
A Variance-Reduced and Stabilized Proximal Stochastic Gradient Method with
Support Identification Guarantees for Structured Optimization

Yutong Dai Guanyi Wang Frank E. Curtis Daniel P. Robinson
Lehigh University National University of Singapore Lehigh University Lehigh University

Abstract

This paper introduces a new proximal stochas-
tic gradient method with variance reduction and
stabilization for minimizing the sum of a convex
stochastic function and a group sparsity-inducing
regularization function. Since the method may
be viewed as a stabilized version of the recently
proposed algorithm PStorm, we call our al-
gorithm S-PStorm. Our analysis shows that
S-PStorm has strong convergence results. In
particular, we prove an upper bound on the num-
ber of iterations required by S-PStorm before
its iterates correctly identify (with high probabil-
ity) an optimal support (i.e., the zero and nonzero
structure of an optimal solution). Most algo-
rithms in the literature with such a support iden-
tification property use variance reduction tech-
niques that require either periodically evaluating
an exact gradient or storing a history of stochas-
tic gradients. Unlike these methods, S-PStorm
achieves variance reduction without requiring ei-
ther of these, which is advantageous. Moreover,
our support-identification result for S-PStorm
shows that, with high probability, an optimal sup-
port will be identified correctly in all iterations
with index above a threshold. We believe that
this type of result is new to the literature since
the few existing other results prove that the op-
timal support is identified with high probability
at each iteration with a sufficiently large index
(meaning that the optimal support might be iden-
tified in some iterations, but not in others). Nu-
merical experiments on regularized logistic loss
problems show that S-PStorm outperforms ex-
isting methods in various metrics that measure
how efficiently and robustly iterates of an algo-
rithm identify an optimal support.

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

We consider the regularized stochastic learning problem

min
x∈Rn

F (x) := f(x) + r(x), (1)

where f(x) := Eξ∼P [ℓ(x; ξ)] with ξ being a random vector
following a probability distribution P , ℓ(·, ξ) is a smooth
convex function almost surely with respect to the distri-
bution of ξ, and r is a sparsity-promoting closed con-
vex function with group separable structure, i.e., r(x) :=∑nG

i=1 ri([x]gi) for some number of groups nG > 0 with
gi ⊆ {1, 2, . . . , n} for each i ∈ {1, 2, . . . , nG},

⋃nG
i=1 gi =

n, and gi ∩ gj = ∅ for all i ̸= j. Some commonly
used regularization functions have these properties, such as
the weighted ℓ1 norm

∑n
i=1 λi|[x]i| and the weighted non-

overlapping Group-ℓ1 norm
∑nG

i=1 λi ∥[x]gi∥, where {λi}
are positive scalars, [x]i denotes the ith component of x,
[x]gi denotes the subvector of x with entries from gi, and
∥ · ∥ is the ℓ2 norm. Problem (1) is general enough to
cover a broad class of problems of interest. In particular,
when data samples (ξ) are available in a streaming manner,
problem (1) recovers online convex learning (Hazan et al.,
2016), and when P is a uniform distribution over a finite
set {1, 2, · · · , N}, problem (1) recovers many regularized
finite-sum problems (Tibshirani, 1996; Hastie et al., 2009).

In this work, we are interested in designing an algorithm
for solving problem (1) that can identify the support of an
optimal solution (i.e., the zero and nonzero group structure
of an optimal solution) in a finite number of iterations. This
can be useful for applications like variable selection in re-
gression problems (Tibshirani, 1996). It can also be used
in combination with higher-order methods to design more
efficient algorithms. For example, subspace acceleration
methods benefit from F being smooth over the variables
in the support of an optimal solution, even though F may
be non-differentiable over the entire set of variables. For
such methods, once the support is identified, more pow-
erful methods (e.g., truncated Newton’s method (Nocedal
and Wright, 2006)) can be applied over the variables in the
support to accelerate the local convergence rate (Wright,
2012; Chen et al., 2017; Curtis et al., 2022).

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

1.1 Related Work

The proximal stochastic gradient method (Rosasco et al.,
2020) and its variants (Xiao and Zhang, 2014; Defazio
et al., 2014; Wang et al., 2019; Pham et al., 2020; Tran-
Dinh et al., 2022) are perhaps the most popular methods
for solving problem (1). Since there is a large body of work
on proximal stochastic gradient methods, we will (in align-
ment with the contributions of our work) focus on methods
that have both a convergence guarantee and support identi-
fication property. Support identification is also sometimes
referred to as manifold identification (Wright, 2012; Poon
et al., 2018; Sun et al., 2019; Lee and Wright, 2012).

Proximal stochastic gradient-type methods are based on it-
erations that take the form

yk+1 ← proxαkr
(xk − αkdk) with αk > 0, (2)

where proxαkr
(·) is the proximal operator (Beck, 2017,

Definition 6.1) associated with r and step size αk > 0 and
dk is an estimator of∇f(xk). If dk = ∇ℓ(xk; ξk) for some
realization ξk of the random variable ξ and xk+1 = yk+1,
then (2) recovers the proximal stochastic gradient method.

As observed by Poon et al. (2018) and Sun et al. (2019), the
proximal stochastic gradient method does not have a sup-
port identification property because the error in the stochas-
tic gradient estimator ϵk = dk−∇f(xk) does not vanish as
k goes to infinity. One way of overcoming this deficiency
is to employ variance reduction techniques. When r is the
weighted ℓ1-norm, Sun et al. (2019) considers the variance
reduction properties of ProxSVRG, SAGA, and RDA (i.e,
they consider whether E [∥ϵk∥] → 0),1 and establishes an
active-set identification property (in expectation) for these
three methods. Specifically, for a given sufficiently large k,
they show that the zero groups of xk agree with the zero
groups of the optimal solution (in expectation). Moreover,
when F is strongly convex so that a unique minimizer x∗

exists, by knowing the rates at which {E [∥xk − x∗∥]} and
{E [∥ϵk∥]} converge to zero, Sun et al. (2019, Theorem 4)
establishes an upper bound, that holds in expectation, on
the number of iterations before the zero variables are iden-
tified. When r is strongly convex, Lee and Wright (2012)
establishes for RDA that, for any given sufficiently large k,
the support of xk matches that of x∗ with high probabil-
ity. (Observe that this means that the supports can match
in some such iterations while not in other such iterations.)
Later, Huang and Lee (2022) extends this result for RDA to
the non-convex setting by making additional assumptions
on the rate of convergence of the iterates and the step sizes.

A drawback of ProxSVRG and SAGA is that they are only
applicable when problem (1) has a finite-sum structure, i.e.,
P is a uniform distribution over a finite set {1, 2, . . . , N}.

1These results for ProxSVRG, SAGA, and RDA can be found
in Table 2, Appendix C.3, and Appendix C.4 of (Sun et al., 2019).

In particular, ProxSVRG requires an extra exact evalua-
tion of∇f every epoch, and SAGA requires one exact eval-
uation of ∇f in the first iteration and stores a history of
stochastic gradients in a matrix of size N × n, where N is
the size of the data set and n is the number of optimization
variables. Thus, ProxSVRG and SAGA are not practical
for applications involving streaming data or large N .

The recent work by Cutkosky and Orabona (2019) and its
extension by Xu and Xu (2020) consider a new stochastic
gradient estimator called Storm. When Storm is com-
bined with a proper step size selection strategy, it has a
variance reduction property, and yet never requires an exact
evaluation of ∇f . Our method S-PStorm draws inspira-
tion from their work and introduces an iterate stabilization
update to achieve a support identification property without
having to store a history of stochastic gradients or to com-
pute an exact evaluation of∇f . The above results are sum-
marized in Table 1.

Table 1: The first column gives the algorithm name. The
second column shows the convergence rate of the iterates
with ρProxSVRG > 0 and ρSAGA > 0. The third column
shows the support identification complexity where ∆∗ and
δ∗ are positive constants (see (6) and (7)). (The ∆∗ ap-
pearing in the result for our method S-PStorm is a conse-
quence of our accounting for both zero and nonzero groups,
whereas the other results are derived based on when only
the zero groups are identified.) The result for RDA is valid
when f and r are both strongly convex whereas the re-
sult for S-PStorm only assumes strong convexity of f .
The fourth column indicates how often a method evaluates
an exact gradient, and the fifth column gives the storage
costs. The results for ProxSVRG and SAGA hold only
when problem (1) has a finite-sum structure.

Algorithm
∥∥xk − x∗∥∥2 Support Identification # Exact ∇f Storage

ProxSVRG O
(
ρkProxSVRG

)
O(log(1/δ∗)) every epoch O(n)

SAGA O
(
ρkSAGA

)
O(log(1/δ∗)) once O(Nn)

RDA O(log k/k) O
(

1
(δ∗)4

)
never O(n)

S-PStorm O(log k/k) O
(
max

{
1

(δ∗)4
, 1
(∆∗)4

})
never O(n)

1.2 Contributions

This paper makes three main contributions.

1. We establish the variance reduction property (with
high probability) of the Storm stochastic gradient es-
timator (Theorem 3.1), which is missing in Xu and
Xu (2020). This is achieved by introducing a simple
stabilization step in line 12 of Algorithm 1, which we
show allows for a constant step size to be employed.
This result is interesting in its own right, and the fact
that our method allows for a constant step size to be
used is a crucial property that we leverage in proving
a support identification result.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

2. To the best of our knowledge, RDA and our proposed
S-PStorm are the only methods with a support iden-
tification property that neither require an exact gradi-
ent evaluation nor incur excessive storage costs. Com-
pared with RDA, S-PStorm has a stronger notion of
support identification (formalized in Definition 1.3).
In particular, we show that, with high probability, all
sufficiently large iterates in S-PStorm will correctly
identify the support of the optimal solution. In con-
trast, RDA proves that each iterate with sufficiently
large index will identify the support of the optimal so-
lution with high probability (meaning that the support
might be identified correctly in some iterations and not
in others). We are able to obtain this stronger result
as a consequence of the construction of the Storm
stochastic gradient estimator and the added stabiliza-
tion step, which allow for a sharp union bound (see
Remark 3.6 for additional details).

