was updated in
SINGLE. Pseudocode for SINGLEMAX can be found in the
appendix.

3.4.1 Theoretical Guarantees of SINGLEMAX

We now present the theoretical guarantees of the algorithm
SINGLEMAX for KCSM. The proof of Theorem 4 can be
found in the appendix.
Theorem 4. Suppose that SINGLEMAX is run for an in-
stance of KCSM: Then:

(i) The set S returned by SINGLEMAX satisfies f(S) ≥
γ(1− ε)OPT and w(S) ≤ (1 + ε)(4/ε2 + 1)κ;

(ii) The total cost of all elements needing to be stored at
once is at most (4/ε2 + 1) ln(2κ/(wminε))/ ln(1 +
ε)κ;

(iii) And at most ln(2κ/(wminε))(2n/ε + T ((4/ε2 +
1)κ))/ ln(1 + ε) queries of f are made in total where
T (m) is the number of queries of UNCONSMAXγ on
an input set of size m.

4 EXPERIMENTAL RESULTS

In this section, the algorithms SINGLE and MULTI are eval-
uated on instances of non-monotone submodular cover in-
volving diverse summarization (Tschiatschek et al., 2014)
and graph cut (Balkanski et al., 2018) functions. Additional
experiments can be found in the appendix.

4.1 Experimental Setup

The experimental setup is briefly described here, additional
details can be found in the appendix. The graph cut in-
stances presented are on the ca-AstroPh (n = 18772,
198110 edges) networks from the SNAP large network col-
lection (Leskovec and Krevl, 2014). The cost of each ele-
ment is uniformly set as 1. The diverse summarization in-
stances are on a subset of tagged webpages from the de-
licious.com website (Soleimani and Miller, 2016) (n =
50000). The costs of the websites from the delicious.com
website are uniform. Experiments involving non-uniform
cost can be found in the appendix.

MULTI and SINGLE require an algorithm for USM as a sub-
routine. MULTI uses repeated runs of the randomized dou-
ble greedy algorithm of Buchbinder et al. (2015), which re-
sults in O(n ln(n)) total queries of f . SINGLE repeatedly
samples a random set (Feige et al., 2011), which also results
in O(n ln(n)) total queries of f . An experimental compar-
ison of using different USM algorithms as subroutines for
MULTI and SINGLE can be found in the appendix.

The method proposed by Iyer and Bilmes (2013), described
in Section 2, is used in order to convert algorithms for
KCSM with uniform cost to algorithms for SC for com-
parison to MULTI and SINGLE. The first algorithm com-
pared is the stochastic greedy algorithm of Buchbinder
et al. (2017) with parameter 0.1, which results in a nearly
(1 + δ, 1/e)-bicriteria approximation algorithm for SC in
O(n ln(n)/ ln(1 + δ)) queries of f . The second algorithm
compared is the streaming algorithm of Alaluf et al. (2022)
with stochastic greedy algorithm as its offline subroutine,
which results in a nearly (1 + δ, 0.27)-bicriteria approxi-
mation algorithm for SC with at most O(ln(n)/ ln(1 + δ))
passes through U , storing elements of total cost at most
O(OPT) at a time, and making O(n ln(n)/ ln(1 + δ))
queries of f .

4.2 Experimental Results

The experimental results are presented in Figure 3. In every
experiment, the double greedy USM algorithm of Buch-
binder et al. (2015) (“DG”) is initially run as a baseline
comparison. Let the cost, f value, and number of queries
of DG be c0, f0, and q0 respectively. For all of the plots,
the f values on the y-axis are normalized by f0, the cost
c values by c0, the number of queries by q0, and the max
memory by n. Notice that the total cost in memory at one

Victoria G. Crawford

(a) delicious50k f (b) delicious50k c (c) delicious50k queries (d) delicious50k memory

(e) astro f (f) astro c (g) astro queries (h) astro memory

Figure 3: The experimental results of running the algorithms on instances of diverse data summarization on the delicious
(“delicious50k”) dataset, and instances of graph cut on the ca-AstroPh (“astro”) dataset. MULTI using the double greedy
algorithm of Buchbinder et al. (2015) is referred to as “MULTI-DG”. SINGLE using random sets as described by Feige
et al. (2011) is referred to as “SINGLE-RS”. The SC algorithms using the stochastic greedy algorithm of Buchbinder
et al. (2017) and the streaming algorithm of Alaluf et al. (2022) are referred to as “STOCH-GREEDY” and “ALALUF”
respectively. All x and y axes are normalized as described in Section 4.2.

time of the algorithm is n.

