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Abstract

We study the problem of inferring heteroge-
neous treatment effects (HTEs) from time-to-
event data in the presence of competing events.
Albeit its great practical relevance, this prob-
lem has received little attention compared to
its counterparts studying HTE estimation with-
out time-to-event data or competing events. We
take an outcome modeling approach to estimat-
ing HTEs, and consider how and when exist-
ing prediction models for time-to-event data can
be used as plug-in estimators for potential out-
comes. We then investigate whether competing
events present new challenges for HTE estima-
tion – in addition to the standard confounding
problem –, and find that, because there are mul-
tiple definitions of causal effects in this setting –
namely total, direct and separable effects –, com-
peting events can act as an additional source of
covariate shift depending on the desired treat-
ment effect interpretation and associated esti-
mand. We theoretically analyze and empirically
illustrate when and how these challenges play a
role when using generic machine learning predic-
tion models for the estimation of HTEs.

1 INTRODUCTION

Competing events are ubiquitous in medical applications
where the focus is on the time until occurrence of an ad-
verse event due to a specific cause (Lim et al., 2010; Lam-
bert et al., 2010). Especially when patients have comor-
bidities, the effect of a treatment on an event of interest can
only be assessed when taking into account the presence of
risk due to a competing event. For example, when assess-
ing the effectiveness of different cancer treatments for in-
dividual cancer patients one may have to consider how to
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take into account how an individual’s risk for cardiovas-
cular events changes due to treatment. This question, how-
ever, is far from straightforward: competing events – which
act as mediators of the treatment on the outcome of interest
– give rise to multiple and different definitions of coun-
terfactual risk that could be used depending on the policy
or research question of interest, as recently formalized in
Young et al. (2020). To see this, note that a treatment which
causes a high number of cardiovascular events will auto-
matically result in fewer events due to cancer – which will
appear as a protective (total) effect of treatment on the risk
of events due to cancer, but may not be the desired inter-
pretation of what makes a treatment effective against an ad-
verse outcome of interest. Instead, one could be interested
in the direct effect of treatment on outcome (under elimi-
nation of competing events) or in the effect of the compo-
nent in the treatment on outcome that acts only on the pri-
mary outcome (Young et al., 2020; Stensrud et al., 2020).

Related work. Possibly because of this conceptual dif-
ficulty, heterogeneous treatment effect (HTE) estimation
from time-to-event (TTE) data with competing events has
received no attention from the machine learning (ML) liter-
ature yet. This stands in stark contrast with the ML litera-
ture on closely related problems – (a) TTE prediction with
competing events (sometimes also referred to as ‘compet-
ing risks’) and (b) HTE estimation with other outcomes –
which has flourished in recent years. The literature on the
former has adapted a variety of ML methods for risk pre-
diction in the presence of competing events – e.g. using
Bayesian nonparametric methods in continuous time (Alaa
and van der Schaar, 2017b; Zhang and Zhou, 2018) and
neural networks in discrete time (Lee et al., 2018; Wang
and Sun, 2022). The literature on the latter has focused on
HTE estimation for binary or continuous outcomes, and has
either provided model-agnostic strategies to estimate HTEs
using any ML method (Künzel et al., 2019; Nie and Wager,
2017; Kennedy, 2020; Curth and van der Schaar, 2021a) or
adapted specific ML methods to correct for specific chal-
lenges of HTE estimation (Shalit et al., 2017; Curth and
van der Schaar, 2021b). The largest stream of this litera-
ture has focused on analyzing and correcting confounding-
induced covariate shift (Shalit et al., 2017; Johansson et al.,
2018; Hassanpour and Greiner, 2019; Assaad et al., 2021).
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Closest to our setting are two recent papers that have in-
vestigated covariate shift challenges inherent to HTE esti-
mation for TTE data without competing events: Chapfuwa
et al. (2021) used generative models for counterfactual TTE
analysis in continuous time and Curth et al. (2021a) used
neural networks for discrete time analyses. An extended
discussion of related work can be found in Appendix A.

Outlook. In this paper, we study heterogeneous treat-
ment effect estimation in the presence of competing events
through the causal framework recently established in
Young et al. (2020) and used therein to derive estimators
for different average treatment effects. We begin by con-
sidering how the ML toolbox developed for individualized
risk prediction in the TTE setting with and without compet-
ing events could be used for estimation of different HTEs
through a potential outcome modeling approach, or con-
versely, consider what type of effects are implicitly targeted
when different types of ML risk prediction algorithms are
used as a basis for treatment decisions. As the ML literature
on HTE estimation has focused on the presence of covari-
ate shifts due to confounders, we then move to investigate
which forms of covariate shift arise as we target different
HTEs. We finally investigate and illustrate their effects em-
pirically across simulation studies. Note that – possibly un-
conventionally for this literature – our focus here is not on
designing or proposing a new method, but rather on un-
derstanding the unique challenges in a new and practically
relevant problem which is why we rely on simple existing
methods to allow for clear insights.

Our contributions are thus threefold: Conceptually, we
study a new problem in the ML literature on HTE esti-
mation and investigate how one could make use of the
strong TTE estimation ML toolbox for solving it. The-
oretically, we analyze covariate shift problems that arise
therein. Empirically, we obtain insights into how estima-
tion is affected in practice. Overall, we focus on under-
standing the challenges underlying the problem, hoping
that the insights that we provide will pave the way for future
methodological work on this practically relevant problem.

2 PROBLEM SETUP

We adopt the setup of (Young et al., 2020; Stensrud et al.,
2020) in which patients are characterized by pre-treatment
characteristics X∈X , a binary treatment A∈{0, 1} assigned
at baseline, and {Yk}k∈{1,...,K} and {Dk}k∈{1,...,K}, bi-
nary indicators for whether the main event and competing
event, respectively, have occurred by time period k ≤ K,
where K is the maximum time of follow-up. By conven-
tion, we assume that Dk precedes Yk, and that occurrence
of either event precludes the other. Further, V̄κ denotes the
history (V0, . . . , Vκ) of variable Vk through interval κ. Fig.
1 depicts the assumed underlying causal graph.

This data structure, which is in so-called long format,

can equivalently be represented in short format of tuples
(X,A, T,E) where T indicates the (discrete) time at which
the event occurred (i.e. T=min k : Yk=1 ∨ Dk=1) and
E∈{Y,D} indicates its type (i.e. E=Y if YT=1 else D).

Figure 1: Assumed Causal
Graph

We will generally use long
format as it uniquely allows
to capture the sequential na-
ture of the problem, but will
sometimes use the short for-
mat when it simplifies no-
tation. We also assume no
loss to follow-up due to cen-
soring (i.e. no patient drop-out) for simplicity, but discuss
later in Sec. 4.2 how censoring would play a role.

Based on the assumed causal structure in Fig. 1, it is easy
to see that we can model all risk functions of interest in the
competing events literature – e.g. the cause-specific cumu-
lative incidence functions P(T ≤ k,E = Y |X = x,A =
a) – by relying on conditional hazard functions. These are
the hazard (probability) of the main event occurring given
that there has been no event yet, i.e.

hY (k, x, a) = P(Yk=1|D̄k=Ȳk−1=0, X=x,A=a)

and, analogously, the hazard of the competing event occur-
ring given event-free history

hD(k, x, a) = P(Dk=1|D̄k−1=Ȳk−1=0, X=x,A=a)

These can be used to model e.g. the cause-specific cumu-
lative incidence function, or risk, of an event occurring by
time k, as P(T ≤ k,E=Y |X=x,A=a)=

P(Yk=1|X=x,A=a)=
∑k

l=1 hY (l, x, a)

×
∏l−1

q=1(1−hY (q, x, a))(1−hD(q, x, a))
(1)

3 DEFINING AND ESTIMATING HTE
GIVEN COMPETING EVENTS

3.1 Preliminaries: Estimating HTEs from TTE data
without competing events using prediction models

To introduce the HTE estimation problem, counterfactuals
and existing strategies for estimation, we begin with the
simpler setting in which there are not competing events.
Define the counterfactuals1 (or potential outcomes) Y a

k for
a∈{0, 1} and times k∈{1, . . . ,K} as the event indicator
for the scenario in which a patient – possibly countrary to
fact – has been assigned to treatment A=a at baseline, i.e.
has been intervened on. Then, we can define heterogeneous

1Here, we use the term counterfactual following e.g. Young
et al. (2020); Stensrud et al. (2020) exchangeably with the term
potential outcome, which is different from Pearl (2009)’s usage
of the term; within Pearl‘s framework we only consider interven-
tional quantities. Throughout, our counterfactuals/potential out-
comes Y a or Y a,d̄ correspond to do-operations do(A = a) or
do(A = a, D̄K = d̄), respectively.
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treatment effects τ(x) as contrasts of functions of these po-
tential outcomes: For example, if we are interested in dif-
ferences in risk of the event occuring by the end of study
K, we have that for a patient with characteristics X=x, the
treatment effect is

τ(x) = P(Y 1
K = 1|X = x)− P(Y 0

K = 1|X = x) (2)

Under the standard ignorability assumptions (Rosenbaum
and Rubin, 1983) – which ensure that Ȳ a

k |= A|X for all k
and randomness in treatment assignment for all x – we have
that P(Y a

k = 1|X = x) = P(Yk = 1|X = x,A = a).
Therefore a simple and popular way to estimate HTEs is
through outcome modeling: fitting a standard supervised
learning model to predict YK as

µ̂a(x) = P̂(YK = 1|X = x,A = a)

e.g. by appending A to X like a standard covariate, or by
fitting two separate prediction models, one on each treat-
ment group (these two strategies are often referred to as S-
and T-learner, respectively (Künzel et al., 2019)). Then, the
HTE can be estimated as τ̂(x) = µ̂1(x)− µ̂0(x).