3. Our numerical experiments on regularized logistic
loss functions with weighted group ℓ1-norm regular-
ization show that S-PStorm outperforms popular
methods in metrics that measure how efficiently and
robustly iterates of an algorithm identify an optimal
support, and in the final objective value achieved.

1.3 Notation and Preliminaries

Throughout the paper we use the following notation. We
use ∥·∥ to represent the ℓ2 norm, |S| to denote the cardinal-
ity of a set S, and N+ and R+ to be the sets of positive inte-
gers and positive real numbers, respectively. For N ∈ N+,
we define [N] := {1, 2, · · · , N}. For x ∈ Rn and index set
I ⊆ [n], we use [x]I ∈ R|I| to denote the subvector of x
that corresponds to the elements of I. For two sequences of
non-negative real numbers {ϕk}k≥1 and {ψk}k≥1, we say
ϕk = O(ψk) if and only if there exist constants k0 ∈ N+

and M ∈ R+ such that ϕk ≤Mψk for all k ≥ k0.

Let us now formally define what we mean by the support,
a support identification property, and a consistent support
identification property for a randomized algorithm.

Definition 1.1 (support). The support of a point x ∈ Rn is
denoted by S(x) and defined as

S(x) := {i ∈ [nG] | [x]gi ̸= 0},

where {gi}nG
i=1 forms a non-overlapping partition of [n].

We say that x ∈ Rn has optimal support if and only if
S(x) = S(x∗) for some solution x∗ ∈ Rn to problem (1).

Definition 1.2 (support identification property). A ran-
domized algorithm is said to have the support identification
property if and only if there exists K ∈ N+ and p ∈ (0, 1]
such that, when the algorithm generates a sequence of vec-
tors {yk}∞k=1, one finds for each k ≥ K that the event
{S(yk) = S(x∗)} occurs with probability at least p.

Definition 1.3 (consistent support identification property).
A randomized algorithm has the consistent support iden-
tification property if and only if there exist K ∈ N+ and
p ∈ (0, 1] so that, when the algorithm generates a se-
quence of vectors {yk}∞k=1, one finds that the event Eid :=⋂∞

k≥K{S(yk) = S(x∗)} occurs with probability at least p.

While Lee and Wright (2012) and Sun et al. (2019) prove
the support identification property of their algorithms (see
Definition 1.2), we prove the stronger consistent support
identification property (see Definition 1.3) for S-PStorm.

We next introduce some properties related to the proximal
operator. For any α > 0 and convex function r, the proxi-
mal operator proxαr (·) is single-valued. We define

χ(x;α) := 1
α ∥proxαr (x− α∇f(x))− x∥ , (3)

which is the norm of the so-called gradient mapping, and
is known to serve as an optimality measure for prob-
lem (1) (Beck, 2017, Theorem 10.7 (b)).

2 ALGORITHM

In this section, we present S-PStorm as Algorithm 1
for solving problem (1). At the beginning of iteration k,
a mini-batch of independently and identically distributed
(i.i.d) data samples {ξk,i}mi=1 are drawn according to the
distribution P , and two stochastic gradients vk and uk are
formed at the current iterate xk and the previous iterate
xk−1 in (4)–(5). Then, the Storm stochastic gradient esti-
mator is constructed in line 9. After performing the prox-
imal stochastic gradient update to obtain yk, a stabiliza-
tion step is performed in line 12. As shown in the proof
of Theorem 3.1, the stabilization step is critical because it
allows for a constant step size strategy to be employed (i.e.,
αk ≡ α > 0 for all k), which in turn allows us to prove a
consistent support identification result for S-PStorm.

3 ANALYSIS

We begin this section by introducing the assumptions under
which our convergence analysis is performed.

3.1 Assumptions

Our first assumption concerns strong convexity of f and
Lipschitz continuity of the gradient of the loss function ℓ.

Assumption 3.1. The following hold:

1. f is µf -strongly convex over Rn and ri is convex and
closed over Rn for all i ∈ [nG].

2. There exists a constant Lg > 0 such that, for any
(x, y) ∈ Rn × Rn and any ξ ∼ P , it holds that

∥∇ℓ(x, ξ)−∇ℓ(y, ξ)∥ ≤ Lg ∥x− y∥ ,

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Algorithm 1 S-PStorm
1: Inputs: Initial point x0 = x1 ∈ Rn, size of mini-batch
m ∈ N+, weight sequence {βk}k≥2 ⊂ (0, 1), stepsize
sequence {αk} ⊂ (0,∞), and parameter ζ ∈ (0,∞).

2: for k = 1, 2, . . . , do
3: Draw m i.i.d samples {ξk1, · · · , ξkm} w.r.t. P .
4: Set

vk ← 1
m

m∑

i=1

∇ℓ(xk; ξki). (4)

5: if k = 1 then
6: Set dk ← vk.
7: else
8: Set

uk ← 1
m

m∑

i=1

∇ℓ(xk−1; ξki). (5)

9: Set dk ← vk + (1− βk)(dk−1 − uk).
10: end if
11: Compute yk ← proxαkr

(xk − αkdk).
12: Set xk+1 ← xk + ζβk(yk − xk).
13: end for

i.e., ∇f is Lg-Lipschitz continuous.

The strong convexity assumption on f is for deriving a
complexity result for consistent support identification. This
assumption can be relaxed to f being convex if, similar
to Sun et al. (2019), we instead assume that there exists
a decreasing sequence {νk} such that P({∥xk − x∗∥ ≤
νk}) = 1. Under this assumption, we can also prove a
consistent support identification result for S-PStorm, al-
though without an explicit upper bound on K in Defini-
tion 1.3—whereas under Assumption 3.1 we provide such
an upper bound. The smoothness assumption on ℓ(·, ξ) is
standard (Cutkosky and Orabona, 2019; Xu and Xu, 2020).

For our next assumption, we refer to the filtration—defined
by the initial point and sequence of mini-batch stochastic
gradients—corresponding to the stochastic process gener-
ated by the algorithm. Denoting F1 := σ(x1) and, for all
k ≥ 2, denoting Fk as the σ-algebra generated by the ran-
dom variables {{Ξ1,i}mi=1, . . . , {Ξ(k−1),i}mi=1} (of which
{{ξ1,i}mi=1, . . . , {ξ(k−1),i}mi=1} is a realization), it follows
that {Fk} is this filtration of interest. Recall that the distri-
bution P of ξ is independent of the filtration.

Assumption 3.2. The following hold:

1. For all k ≥ 1, Eξ∼P [∇ℓ(xk; ξ) | Fk] = ∇f(xk).

2. There exists Gr ∈ R+ such that, for all k ≥ 1,
P{∥gr∥2 ≤ Gr, ∀gr ∈ ∂r(xk)} = 1.

3. There exists σ ∈ R+ such that, for all k ≥ 1,
Pξ∼P{∥∇ℓ(xk, ξ)−∇f(xk)∥ ≤ σ | Fk} = 1.

4. There exists Gd ∈ R+ such that, for all k ≥ 1,
Pξ∼P{∥dk∥ ≤ Gd | Fk} = 1.

Assumption 3.2(1) ensures that the stochastic gradient
∇ℓ(x; ξ) is an unbiased estimator of the gradient∇f(x) for
all x ∈ Rn. Assumption 3.2(2) provides a constant upper
bound on the norm of an element of ∂r(x) for all x ∈ Rn,
which exists when r is the weighted ℓ1-norm or weighted
group ℓ1-norm, for example. Assumption 3.2(3) guaran-
tees (almost surely) a bound on the difference between
∇ℓ(xk; ξ) and ∇f(xk) for all k ∈ N+. This assumption
is implied by the uniform bound assumption on ∇ℓ(x; ξ)
used in (Liu et al., 2022, Assumption 4). It may be possible
to relax Assumption 3.2(3) by assuming that the stochas-
tic gradient error has a sub-exponential tail, e.g., Na et al.
(2022), which we leave as future work. Assumption 3.2(4)
is implied by the following two, perhaps more natural, as-
sumptions: (i) There exists a constant ce > 0 such that,
for all k, it holds that P{∥dk −∇f(xk)∥ ≤ ce|Fk} = 1,
i.e., the error in the stochastic gradient estimator dk is al-
most surely bounded; and (ii) There exists a constant cα
such that, for a given α > 0 and all k ≥ 1, it holds that
P{χ(xk;α) ≤ cα|Fk} = 1 (also see (3)), i.e., the opti-
mality measure is almost surely bounded. Note that As-
sumption 3.2(4) is slightly weaker than a bounded iterates
assumption, which is also made in RDA (Lee and Wright,
2012). A proof that Assumption 3.2(4) follows from (i) and
(ii) can be found in Appendix A.4.

Our last assumption is on the parameters of Algorithm 1.

Assumption 3.3. The sequences {βk} and {αk} in Algo-
rithm 1 are chosen, with c > 1 and α ∈ (0,∞), to satisfy
βk = min{1/2, c/(k + 1)} and αk ≡ α for all k ≥ 1.

The constant 1/2 appearing in the definition of βk in As-
sumption 3.3 can be replaced by any constant between zero
and one; the choice of 1/2 is to simplify expressions ap-
pearing throughout our analysis.

3.2 Convergence Analysis

The first result establishes the variance reduction property
of the Storm stochastic gradient estimator.