In the first set of experiments, MULTI and SINGLE are run
on the delicious50k dataset with input τ = f0 and vary-
ing ε (Figures 3(a) to 3(d)). In Figure 3(a), one can see that
the f values of the solutions returned by each algorithm
are close to their theoretical bounds. This is because the
guaranteed lower bound on f of γ(1− ε)τ (where γ is 1/2
in MULTI and 1/4 in SINGLE) is used explicitly in both
MULTI and SINGLE in order to decide which solutions to
choose. In addition, one can see in Figures 3(b) and 3(d)
that MULTI and SINGLE substantially improve on the base-
line DG when it comes to the solution cost c, as well as the
maximum cost of all elements held in memory at once. On
the other hand, MULTI and SINGLE make more queries to
f compared to DG as demonstrated in Figure 3(c). SINGLE
having lower f and cost c values compared to MULTI is
a result of the different subroutines used to solve USM; if
they used the same one their solutions would be expected
to be about the same. This is demonstrated in the experi-
ments in the appendix. As seen in Figure 3(d), SINGLE has
higher maximum total cost of all elements held in memory
at once than MULTI, which is because SINGLE may have
instances of STREAM corresponding to too high of guesses
of OPT as described in Section 3.3. SINGLE makes few
queries to f relative to MULTI, but this is because it is using
a constant time subroutine for USM, if SINGLE used DG it
would make significantly more queries to f compared to
MULTI, as shown in the experiments in the appendix.

In the second set of experiments, MULTI and SINGLE are
run on the ca-AstroPh dataset with varying input τ (Figures
3(e) to 3(h)). Figure 3(e) demonstrates that MULTI reaches
the highest f values, followed by the cover algorithm us-
ing the stochastic greedy algorithm of (Buchbinder et al.,
2017) (“SG”), then the cover algorithm using the streaming
algorithm of Alaluf et al. (2022) (“AL”), and then finally
SINGLE. This is the order of their theoretical guarantees on
f , with the exception of AL and SINGLE being reversed.
In addition, the algorithms all perform close to their worst
case theoretical guarantees on f as seen in the first set of
experiments. Again, both these patterns are to be expected
because the algorithms all explicitly choose their solutions
based on their lower bound. Heuristic versions of the algo-
rithms where the lower bound is assumed to be the same
for all of them are compared in the appendix. In Figure
3(f), one can see that MULTI tends to produce a solution
of higher cost compared to SG and AL, which is in line
with their theoretical guarantees. However, SINGLE pro-
duces the lowest cost solution of all despite having the same
theoretical bound on cost as MULTI. In Figure 3(g), MULTI
and SINGLE make relatively low total number of queries to
f . SG is not included in Figure 3(h) since it requires the
entire ground set in memory. Figure 3(h) demonstrates that
MULTI has the lowest maximum total stored cost in mem-
ory at once, and despite having the highest SINGLE is rea-
sonably close to the other two.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

References

N. Alaluf, A. Ene, M. Feldman, H. L. Nguyen, and A. Suh.
An optimal streaming algorithm for submodular maxi-
mization with a cardinality constraint. Mathematics of
Operations Research, 47(4):2667–2690, 2022.

E. Balkanski, A. Breuer, and Y. Singer. Non-monotone sub-
modular maximization in exponentially fewer iterations.
Advances in Neural Information Processing Systems, 31,
2018.

N. Buchbinder and M. Feldman. Deterministic Algorithms
for Submodular Maximization. ACM Transactions on
Algorithms, 14(3), 2018a.

N. Buchbinder and M. Feldman. Deterministic algorithms
for submodular maximization problems. ACM Transac-
tions on Algorithms (TALG), 14(3):1–20, 2018b.

N. Buchbinder and M. Feldman. Constrained submodular
maximization via a nonsymmetric technique. Mathemat-
ics of Operations Research, 44(3):988–1005, 2019.

N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz.
Submodular maximization with cardinality constraints.
In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 1433–1452.
SIAM, 2014.

N. Buchbinder, M. Feldman, J. Seffi, and R. Schwartz. A
tight linear time (1/2)-approximation for unconstrained
submodular maximization. SIAM Journal on Comput-
ing, 44(5):1384–1402, 2015.