3.2 Total effects: Using competing event prediction
models for estimating HTEs in the presence of
competing events allows to estimate total effects

In a competing events setting, we can similarly define coun-
terfactuals under intervention on treatment Y a

k (and analo-
gously for the competing event resulting in Da

k). At first
glance, applying the same treatment effect estimation strat-
egy discussed above to the setting with competing events
seems appealing: one could use one of the recently pro-
posed predictive ML models for the cause-specific cumu-
lative incidence function (e.g. Lee et al. (2018)’s DeepHit
or any other model that allows to estimate eq. (1)) and es-
timate treatment effect on risk as the difference

τ̂(x)=P̂(YK=1|X=x,A=1)−P̂(YK=1|X=x,A=0)

which, under similar ignorability assumptions, formalized
below, is a valid approach.

Assumption 1 (Ignorability w.r.t. treatment) For
each k ∈ {1, . . . ,K}, we have: (i) Exchangeabil-
ity w.r.t. A: Y a

k , D
a
k |= A|X , (ii) Positivity w.r.t. A:

P(A = a|X = x) > 0 for ∀x : P(X = x) > 0 and
a ∈ {0, 1} and (iii) Consistency w.r.t. A: We observe the
counterfactuals associated with the given treatment A, i.e.
Yk = AY 1

k + (1−A)Y 0
k and Dk = AD1

k + (1−A)D0
k

However, using competing event prediction models, which
output cause-specific risks, in this way estimates a specific
type of treatment effect – a total effect (Young et al., 2020)
– which may not always be the effect of most natural in-
terest to an investigator. This is because probabilities out-
putted by cause-specific models depend not only on the oc-
currence of the primary event, but also on the competing

event: Even when the treatment does not affect the pri-
mary event at all, it is possible that P(Y 1

K = 1|X = x) ̸=
P(Y 0

K = 1|X = x) if treatment affects the competing event
because this affects how many individuals are available to
experience the event (in other words, competing events act
as mediators in this context (Young et al., 2020)). Formally,
this is because, as can be seen in eq. 1, P(Y a

K = 1|X = x)
depends on the conditional hazard of both the primary and
the competing event – thus even if hY (k, x, a) is indepen-
dent of a, the cause-specific risk may not be if hD(k, x, a)
changes with treatment. Fig. 2(A) illustrates the treatment
effect’s path associated with a total effect. To see why
this may be undesirable, consider a cancer treatment that
causes all patients in some subgroup in the treatment arm
to experience heart failure but has no actual effect on their
cancer-related events: in this case, the total effect would
show that treatment reduces the total risk of events due to
cancer in this subgroup, but this is only true because no
patients are available to experience cancer-related events.
Note that this is not a problem with the identification of ef-
fects, but rather a feature when using cause-specific risks
to estimate effects. Thus, when using cause-specific risks
and associated total effects for individualized treatment de-
cision making one should be aware that this results in en-
tanglement of different treatment effect pathways.

Remark: Focusing on all-cause survival. A simple way to
overcome the competing events problem could be to com-
bine outcomes as Y all

k = Yk ∨ Dk, i.e. letting go of the
distinction of causes, and thus consider the overall effect
of treatment on all-cause survival. We do not consider this
approach further here as this changes the outcome of in-
terest, does not give competing events a special status and
can thus be regarded a simple TTE analysis problem to be
solved with e.g. the strategies discussed in Chapfuwa et al.
(2021); Curth et al. (2021a).

3.3 Direct Effects: Using TTE models that treat
competing events as censoring allows to estimate
direct effects

Another type of counterfactual one could therefore be in-
terested in estimating is Y a,d̄=0

K , where an additional in-
tervention is made and the competing event is eliminated:
That is, an intervention that sets the entire history D̄K to
the deterministic value d̄ = 0. Considering differences
τ(x) = P(Y 1,d̄=0

K = 1|X = x) − P(Y 0,d̄=0
K = 1|X = x)

then corresponds to direct effects of treatment onto the
event of interest (Young et al., 2020). Fig. 2(B) illustrates
the treatment effect’s path associated with a direct effect.
This effect is identified under Assumption 1 and an addi-
tional strong assumption:

Assumption 2 (Ignorability w.r.t. competing event.)
For each k ∈ {1, . . . ,K}, we have: (i) Exchangeability:
w.r.t. D: Y a

k |=Da
k |X, Ȳk−1=D̄k−1=0, A=a, (ii) Positivity
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Figure 2: Illustration of the path of total, direct and separable direct effect of treatment A onto Y2.

w.r.t. D: P(Dk = 0|X=x, Ȳk−1=D̄k−1=0, A=a)>0
whenever P(X = x, Ȳk−1 = D̄k−1 = 0, A = a) > 0, (iii)
Consistency w.r.t. elimination of D: For an observation
with A = a and D̄k = 0 we observe the corresponding
counterfactual, i.e. Ȳk = Ȳ a,d̄=0

k .

Then it is also possible to estimate direct effects
from observational data, as P(Y a,d̄=0

K =1|X = x) =
P(YK=1|D̄K=0, A=a,X=x), using the formula

P(Y a,d̄=0
K =1|X=x) =

K∑
l=1

hY (l, x, a)

l−1∏
q=1

(1−hY (q, x, a))

where, relative to the total risk, the dependence on
hD(l, x, a) has been removed. That is, the direct risk treats
competing events like a source of independent censoring
(Young et al., 2020). This direct effect can therefore also be
estimated using off-the-shelf ML methods using outcome
modeling. In this case, however, one would no longer need
to model the competing event as a separate cause, but in-
stead treat it as a censoring event and use single survival
models for YK only as e.g. Curth et al. (2021a) or simply
use only the cause-specific hazard functions hY (l, x, a) if
they are available from a competing events model.

Note that direct effects not only require stronger identifying
assumptions than total effects, but the presence of the in-
tervention do(D̄K = 0) also introduces a conceptual chal-
lenge: such a hypothetical intervention may not always be
feasible (Stensrud et al., 2020) – e.g. an intervention elimi-
nating all risk of cardiovascular events in cancer trial could
be somewhat hard to conceptualize.

3.4 Separable Effects: Estimating path-specific
(separable) effects requires access to hazard
estimators

A final alternative effect definition, presenting fewer con-
ceptual challenges than direct effects, was recently pro-
posed in Stensrud et al. (2020): separable direct and in-
direct effects are path-specific effects that assume A con-
ceptually consists of components AY and AD, which af-
fect only the primary event Yk and the competing event
Dk, respectively. While we have that A=AY =AD in the
observed data, we could hypothesize an intervention that
sets AD and AY to separate values. This could be plau-
sible if a treatment may consist of different active compo-

nents with different biological functions that could be de-
activated in the future (Stensrud et al., 2020) – allowing
to define counterfactuals Y aY ,aD

k (and DaY ,aD

k ) which can
be used to e.g. investigate separable direct effects on risk
E[Y 1,aD

K − Y 0,aD

K |X=x] and separable indirect effects on
risk E[Y aY ,1

K −Y aY ,0
K |X=x]. Fig. 2(C) illustrates the treat-

ment effect’s path associated with a separable direct effect.

Risk under separable treatments can be estimated from ob-
served data (where treatment was not separated) under As-
sumption 1 and additional Assumption 3, which, as dis-
cussed in Appendix C, has implications similar to Assump-
tion 2 needed for direct effect estimation.

Assumption 3 (Identification w.r.t. separable treatment.)
For each k ∈ {1, . . . ,K}, we have: (i) Dismissible com-
ponents:

P(Y aY ,aD=1
k =1|Ȳ aY ,aD=1

k−1 =0, D̄aY ,aD=1
k =0, X=x) =

P(Y aY ,aD=0
k =1|Ȳ aY ,aD=0

k−1 =0, D̄aY ,aD=0
k =0, X=x)

and a similar condition equalizing the conditional hazards
of Day=0,aD

k and D
ay=1,aD

k (see Appendix C), (ii) positivity
w.r.t. A (in surviving population): P(A = a|D̄k = Ȳk =
0, X = x) > 0 whenever P(D̄k = Ȳk = 0, X = x) > 0
for a ∈ {0, 1}, (iii) Consistency: For an observation with
A = a, we observe the corresponding counterfactuals, i.e.
Yk = Y a,a

k and Dk = Da,a
k .

Then, risk under separable components can be estimated as
P(Y aY ,aD

K = 1|X = x) =

K∑
l=1

hY (l, x, aY )

l−1∏
q=1

(1−hY (q, x, aY ))(1−hD(q, x, aD))

which differs from the identification formula for total risk
in that it evaluates the hazard of the competing event un-
der treatment aD ̸= aY . As no current ML prediction
models target such separable treatment paths, most TTE
models cannot directly be used by e.g. including treatment
as a standard covariate and simply issuing predictions; yet
any TTE model from which conditional hazard estimates
ĥD(k, x, a) and ĥY (k, x, a) can be extracted can be used
to estimate separable risk through computation of the for-
mula above instead of issuing its standard predictions.