Theorem 3.1. Let Assumption 3.1–Assumption 3.3 hold,
let ϵk = dk − ∇f(xk) for all k ∈ N+, and define k =
⌈(2c) − 1⌉. Then, for any k ≥ k and any ηk ∈ (0, 1), the
event Ek := {∥ϵk∥ ≤ U(k)} holds with probability at least
1 − ηk, where for some constant C ∈ R+ independent of
k, one defines

U(k) = C
(
σ + Lg(Gr +Gd)ζα

)

·max

{(
k + 1

k + 2

)c

,
c√
k + 2

}√
log

2

ηk
.

The proof of Theorem 3.1 is presented in Appendix A.1.

Remark 3.1. The upper bound U(k) in Theorem 3.1 is
independent of the mini-batch size m. This is due to the
bound in Assumption 3.2(3) that holds almost surely.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Remark 3.2. By setting ηk = η0

k2 for all k ∈ N+

with constant η0 ∈ (0, 6/π2), one obtains U(k) =
O(max{√log k/kc,

√
log k/k}) so that {∥ϵk∥} → 0 with

high probability. This is formalized in the next result.

Corollary 3.1. Let Assumption 3.1–Assumption 3.3 hold,
ηk = η0

k2 for all k ≥ 1 with η0 ∈ (0, 6/π2), and Ek be
defined as in Theorem 3.1. Then, the event E :=

⋂∞
k≥k Ek

happens with probability at least 1− η0π
2

6 .

The proof of Corollary 3.1 can be found in Appendix A.2.

Next, we establish the rate of convergence of the iterate
sequence {xk} with high probability (for small η0).

Theorem 3.2. Let α = µf/L
2
g , ζ ∈ (0, 2), θ ≥ 2,

c = (2θL2
g)/(ζµ

2
f) > 2, and k = ⌈2c − 1⌉. Set

ηk = η0/k
2 for all k ≥ 1 with η0 ∈ (0, 6/π2). Then,

under Assumption 3.1–Assumption 3.3, there exists a con-
stant C3 ∈ R+ independent of k, such that the event Exk :={
∥xk − x∗∥2 ≤ c̄1 ∥

xk−x∗∥2
kθ + c̄2 ·

log 2k
η0

k

}
with c̄1 :=

(k + 2)θ and c̄2 := C3ζ

(
µ2
f

L4
g
+ 2

L2
g

(
1 +

µf

Lg

)2)
(σ +

Lg(Gr +Gd)ζα)
2 satisfies

P

∞⋂

k≥k

Exk

 ≥ 1− η0π2/6 > 0.

The proof of Theorem 3.2 is presented in Appendix A.3.

Remark 3.3. Theorem 3.2 provides a O(
√
log k/k) con-

vergence rate for ∥xk − x∗∥ for all k ≥ k with high prob-
ability. It is worth noting that the constant k depends on
the square of the condition number Lg/µf . We also note
that the first term c1∥xk − x∗∥2/kθ can be made to con-
verge to zero arbitrarily fast by choosing θ as large as de-
sired, although this results in larger k. It is the second term
c2 log(

2k
η0
)/k that dictates the overall convergence rate of

the iterates. This rate of convergence is obtained by using
the rate at which the error in the Storm stochastic gradient
estimator converges to zero (see Remark 3.2).

Remark 3.4. Theorem 3.2 establishes a sub-linear rate
of convergence for the iterates with high probability for
strongly convex loss functions. However, it remains un-
known whether there exists a method that has a linear
convergence rate for strongly convex functions and avoids
huge storage and exact gradient evaluations.

3.3 Support Identification

In this section, we restrict our attention to r being
the weighted non-overlapping group ℓ1 regularizer, i.e.,
r(x) =

∑nG
i=1 λi ∥[x]gi∥ with nG > 0, {gi} ⊆ [n] for each

i ∈ [nG],
⋃nG

i=1 gi = [n], gi ∩ gj = ∅ for all i ̸= j, and
{λi}nG

i=1 strictly positive group weights.

Let us now introduce quantities that are crucial for estab-
lishing our support identification result. Specifically, let x∗

be the unique solution to problem (1). Define

∆ :=

min
i∈S(x∗)

∥[x∗]gi∥ if S(x∗) ̸= ∅,

1 if S(x∗) = ∅,

∆∗ := min{1,∆}, (6)

δmin :=

min
i ̸∈S(x∗)

{λi − ∥∇gif(x
∗)∥} if S (x∗) ⫋ [nG],

1 if S (x∗) = [nG],

δ∗ := min{δmin, 1}. (7)

Geometrically, ∆ captures the minimum ℓ2-norm of the
groups that are non-zero at x∗, taking into account the
possibility that S (x∗) is empty. The definition of δmin

measures the minimum distance between λi and the corre-
sponding optimal dual variables (see (9)) for groups not in
S(x∗). To see this, without loss of generality, suppose that
S (x∗) ⫋ [nG]. For any α > 0 define z∗ := x∗−α∇f(x∗)
and then consider the proximal problem

min
x∈Rn

ϕp(x;x
∗, α) := 1

2α∥x− z∗∥2 + r(x) (8)

and its dual problem

max
ω∈Rn

ϕd(ω;x
∗, α) := −

(
α
2 ∥ω∥22 + ωT z∗

)
s.t. r∗(ω) ≤ 1

(9)
where r∗(ω) = maxi∈[nG]

∥[ω]gi∥
λi

is the dual norm of the
weighted group ℓ1 norm. It can be seen that x∗ is the opti-
mal solution to the primal problem (8) (Beck, 2017, Theo-
rem 10.7). Denoting ω∗ as the optimal solution to the dual
problem (9), it follows that

[ω∗]gi = −min
{

1
α ,

λi

∥[z∗]gi∥
}
[z∗]gi for all i ∈ [nG]. (10)

Then, by the Fenchel-Young inequality (Rockafellar, 1970,
Theorem 31.1), it follows that

x∗ = αω∗ + z∗. (11)

Combining the definition of z∗ and (11), one establishes
that ω∗ = ∇f(x∗). Therefore, δmin measures the mini-
mum distance from [ω∗]gi to the boundary of the ball cen-
tered at origin with distance λi for all i ̸∈ S (x∗).
The discussion above leads to a non-degeneracy as-
sumption: For groups of variables not in S (x∗), their
corresponding dual variables are strictly feasible, i.e.,
∥[ω∗]gi∥ < λi for all i ̸∈ S (x∗). Let us formally state this
non-degeneracy assumption using ω∗ = ∇f(x∗) to make it
consistent with the literature (Lee and Wright, 2012; Poon
et al., 2018; Sun et al., 2019; Curtis et al., 2022).

Assumption 3.4. The scalar δ∗ in (7) satisfies δ∗ > 0.

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

With the non-degeneracy assumption in hand, we may now
give a sufficient condition for support identification.

Theorem 3.3. Let Assumption 3.4 hold. Given α > 0,
d ∈ Rn, and the optimal solution x∗ to problem (1), let us
define z = x− αd and y = proxαr (z). If
∥∥∥∥
[z − x∗]gi

α
+∇gif(x

∗)

∥∥∥∥ < δ∗ for all i ̸∈ S (x∗) ,

then S (y) ⊆ S (x∗). Furthermore, if ∥y − x∗∥ < ∆∗,
then S (x∗) ⊆ S (y) so that, in fact, S (y) = S (x∗).

The proof of Theorem 3.3 is presented in Appendix A.4.

Remark 3.5. Theorem 3.3 extends the result in (Sun et al.,
2019, Lemma 1) from the ℓ1 regularizer to the group ℓ1 reg-
ularizer considered here. Also, our result slightly strength-
ens theirs since they only discuss the result S(y) ⊆ S(x∗).

Using the sufficient conditions for support identification
from Theorem 3.3, the result of consistent support iden-
tification (Definition 1.3) can now be established.

Theorem 3.4. Let Assumption 3.1–Assumption 3.4 hold,
ζ ∈ (0, 2), θ ≥ 2, c = (2θL2

g)/(ζµ
2
f) > 2, and k =

⌈2c − 1⌉. Consider the sequence {yk} of Algorithm 1 and
define the event E id

k = {S(yk) = S(x∗)} for all k ≥ 1.
Then, there exists constants {C41, C42} ⊆ Rn

+ that are in-
dependent of k, kδ∗ = (C41/δ

∗)4 and k∆∗ = (C42/∆
∗)4

such that, with K := max{kδ∗ , k∆∗ , k}, it follows that

P

∞⋂

k≥K

E id
k

 ≥ 1− η0π

2

6
> 0.

The proof of Theorem 3.4 is presented in Appendix A.5.

Remark 3.6. Using Theorem 3.4 and results from Xiao
(2009) and Lee and Wright (2012), we can also de-
rive a high probability support identification complex-
ity bound for RDA for any given iterate xk, which is
different from the result in Sun et al. (2019, Theo-
rem 5). To do so, we need extra assumptions on the
function r that do not hold for the weighted group ℓ1-
norm, and boundedness of {∇ℓ(xk; ξk)} generated by
RDA2. Specifically, we consider the update of RDA as
xk+1 = proxαkr

(−αkdk) with αk =
√
k

α , where dk =
1
k

∑k
i=1∇ℓ(xi; ξi)3. It follows from Lemma A.5(3) that

P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk

where

ηRDAk = max

{
O
(

1

δ∗ · k1/4
)
,O
(

1

∆∗ · k1/4
)}

.

2See Lemma A.5(2) for precise details of the assumptions.
3See Lemma A.5(1) to see how this form of the update is

equivalent to the RDA update presented in Xiao (2009).

Since
∑∞

k=1 η
RDA
k diverges, one cannot give a lower bound

on P
[
∩∞k≥KRDA{S (xk) = S (x∗)}

]
for some sufficiently

large KRDA. Instead, for any η0 ∈ (0, 1), there exists

a k = O
(
max

{(
1

η0δ∗

)4
,
(

1
η0∆∗

)4 })
such that any

given k ≥ k satisfies P [S(xk+1) = S(x∗)] ≥ 1 − η0.
This establishes the support identification property (see
Definition 1.2). However, in Theorem 3.4 we show that
S-PStorm has a consistent support identification property
(see Definition 1.3), which is a stronger result. Lastly, we
note that theK value appearing in Theorem 3.4 grows with
the condition number Lg/µf .