N. Buchbinder, M. Feldman, and R. Schwartz. Comparing
apples and oranges: Query trade-off in submodular max-
imization. Mathematics of Operations Research, 42(2):
308–329, 2017.

A. Chakrabarti and S. Kale. Submodular maximization
meets streaming: Matchings, matroids, and more. Math-
ematical Programming, 154(1):225–247, 2015.

V. Crawford, A. Kuhnle, and M. Thai. Submodular cost
submodular cover with an approximate oracle. In Inter-
national Conference on Machine Learning, pages 1426–
1435, 2019.

A. Das and D. Kempe. Approximate submodularity and its
applications: Subset selection, sparse approximation and
dictionary selection. The Journal of Machine Learning
Research, 19(1):74–107, 2018.

P. Duygulu, K. Barnard, J. F. de Freitas, and D. A. Forsyth.
Object recognition as machine translation: Learning a
lexicon for a fixed image vocabulary. In European con-
ference on computer vision, pages 97–112. Springer,
2002.

U. Feige, V. S. Mirrokni, and J. Vondrák. Maximizing non-
monotone submodular functions. SIAM Journal on Com-
puting, 40(4):1133–1153, 2011.

S. O. Gharan and J. Vondrák. Submodular maximization
by simulated annealing. In Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Al-
gorithms, pages 1098–1116. SIAM, 2011.

J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal
map inference for determinantal point processes. Ad-
vances in Neural Information Processing Systems, 25,
2012.

A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Con-
strained non-monotone submodular maximization: Of-
fline and secretary algorithms. In International Work-
shop on Internet and Network Economics, pages 246–
257. Springer, 2010.

J. Hartline, V. Mirrokni, and M. Sundararajan. Optimal
marketing strategies over social networks. In Proceed-
ings of the 17th international conference on World Wide
Web, pages 189–198, 2008.

R. K. Iyer and J. A. Bilmes. Submodular optimization with
submodular cover and submodular knapsack constraints.
In Advances in Neural Information Processing Systems,
pages 2436–2444, 2013.

D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the
spread of influence through a social network. In Pro-
ceedings of the ninth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
137–146. ACM, 2003.

J. Leskovec and A. Krevl. SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, June
2014.

B. Mirzasoleiman, A. Karbasi, A. Badanidiyuru, and
A. Krause. Distributed submodular cover: Succinctly
summarizing massive data. In Advances in Neural In-
formation Processing Systems, pages 2881–2889, 2015.

B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi.
Fast distributed submodular cover: Public-private data
summarization. In Advances in Neural Information Pro-
cessing Systems, pages 3594–3602, 2016.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An anal-
ysis of approximations for maximizing submodular set
functions—i. Mathematical programming, 14(1):265–
294, 1978.

A. Norouzi-Fard, A. Bazzi, M. El Halabi, I. Bogunovic,
Y.-P. Hsieh, and V. Cevher. An efficient streaming algo-
rithm for the submodular cover problem. In Proceedings
of the 30th International Conference on Neural Informa-
tion Processing Systems, pages 4500–4508, 2016.

H. Soleimani and D. J. Miller. Semi-supervised multi-label
topic models for document classification and sentence
labeling. In Proceedings of the 25th ACM international
on conference on information and knowledge manage-
ment, pages 105–114, 2016.

Victoria G. Crawford

S. Tschiatschek, R. K. Iyer, H. Wei, and J. A. Bilmes.
Learning mixtures of submodular functions for image
collection summarization. Advances in neural informa-
tion processing systems, 27, 2014.

P.-J. Wan, D.-Z. Du, P. Pardalos, and W. Wu. Greedy ap-
proximations for minimum submodular cover with sub-
modular cost. Computational Optimization and Applica-
tions, 45(2):463–474, 2010.

L. A. Wolsey. An analysis of the greedy algorithm for the
submodular set covering problem. Combinatorica, 2(4):
385–393, 1982.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