Remark: Implications for the use of TTE prediction models
for treatment decision making. Some existing work propos-
ing ML TTE competing events prediction methods use the
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example of making treatment plans as motivation for their
method (e.g. Alaa and van der Schaar (2017b)). We there-
fore wish to reemphasize that, through our discussion in
this section, it becomes clear that the use of different types
of TTE prediction methods implicitly means considering
different types of effects in this context. Assuming that the
necessary identifying assumptions hold, when TTE predic-
tion models that explicitly model competing events (e.g.
Alaa and van der Schaar (2017b); Lee et al. (2018)) are
used to inform treatment plans, this implicitly corresponds
to consideration of total effects, while approaches treat-
ing competing events as censoring events implicitly lead
to consideration of direct effects. As discussed above, sep-
arable effects are generally not implicitly a by-product of
generic TTE prediction methods.

4 UNDERSTANDING COVARIATE
SHIFTS DUE TO COMPETING
EVENTS

Assuming that all identifying assumptions described
above2 hold, all different types of treatment effects can
be estimated from observed data – yet not without further
challenges. Because the data available for training fol-
lows an observational distribution, while the target quan-
tities are defined with respect to interventions, covariate
shift arises. Covariate shift arising due to treatment se-
lection on observables (confounding) has been studied in
detail in the ML literature on HTE estimation with stan-
dard (binary/continuous) outcomes since Johansson et al.
(2016); Shalit et al. (2017). More recently, Chapfuwa et al.
(2021) tackled only confounding-induced covariate shift in
the context of survival outcomes, and Curth et al. (2021a)
showed that censoring acts as an additional source of co-
variate shift in the TTE setting.

In this section, we take a closer look at how covariate shift
can arise in the TTE setting with competing events when
learning treatment-specific hazard functions from observa-
tional data. We show that, because the different effects are
defined with respect to different interventions, competing
events can act as an additional source of covariate shift de-
pending on the chosen treatment effect of interest.

4.1 Learning treatment-specific hazard functions

Here, we focus on learning hazard functions because they
can be (a) used to compute all treatment effects defined in
the previous section, and (b) easily estimated using off-the-
shelf ML methods simply by restricting the training set –
and can thus be analyzed like a standard supervised learn-
ing problem. The simplest and most flexible problem for-
mulation, which we focus on here, imposes no assumption
on how hazards evolve over time (e.g. no proportional haz-

2Appendix C contains extended discussions of assumptions.

ards assumption) or on how treatment affects outcome, by
fitting a separate model for each conditional hazard, giving
an estimator for each time-step by treatment group by event
type (i.e. K×2×2 estimators in total).

To do so, inspired by the approach described in e.g. Stitel-
man and van der Laan (2010); Curth et al. (2021a) in the
standard TTE setting, we simply separate the observed
data Dobs = {(Xi, Ai, ȲK,i, D̄K,i}ni=1 by treatment group,
and then, for each time step k, first fit a classification
model for outcome Dk and then fit a classification model
for outcome Yk, by using only the patients still at risk
of the events: That is, for each time-step k, we estimate
ĥD(k, x, a) = P̂(Dk =1|D̄k−1=Ȳk−1=0, X=x,A=a) by
solving a standard classification problem with input-output
tuples DD

a,k={(Xi, Dk,i)}i∈ID(k,a) where ID(k, a)={i ∈
[n] : D̄k−1,i = Ȳk−1,i = 0, Ai = a} is the competing at-
risk set at time-step k with nD

k,a=|ID(k, a)|, and estimate
ĥY (k, x, a)=P̂(Yk=1|D̄k,=Ȳk−1,=0, X=x,A=a) by fit-
ting a classification model for input-output tuples DY

a,k=
{(Xi, Yk,i)}i∈IY (k,a) using patients remaining in the main
at-risk set IY (k, a)={i ∈ [n] : Ȳk−1,i=D̄k,i=0, Ai=a},
with nY

k,a=|IY (k, a)|, at time-step k.

4.2 How does covariate shift arise?

When fitting the conditional hazard for the main event3 us-
ing empirical risk minimization (ERM) for the classifica-
tion approach described above, the hazard estimator is

ĥY (k, x, a) ∈ argmin
h∈H

R̂obs
a,k(h)

where R̂obs
a,k(h)=

∑
i∈IY (a,k) ℓ(Yk,i, h(Xi)) is

the empirical version of the risk Robs
a,k(h) =

EX∼pobs
a,k,Yk∼hY (k,x,a)[ℓ(Yk, h(X))], H denotes the hy-

pothesis class under investigation, ℓ is some loss function
and Pobs

a,k refers to the observational at-risk covariate distri-
bution, i.e. Pobs

a,k(X = x) = P(X=x|Ȳk−1=D̄k=0, A=a)

∝ P(X=x)P(A=a|X = x)(1−hD(k, x, a))

×
∏k−1

l=1 (1−hD(l, x, a))(1−hY (l, x, a))
(3)

Our target distribution, however, is not the observa-
tional distribution: because the treatment effects un-
der consideration are associated with different types
of interventions, the target covariate distribution cor-
responds to an interventional distribution Pint

a,k, giving
rise to the (hypothetical) interventional risk Rint

a,k(h) =
EX∼pint

a,k,Yk∼hY (k,x,a)[ℓ(Yk, h(X))]. This mismatch be-
tween observed and target distribution is known as co-
variate shift and has as a consequence that the learnt

3From here on, we focus on our discussion on the main event,
but analogous derivations can be made when effects on the com-
peting event are of interest, where the observational distribution
is P(X = x|Ȳk−1=Dk−1=0, A=a).
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function is not necessarily optimal as it is possible that
argminh∈H Rint

a,k(h) ̸= argminh∈H Robs
a,k(h). It is well-

known that such a mismatch can be addressed by relying

on so-called importance weights w∗(x) ∝ Pint
a,k(X=x)

Pobs
a,k(X=x)

to

give R̂w,obs
a,k (h)=

∑
i∈IY (a,k) w

∗(Xi)ℓ(Yk,i, h(Xi)) which
is unbiased for the interventional risk. Below, we dis-
cuss the type of covariate shift and associated importance
weights arising when conceptualizing the interventions for
the three effects under investigation:

• Total effect: The total effect requires only an interven-
tion on treatment do(A = a), thus, as can be read off from
the causal graph in Fig. 1, the interventional at-risk distri-
bution Pdo(A=a)

a,k (X = x) is proportional to P(X=x)(1 −
hD(k, x, a))

∏k−1
l=1 (1−hD(l, x, a))(1−hY (l, x, a)), which

differs from the observational distribution only in the treat-
ment assignment factor P(A=a|X=x). That is, if treat-
ment was assigned completely at random as in a random-
ized trial, the two distributions Pobs

a,k and Pint
a,k would be

the same. The covariate shift arising when estimating to-
tal effects is thus the same shift arising in the standard
treatment effect setting considered in e.g. Shalit et al.
(2017), leading to time-independent importance weights
w

∗,do(A=a)
a,k (x) ∝ P (A=a|X=x)−1.

• Direct effect: The direct effect requires intervention
do(A=a, D̄K=0), which, in addition to treatment assign-
ment bias, also removes all competing events. There-
fore, as can be read off from Fig. 1, the interven-
tional at-risk distribution Pdo(A=a,D̄K=0)

a,k (X = x) ∝
P(X=x)

∏k−1
l=1 (1−hY (l, x, a)). This differs from the ob-

servational distribution in both the absence of the treat-
ment assignment factor and removes all effects of com-
peting event on the population composition through re-
moval of the factor

∏k
l=1(1−hD(l, x, a)); the latter re-

sults in covariate shift only if the risk of the compet-
ing event is dependent on covariates. As discussed in
Section 3.3, the competing event is effectively treated
as a censoring event here and the shift is thus equiv-
alent to the censoring-induced shift discussed in Curth
et al. (2021a). The importance weights needed to cor-
rect for this shift would thus be w

∗,do(A=a,D̄K=0)
a,k (x) ∝[

P (A=a|X=x)
∏k

l=1(1−hD(l, x, a))
]−1

.

• Separable effects: Finally, separable effects require
separate interventions on both treatment components
do(AY =aY , AD=aD), thus the interventional distribution
Pdo(AY =aY ,AD=aD)
a,k (X = x), which is identified due to

the dismissible component condition (see Appendix C), is
proportional to

P(X=x)(1−hD(k, x, aD))

×
k−1∏
l=1

(1−hD(l, x, aD))(1−hY (l, x, aY ))

This differs from the observational distribution in
the treatment assignment factor and in that it has∏k

l=1(1−hD(l, x, aD)) instead of
∏k

l=1(1−hD(l, x, aY )).
Note that the latter results in covariate shift in
the at-risk distribution only if the effect of treat-
ment on the competing event is dependent on covari-
ates. The importance weights needed to correct for
this shift would thus be w

∗,do(AY =aY ,AD=aD)
a,k (x) ∝[

P (A = a|X = x)
∏k

l=1 hD(l,x,aY )∏k
l=1 hD(l,x,aD)

]−1

.