Remark 3.7. Similar to Sun et al. (2019), under additional
assumptions, it is possible to extend Theorem 3.4 to the
case that f is convex. In particular, if we assume that
∥xk − x∗∥ ≤ Ak for some optimal solution x∗ and a de-
creasing sequence {Ak}with some positive probability (for
example, with probability 1 − ηk) for all k ≥ 1, then we
can prove a support identification result, but we no longer
have a complexity bound.

4 NUMERICAL EXPERIMENTS

4.1 Problems, Baselines, and Implementation Details

Problems. We consider solving problem (1) with f(x)
and r(x) given by the regularized binary logistic loss and
group-ℓ1 regularizer, respectively, resulting in the problem

min
x∈Rn

1
N

N∑

j=1

log
(
1 + e−yjx

T dj

)
+10−5∥x∥2+

nG∑

i=1

λi ∥[x]gi∥

where N is the number of data points, dj ∈ Rn is the
jth data point, yj ∈ {−1, 1} is the class label for the
jth data point, and λi > 0 for all (j, i) ∈ [N] × [nG].
Data sets for the logistic regression problems were obtained
from the LIBSVM repository.4 We excluded all multi-class
(greater than two) classification datasets, datasets with fea-
ture less than 50 or samples less than 10000, and all data
sets that were too large (≥ 16GB)5. Finally, for the adult
data (a1a–a9a) and webpage data (w1a–w8a), we used only
the largest instances, namely a9a and w8a. This left us with
our final subset of 10 data sets that can be found in Table 2.
Following Xiao and Zhang (2014), we scaled each data
point to have a unit norm, i.e., ∥dj∥ = 1 for all j ∈ [N].

For each dataset, we considered four group structures and
two different solution sparsity levels, which led to 80 test
instances in total. We considered the four different num-
bers of groups in {⌊0.25n⌋, ⌊0.50n⌋, ⌊0.75n⌋, n}, where n

4https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets
5Memory usage is counted by a Python object instead of the

raw txt file. We also exclude the dataset epsilon since we had an
error message indicating a wrong data format in line 33334.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/epsilon_normalized.xz

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Table 2: Description of the data sets.

data set N n
a9a 32561 123
avazu-app.tr 12,642,186 1,000,000
covtype 581,012 54
kdd2010 8,407,752 20,216,830
news20 19,996 1,355,191
phishing 11,055 68
rcv1 20,242 47,236
real-sim 72,309 20,958
url 2,396,130 3,231,961
w8a 49,749 300

is the problem dimension; notice that the last setting re-
covers ℓ1-norm regularization. Then, for a given number
of groups, the variables were sequentially distributed (as
evenly as possible) to the groups; e.g., 10 variables among
3 groups would have been distributed as g1 = {1, 2, 3},
g2 = {4, 5, 6}, and g3 = {7, 8, 9, 10}. We considered
two different solution sparsity levels obtained by adjusting
the group weights {λi}. Specifically, we considered group
weights λi = Λ

√
|gi| for all i ∈ [nG] with Λ = 0.1Λmin

and Λ = 0.01Λmin, where Λmin is the minimum positive
number such that the solution to the logistic problem with
λi = Λmin

√
|gi| is x = 0. See Yang and Zou (2015, equa-

tion (23)) for the formula to compute Λmin.

Baselines. We choose ProxSVRG (Xiao and Zhang,
2014), SAGA (Defazio et al., 2014), and RDA (Xiao, 2009)
as baselines since they have theoretical guarantees for iden-
tifying the support. We also include PStorm (Xu and Xu,
2020) to demonstrate the empirical importance of the mod-
ification we made in S-PStorm (i.e., the stabilization step
in Line 12). We use FaRSA-Group (Curtis et al., 2022),
a deterministic second-order method, to find a highly ac-
curate estimate to the optimal solution x∗ for each test in-
stance by solving the problem to high accuracy (10−8), as
measured by the norm of the gradient mapping in (3).

Implementation Details We implemented a version of
ProxSVRG as described in Poon et al. (2018, Equation (8)
Option II), SAGA as described in Poon et al. (2018, Equa-
tion (6)), RDA as described in Lee and Wright (2012, Al-
gorithm 1), and PStorm as described in Xu and Xu (2020,
Algorithm 1)6. (i) Step size strategy: For ProxSVRG,
SAGA, and S-PStorm, we used a constant step size strat-
egy by setting αk ≡ 0.1/Lg , which follows the choice
made in Xiao and Zhang (2014). We remark that Lg

can be estimated by 1/4 since the data set is normal-
ized instance-wise (see Xiao and Zhang (2014, Section
4.1) for the reason). For RDA, the step size was set as
αk =

√
k/γ.7 We tuned γ by choosing its value from

6The code is publicly available at https://github.com/
Yutong-Dai/S-PStorm.

7The original paper used βk to denote the step size. See part

the set {10j}j∈{−4,−3,...,2} using the 32 test instances ob-
tained from the datasets a9a, covtype, phishing, and w8a,
and found that γ = 10−2 worked the best. For PStorm,
we used αk =

41/3/(8Lg)

(k+4)1/3
as suggested in Xu and Xu

(2020, Theorem 2). (ii) Algorithm specific parameters:
ProxSVRG is a double loop algorithm and we set the in-
ner loop length to 1, i.e., the parameter P in Poon et al.
(2018, Equation (8) Option II) was set to 1. For RDA
the prox-function h was chosen as the square of the ℓ2

norm. For PStorm we used βk =
1+24α2

kL
2
g−

αk+1
αk

1+4α2
kL

2
g

, and

for S-PStorm we used βk = 1
k+1 . The ζ parameter is

chosen in an adaptive way to improve the practical perfor-
mance. In particular, ζ is initialized to 1 and increased by 1
after an iteration is completed. Although this choice is not
covered by the convergence theory, one could cap the num-
ber of adjustments made to ζ, in which case it is covered by
the theory. For all algorithms, the batch size was set to 256
and the starting point was the zero vector. (iii) Termina-
tion conditions: A test instance was terminated when ei-
ther 1000 epochs was reached, or a 12 hour time limit was
reached. We note that SAGA terminated immediately on
all test instances associated with the datasets avazu-app.tr,
kdd2010, news20, real-sim, and url because the storage of
the gradient look-up table exceeded the memory limit.

4.2 Numerical Results

Experiments were run on a cluster with 16 AMD Opteron
Processor 6128 2.0 GHz CPUs and 32 GB memory.

Support Identification Performance. We considered four
metrics for measuring an algorithm’s performance on sup-
port identification. Specifically, we computed the supports
of the iterates {xkb | k = 1 · · · , 1000} with b = ⌈N/m⌉,
where m was the mini-batch size. The sequence {xkb} can
be thought of as the “major iterates” resulting after each
full data-pass. The first metric was the total number of
identifications, which measured the number of iterates in
{xkb} that correctly identified the support S(x∗) (the larger
the better); the second metric was the first identification,
which was the smallest k0 ∈ [1000] such that xk0b iden-
tified the support S(x∗) (the smaller the better); the third
metric was the first consistent identification, which was the
smallest K ∈ [1000] such that all {xkb}k≥K identified
the support S(x∗) (the smaller the better); the last metric
was the last iterate support recovery, which was defined as
1− |S(x1000b)∆S(x∗)|

|S(x∗)| (the closer to 1 the better) with ∆ be-
ing the set symmetric difference. The last iterate support
recovery metric was introduced because we observed that
all five algorithms failed to identify the support S(x∗) on
some test instances generated by the larger datasets (e.g.,
url) as a result of not getting an accurate enough approx-
imate solution. Nonetheless, when the algorithms termi-

(1) of Lemma A.5 for how to map βk to αk.

https://github.com/Yutong-Dai/S-PStorm
https://github.com/Yutong-Dai/S-PStorm

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

nated, the last iterates still had sparse structure, and the last
iterate support recovery metric measured how close the al-
gorithm was to identifying the true support.

For every test instance solved by a given algorithm, we re-
peated the experiments for 3 independent runs and for each
run compute the four metrics, which are then averaged to
obtain the final values of the metrics for the algorithms. For
a given test instance and metric, we assigned scores from
{1, 2, 3, 4, 5} to the 5 algorithms based on their ranked per-
formances. The better an algorithm performed, the higher
the score it received. The best performer received a score
of 5, the second best performer received a score of 4, and
so forth.8 For the first three metrics, if an algorithm failed
to identify the support before it terminated, we assigned the
algorithm a score of 0. For each metric, we summed over
all test instances to get the final scores for each algorithm
and then normalized the scores so that the scores for all
algorithms under a given metric summed to one.

We present the normalized scores for the 5 algorithms over
the 4 metrics in Figure 1, and provide the raw data for these
metrics in Appendix B.2. One can see that S-PStorm
consistently outperformed the other algorithms on all 4
metrics by a significant margin.

total identification first identification first consistent identification last iterate support recovery
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

no
rm

al
iz

ed
sc

or
es

RDA PStorm S-PStorm ProxSVRG SAGA

Figure 1: Normalized scores for four metrics that evaluate
the performance of the support identification.