A ADDITIONAL CONTENT TO SECTION 2

In this section, we include a more thorough comparison with the algorithm of Alaluf et al. (2022). Alaluf et al. studied
the problem of non-monotone submodular maximization subject to a cardinality constraint κ, which is the special case of
KCSM where the cost w is uniform, in the streaming setting. Their algorithm uses an offline α-approximation algorithm
for non-monotone submodular maximization as a subroutine, and finds an α/(1 + α)− ε approximate solution in a single
pass with at most O(κ/ε2) elements stored at once, and makes at most O((log(k) + log(1 + α))/ε2) queries of f . Their
algorithm works by making a pass through U and filtering down the ground set, where O(1/ε) disjoint sets are maintained,
in a related way to STREAM. Finally, they run their α-approximation algorithm for cardinality constrained submodular
maximization on the union of the disjoint sets. MULTI, SINGLE, and SINGLEMAX are different than the algorithm of
Alaluf et al. in a number of ways: (1) MULTI and SINGLE are for SC, a different optimization problem; (2) Alaluf et al. did
not have to deal with the same difficulties as MULTI and SINGLE in order to maintain low memory because the cost of the
optimal solution is known to be κ; (3) The final algorithm on the pooled sets for STREAM is an algorithm for unconstrained
submodular maximization, not cardinality constrained submodular maximization as in Alaluf et al.; (4) Alaluf et al. only
considers uniform cost; (5) The conditions STREAM uses to store an element is different from what is used by Alaluf et al..

B ADDITIONAL CONTENT TO SECTION 3

Proofs and helper lemmas which were omitted from the section Algorithms and Theoretical Guarantees are presented here.
In addition, an example of what makes a single pass algorithm difficult to develop for SC is presented. Finally, a more
thorough description of the algorithms SINGLE and SINGLEMAX are included.

B.1 Omitted Lemmas and Proofs

The following is Theorem 1, the proof of which was omitted in Section 3. Theorem 1 describes the limitations of how
well we can find feasible solutions for SC in polynomial time, and is a clear result from the fact that USM cannot be
approximated in polynomial time better than 1/2 assuming the value query model (Feige et al., 2011).

Theorem 1. For any ε > 0, there are instances of nonnegative symmetric submodular cover such that there is no (adaptive,
possibly randomized) algorithm using fewer than Ω(ln(1 + ε)eε

2n/ ln(n)) queries that always finds a solution of expected
f value at least (1/2 + ε)τ .

Proof. Suppose such an algorithm existed, and let it be called A. Then a new algorithm for unconstrained submodular
maximization is defined as follows: A is run on instance SC(U, f, (1 + ε)i) for every i ∈ Z such that maxu∈U f({u}) ≤
(1 + ε)i ≤ nmaxu∈U f({u}), and the solution with the highest value of f is returned. Notice this results in running A
ln(n)/ ln(1 + ε) times. Because OPT is in the above range, there exists some i such that (1 + ε)i−1 ≤ OPT ≤ (1 + ε)i.
OnceA is run on SC(U, f, (1 + ε)i), by assumption it will return X such that E[f(X)] ≥ (1/2 + ε)τ . This contradicts the
result of Feige et al..

Lemma 2 relied on Claim 1 in order to proven. Here, we present a proof of Claim 1, but first we will need a result from
Feige et al. (2011).

Lemma 3. (Lemma 2.2 from Feige et al. (2011)) Let g : 2U → R≥0 be a non-negative submodular function. Denote by
A(p) a random subset of A where each element appears with probability at most p (not necessarily independently). Then
E[g(A(p))] ≥ (1− p)g(∅).

Now we can prove Claim 1 using Lemma 3.

Claim 1. Let A1, ..., Am ⊆ U be disjoint, and B ⊆ U . Then there exists i ∈ {1, ...,m} such that f(Ai ∪ B) ≥
(1− 1/m)f(B).

Proof. Define g(X) = f(B∪X). Then g is a non-negative submodular function. Consider choosingA uniformly randomly

Victoria G. Crawford

from the disjoint sets A1, ..., Am. Then any element of U has probability at most 1/m of being in A. Then

1

m

m∑
i=1

f(B ∪Ai) =
1

m

m∑
i=1

g(Ai)

= E[g(A)]

(a)

≥
(

1− 1

m

)
g(∅)

=

(
1− 1

m

)
f(B)

where (a) is a result from Feige et al. (2011) which is stated as Lemma 3 in the appendix. Therefore there must exist some
i ∈ {1, ...,m} such that f(Ai ∪B) ≥ (1− 1/m)f(B).