Remark: How would the addition of censoring play a role?
As we noted above, direct effect estimation essentially cor-
responds to TTE estimation with ignorable censoring – as
one would usually ‘switch off’ censoring for a treatment ef-
fect analysis (Young et al., 2020). Thus, if we were to add
an additional event Ck to our setting to allow censoring (pa-
tient drop-out), this would (a) require additional identify-
ing assumptions similar to assumption 2, e.g. Y a

k |= Ca
k |X ,

and (b) lead to the same covariate shift issues as a com-
peting event in direct effect estimation setting – any obser-
vational distribution would thus gain an additional factor∏k

l=1 P(Cl = 0|D̄l−1 = Ȳl−1 = C̄l−1 = 0, X = x,A= a),
which should then be (inversely) multiplied with any im-
portance weight.

4.3 How does this covariate shift affect estimation of
hazards from observational data?

To analyze how the learning of hazard functions will be
impacted by the multitude of sources of covariate shift we
outlined above, we can apply well-known results from the
literature on domain adaptation and importance weighting
to our problem. Below, we adapt the bound of Cortes et al.
(2010) to our setting; refer to Appendix C for proofs.

Proposition 1 Given timestep k and treatment a, for a loss
function ℓh ∈ [0, 1] of any hypothesis h ∈ H, such that
d = Pdim({ℓh : h ∈ H}) (where Pdim is the pseudo-
dimension) and ℓh ∈ L, where L is a space of point-
wise loss functions, and a weighting function w(x) with
E[w(X)] = 1, with probability 1 − δ over at-risk sample
DY

a,k with empirical distribution p̂obsa,k , we have
Rint

a,k(h)− R̂w,obs
a,k (h) ≤

∣∣∣Epobs
a,k

[(w∗
a,k(x)− w(x))ℓh(x)]

∣∣∣
+
max(

√
Epobs

a,k
[w2(x)l2h(x)],

√
Ep̂obs

a,k
[w2(x)l2h(x)])

nY
a,k

3/8
CH
nY
a,k

with CH
nY
a,k

= 25/4(d log
e2nY

a,k

d + log 4
δ )

3/8 due to Cortes

et al. (2010) (Theorem 4).

The proposition above, broken down further in two corol-
laries below by incorporating ideas from Johansson et al.
(2018) and Maia Polo and Vicente (2022), tells us multiple
things about the difficulty of the hazard estimation prob-
lem and the consequences of the arising covariate shifts. A
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first observation from the general statement above is that,
unsurprisingly, the at-risk sample size nY

a,k determines the
speed of learning. This sample size naturally decreases in
k through the occurance of main events even in the ab-
sence of competing events, but decreases further as a func-
tion of the frequency of competing events, meaning that
nY,obs
a,k ≤ nY,int

a,k for hypothetical datasets of size n created
using the interventions corresponding to direct (or sepa-
rable) effects, where the inequality is strict if competing
events exist (or if treatment influences the rate of compet-
ing events occurring).

Corollary 1 (Perfect importance weights) For
w(x)=w∗,int

a,k (x), we have

Rint
a,k(h)−R̂w∗,obs

a,k (h)≤ 1√
ESS∗

rel(p
int
a,k, p

obs
a,k)n

Y
a,k

3/8
CH
nY
a,k

where ESS∗
rel = exp2(D2(p

int
a,k||pobsa,k)) is the ex-

pected relative effective sample size, with D2(p||q) =

log2Ex∼p

[
p(x)
q(x)

]
the Rényi divergence of order 2.

In Corollary 1, we see that for the special case of perfect
importance weights the first term of the RHS in Proposi-
tion 1 is zero and the speed of learning is slowed down
if the relative effective sample size ESS∗

rel < 1 – i.e.
whenever interventional and observational covariate distri-
butions differ. To gain further intuition, note that Maia Polo
and Vicente (2022) show that for self-normalized impor-
tance weights w̄∗

i , we can approximate ESS∗
rel from data

as 1
n
∑

i∈I w̄∗,2
i

→ ESS∗
rel a.s. as |I| → ∞, which is

lowest when all weights are equal. Time-dependent im-

portance weights
pint
a,k

pobs
a,k

may generally be more variable as

k increases, e.g. if hD(l, x, a) is constant in l, we have
(
∏k

l=1 hD(l, x, aD))−1 = (hD(l, x, aD))−k, meaning that
the covariate shift problem could be exacerbated over time
for the direct and separable effects. However, as the density
ratio is integrated w.r.t. pinta,k in the Rényi divergence, this
effect can subside if the overall at-risk probability is small,
as we also demonstrate empirically below.

Corollary 2 (Standard supervised learning (unweighted))
For w(x) = 1, we have

Rint
a,k(h)−R̂obs

a,k(h)≤CLIPML(p
int
a,k, p

obs
a,k)+nY

a,k
−3/8CH

na,k

where IPMG(p, q) = supg∈G
∣∣∫ g(x)(p(x)− q(x))dx

∣∣ is
an integral probability metric and CL>0 is s.t. ℓ

CL
∈ L.

Finally, we consider the special case of no weighting in
Corollary 2. Here, ESS∗

rel=1 due to constant weights and
the first term of the RHS of 1 is bounded by an IPM-term –
which does not decrease as the sample size grows4, reflect-
ing that standard ERM on the observational data may never

4A large proportion of the ML HTE literature has therefore

recover the best interventional solution. As a consequence,
Rint

a,k(h)−R̂obs
a,k(h) may never vanish – depending also on

how rich the underlying hypothesis class is. This is well-
known to be a problem for misspecified parametric models5

(Sugiyama et al., 2007), while, when using rich hypothe-
ses classes through flexible nonparametric or deep meth-
ods, one generally does not have to trade off model perfor-
mance in different regions of the covariate space, meaning
that, given sufficient data, importance weighting would not
be expected to make a difference (Byrd and Lipton, 2019).

5 EXPERIMENTS

Finally, we empirically investigate whether, when and how
the different shifts play a role when learning hazard func-
tions with the purpose of estimating the different HTEs.
As is common practice in the HTE literature (Curth et al.,
2021b), we have to rely on simulated data because coun-
terfactuals are not available in real data, meaning that real
datasets provide no ground truth for evaluating methods.
While the standard HTE estimation problem in absence of
competing events is only missing a single counterfactual
(with respect to interventions on treatment assignment), the
problem is exacerbated in our setting where additional (un-
observable) interventions on competing events would be
required to create ground truth targets for evaluation. In
addition to the fully synthetic and highly stylized experi-
ments considered below, we present additional results from
a semi-synthetic setup using the real Twins dataset Louizos
et al. (2017) in Appendix E, leading to similar insights as
the results presented below.

An illustrative DGP. Because there are many different
forces at play which we wish to disentangle, we focus on
a simple setup here that allows us to highlight important
problem features. We assume that individuals are charac-
terized by x=(x1, x2), two binary risk factors X1∼B(0.5)
and X2 ∼ B(0.5−ρ(1−2X1)) that may be correlated; un-
less indicated otherwise we set ρ=0.35. We assume a very
simple hazard for both outcomes E∈{Y,D}:

hE(k, x, a) =

{
pElow + apElow,τ if xSE

= 0

pEhigh + apEhigh,τ if xSE
= 1

(4)

with 0 < pE· +pE·,τ ≤ 1 for both settings. This model
is constant over time and depends only on the covariate
xSE

, where SE is the index of the support covariate for

focused on learning representations that minimize an empirical
estimate of the IPM-term Shalit et al. (2017). This is easily pos-
sible in the standard setting as Pint is observed in the marginal
covariate distribution P(X=x) and can hence be used to approx-
imate the IPM term – however, in our setting, the interventional
distribution is an unobserved at-risk distribution that differs per
time-step (i.e. Pint

a,k is not the marginal P(X=x) except for at
k=1), giving no straightforward analogue to this approach.

5For correctly specified parametric models and likelihood loss,
we always have argminh∈H Robs

a,k(h) = argminh∈H Rint
a,k(h).
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Figure 3: Estimation performance in RMSEτ as parameters of the DGP vary (left) and RMSEa,k
haz over time k (right), for

the 3 effects (columns) across 3 settings (rows). For RMSEa,k
haz , each DGP‘s varying parameter is fixed its highest value.

the event model. We let SY = SD = 1, and, unless
otherwise indicated, set pYlow=pDlow=pDhigh = 0.01, and
create a high primary outcome risk group with pYhigh=0.1

and assume no treatment effect pEhigh,τ=pElow,τ=0 for E ∈
{Y,D}. We assign treatment based on the propensity
score π(x)=expit(ξ(xSA

−0.5)) where both ξ∈ [−6, 6] and
whether SA overlaps SE determines the strength of con-
founding. We generate samples of size n=5000 for K=30
time-steps, and elaborate further on the experiments and
data generating processes (DGP) in Appendix D6. Using
this DGP, we consider three main settings:

1. Setting 1: There is confounding as SA = 1 when |ξ| >
0, but treatment has no effect on either event. Varying
ξ should lead to different levels of covariate shift due to
confounding for all effects.

2. Setting 2: There is no confounding (ξ = 0), treatment
has no effect on the main event but affects the compet-
ing event (pDlow,τ = .01). Varying pDhigh,τ , the hetero-
geneous effect of treatment on competing events in the
high-risk group, should lead to a covariate shift in the
at-risk group when interventions associated with direct
and separable effect are considered.