Solution Quality. We measure the solution quality of an al-
gorithm by computing the optimal objective function value
gap. Specifically, for a given test instance, denote F ∗ =
minj{F best

j }, where F best
j = minb∈[1000]{F (xjkb)} with

j ∈{ProxSVRG, SAGA, RDA, PStorm, S-PStorm} and
{xjkb} generated by the jth algorithm. If algorithm j failed
on a given problem instance (due to insufficient memory),
we set F best

j = ∞. Then, we compute the optimal objec-
tive function value gap as (F best

j −F ∗)/max{1, F ∗} for all
j. The results are visualized in Figure 2. The deeper the
blue color of a rectangle for an algorithm, the better it per-
formed in terms of achieving a lower objective value. On
the flip side, the deeper the red color of a rectangle for an
algorithm, the worse it performed in terms of achieving a

8When two or more algorithms obtained the same value for a
metric, we assign them all the same score.

lower objective value. In Appendix B.1, we provide a dis-
cussion on the performance gap for the different methods.

test instances

P
r
o
x
S
V
R
G

S
A
G
A

R
D
A

P
S
t
o
r
m

S
-
P
S
t
o
r
m

≤ 10−8

10−7

10−6

10−5

10−4

10−3

10−2

≥ 10−1

Figure 2: Visualization of objective value gaps for different
methods. Each rectangular represents a test instance.

Together Figure 1 and Figure 2 illustrate that S-PStorm
performed significantly better in both support identification
and achieving better objective function values.

Lastly, in Appendix B.2, we illustrate how the distance to
the optimal solution ∥xk − x∗∥ (x∗ is obtained using the
FaRSA-Group algorithm) and error ϵk in the gradient es-
timator converge to 0. It can be observed empirically that
the rates at which {ϵk} converges to 0 and {xk} converges
to x∗ agree with our O(

√
log k/k) convergence result (see

Remark 3.2 and Remark 3.3).

5 CONCLUSION

This paper proposes a new variance-reduced and stabi-
lized stochastic proximal gradient method S-PStorm for
stochastic optimization with structured sparsity. Compared
with existing methods, S-PStorm has two new advan-
tages. In terms of theoretical results, S-PStorm has the
consistent support identification property, which has not
been proved for RDA. Regarding the efficiency and de-
ployability, S-PStorm neither requires any exact gradi-
ent evaluations nor needs to store a history of stochastic
gradients. Numerical experiments on regularized logistic
loss problems show that S-PStorm outperforms popular
methods in terms of both support identification and final
objective function values obtained.

Future directions. First, it would be interesting to inves-
tigate whether our consistent support identification results
extend to the non-convex setting. Second, our convergence
and support identification results rely on exact evaluations
of proximal operator, but some proximal operators, for ex-
ample, overlapping group ℓ1 regularizers (Obozinski et al.,
2011; Yuan et al., 2013), do not admit closed-form solu-
tions. We believe our results can be extended to this setting
provided a subproblem solver is carefully designed to pro-
duce inexact proximal operator solutions geared towards
support identification (Dai and Robinson, 2022).

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Acknowledgements

We thank the reviewers for their constructive comments
that helped improve the paper. The authors Yutong Dai,
Frank E. Curtis, and Daniel P. Robinson were supported by
the US National Science Foundation grant DMS-2012243.
The author Guanyi Wang was supported by the Singapore
MOE under AcRF Tier-1 grant 22-5539-A0001.

References

Beck, A. (2017). First-order methods in optimization, vol-
ume 25. SIAM.

Chen, T., Curtis, F. E., and Robinson, D. P. (2017). A
reduced-space algorithm for minimizing ℓ1-regularized
convex functions. SIAM Journal on Optimization,
27(3):1583–1610.

Curtis, F. E., Dai, Y., and Robinson, D. P. (2022). A sub-
space acceleration method for minimization involving a
group sparsity-inducing regularizer. SIAM Journal on
Optimization, 32(2):545–572.

Cutkosky, A. and Orabona, F. (2019). Momentum-based
variance reduction in non-convex sgd. Advances in neu-
ral information processing systems, 32.

Dai, Y. and Robinson, D. P. (2022). Inexact proximal-
gradient methods with support identification. arXiv
preprint arXiv:2211.02214.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga:
A fast incremental gradient method with support for non-
strongly convex composite objectives. Advances in neu-
ral information processing systems, 27.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman,
J. H. (2009). The elements of statistical learning: data
mining, inference, and prediction, volume 2. Springer.

Hazan, E. et al. (2016). Introduction to online convex op-
timization. Foundations and Trends® in Optimization,
2(3-4):157–325.

Huang, Z.-S. and Lee, C.-p. (2022). Training struc-
tured neural networks through manifold identification
and variance reduction. In International Conference on
Learning Representations.

Lee, S. and Wright, S. J. (2012). Manifold identification in
dual averaging for regularized stochastic online learning.
Journal of Machine Learning Research, 13(6).

Liu, Z., Nguyen, T. D., Nguyen, T. H., Ene, A., and
Nguyen, H. L. (2022). Meta-storm: Generalized fully-
adaptive variance reduced sgd for unbounded functions.
arXiv preprint arXiv:2209.14853.

Na, S., Dereziński, M., and Mahoney, M. W. (2022). Hes-
sian averaging in stochastic newton methods achieves
superlinear convergence. Mathematical Programming,
pages 1–48.

Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

Obozinski, G., Jacob, L., and Vert, J.-P. (2011). Group
lasso with overlaps: the latent group lasso approach.
arXiv preprint arXiv:1110.0413.

Pham, N. H., Nguyen, L. M., Phan, D. T., and Tran-Dinh,
Q. (2020). Proxsarah: An efficient algorithmic frame-
work for stochastic composite nonconvex optimization.
J. Mach. Learn. Res., 21(110):1–48.

Pinelis, I. (1994). Optimum bounds for the distributions of
martingales in banach spaces. The Annals of Probability,
pages 1679–1706.

Poon, C., Liang, J., and Schoenlieb, C. (2018). Local
convergence properties of saga/prox-svrg and accelera-
tion. In International Conference on Machine Learning,
pages 4124–4132. PMLR.

Rockafellar, R. T. (1970). Convex analysis, volume 18.
Princeton university press.

Rosasco, L., Villa, S., and Vũ, B. C. (2020). Conver-
gence of stochastic proximal gradient algorithm. Applied
Mathematics & Optimization, 82(3):891–917.

Sun, Y., Jeong, H., Nutini, J., and Schmidt, M. (2019). Are
we there yet? manifold identification of gradient-related
proximal methods. In Chaudhuri, K. and Sugiyama, M.,
editors, Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, vol-
ume 89 of Proceedings of Machine Learning Research,
pages 1110–1119. PMLR.

Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society:
Series B (Methodological), 58(1):267–288.

Tran-Dinh, Q., Pham, N. H., Phan, D. T., and Nguyen,
L. M. (2022). A hybrid stochastic optimization frame-
work for composite nonconvex optimization. Mathemat-
ical Programming, 191(2):1005–1071.

Wang, Z., Ji, K., Zhou, Y., Liang, Y., and Tarokh, V. (2019).
Spiderboost and momentum: Faster variance reduction
algorithms. Advances in Neural Information Processing
Systems, 32.

Wright, S. J. (2012). Accelerated block-coordinate relax-
ation for regularized optimization. SIAM Journal on Op-
timization, 22(1):159–186.

Xiao, L. (2009). Dual averaging method for regularized
stochastic learning and online optimization. Advances in
Neural Information Processing Systems, 22.

Xiao, L. and Zhang, T. (2014). A proximal stochastic gra-
dient method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075.

Xu, Y. and Xu, Y. (2020). Momentum-based variance-
reduced proximal stochastic gradient method for com-
posite nonconvex stochastic optimization.

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Yang, Y. and Zou, H. (2015). A fast unified algorithm for
solving group-lasso penalize learning problems. Statis-
tics and Computing, 25(6):1129–1141.

Yuan, L., Liu, J., and Ye, J. (2013). Efficient methods for
overlapping group lasso. IEEE transactions on pattern
analysis and machine intelligence, 35(9):2104–2116.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

A Proofs of Results in Section 3

A.1 Proof of Theorem 3.1

We first establish some useful lemmas. The first lemma establishes an upper bound on
(∏k

j=i(1− βj)
)

, which will be
used later to prove the variance reduction property.

Lemma A.1. Under Assumption 3.3 and with k = ⌈(2c)− 1⌉, it holds for all k ≥ k and i ∈ {2, 3, · · · , k} that

k∏

j=i

(1− βj)

 ≤ exp

(
−k −min{k, i}

2

)(
max{k, i}+ 1

k + 2

)c

.

Proof. One can see from Assumption 3.3 that

βj =

{ 1
2 if j < k
c

j+1 if j ≥ k.

It follows from the above inequality and the fact that 1− x ≤ exp(−x) for all x ∈ R that

k∏

j=i

(1− βj)

 ≤ exp

−

k∑

j=i

βj

 =

exp

(
−∑k

j=i
c

j+1

)
if i ≥ k,

exp
(
−∑k−1

j=i
1
2 −

∑k
j=k

c
j+1

)
if i < k,

= exp

−k −min{k, i}

2
−

k∑

j=max{k,i}

c

j + 1

≤ exp

(
−k −min{k, i}

2
−
∫ k+1

x=max{k,i}

c

x+ 1
dx

)

= exp

(
−k −min{k, i}

2

)(
max{k, i}+ 1

k + 2

)c

,

where the second inequality follows from
∫ b+1

a
1
xdx <

∑b
j=a

1
i for any 0 < a ≤ b. This completes the proof.

The next lemma establishes, for all k, a relationship between the stochastic gradient error ϵk = dk − ∇f(xk) and a
martingale. This is useful for an Azuma-Hoeffding-type inequality that will be used to prove a variance reduction property.

Lemma A.2. For all k ≥ 2, with the convention that
∏u

i=l ai = 1 if l > u, consider {eki}ki=0 with

eki :=

0 i = 0,(∏k
j=2(1− βj)

)
A1 i = 1,(∏k

j=i+1(1− βj)
)
Ai +

(∏k
j=i(1− βj)

)
Bi 2 ≤ i ≤ k,

where Ai := vi −∇f(xi) and Bi := ∇f(xi−1)− ui for all i ≥ 1 with vi and ui defined as in Algorithm 1.