B.2 Limitations of Single Pass Algorithms for SC

To see the difficulty with making a single pass through U , suppose we have some single pass streaming algorithm for SC
that produces a solution with constraint approximation β. Consider two instances of SC with uniform cost w defined as
follows: (i) SC ({u1, ..., un}, f1, w, τ) where f1 is modular1 and f(ui) = τ/n for all i; (ii) SC ({u1, ..., un}, f2, w, τ)
where f2 is modular and f(ui) = τ/n for all i 6= n and f(un) = τ . Suppose the algorithm receives the universe in order
u1, ..., un. Then because the returned solution has constraint value at least βn, in instance (i) the algorithm must store
at least βn − 1 elements before reading element un. On the other hand, instances (i) and (ii) are indistinguishable up to
element un, therefore for instance (ii) the algorithm also stores at least βn− 1 elements. However, OPT = 1 in the latter
case, and therefore this stored memory is very large compared to OPT .

B.2.1 The Algorithm SINGLEMAX

The algorithm SINGLEMAX was presented for the problem KCSM in Section 3.4. In KCSM, the f value of the optimal
solution is unknown (in contrast, in SC it is known to be τ). KCSM runs versions of STREAM in parallel where instead
of input OPT , OPT is fixed at κ, and instead the value of τ is guessed. In particular, the set {(1 + ε)i : i ∈ Z,m ≤
(1 + ε)i ≤ 2mκ/ε} are the guesses of OPT Because the cost of the optimal solution is known to be at most κ in KCSM,
the total stored cost at once for every instance of STREAM is bounded by (4/ε2 + 1)κ (see Lemma 1). For this reason, we
avoid difficulties of having too high total stored cost as we did in SINGLE. SINGLEMAX lazily keeps track of an upper and
lower bound for the f value of the optimal solution as elements arrive from the stream in a similar manner as the lower
bound L was updated in SINGLE. Pseudocode for SINGLEMAX is presented in Algorithm 4. In addition, the theoretical
guarantees of SINGLEMAX, stated in Theorem 4 of the main content, are proven below.

Theorem 4. Suppose that SINGLEMAX is run for an instance of KCSM: Then:
(i) The set S returned by SINGLEMAX satisfies f(S) ≥ γ(1− ε)OPT and w(S) ≤ (1 + ε)(4/ε2 + 1)κ;

(ii) The total cost of all elements needing to be stored at once is at most (4/ε2 + 1) ln(2κ/(wminε))/ ln(1 + ε)κ;
(iii) And at most ln(2κ/(wminε))(2n/ε + T ((4/ε2 + 1)κ))/ ln(1 + ε) queries of f are made in total where T (m) is the

number of queries of UNCONSMAXγ on an input set of size m.

Proof. In order to prove Theorem 4, a new version of Lemma 2 is needed. The following Lemma is proved in as essentially
identical way to Lemma 2:

Lemma 4. Suppose that STREAM is run with input ε ∈ (0, 1), and τ ≥ OPT . Let S be the set returned by STREAM. Then
f(S) ≥ γ(1− ε)OPT .

Similar to SINGLE, SINGLEMAX is essentially running a bunch of instances of STREAM in parallel as U is read in. In
particular, the set {(1 + ε)i : i ∈ Z,m ≤ (1 + ε)i ≤ 2mκ/ε} are the guesses of OPT , and there is an instance of STREAM
corresponding to each guess. For each guess τ , Sτ,0, ..., Sτ,2/ε in SINGLE correspond to the sets S0, ..., S2/ε in STREAM.

Define q ∈ Z to be the unique value such that

(1 + ε)q ≤ OPT < (1 + ε)q+1.

1f is modular if f(X) =
∑
x∈X f(x) for all X ⊆ U .

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

Algorithm 4 SINGLEMAX

Input: Value oracles to f and w, κ, and ε
Output: S ⊆ U

1: S[(1 + ε)i, j]← ∅ ∀i ∈ Z, j ∈ {0, ..., 2/ε}
2: for x received from stream do
3: if f({x})/w(x) > m then
4: m← f({x})/w(x)
5: end if
6: for τ in {(1 + ε)i : i ∈ Z,m ≤ (1 + ε)i ≤ 2mκ/ε} do
7: if w(S[τ, i]) < 2κ/ε ∀i and w(x) ≤ κ then
8: if ∃i s.t. ∆f(S[τ, i], x) ≥ w(x)ετ/(2κ) then
9: S[τ, i]← S[τ, i] ∪ {x}

10: end if
11: end if
12: end for
13: end for
14: for τ in T do
15: S[τ, 0]←UNCONSMAXγ (∪2/εi=1S[τ, i])
16: end for
17: return argmax{f(S[τ, i]) : τ ∈ T, i ∈ {0, ..., 2/ε}}