3. Setting 3: There is no confounding (ξ = 0), treatment
has a heterogeneous effect on the main event (it equal-
izes main event risk between both groups, pYhigh,τ =
−.09) but has no effect on the competing event. When
the high risk group is also at higher (baseline) risk of
the competing event (as pDhigh varies) this may mask
the protective effect of treatment on the main event, and
should lead to a covariate shift in the at-risk group for
the intervention associated with the direct effect only.

Estimators. We focus on a setup where ĥY (k, x, a) is
misspecified, illustrating the effects of covariate shift on the
main outcome model. We assume that the competing event
model can be correctly specified, which may be the case

6Code to replicate all experiments can be found at https:
//github.com/AliciaCurth/CompCATE or https://
github.com/vanderschaarlab/CompCATE.

in reality if Dk is a well-studied comorbidity. Due to the
simple DGP, both models could easily be estimated with
an (unrestricted) logistic regression (LR) per time step us-
ing the classification framework discussed in the previous
section. We use unrestricted (and hence correctly spec-
ified) LRs for hD(k, x, a), but induce misspecfication in
hY (k, x, a) by fitting constant ĥY

a,k for each k≤K (this is
equivalent to fitting a simple Kaplan-Meier estimator (Ka-
plan and Meier, 1958) by treatment arm). We also demon-
strate that similar conclusions apply when using a LR with
L2-penalty that is set too aggressively. To highlight how
different covariate shifts affect learning of the different
effects, we compare the estimates obtained by Observa-
tional ERM to importance-weighted ERM with Estimated
weights ŵ∗,int

a,k and to two oracle solutions: weighted ERM
with true importance weights w∗,int

a,k and unweighted ERM
on a counterfactual sample of size n from the (usually in-
accessible) interventional distribution.

Evaluation Metrics. Using independent test sets of
size nte=104, we report the root-mean-squared-error
RMSEτ=RMSE(τ(x)) of estimating the three different
types of risk differences of Section 3 (capturing a total,
direct and separable direct HTE), which corresponds
to an adaptation of Hill (2011)’s popular Precision in
Estimating Heterogeneous Effects (PEHE) metric to our
setting. To link back to our theoretical analysis, we
also report the RMSE of estimating the hazard function,
RMSEa,k

haz=
√

EX∼Pint
a,k

[(hY (l,X, a)−ĥY (l,X, a))2]

where P int
a,k is the interventional at-risk distribution cor-

responding to the effect of interest. We report mean and
standard error across 10 replications of each experiment.

5.1 Empirical insights

• Confounding-induced covariate shifts indeed impact es-
timation of all effects. In Fig. 3 we present results for all
3 settings, highlighting that some effect estimates are in-
deed impacted by more covariate shifts than others. In first

https://github.com/AliciaCurth/CompCATE
https://github.com/AliciaCurth/CompCATE
https://github.com/vanderschaarlab/CompCATE
https://github.com/vanderschaarlab/CompCATE
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setting, we observe that all effect estimates are impacted
by increasing confounding strength |ξ|: standard ERM per-
forms poorly while importance weighting performs almost
identically to the counterfactual solution.

• Shifts induced by competing events indeed do not af-
fect estimation of all effects. Next, we consider settings
2 and 3 in which treatment assignment is random, but co-
variate shift can arise due to a differential effect of treat-
ment on the competing event (Setting 2), or due to the high
risk group also being at higher risk of the competing event
which may mask a protective treatment effect on the main
event (Setting 3). In Fig. 3 we observe that, as expected,
bias due to covariate shift in setting 2 arises only for sepa-
rable and direct effect, both of which require elimination of
the differential effect of treatment on the competing event
– while the total effect does not. Setting 3 exhibits a co-
variate shift that induces bias only for the direct effect as
expected, as treatment has no separable indirect effect here.
We also find that, while the error in estimation of hY

a,k ap-
pears small at each time step, it becomes substantial as all
K separate hazard functions are cumulated and used to es-
timate the difference in risk. Note that the absolute error
in estimation of the hazard appears to decrease over time
in most settings – this may appear counterintuitive at first
glance as nY

a,k decreases over time, but is expected in our
setting where the interventional at-risk population becomes
more homogeneous over time as only low risk individuals
are expected to survive, making the constant model approx-
imately correct for later time steps.

• Effective sample size behaves and contributes as ex-
pected. In settings 2 & 3, when considering RMSEa,k

haz

across k, we observe a tradeoff as expected from our
theoretical analysis: as k increases, covariate shift be-
comes more extreme, initially widening the performance
gap between weighted and unweighted ERM solution. As
k grows larger, the increased variance (low ESS) of the
weighted solution then starts to hinder its performance. Fi-
nally, for very large k all solutions converge as the target
distribution becomes more homogeneous. This tradeoff is
indeed also reflected in the (absolute) effective sample sizes
as measured by (

∑
i∈IY

a,k
w̄∗,2

i )−1 in Fig. 4(a).

(a) ESS in setting 2. (b) RMSEτ in setting 4.

Figure 4: Additional results. Left: effective sample size
(ESS) for direct effect estimation in setting 2 (pDhigh,τ=.2).
Right: RMSEτ of direct effect estimation for varying con-
founding ξ in presence of side effects (additional setting 4)

• Multiple shifts can offset or exacerbate each other. Fi-
nally, we combine settings 1 and 2 (setting 4: pDhigh,τ =
0.1, ξ varies); thus the high risk group experiences adverse
reactions to treatment in the competing event, and setting
ξ > 0 (ξ < 0) corresponds to assigning more (less) high
risk individuals to treatment. In Fig. 4(b), we observe that
having assigned more high risk individuals to treatment can
offset the shift induced by competing events for (separable)
direct effects (and, conversely, the more sensible practice of
assigning less high risk individuals to treatment would ex-
acerbate the covariate shift for (separable) direct effects).

• When do such covariate shifts truly matter? In Fig. 5 we
finally investigate when shifts matter for ERM. We revisit
setting 1, and, in panels A&B, highlight that when xSA

is
not a true confounder (does not affect Yk), the resulting
covariate shift biases ERM only when xSY

also shifts due
to correlation with xSA

(the same holds true for other shifts
when SY ̸= SD). In panels C&D, we confirm the impact
of misspecification by using a LR as outcome model: an
unrestricted LR (C) can fit the DGP well and covariate shift
thus has little effect, while the introduction of excessive
regularization (D) leads to the need to prioritize regions of
X (which observational ERM does incorrectly).

Figure 5: Variations on setting 1 with constant estimators
(A & B) and logistic regressions (C & D)

6 CONCLUSION

We studied the challenges inherent to HTE estimation in
the presence of competing events, and found that inclusion
of competing events not only leads to multiple definitions
of effects but also to multiple sources of covariate shifts
when estimating them. Theoretically and empirically, we
highlighted that, when and how different shifts bias esti-
mation of different effects. Having gained understanding
of its challenges, an interesting next step, further discussed
in Appendix B, would be to consider how to adapt ideas
from the ML literature on HTE & TTE estimation – such as
the deep treatment-specific hazard estimator of Curth et al.
(2021a) – to construct more sophisticated solutions for our
problem setting.

Finally, note that we do not wish to argue here that one
measure of effect is superior to others – instead, we only
aim to raise awareness that using different types of out-
come predictors can lead to different effect interpretations
and that the challenges inherent to learning them differ.
Ultimately, in applications the choice of estimand should
be made by domain expert – who is also needed to verify
that its untestable identifying assumptions hold – and cor-
respond to their policy or research question of interest.
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APPENDIX

This Appendix is structured as follows: In Appendix A, we present an additional literature review. In Appendix B, we
discuss possible extensions incorporating more sophisticated solutions from the ML literatures on TTE prediction and
HTE estimation. In Appendix C, we discuss identifying assumptions and proofs. In Appendix D, we give additional
details of the simulation experiments presented in the main text. In Appendix E, we finally conduct additional experiments
based on real data.

A ADDITIONAL LITERATURE REVIEW

Time-to-event prediction using ML in the presence of competing events. While modeling time-to-event data in the
presence of competing events has been studied in the statistics literature for decades (Prentice et al., 1978; Gray, 1988; Fine
and Gray, 1999), Lee et al. (2018) are the first paper we are aware of that consider time-to-event analysis with competing
events in a (deep) machine learning context. Lee et al. (2018)’s proposed DeepHit assumes a discrete-time setup and uses
fully connected neural networks with both shared and time-specific components for prediction of cause-specific incidence
at every time-step. This work has since been extended further proposing improvements upon using simple neural networks
in discrete time e.g. using RNNs in Li et al. (2020) or transformers in Wang and Sun (2022) and been complemented with
work in continuous time relying on e.g. multi-task boosting (Bellot and van der Schaar, 2018a) or Bayesian nonparametric
methods e.g. multi-task gaussian processes (Alaa and van der Schaar, 2017a), Lomax delegate racing (Zhang and Zhou,
2018) or tree-based mixture models (Bellot and van der Schaar, 2018b).