1. Consider {Skt}∞t=0 with Skt :=
∑t

i=0 eki for all 0 ≤ t ≤ k and Skt = Skk for all t > k. Under Assumption 3.2(1),
{Skt}∞t=0 forms a martingale with respect to the filtration {Ft}∞t=0. Specifically, with F0 = F1 = σ(x1) and Ft is the
σ-algebra generated by {{Ξ1,i}mi=1, . . . , {Ξ(t−1),i}mi=1} (of which {{ξ1,i}mi=1, · · · , {ξ(t−1),i}mi=1} is a realization) for
all t ∈ {2, · · · , k}, and Ft = Fk for all t > k.

2. With {Skt}∞t=0 defined as in part 1, one has that Skk = ϵk.

3. Under Assumption 3.2 and Assumption 3.3 and with k = ⌈(2c)− 1⌉, it holds almost surely that

∥eki∥ ≤

σ exp
(
−k−2

2

)(
k+1
k+2

)c
if i = 1,

(
2σ + 2Lg(Gr +Gd)ζα

)
1
2 exp

(
−k−i

2

)(
k+1
k+2

)c
if 2 ≤ i ≤ k,

(
2σ + 2Lg(Gr +Gd)ζα

)
c
i

(
i+1
k+2

)c
if k + 1 ≤ i ≤ k.

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Proof. Consider part 1. We have Sk0 = ek0 = 0, and for all 1 ≤ t ≤ k, one finds Skt − Sk(t−1) = ekt, so that

Eξ∼P [Skt|Ft] = Eξ∼P
[
Sk(t−1) + ekt|Ft

]
= Sk(t−1) + Eξ∼P [ekt|Ft] . (12)

Assumption 3.2(1) implies that Eξ∼P [ekt|Ft] = 0, which may then be combined with (12) to conclude that
Eξ∼P [Skt|Ft] = Sk(t−1) for all 1 ≤ t ≤ k. On the other hand, for all t > k, we trivially have Eξ∼P [Skt|Ft] =

Eξ∼P
[
Sk(t−1)|Ft

]
= Sk(t−1). Therefore, {Skt}∞t=0 forms a martingale.

Consider part 2. For all k ≥ 2, one finds that

ϵk = dk −∇f(xk)
= (1− βk)ϵk−1 +Ak + (1− βk)Bk

= (1− βk)(1− βk−1)ϵk−2 + (1− βk)Ak−1 +Ak + (1− βk)(1− βk−1)Bk−1 + (1− βk)Bk

=

k∏

j=2

(1− βj)

 ϵ1 +

k∑

i=2

k∏

j=i+1

(1− βj)

Ai +

k∑

i=2

k∏

j=i

(1− βj)

Bi.

Since ϵ1 = A1, the desired conclusion follows that ϵk =
∑k

i=0 eki = Skk.

We now prove part 3. Consider the following two cases:

Case I: For i = 1, it follows from the triangular inequality and Assumption 3.2(3) that, almost surely, one finds

∥ek1∥ =

∥∥∥∥∥∥

k∏

j=2

(1− βj)

 ϵ1

∥∥∥∥∥∥
≤

k∏

j=2

(1− βj)

 ∥ϵ1∥

=

k∏

j=2

(1− βj)

∥∥∥∥∥
1

m

m∑

i′=1

∇ℓ(x1; ξ1i′)−∇f(x1)
∥∥∥∥∥

≤ σ

k∏

j=2

(1− βj)

 .

It follows from Lemma A.1 that, almost surely, one finds

∥ek1∥ ≤ σ exp
(
−k − 2

2

)(
k + 1

k + 2

)c

.

Case II: For any i with 2 ≤ i ≤ k, it follows almost surely that

∥eki∥ (13)

=

∥∥∥∥∥∥

k∏

j=i+1

(1− βj)

Ai +

k∏

j=i

(1− βj)

Bi

∥∥∥∥∥∥

=

∥∥∥∥∥∥

k∏

j=i+1

(1− βj)

 (1− βi + βi)Ai +

k∏

j=i

(1− βj)

Bi

∥∥∥∥∥∥

=

∥∥∥∥∥∥
βi

k∏

j=i+1

(1− βj)

Ai +

k∏

j=i

(1− βj)

 (Ai +Bi)

∥∥∥∥∥∥

≤ σβi

k∏

j=i+1

(1− βj)

+

k∏

j=i

(1− βj)

∥∥∥∥∥
1

m

m∑

i′=1

∇ℓ(xi; ξii′)−
1

m

m∑

i′=1

∇ℓ(xi−1; ξii′)− (∇f(xi)−∇f(xi−1))

∥∥∥∥∥

≤ σβi

k∏

j=i+1

(1− βj)

+ 2Lg

k∏

j=i

(1− βj)

 ∥xi − xi−1∥ , (14)

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

where the first inequality holds by Assumption 3.2(3) and the second inequality holds by Assumption 3.1(2). Since
yi−1 = proxαi−1r (xi−1 − αi−1di−1), it follows from Beck (2017, Theorem 6.39) that xi−1−yi−1

αi−1
− di−1 ∈ ∂r(yi−1).

Hence, it follows from Assumption 3.2(2) that
∥∥∥xi−1−yi−1

αi−1
− di−1

∥∥∥ ≤ Gr. It follows from line 12 of Algorithm 1, As-
sumption 3.2(4), the triangular inequality, and the previous inequality that

∥xi − xi−1∥ = ζβi−1 ∥xi−1 − yi−1∥
≤ ζβi−1(∥xi−1 − yi−1 − αi−1di−1∥+ αi−1 ∥di−1∥)
≤ ζβi−1αi−1(Gr +Gd).

Combining (14) and the above inequality, one finds almost surely that

∥eki∥ ≤ σβi

k∏

j=i+1

(1− βj)

+ 2Lg(Gr +Gd)ζβi−1αi−1

k∏

j=i

(1− βj)

 . (15)

It follows from Assumption 3.3 that βk = min{ 12 , c
(k+1)} for all k ≥ 2. Therefore, since 2(1− βi) ≥ 1, one finds

βi

k∏

j=i+1

(1− βj)

 ≤ 2βi

k∏

j=i

(1− βj)

 ≤ 2βi−1

k∏

j=i

(1− βj)

 , (16)

It follows from (15), (16), and αi ≡ α that almost surely one finds

∥eki∥ ≤
(
2σ + 2Lg(Gr +Gd)ζα

)
βi−1

k∏

j=i

(1− βj)

 .

Applying Lemma A.1 to the above inequality, one finds almost surely that

∥eki∥ ≤

(
2σ + 2Lg(Gr +Gd)ζα

)
1
2 exp

(
−k−i

2

)(
k+1
k+2

)c
if 2 ≤ i ≤ k,

(
2σ + 2Lg(Gr +Gd)ζα

)
c
i

(
i+1
k+2

)c
if k + 1 ≤ i ≤ k.

Combining the two cases above give the results claimed in part 3.

The last lemma bounds
∑k

i=1 ∥eki∥
2, which will appear in the Azuma-Hoeffding type inequality.

Lemma A.3. Under Assumption 3.2 and Assumption 3.3, there exits a constant C1 > 0 that is independent of k such that,
for all k ≥ k = ⌈(2c)− 1⌉, one finds

k∑

i=1

∥eki∥2 ≤ C1

(
σ + Lg(Gr +Gd)ζα

)2
max

{(
k + 1

k + 2

)2c

,
c2

k + 2

}
almost surely.

Proof. It follows from Lemma A.2(3) that, almost surely,

k∑

i=1

∥eki∥2 = ∥ek1∥2 +
k∑

i=2

∥eki∥2 +
k∑

i=k+1

∥eki∥2

≤ σ2 exp (−(k − 2))

(
k + 1

k + 2

)2c

+

k∑

i=2

(
2σ + 2Lg(Gr +Gd)ζα

)2 1
4
exp (−(k − i))

(
k + 1

k + 2

)2c

+

k∑

i=k+1

(
2σ + 2Lg(Gr +Gd)ζα

)2 c2
i2

(
i+ 1

k + 2

)2c

. (17)

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

With respect to each of three terms above, for some C11 that is independent of k, one finds

σ2 exp (−(k − 2)) ·
(
k + 1

k + 2

)2c

= σ2e2 exp(−k) ·
(
k + 1

k + 2

)2c

(18)

k∑

i=2

(
2σ + 2Lg(Gr +Gd)ζα

)2 1
4
exp (−(k − i)) ·

(
k + 1

k + 2

)2c

≤
(
σ + Lg(Gr +Gd)ζα

)2 e

e− 1
·
(
k + 1

k + 2

)2c

(19)

k∑

i=k+1

(
2σ + 2Lg(Gr +Gd)ζα

)2 c2
i2
·
(
i+ 1

k + 2

)2c

≤
(
2σ + 2Lg(Gr +Gd)ζα

)2
c2C11

k + 2
, (20)

where (19) holds since the geometric series
∑k

i=2 exp (−(k − i)) =
∑k

i=2
exp(i)
exp(k) =

e−e2−k

e−1 ≤ e
e−1 and (20) hold since

k∑

i=1

(i+ 1)2c

i2
=

1∑

i=1

(i+ 1)2c

i2
+

k∑

i=2

(i+ 1)2c

i2

≤ 4c +

k∑

i=2

(1.5i)2c

i2

≤ 4c + (1.5)2c
∫ k+1

i=2

i2c−2di

= 4c + (1.5)2c
(
(k + 1)2c−1

2c− 1
− 22c−1

2c− 1

)
≤ C11(k + 1)2c−1 ≤ C11(k + 2)2c−1. (21)

Combining (17)-(20), one finds almost surely that

k∑

i=1

∥eki∥2 ≤
(
σ + Lg(Gr +Gd)ζα

)2
(
C12

(
k + 1

k + 2

)2c

+

(
4C11 +

e

e− 1

)
c2

k + 2

)

≤
(
σ + Lg(Gr +Gd)ζα

)2
(
C12 + 4C11 +

e

e− 1

)
max

{(
k + 1

k + 2

)2c

,
c2

k + 2

}
,

where we use the fact that σ2e2 exp(−k) ≤ C12

(
σ + Lg(Gr + Gd)ζα

)2
for some C12 > 0 that is independent of k. We

complete the proof by setting C1 =
(
C12 + 4C11 +

e
e−1

)
.