Then we may assume without loss of generality that there is an instance of STREAM corresponding to (1 + ε)q as a guess
of OPT for the duration of SINGLEMAX, as explained as follows. First of all, clearly (1 + ε)q ≥ max{f({x}) : x ∈ U}
and therefore is at least the smallest guess throughout the duration of SINGLEMAX. On the other hand, suppose that for
the first time we have received from the stream an element x such that ∆f(∅, x) ≥ εw(x)(1 + ε)q/(2κ) (i.e. the first time
an element x should be added to S(1+ε)q,i for some i ∈ {1, ..., 2/ε}). If (1 + ε)q > 2mκ/ε at the beginning of the for loop
then

f({x})/w(x)
(a)

≥ ∆f(∅, x)/w(x)

≥ ε(1 + ε)q/(2κ)

> m

where (a) is because f(∅) ≥ 0. Therefore the if statement will be true, m will be re-assigned as f({x})/w(x), and (1 + ε)q

added to the guess of OPT since

(1 + ε)q ≤ 2∆f(∅, x)κ/(w(x)ε)

≤ 2f({x})κ/(w(x)ε)

= 2mκ/ε

and will remain in the guesses until the end.

In light of the above, items (i), (ii), and (iii) follow by an analogous argument as in Theorem 3.

C ADDITIONAL CONTENT TO SECTION 4

The experimental results here are a superset of those included in the main paper. In addition, additional details about the
applications and setup are included here.

C.1 Applications of SC

In sections 4, the algorithms SINGLE and MULTI are evaluated on instances of non-monotone submodular cover involving
graph cut (Balkanski et al., 2018) and diverse summarization (Tschiatschek et al., 2014) functions. Definitions of both of
these applications are now provided.

Victoria G. Crawford

The first application considered is SC where f is a graph cut function, which is a submodular but not necessarily monotone
function. Graph cut functions have frequently been used as applications of non-monotone submodular maximization. A
graph cut function takes in a set of vertices in a graph X and computes the total number of edges between X and U \X .
The problem definition is defined as follows.

Definition 1 (Graph cut). Let G = (V,E) be a graph, and w : E → R≥0 be a function that gives a weight for every edge
in the graph. Define f : 2U → R≥0 to be a function that takes X ⊆ V to the total weight of edges between X and V \X ,
i.e.

f(X) =
∑

x∈X,y/∈X

w(x, y).

Then f is submodular and non-negative, but is not necessarily monotone.

The second application considered is SC where f is a diverse data summarization function, which is also a submodular but
not necessarily monotone function. A diverse data summarization function takes in a subset X of a data set U and returns
a score of how effective X summarizes U , while penalizing for similarity between the elements of X . Variants of diverse
data summarization are also a popular application for non-monotone submodular maximization. The particular formulation
used here is based on tagged data, and is defined as follows.

Definition 2 (Diverse summarization of a tagged data set). Suppose the data points in U are each tagged by a subset of
tags T via the function t : U → 2T . E.g. if U is a set of images then T may be words describing each image. Given
parameter γ ≥ 0, define f : 2U → R≥0 to be

f(X) = | ∪x∈X t(X)| − γ
∑

x∈X,y∈X

|t(x) ∪ t(y)|
|t(x) ∩ t(y)|

.

The first term in f(X) is the total number of tags covered by a summaryX , while the second term is a penalty to encourage
diversity in the summary (using the Jaccard similarity). f is submodular, but not necessarily monotone or non-negative. If
γ is sufficiently small, then f is non-negative.

For the experiments in this paper, we set

γ = | ∪x∈U t(X)|/
∑

x∈U,y∈U

|t(x) ∪ t(y)|
|t(x) ∩ t(y)|

.

C.2 Experimental Setup

The graph cut instances presented here are on the ca-AstroPh (n = 18772, 198110 edges), com-Amazon (n = 334863,
925872 edges), and email-Enron (n = 36692, 183831 edges) networks from the SNAP large network collection (Leskovec
and Krevl, 2014). In all of the cut instances the cost of each element is uniformly set as 1. The diverse summarization
instances are on the Corel5k set of images (Duygulu et al., 2002) (n = 5000), and a subset of tagged webpages from the
delicious.com website (Soleimani and Miller, 2016) (n = 5000 or n = 50000 depending on the instance) The smaller
instances are used in some experiments because some the comparison algorithms cannot run on the larger datasets within
a couple of hours. Specifically, when the local search algorithm of Feige et al. (2011) is used as a subroutine for USM then
SINGLE takes too long to run. In addition, the cover algorithm by using the stochastic greedy algorithm of Buchbinder
et al. (2017) for submodular maximization along with the approach of Iyer and Bilmes (2013) takes too long to run. The
Corel5k images are each losslessly compressed, and their cost is assigned to be their size in kB after compression. The
costs of the websites from the delicious.com website are uniform.