Heterogeneous treatment effect estimation using ML. The ML literature on HTE estimation has centered mainly on
binary or continuous outcomes, and has expanded rapidly over the last years. One stream of work has provided model-
agnostic strategies (also sometimes referred to as meta-learner strategies (Künzel et al., 2019)) to estimate HTEs using any
ML method (Künzel et al., 2019; Nie and Wager, 2017; Kennedy, 2020; Curth and van der Schaar, 2021a). A majority
of the work published in machine learning has, however, focussed on adapting specific ML methods for HTE estimation:
early work relied mainly on tree-based methods (Hill, 2011; Athey and Imbens, 2016; Wager and Athey, 2018; Athey et al.,
2019), but was followed by adaptations of e.g. Gaussian processes Alaa and van der Schaar (2017a, 2018) and GANs Yoon
et al. (2018). At this point, the most popular solution seems to be to adapt neural networks for treatment effect estimation,
see e.g. Johansson et al. (2016); Shalit et al. (2017); Johansson et al. (2018); Shi et al. (2019); Hassanpour and Greiner
(2019, 2020); Assaad et al. (2021); Curth and van der Schaar (2021a,b). The work outlined above focusses exclusively
on binary/continuous outcomes, thus closest to our setting are two recent papers that have investigated challenges inherent
to HTE estimation for TTE data without competing events, focussing on covariate shift: Chapfuwa et al. (2021) used
generative models for counterfactual TTE analysis in continuous time and Curth et al. (2021a) used neural networks for
discrete time analyses but neither considers how to incorporate competing events.

Estimating treatment effects in the presence of competing events. The most likely reason for a lack of work on esti-
mating heterogeneous treatment effects in the presence of competing events is that even the simpler average treatment effect
setting has received rigorous characterisation within a causal framework only very recently: Young et al. (2020); Stensrud
et al. (2020) are the first to formally characterize and define different types of causal effects and their identifying condi-
tions within a counterfactual framework; their formalization allowed us to extrapolate their insights, combined with the
literature on HTEs from the standard settings, to heterogeneous effects. Lacking such unified characterisation, prior work
has considered estimation of average effects either in a model-dependent fashion by considering regression coefficients
in cause-specific hazard models Prentice et al. (1978) or by testing for treatment-differences across e.g. cause-specific
cumulative incidence functions Gray (1988), thus considering mainly total effects.

B POSSIBLE METHODOLOGICAL EXTENSIONS

Because we put our focus on understanding the unique challenges in adding competing events to the HTE estimation
problem, we relied on simple ML methods to allow for clear empirical insights. Having gained understanding of the
challenges inherent to the HTE competing events problem, an interesting next step would therefore be to consider how
to adapt and incorporate ideas from the vast ML literature on HTE & TTE estimation to construct more sophisticated
solutions. We discuss some possible avenues of interest for future research below.

A first approach would be to make the time-to-event (hazard) predictions – which we use to compute the effects – them-
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selves better, for example by sharing information across time-steps. As described in section 3, any time-to-event model that
allows to compute cause-specific hazard functions for every time-step could be used to estimate all three types of effects.
Instead of fitting separate models per time-step as we do in our experiments, one could therefore flexibly share information
across time-steps (and possibly across causes) as in discrete-time neural networks for TTE prediction (Lee et al., 2018; Li
et al., 2020; Curth et al., 2021a; Wang and Sun, 2022). Complementing such a methodological extension, it would also be
interesting to theoretically study whether sharing of information over time-steps might mitigate some covariate shift issues.

Further, the literature on domain adaptation and HTE estimation has proposed more sophisticated solutions to address
covariate shift than classical importance weighting. As we allude to in footnote 4 in the main text, a large proportion of
the ML HTE literature (e.g. Shalit et al. (2017); Johansson et al. (2018); Assaad et al. (2021)) has focused on learning
balanced representations that minimize an empirical estimate of the IPM-term – which is not readily available in our
setting as the interventional at-risk distribution is not equal to the marginal covariate distribution. Faced with a similar
obstacle, Curth et al. (2021a) simply used the marginal distribution for balancing nonetheless – which they demonstrated
to work well empirically. Improving upon this naive solution by investigating how to correctly balance representations
may be an interesting next step both in their and our setting. A different avenue would be to improve upon using standard
importance weights by removing uninformative dimensions: if we knew which features caused outcome, we would only
need to compute importance weights taking into account distributional differences in dimensions that actually matter for
prediction, which could significantly reduce variance in the importance weights and hence speed up learning (Stojanov
et al., 2019; Maia Polo and Vicente, 2022). One possible way of doing so might be to jointly learning importance weights
and representations for time-to-event prediction, adapting ideas from e.g. Hassanpour and Greiner (2019); Fang et al.
(2020)

Finally, an interesting future direction may be to consider more complex data-types, e.g. allowing for (some) patient
characteristics to be repeatedly measured over time, necessitating the incorporation of time-varying covariates. This is
also an interesting scenario because it makes identifying assumptions relying on measuring all common causes of Yk and
Dk (Assumptions D1 and S1 in the following section) more likely to hold. Such covariates could easily be incorporated
in our problem formulation and possible solutions could rely on recurrent networks such as Lee et al. (2019) in the TTE
prediction setting and Bica et al. (2020) in the longitudinal treatment effect estimation setting.

C ASSUMPTIONS AND PROOFS

C.1 Formal Presentation of Identification Assumptions

Below we discuss assumptions for nonparametric identification of effects, which are based on those given in Young et al.
(2020) for total and direct effect and Stensrud et al. (2020) for separable effects.

Some assumptions are shared by all causal parameters described in Section 3; they are analogues to the standard ignorabil-
ity assumptions of Rosenbaum and Rubin (1983) from the standard treatment effect setting and are known as unconfound-
edness, overlap and consistency assumptions: for each k ∈ {1, . . . ,K} we require
• Assumption 1. Exchangeability w.r.t. treatment: Y a

k , D
a
k |= A|X

• Assumption 2. Positivity w.r.t. treatment: P(A = a|X = x) > 0 for ∀x : P(X = x) > 0 and a ∈ {0, 1}
• Assumption 3. Consistency w.r.t. treatment assignment: We observe the counterfactuals associated with the given
treatment A, i.e. Yk = AY 1

k + (1−A)Y 0
k and Dk = AD1

k + (1−A)D0
k

While total effects require no additional assumptions, both direct and separable effects require further identification as-
sumptions associated with the additional interventions performed in their definitions.

Direct effects. Direct effects require additional unconfoundedness, overlap and consistency assumptions to identify
distributions under elimination of the competing event. For each k ∈ {1, . . . ,K} we require
• Assumption D1. Exchangeability: w.r.t. competing event Y a

k |=Da
k |X, Ȳk−1 = D̄k−1 = 0, A = a

• Assumption D2: Positivity w.r.t. competing event: P(Dk = 0|X = x, Ȳk−1 = D̄k−1 = 0, A = a) > 0 whenever
P(X = x, Ȳk−1 = D̄k−1 = 0, A = a) > 0
• Assumption D3. Consistency w.r.t. elimination of competing event: For an observation with A = a and D̄k = 0 we
observe the corresponding counterfactual, i.e. Ȳk = Ȳ a,d̄=0

k .
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Figure 6: Figure illustrating causal graphs with hidden variables in which different effects are identified. (A): No hidden
variables, all effects are identified. (B): Hidden variable causing all Yk, all effects are identified. (C): Hidden variable
causing Yk and Dk; total effect is identified but separable and direct effect are not. (D): Hidden confounder of outcome
treatment association, no effect is identified.

Separable effects. Stensrud et al. (2020) derived assumptions enabling identification of separable (in)direct effects;
owing to the conceptual difference in intervention on only parts of the treatment, these are more involved to state than
those above. In particular, for each k ∈ {1, . . . ,K} we require:
• Assumption S0. Conceptual assumptions defining separable treatment: A is separable into components AY and
AD. Setting A = a is equivalent to setting both AY and AD to a, so that Y aY =a,aD=a

k = Y a
k andDaY =a,aD=a

k = Da
k .

Further, AY exerts effects on Dk only through its effect on Ȳk−1 i.e.

Y aY =1,aD

k−1 = DaY =1,aD

k−1 = Y aY =0,aD

k−1 = DaY =0,aD

k−1 = 0 =⇒ DaY =1,aD

k = DaY =0,aD

k for aD ∈ {0, 1} (5)

and conversely, AD exerts effects on Yk only through its effect on D̄k i.e.

Y aY ,aD=1
k−1 = DaY ,aD=1

k = Y aY ,aD=0
k−1 = DaY ,aD=0

k = 0 =⇒ Y aY ,aD=1
k = Y aY ,aD=1

k for aY ∈ {0, 1} (6)

• Assumption S1. Dismissible Component conditions: W.r.t. primary event

P(Y aY ,aD=1
k = 1|Y aY ,aD=1

k−1 = 0, DaY ,aD=1
k = 0, X = x) =

P(Y aY ,aD=0
k = 1|Y aY ,aD=0

k−1 = 0, DaY ,aD=0
k = 0, X = x)

(7)

and w.r.t. competing event

P(DaY =1,aD

k = 1|Y aY =1,aD

k−1 = 0, DaY =1,aD

k = 0, X = x) =

P(DaY =0,aD

k = 1|Y aY =0,aD

k−1 = 0, DaY =0,aD

k = 0, X = x)
(8)

• Assumption S3. Positivity w.r.t. treatment (in surviving population): P(A = a|D̄k = Ȳk = 0, X = x) > 0
whenever P(D̄k = Ȳk = 0, X = x) > 0 for a ∈ {0, 1}
• Assumption S3. Consistency: For an observation with A = a, we observe the corresponding counterfactuals, i.e.
Yk = Y a,a

k and Dk = Da,a
k .