Now, we are ready to formally prove Theorem 3.1.

Theorem 3.1. Let Assumption 3.1–Assumption 3.3 hold, let ϵk = dk−∇f(xk) for all k ∈ N+, and define k = ⌈(2c)−1⌉.
Then, for any k ≥ k and any ηk ∈ (0, 1), the event Ek := {∥ϵk∥ ≤ U(k)} holds with probability at least 1− ηk, where for
some constant C ∈ R+ independent of k, one defines

U(k) = C
(
σ + Lg(Gr +Gd)ζα

)
·max

{(
k + 1

k + 2

)c

,
c√
k + 2

}√
log

2

ηk
.

(Specifically, the constant is C =
√
2C1, where C1 is defined in Lemma A.3.)

Proof. It follows from Lemma A.3 that almost surely one finds

k∑

i=1

∥eki∥2 ≤ C1

(
σ + Lg(Gr +Gd)ζα

)2
max

{(
k + 1

k + 2

)2c

,
c2

k + 2

}
=: h(k).

Based on Lemma A.2(1), we have for k ≥ k that {Skt}kt=0 forms a martingale with respect to the filtration {Ft}kt=0.
For any ρk > 0, using the Azuma-Hoeffding type inequality (Pinelis, 1994, Theorem 3.5)9 on the martingale {Skt}kt=0,

9See Remark A.1 for details on applying this theorem.

https://arxiv.org/pdf/1208.2200.pdf

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

together with ∥eki∥∞ ≤ ∥eki∥ (eki is defined in Lemma A.2) and the fact that Skk = ϵk (Lemma A.2(2)), we have

P [∥ϵk∥ ≥ ρk] = P [∥Skk∥ ≥ ρk] ≤ P

[
sup
t∈[k]

∥Skt∥ ≥ ρk
]
≤ 2 exp

(
− ρ2k
2h(k)

)
. (22)

For any ηk ∈ (0, 1), by setting ρk = U(k) =
√

2h(k) log(2/ηk) in (22), we have P
[
∥ϵk∥ ≥ U(k)

]
≤ ηk, which implies

that the event Ek = {∥ϵk∥ ≤ U(k)} holds with probability at least 1− ηk. This completes the proof.

Remark A.1. We define the f used in (Pinelis, 1994, Theorem 3.5) when cited in the proof of Theorem 3.1 above as
f = {Sk0, Sk1, · · · , Skk, Skk, . . . } with fj = Skj for all 1 ≤ j ≤ k and fj = Skk for all j > k. As proved in
Lemma A.2(1), f is a martingale. Consequently, the dj and f∗ appearing in (Pinelis, 1994, Theorem 3.5) are defined as
dj = Skj − Sk(j−1) = ekj and f∗ = supj∈[k]{∥fj∥} = supj∈[k]{∥Skj∥}, respectively. As proved in Lemma A.3, we

have
∑k

j=1 ∥dj∥
2
∞ ≤

∑k
j=1 ∥dj∥

2
2 =

∑k
j=1 ∥ekj∥

2
2 ≤ h(k) almost surely.

A.2 Proof of Corollary 3.1

Corollary 3.1 Let ηk = η0

k2 for all k ≥ 1 with η0 ∈ (0, 6/π2). Define the event Ek := {∥ϵk∥ ≤ U(k)} and recall that

k = ⌈(2c)− 1⌉. Under Assumption 3.1–Assumption 3.3, the event E :=
⋂∞

k≥k Ek holds with probability at least 1− η0π
2

6 .

Proof. It follows from the stated conditions, the union bound from probability, and Theorem 3.1 that

P

∞⋂

k=k

{∥ϵk∥ ≤ U(k)}

 = P

∞⋂

k=k

Ek

 = 1− P

∞⋂

k=k

Ek

c
 (here c is the set complement operator)

= 1− P

∞⋃

k=k

Eck

 ≥ 1−

∞∑

k≥k

P [Eck] = 1−
∞∑

k≥k

P [∥ϵk∥ > U(k)]

≥ 1−
∞∑

k≥k

ηk ≥ 1−
∞∑

k=1

η0
k2

= 1− η0π
2

6
,

where the last equality holds by the Basel equality
∑∞

k=1
1
k2 = π2

6 .

A.3 Proof of Theorem 3.2

Theorem 3.2. Let α = µf/L
2
g , ζ ∈ (0, 2), θ ≥ 2, c = (2θL2

g)/(ζµ
2
f) > 2, and k = ⌈2c − 1⌉. Set ηk = η0/k

2

for all k ≥ 1 with η0 ∈ (0, 6/π2). Then, under Assumption 3.1–Assumption 3.3, there exists a constant C3 ∈ R+

independent of k, such that the event Exk :=

{
∥xk − x∗∥2 ≤ c̄1 ∥

xk−x∗∥2
kθ + c̄2 ·

log 2k
η0

k

}
with c̄1 := (k + 2)θ and c̄2 :=

C3ζ

(
µ2
f

L4
g
+ 2

L2
g

(
1 +

µf

Lg

)2)
(σ + Lg(Gr +Gd)ζα)

2 satisfies

P

∞⋂

k≥k

Exk

 ≥ 1− η0π2/6 > 0 .

Proof. Since the proximal operator is non-expansive (Beck, 2017, Theorem 6.42) and x∗ = proxαkr
(x∗ − αk∇f(x∗)), it

follows that

∥yk − x∗∥2 =
∥∥proxαkr

(xk − αkdk)− proxαkr
(x∗ − αk∇f(x∗))

∥∥2

≤ ∥xk − x∗ − αk(dk −∇f(x∗))∥2

= ∥xk − x∗∥2 − 2αk(xk − x∗)T (dk −∇f(x∗)) + α2
k ∥dk −∇f(x∗)∥2

= ∥xk − x∗∥2 − 2αk(xk − x∗)T (ϵk +∇f(xk)−∇f(x∗)) + α2
k ∥dk −∇f(x∗)∥2 . (23)

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

It follows from Assumption 3.1 that f is µf -strongly convex, and therefore

(xk − x∗)T (∇f(xk)−∇f(x∗)) ≥ µf ∥xk − x∗∥2 . (24)

It follows from (23) that

∥yk − x∗∥2 (25)

≤ ∥xk − x∗∥2 − 2αk(xk − x∗)T (∇f(xk)−∇f(x∗))− 2αk(xk − x∗)T ϵk + α2
k ∥dk −∇f(x∗)∥2

(i)

≤ (1− 2µfαk) ∥xk − x∗∥2 − 2αk(xk − x∗)T ϵk + α2
k ∥dk −∇f(x∗)∥2

= (1− 2µfαk) ∥xk − x∗∥2 + 2αk(x
∗ − xk)T ϵk + α2

k ∥dk −∇f(xk) +∇f(xk)−∇f(x∗)∥2
(ii)
= (1− 2µfαk) ∥xk − x∗∥2 + 2αk(x

∗ − xk)T ϵk + α2
k

(
∥ϵk∥2 + 2ϵTk (∇f(xk)−∇f(x∗)) + ∥∇f(xk)−∇f(x∗)∥2

)

(iii)

≤ (1− 2µfαk) ∥xk − x∗∥2 + 2αk ∥xk − x∗∥ ∥ϵk∥+ α2
k

(
∥ϵk∥2 + 2Lg ∥ϵk∥ ∥xk − x∗∥+ L2

g ∥xk − x∗∥2
)

= (1− 2µfαk + α2
kL

2
g) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ∥ϵk∥+ α2

k ∥ϵk∥2 , (26)

where (i) follows from (24), (ii) follows from the definition of ϵk, and (iii) follows from Assumption 3.1 and the Cauchy-
Schwarz inequality. When the event Ek = {∥ϵk∥ ≤ U(k)} happens (U(k) defined in Theorem 3.1), it follows from line 12
in Algorithm 1, ζβk < 1, (26), and Theorem 3.1 that

∥xk+1 − x∗∥2

= ∥ζβk(yk − x∗) + (1− ζβk)(xk − x∗)∥2

≤ ζβk ∥yk − x∗∥2 + (1− ζβk) ∥xk − x∗∥2

≤ ζβk
(
(1− 2µfαk + α2

kL
2
g) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ∥ϵk∥+ α2

k ∥ϵk∥2
)
+ (1− ζβk) ∥xk − x∗∥2

≤ (1− ζβk(2µfαk − α2
kL

2
g)) ∥xk − x∗∥2 + (2αk + 2Lgα

2
k) ∥xk − x∗∥ ζβkU(k) + α2

kζβkU(k)2; (27)

we emphasize that the first inequality above follows from the convexity of the 2-norm-squared. Therefore, (27) holds with
probability at least 1− ηk since the event Ek = {∥ϵk∥ ≤ U(k)} happens with probability at least 1− ηk.

Define s2k = ∥xk − x∗∥2 and since αk ≡ α = µf/L
2
g , then (27) becomes

s2k+1 ≤
(
1− ζβk

µ2
f

L2
g

)
s2k +

2µf

L2
g

(
1 +

µf

Lg

)
ζβkU(k)sk +

µ2
f

L4
g

ζβkU(k)2.