Several USM algorithms are run as subroutines of SINGLE and MULTI: (i) Repeated runs of the randomized double greedy
algorithm of Buchbinder et al. (2015) (“DG”); (ii) The local search algorithm of Feige et al. (2011) with parameter 0.25
(“LS”), which is a deterministic 1/3 approximation for USM, and on a set of size r makes O(r3 ln(r)) queries to f ; (iii)
Repeatedly returning a random set, as described by Feige et al. (2011) (“RS”). The randomized algorithms for USM (i and
iii) are repeated 50 times and the best solution is chosen.

The comparison algorithms using the method of Iyer and Bilmes (2013) described in the main text are only for uniform
cost. For the Corel5k dataset, which has non-uniform cost, we use a modified version of each algorithm where the marginal
gain function ∆f(X,x) is replaced by ∆f(X,x)/w(x). This modified version does not have any proven approximation
guarantee.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

C.3 Additional Experimental Results

The additional experimental results are presented in Figures 4 to 8. In every experiment, the double greedy USM algorithm
of Buchbinder et al. (2015) (“DG”) is initially run as a baseline comparison. Let the cost, f value, and number of queries
of DG be c0, f0, and q0 respectively. For all of the plots, the f values on the y-axis are normalized by f0, the c values by
c0, the threshold τ by f0, the number of queries by q0, and the max memory by n. Notice that the total cost in memory at
one time of the algorithm is n.

The first set of experiments compare different USM algorithms used as a subroutine in STREAM. The results for MULTI are
in Figure 4, and the results for SINGLE are in Figure 5. One can see that no matter the algorithm used for USM, MULTI and
SINGLE can substantially improve on the unconstrained algorithm DG when it comes to cost (c) while reaching reasonably
high values of f . As observed in Section 4 in the main paper, The f values of the solutions returned are close to their
theoretical bounds. When DG is the subroutine for USM then the highest f value is returned, and RS returns the lowest
f value, as expected based on their approximation guarantees. Surprisingly, for MULTI the DG subroutine results in the
highest total number of queries to f despite LS being the algorithm with the highest theoretical run time. This is because
MULTI is making a lot more passes to reach the higher approximation guarantee of DG relative to LS. This results in more
total queries to f since each pass is O(n/ε) queries even before any USM subroutine is used. Any of the subroutines are
practical for MULTI in terms of number of queries. In all other experiments, we set DG as the subroutine for MULTI since
it gives the highest f value. In contrast, both DG and LS are relatively impractical in terms of the number of queries for
SINGLE since SINGLE needs to run USM so many times, especially as ε decreases. Therefore in all other experiments we
use RS as the subroutine for SINGLE.

In the second set of experiments, MULTI and SINGLE are run on the instances of diverse data summarization on the Corel5k
(“corel”) and delicious (“delicious50k”) dataset with n = 50000, and instances of graph cut on the ca-AstroPh (“astro”)
and com-Amazon (“amazon”) datasets. with input τ = f0 and varying ε (Figure 6). These experiments are just like those
in Figures 3(a) to 3(d) of the main paper, and are presented here to show that the same patterns hold for additional datasets.
Similarly, in Figure 7, MULTI and SINGLE are run with varying input τ and the results are similar to those featured in
Figures 3(e) to 3(h) in the main paper.

Finally, in Figure 8 the same experiments as in Figure 7 are run except the algorithms are run as heuristics where the
approximation guarantees are assumed to be 1. In particular, MULTI and SINGLE both run STREAM where γ = 1, and
when the approach of Iyer and Bilmes (2013) is used the submodular maximization subroutines are run until a solution is
found with f value at least (1−ε)τ . The purpose of these experiments is to compare the algorithms without explicitly using
their known approximation guarantees, since that was found to heavily influence the f values of the solutions in Figure 7
as discussed in the main text. The differences in f values between the algorithms are now practically eliminated, and the
difference in cost values greatly lessened although ALALUF and SG still find relatively lower cost solutions. However, the
differences in memory and queries to f between the algorithms are increased. This is because the approach of Iyer and
Bilmes (2013) requires running ALALUF and SG many more times to reach the higher threshold for f . In this setting,
ALALUF and SG are not practical because of their large numbers of queries compared to MULTI and SINGLE.