C.2 Discussion of Assumptions.

Consistency assumptions are always needed to ensure that we observe one of the counterfactuals for each individual; these
assumptions may not hold if e.g. the act of monitoring outcomes can change their value or if there is interference between
individual units. Positivity assumptions ensure that there is some overlap between observational and interventional distri-
butions; if these assumptions do not hold we could not (nonparametrically) extrapolate to the interventional distribution
(and importance weights w∗(x) would not be defined for all x).

Finally, exchangeability assumptions and the dismissible component assumptions ensure that there are no hidden variables
(variables not included in X) causing treatment assignment and events (all effects) and Yk and Dk (separable and direct ef-
fect only), which would make observed distributions inherently different from distributions under intervention. To illustrate
when these assumptions do not hold, we highlight scenarios where different hidden variables do (not) violate assumptions
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in Fig. 6. In Panel A (the same as Fig. 1 in the main text), no hidden variables exist and all effects are identified. In
Panel B, hidden variables causing both Y1 and Y2 exist – e.g. some form of underlying frailty (Aalen, 1994), inducing
heterogeneity in risk of only the main event occuring – which are allowed under all effects. In Panel C, Yk and Dk are
caused by some shared hidden variable, which violates assumptions D1 and S1 – thus separable and direct effects are not
identified, while the total effect is. Finally, in Panel D, there is a hidden confounder of the treatment-outcome association,
which violates assumption 1 – therefore, no effect is identified.

C.3 Identification of interventional at-risk covariate distribution for separable effects (Sec. 4.2)

The interventional at-risk covariate distribution corresponding to the intervention do(AY = aY , AD = aD) can be iden-
tified from observational data under the assumptions stated above and is proportional to P(X=x)(1−hD(k, x, aD)) ×∏k−1

l=1 (1−hD(l, x, aD))(1−hY (l, x, aY )) as stated in Sec. 4.2.
Proof: the interventional distribution is proportional to

P(X=x)P(DaY ,aD

k =0|DaY ,aD

k−1 =0, Y aY ,aD

k−1 =0, X=x)

×
k−1∏
l=1

P(Y aY ,aD

l =0|DaY ,aD

l =0, Y aY ,aD

l−1 =0, X=x)P(DaY ,aD

l =0|DaY ,aD

l−1 =0, Y aY ,aD

l−1 =0, X = x)
(9)

which is equal to

P(X=x)P(DaD,aD

k =0|DaD,aD

k−1 =0, Y aD,aD

k−1 =0, X=x)

×
k−1∏
l=1

P(Y aY ,aY

l =0|DaY ,aY

l =0, Y aY ,aY

l−1 =0, X=x)P(DaD,aD

l =0|DaD,aD

l−1 =0, Y aD,aD

l−1 =0, X = x)
(10)

because of the dismissible component conditions if aY ̸= aD, and trivially if aY = aD.

This is equal to

P(X=x)P(DaD

k =0|DaD

k−1=0, Y aD

k−1=0, X=x)

×
k−1∏
l=1

P(Y aY

l =0|DaY

l =0, Y aY

l−1=0, X=x)P(DaD

l =0|DaD

l−1=0, Y aD

l−1=0, X = x)
(11)

= P(X=x)P(Dk=0|Dk−1=0, Yk−1=0, X=x,A=aD)

×
k−1∏
l=1

P(Yl=0|Dl=0, Yl−1=0, X=x,A=aY )P(Dl=0|Dl−1=0, Yl−1=0, X = x,A=aD)
(12)

= P(X=x)(1−hD(k, x, aD))×
k−1∏
l=1

(1−hD(l, x, aD))(1−hY (l, x, aY ) (13)

by consistency (assumptions S0 and S3), exchangeability (assumption 1) and by definition of the hazard functions, respec-
tively.

C.4 Proof of proposition 1 (Section 4.3)

Proposition 2 (Restated) Given timestep k and treatment a, for a loss function ℓh ∈ [0, 1] of any hypothesis h ∈ H, such
that d = Pdim({ℓh : h ∈ H}) (where Pdim is the pseudo-dimension) and ℓh ∈ L, where L is a space of pointwise loss
functions, and a weighting function w(x) with E[w(X)] = 1, with probability 1−δ over at-risk sample DY

a,k with empirical
distribution p̂obsa,k , we have

Rint
a,k(h)− R̂w,obs

a,k (h) ≤
∣∣∣Epobs

a,k
[(w∗

a,k(x)− w(x))ℓh(x)]
∣∣∣+ max(

√
E
pobs
a,k

[w2(x)l2h(x)],
√

E
p̂obs
a,k

[w2(x)l2h(x)])

nY
a,k

3/8 CH
nY
a,k

(14)

with CH
nY
a,k

= 25/4(d log
e2nY

a,k

d + log 4
δ )

3/8 due to Cortes et al. (2010) (Theorem 4).
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For w(x)=w∗
a,k(x) (exact importance weights, Lemma 1), we have

Rint
a,k(h)−R̂w∗,obs

a,k (h) ≤ 1√
ESS∗

rel(p
int
a,k, p

obs
a,k)n

Y
a,k

3/8
CH
nY
a,k

(15)

where ESS∗
rel = exp2(D2(p

int
a,k||pobsa,k)) is the expected relative effective sample size, with D2(p||q) = log2Ex∼p

[
p(x)
q(x)

]
the Rényi divergence of order 2.

For w(x) = 1 (standard supervised learning, Lemma 2), we have

Rint
a,k(h)−R̂obs

a,k(h) ≤ CLIPML(p
int
a,k, p

obs
a,k) + nY

a,k
−3/8CH

na,k
(16)

where IPMG(p, q) = supg∈G
∣∣∫ g(x)(p(x)− q(x))dx

∣∣ is an integral probability metric and CL>0 is s.t. ℓ
CL

∈ L.

Proof: Eq. (14) follows directly from Thm 4 in Cortes et al. (2010).

Further, when w(x) = w∗
a,k(x), the statement in eq. (15, follows directly from Theorem 3 of Cortes et al. (2010), where

we used the restatement in terms of ESS∗
rel of Maia Polo and Vicente (2022).

Finally, to prove equation (16), note that when w(x) = 1, we can bound the first term of eq. (14) as

∣∣∣Epobs
a,k

[(w∗
a,k(x)− 1)ℓh(x)]

∣∣∣ = ∣∣∣∣∣Epobs
a,k

[(
pinta,k

pobsa,k

− 1)ℓh(x)]

∣∣∣∣∣ =
∣∣∣∣∫ ℓh(x)(p

int
a,k(x)− pobsa,k(x))dx

∣∣∣∣
≤ CL sup

f∈L

∣∣∣∣∫ fh(x)(p
int
a,k(x)− pobsa,k(x))dx

∣∣∣∣ ≤ CLIPML(p
int
a,k, p

obs
a,k)

(17)

as in e.g. Shalit et al. (2017); Johansson et al. (2018)’s bounds for the standard treatment effect estimation setting. Note
further that because ℓh ∈ [0, 1] by assumption, max(

√
Epobs

a,k
[w2(x)l2h(x)],

√
Ep̂obs

a,k
w2(x)l2h(x)]) ≤ 1 in the second term.

Putting the two together gives (16).

D EXPERIMENTAL DETAILS

Synthetic DGPs For clarity, we explicitly write out the DGPs used to create settings 1-4 in the main text below.

Setting 1 (ξ varies): hY (k, x, a) = 0.01(1− x1) + 0.1x1 and hD(k, x, a) = 0.01 and π(x)=expit(ξ(x1−0.5))

Setting 2 (pDhigh,τ varies): hY (k, x, a) = 0.01(1−x1)+0.1x1 and hD(k, x, a) = 0.01+ pDhigh,τ ∗x1 ∗a and π(x) = 0.5

Setting 3 (pDhigh varies): hY (k, x, a) = 0.01(1− x1) + (0.1− 0.09a) ∗ x1 and hD(k, x, a) = 0.01(1− x1) + pDhigh ∗ x1

and π(x) = 0.5

Setting 4 (ξ varies): hY (k, x, a) = 0.01(1−x1)+0.1x1 and hD(k, x, a) = 0.01+0.1∗x1∗a and π(x)=expit(ξ(x1−0.5))

with X1 ∼ B(0.5) and X2 ∼ B(0.5−ρ(1−2X1)) and ρ = .35 for all Figures except in Fig. 6 panel A&B where π(x)
depends on x2 instead of x1.

Implementations7 Throughout, as unrestricted/correctly specified estimators for the hazard of the competing event ĥD for
each time step and for all propensity estimators π̂, we use logistic regressions (LR), relying on the sklearn(Pedregosa et al.,
2011) implementation with default parameters and l2-penalty C = 100. As described in the main text, we use constants
to induce a misspecified hazard model for the main event at each time step . For the results using LRs for the main event
hazard in Fig. 5C&D in the main text, we set l2-penalty C = 1 in Fig. 5C to reduce capacity of the model and create a
misspecified model, and C = 100 for the unrestricted version in Fig. 5D.