Victoria G. Crawford

(a) enron, cut (b) astro, cut (c) corel, cover (d) delicious5k, cover

(e) enron, cut (f) astro, cut (g) corel, cover (h) delicious5k, cover

(i) enron, cut (j) astro, cut (k) corel, cover (l) delicious5k, cover

(m) enron, cut (n) astro, cut (o) corel, cover (p) delicious5k, cover

(q) enron, cut (r) astro, cut (s) corel, cover (t) delicious5k, cover

Figure 4: A comparison of the performance of MULTI using different algorithms for USM as a subroutine. f and c refer
to the f and cost values of the returned solution. Queries is the total number of queries to f that the algorithm took. Max
memory is the maximum cost of all elements stored at once over the duration of the algorithm. The instances of graph cut
and diverse data summarization are on the Corel5k (“corel”) and delicious (“delicious5k”) dataset, and instances of graph
cut are on the ca-AstroPh (“astro”) and email-Enron (“amazon”) datasets. MULTI using the double greedy algorithm of
Buchbinder et al. (2015), the local search algorithm of Feige et al. (2011), and the random set algorithm are referred to as
“MULTI-DG”, “MULTI-LS”, and “MULTI-RS” respectively. All x and y axes are normalized as described in Section C.3.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

(a) enron, cut (b) astro, cut (c) corel, cover (d) delicious5k, cover

(e) enron, cut (f) astro, cut (g) corel, cover (h) delicious5k, cover

(i) enron, cut (j) astro, cut (k) corel, cover (l) delicious5k, cover

(m) enron, cut (n) astro, cut (o) corel, cover (p) delicious5k, cover

Figure 5: A comparison of the performance of SINGLE using different algorithms for USM as a subroutine. SINGLE using
the double greedy algorithm of Buchbinder et al. (2015), the local search algorithm of Feige et al. (2011), and the random
set algorithm are referred to as “SINGLE-DG”, “SINGLE-LS”, and “SINGLE-RS” respectively.

Victoria G. Crawford

(a) amazon, cut (b) astro, cut (c) corel, cover (d) delicious50k, cover

(e) amazon, cut (f) astro, cut (g) corel, cover (h) delicious50k, cover

(i) amazon, cut (j) astro, cut (k) corel, cover (l) delicious50k, cover

(m) amazon, cut (n) astro, cut (o) corel, cover (p) delicious50k, cover

Figure 6: The outcome of running MULTI and SINGLE for varying ε on instances of diverse data summarization on the
Corel5k (“corel”) and delicious (“delicious50k”) dataset with n = 50000, and instances of graph cut on the ca-AstroPh
(“astro”) and com-Amazon (“amazon”) datasets.

Scalable Bicriteria Algorithms for Non-Monotone Submodular Cover

(a) enron, cut (b) astro, cut (c) corel, cover (d) delicious, cover

(e) enron, cut (f) astro, cut (g) corel, cover (h) delicious, cover

(i) enron, cut (j) astro, cut (k) corel, cover (l) delicious, cover

(m) enron, cut (n) astro, cut (o) corel, cover (p) delicious, cover

(q) enron, cut (r) astro, cut (s) corel, cover (t) delicious, cover

Figure 7: A comparison of algorithms for SC using different thresholds τ (normalized as described in Section C.3).
STOCH-GREEDY is converting the stochastic greedy algorithm of Buchbinder et al. (2017) to an algorithm for SC by
using the method of Iyer and Bilmes (2013). ALALUF is the same, but using the algorithm of Alaluf et al. (2022).

Victoria G. Crawford

(a) enron, cut (b) astro, cut (c) corel, cover (d) delicious, cover

(e) enron, cut (f) astro, cut (g) corel, cover (h) delicious, cover

(i) enron, cut (j) astro, cut (k) corel, cover (l) delicious, cover

(m) enron, cut (n) astro, cut (o) corel, cover (p) delicious, cover

(q) enron, cut (r) astro, cut (s) corel, cover (t) delicious, cover

Figure 8: A comparison of algorithms for SC using different thresholds τ . However, the algorithms are run as heuristics
where all approximation guarantees are assumed to be 1. See Section C.3 to see further description.