7Code to replicate all experiments can be found at https://github.com/AliciaCurth/CompCATE or https://
github.com/vanderschaarlab/CompCATE.

https://github.com/AliciaCurth/CompCATE
https://github.com/vanderschaarlab/CompCATE
https://github.com/vanderschaarlab/CompCATE
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E ADDITIONAL EXPERIMENTS USING REAL DATA

E.1 Creating a semi-synthetic benchmark from the Twins dataset

Due to the usual absence of counterfactuals in practice, benchmarking treatment effect estimation methods on real data is
a challenging problem (Curth et al., 2021b). In our setting, this problem is exacerbated relative to the standard HTE setting
because there are more interventions than ’just’ intervention on treatment, meaning that there are even more unobserved
counterfactuals (namely those corresponding to interventions on competing events or separable interventions).

The Twins Dataset. The (real-world) Twins benchmark dataset used in Louizos et al. (2017); Yoon et al. (2018) for binary
outcomes and in Curth et al. (2021a) for TTE outcomes without competing events is an interesting exception as Twins
could be treated as their respective counterfactual under treatment – which has been exploited in the standard setting where
we only wish to intervene on treatment: The dataset consists of 11400 pairs of twins, for whom one can create a binary
treatment such that a = 1 denotes being the heaver twin at birth, and use this to emulate a hypothetical study measuring
the HTE of birthweight on 1-year infant mortality (binary outcome) or survival times (in days, administratively censored
at t=365). Note that, fortunately, the mortality rate is relatively low, giving an event rate of around 16% over the full
horizon. The dataset as used in Yoon et al. (2018); Louizos et al. (2017); Curth et al. (2021a) contains 30 covariates for
each twin relating to the parents, the pregnancy, and the birth (e.g., marital status, race, residence, number of previous
births, pregnancy risk factors, quality of care during pregnancy, and number of gestation weeks prior to birth), of which we
use 27 in our experiments (we dropped the three categorical features due to low variance).

Semi-synthetic benchmarking setup. We use this dataset as a basis for a semi-synthetic benchmarking setup in which
we use the original covariates and event times to create an observational time-to-event dataset with competing events by
(i) selectively observing only one twin during training and (ii) introducing a simulated competing event. As both are
simulated, we can intervene on these processes to give oracle solutions based on interventional distributions to compare
to the solutions obtained from observational distributions. Note that, because most events happen early on – 80% of
events happen on days 0-10, with 60% of events occuring on day 0 – we consider only the first 10 days, so that here
K = {0, . . . , 10}.

In training, we selectively observe only one of the two twins, and for (i) induce confounding by sampling A|X ∼ B(π(X))
with propensity score π(Xi) = expit(ξAZtrain(|S|−1

∑
p∈S Xi,p)) where Ztrain(·) denotes standardization over the

training set, ξA determines the strength of selection and S is a feature subset which is chosen as discussed below. For (ii),
using the observed trajectories Ȳ a

K from the Twins dataset, we introduce competing events by simulating Da
k ∼ hd(k, x, a)

for units with Y a
k−1 = 0, and setting all future values of Y a

k to zero whenever a competing event occurs. As a hazard we
use

hD(k, x, a) =

{
expit

(
log(0.1) + ξD(1− a)Ztrain(|S|−1

∑
p∈S xp)

)
if k = 1

0.1
k−1 otherwise

(18)

which mimics the main outcome in that most events and heterogeneity occurs initially in period 0 and then levels of. As
above Ztrain(·) denotes standardization over the training set and ξD determines the heterogeneity in the competing event
process. Note that treatment here equalizes the odds of the competing event across individuals.

As before, we consider 3 settings to be able to disentangle the different forces at play here. In setting 1, we remove
the competing event and consider only the effect of treatment selection by varying ξA. In setting 2, we assign treatment
randomly and consider only the effect of the covariate shift induced by the competing event by varying ξD. In setting 3,
we combine the two, set ξA = 2 and vary ξD.

For both propensity and competing hazard, to ensure that the variables determining treatment assignment and com-
peting event are actually important for the main event, we choose set S by selecting the most important covariates
from a (treatment-agnostic) random forest for predicting mortality at time step 0 on the Twins data (using sklearn’s
SelectFromModel class). In Fig. 8 in the experiments below, we show that choosing outcome-relevant features in
such manner makes a difference in an experiment where we instead randomly sample a feature set of size |S|.

Estimators. Because the event data is real and not simulated, unlike in the main text, we do not know what correctly
specified model is in this case. Here, we therefore consider as base models a constant model as in the main text, as
well as a LR with cross-validated l1-penalty in {10−3, 10−2, 10−1} and a random forest with 100 trees. The compet-
ing events and propensity models are once more fit using a (correctly specified) LR with cross-validated l1-penalty in
{10−3, 10−2, 10−1, 1}. The four learning strategies – observational, weighting (true and estimated) and counterfactual
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Figure 7: RMSE of estimating RMST under control (left) and under treatment (right) under the different interventions
(columns) across different DGPs (rows) using (misspecified) constant estimators per time-step on Twins. Shaded area
indicates one standard error.

– are as before. Note that because treatment assignment and competing event are simulated, ground truth weights and
counterfactuals are accessible.

Evaluation. As the main event data is real and ground truth probabilities are unknown, we instead evaluate all models
in terms of their predictions of event-free restricted mean survival time under intervention RMST int

K = min(T int,K)
which we can compute from the observed (twins) event times TY,twins(a) and simulated competing event times TD,sim(a)
(both are set to K+1 if event never occurs) as

RMST int
K =


min(TY,twins(a), TD,sim(a),K) if int = do(A = a)

min(TY,twins(a),K) if int = do(A = a, D̄ = 0)

min(TY,twins(aY ), T
D,sim(aD),K) if int = do(AY = ay, AD = aD)

The expected value of the RMST is equal to the area under the event-free survival curve, which for the different interven-
tions can be computed from the hazard functions as

E[RMST int
K ] =


1 +

∑K−1
l=1

[∑l
q=1(1− hD(q, x, a))(1− hY (q, x, a))

]
if int = do(A = a)

1 +
∑K−1

l=1

[∑l
q=1(1− hY (q, x, a))

]
if int = do(A = a, D̄ = 0)

1 +
∑K−1

l=1

[∑l
q=1(1− hD(q, x, aD))(1− hY (q, x, aY ))

]
if int = do(AY = ay, AD = aD)

Below we will sometimes refer to RMST(a); this refers to the different versions of RMST evaluated for A = a at
time K = 10 (only for the separable direct effect, RMST(0) corresponds to aY = aD = 0 and RMST(1) corre-
sponds to aY = 1, aD = 0). We report the RMSE of estimating RMST using the hazards from the different models,√

1
ntest

∑ntest

i=1 (RMST int
K,i − Ê[RMST int

K ])2; here we split the data 50/50 for training and testing (by twin pairs), and
report means and standard errors of the RMSE across 5 replications of each experiment. Code to replicate the experiments
will be released upon acceptance of the paper.

E.2 Results using the Twins data

In Fig. 7 we present results for all three settings and interventions corresponding to the three effects under consideration,
using constant models at each time step to possibly induce misspecification. We observe that many of the conclusions from
the stylized simulations from the main text carry over also to this more complex and realistic setup based on real data.
We observe that varying confounding through ξA (top row) remains important for all effects. We observe that only the
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estimator of the control8 RMST in the direct effect setting is impacted by varying the competing event intensity ξD alone
(middle row), while when adding the two together we observe that varying ξD can impact also estimation of the other
effects.

We also note that all differences between approaches overall appear much more salient for the RMST of the control group
than for the treated group. While for settings 2 and 3 it is partially a consequence of how we designed the competing event
hazard function, this is not the case for setting 1 – here it may give some evidence that the outcome model in the treated
population is not substantially misspecified and may be near constant; therefore we now focus on the control RMST for
the remainder of this section. Additionally, we focus on estimation under intervention do(A = a, D̄ = 0), corresponding
to direct effects, for which the results are most pronounced.

Figure 8: RMSE of estimating control RMST under intervention do(A =
0, D̄ = 0) (corresponding to direct effects) using a constant model for the three
settings when features in S are randomly chosen.

We next consider the effect of having
selected outcome-relevant covariates
for treatment assignment and compet-
ing event. In Fig. 8 we instead se-
lect random features and observe that
indeed, compared to outcome-relevant
features as in Fig. 7, the shift induced
in the different settings no longer sys-
tematically plays a role.

Finally, we use more flexible models
– random forests (RFs) and logistic re-
gressions (LRs) – instead of the simple
constant models (returning to a setting
where S is outcome-relevant). In Fig.
9 we present results for the three settings. We observe that for RFs, these covariate shifts appear to also play a role similarly
to the constant estimator, albeit with smaller magnitude in effect on the estimation error. Interestingly, for LRs we do not
observe any performance degradation of the observational solution relative to the counterfactual solution (and if anything,
we observe that variance induced by weighting sometimes degrades performance). As robustness to arbitrary distribution
shifts can indicate correct specification (Wen et al., 2014), this may provide some evidence that the LR-model is actually
correctly specified to capture the complexity of the underlying Twins time-to-event outcome data.

(a) Random forest (b) Logistic Regression

Figure 9: RMSE of estimating control RMST under intervention do(A = 0, D̄ = 0) (corresponding to direct effects) using
random forests (left) and logistic regressions (right) for the three settings.

8Note that, due to our hazard specification for the competing event, there is no covariate shift in the treatment group for the direct
effect, thus it is expected that behaviour in estimation of RMST(1) is not impacted by ξD in rows 2 and 3
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