= (1− c0ζβk)s2k + c1ζβkU(k)sk + c2ζβkU(k)2, (28)

with c0 =
µ2
f

L2
g
, c1 =

2µf

L2
g

(
1 +

µf

Lg

)
, and c2 =

µ2
f

L4
g

. The second term in the above inequality can be upper bounded as

c1ζβkU(k)sk = 2

(
c1
√
ρζβk
2

sk

)(√
ζβk√
ρ
U(k)

)
≤ ρζβkc

2
1

4
s2k +

ζβk
ρ
U(k)2 for all ρ > 0,

by using Young’s inequality. Combining this result with (28), one obtains

s2k+1 ≤
[
1−

(
c0ζ − ρζ

c21
4

)
βk

]
s2k +

[
c2ζ +

ζ

ρ

]
βkU(k)2.

Now setting ρ =
2µ2

f

L2
gc

2
1

, it follows from this inequality that

s2k+1 ≤
[
1−

ζµ2
f

2L2
g

βk

]
s2k +

[
ζµ2

f

L4
g

+
ζc21L

2
g

2µ2
f

]
βkU(k)2 = (1− γk)s2k + c3βkU(k)2, (29)

where γk =
ζµ2

f

2L2
g
βk and c3 =

ζµ2
f

L4
g
+

ζc21L
2
g

2µ2
f

.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Conditioning on the event E =
⋂∞

i≥k Ei happens, it follows from (29), for all k ≥ k, that

s2k+1 ≤ (1− γk)s2k + c3βkU(k)2

≤ (1− γk)(1− γk−1)s
2
k−1 + c3

k∑

i=k−1

k∏

j=i+1

(1− γj)βiU(i)2

≤ (expanding recursively on s2k−1)

≤

k∏

i=k

(1− γi)

 · s2k + c3 ·

k∑

i=k

k∏

j=i+1

(1− γj)

βiU(i)2, (30)

where we use the convention that
∏u

i=l ai = 1 if l > u for any ai ∈ R and (l, u) ∈ Z2
+. Then using a similar argument as

from Lemma A.1, one can establish, for any i ≥ 2, that

k∏

j=i

(1− γj) ≤ exp

−

k∑

j=i

γj

 = exp

−

ζµ2
f

2L2
g

·
k∑

j=i

min

{
1

2
,

c

j + 1

}

= exp

−

ζµ2
f

2L2
g

· k −min{k, i}
2

−
ζµ2

f

2L2
g

·
k∑

j=max{k,i}

c

j + 1

≤ exp

(
−
ζµ2

f

2L2
g

· k −min{k, i}
2

)
·
(
max{k, i}+ 2

k + 1

)ζµ2
f c/(2L

2
g)

= exp

(
−
ζµ2

f

2L2
g

· k −min{k, i}
2

)
·
(
max{k, i}+ 2

k + 1

)θ

.

Combing the above inequality with (30) we obtain, for any k ≥ k, that

s2k+1 ≤
(
k + 2

k + 1

)
· s2k + c3 ·

k∑

i=k

[(
(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2. (31)

It follows from Theorem 3.1 that

U(i)2 =

G2
(

k+1
i+2

)2c
log 2

ηi
if i < k̄,

G2 c2

i+2 log
2
ηi

if i ≥ k̄,
(32)

where G = C(σ + Lg(Gr +Gd)ζα) and k̄ = max
{
k,
⌈
(k+1)2c/(2c−1)

c2/(2c−1) − 2
⌉}

. Then it follows from (32) that

c3 ·
k∑

i=k

[(
(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2

≤ c3 · c ·G2

(k + 1)θ

min{k̄−1,k}∑

i=k

(i+ 3)θ

i+ 1

(k + 1)2c

(i+ 2)2c
log

2

ηi
+

k∑

i=min{k̄−1,k}+1

(i+ 3)θ

i+ 1

c2

i+ 2
log

2

ηi

 , (33)

where we use the convention that
∑u

i=l ai = 0 if l > u for any ai ∈ R and (l, u) ∈ Z2
+.

It follows from (33) and θ ≥ 2, there exists constants {C30, C31, C32, C34} ⊂ R+, which are independent of k, such that,

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

for all k ≥ k, one obtains,

c3 ·
k∑

i=k

[(
(i+ 1) + 2

k + 1

)θ
]

c

i+ 1
U(i)2

=
c3 · c ·G2

(k + 1)θ

min{k̄−1,k}∑

i=k

(i+ 3)θ

i+ 1

(k + 1)2c

(i+ 2)2c
log

2

ηi
+

k∑

i=min{k̄−1,k}+1

(i+ 3)θ

i+ 1

c2

i+ 2
log

2

ηi

=

c3·c·G2

(k+1)θ

[∑k
i=k

(i+3)θ

i+1
(k+1)2c

(i+2)2c log 2
ηi

]
if k ≤ k < k̄,

c3·c·G2

(k+1)θ

[∑k̄−1
i=k

(i+3)θ

i+1
(k+1)2c

(i+2)2c log 2
ηi

+
∑k

i=k̄
(i+3)θ

i+1
c2

i+2 log
2
ηi

]
if k ≤ k̄ ≤ k,

≤

c3·c·G2(k+1)2c log 2
ηk

(k+1)θ

[∑k
i=k

(i+3)θ

i+1
1

(i+2)2c

]
if k ≤ k < k̄, (due to ηi ≥ ηk)

c3·c3·G2 log 2
ηk

(k+1)θ

[
C30 +

∑k
i=k̄

(i+3)θ

i+1
1

i+2

]
if k ≤ k̄ ≤ k, (due to ηi ≥ ηk, k̄, and k are both constants)

≤

C31

c3·c·G2(k+1)2c log 2
ηk

(k+1)θ

(∫ k

1
tθ−1−2cdt

)
if k ≤ k < k̄,

C32

c3·c3·G2 log 2
ηk

(k+1)θ

(∫ k

1
tθ−2dt

)
if k ≤ k̄ ≤ k,

≤

C31

c3·c·G2(k+1)2c log 2
ηk

(k+1)θ
· 1
2c−θ if k ≤ k < k̄, (due to c > θ)

C32

c3·c3·G2 log 2
ηk

(k+1)θ
kθ−1 · 1

θ−1 if k ≤ k̄ ≤ k,

≤

C31

c3·c·G2(k+1)2c log 2
ηk

k+1 · 1
2c−θ if k ≤ k < k̄, (due to θ ≥ 2 > 1)

C32

c3·c3·G2 log 2
ηk

k+1 · 1
θ−1 if k ≤ k̄ ≤ k,

≤ c3G2C34

log 2
ηk

k + 1
. (34)

Combining (31) with (34), for all k ≥ k, gives

s2k+1 ≤
(
k + 2

k + 1

)θ

· s2k + c3G
2C34

log 2
ηk

k + 1
, (35)

which implies, for all k ≥ k, that

∥xk − x∗∥2 ≤
(
k + 2

k

)θ ∥∥xk − x∗
∥∥2 + c3G

2C34

2 log 2k
η0

k

=

(
k + 2

k

)θ ∥∥xk − x∗
∥∥2 + ζ

(
µ2
f

L4
g

+
2

L2
g

(
1 +

µf

Lg

)2
)
(σ + Lg(Gr +Gd)ζα)

2C34

log 2k
η0

k

= c̄1

∥∥xk − x∗
∥∥2

kθ
+ c̄2

log 2k
η0

k
,

where we set C3 = C34. It follows from the definition of Exk and the above result that P
[⋂∞

k≥k Exk |
⋂∞

k≥k Ek
]
= 1. In

conclusion, for any given η0 ∈ (0, 6/π2), it follows from Corollary 3.1 that

P

∞⋂

k≥k

Exk

 =

P
[⋂∞

k≥k Exk ,
⋂∞

k≥k Ek
]

P
[⋂∞

k≥k Ek |
⋂∞

k≥k Exk
] ≥ P

∞⋂

k≥k

Exk ,
∞⋂

k≥k

Ek

= P

∞⋂

k≥k

Exk |
∞⋂

k≥k

Ek

P

∞⋂

k≥k

Ek

 = P

∞⋂

k≥k

Ek

 ≥ 1− η0π2/6 > 0,

which completes the proof.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

A.4 Proof of Theorem 3.3

Theorem 3.3. Given α > 0, d ∈ Rn, and the optimal solution x∗ to problem (1), denote z = x−αd and y = proxαr (z).
Let Assumption 3.4 hold. If ∥∥∥∥

[z − x∗]gi
α

+∇gif(x
∗)

∥∥∥∥ < δ∗ for all i ̸∈ S (x∗) ,

then S (y) ⊆ S (x∗). Furthermore, if ∥y − x∗∥ < ∆∗, then S (x∗) ⊆ S (y) so that, in fact, S (y) = S (x∗).

Proof. We start with the first claim S (y) ⊆ S (x∗). It follows from Assumption 3.4 and the triangular inequality that, for
all i ̸∈ S (x∗), one has

∥∥∥∥
[z − x∗]gi

α

∥∥∥∥ =

∥∥∥∥
[z − x∗]gi

α
+∇gif(x

∗)−∇gif(x
∗)

∥∥∥∥

≤
∥∥∥∥
[z − x∗]gi

α
+∇gif(x

∗)

∥∥∥∥+ ∥∇gif(x
∗)∥

< δ∗ + ∥∇gif(x
∗)∥ ≤ δmin + ∥∇gif(x

∗)∥ < λi.

Since [x∗]gi = 0 for all i ̸∈ S (x∗), it follows that [z−x∗]gi
α ∈ ∂ri([x

∗]gi)
10. It follows from the optimality condition

for the proximal problem (Beck, 2017, Theorem 6.39) that this is true if and only if [x∗]gi = proxαri ([z]gi) for all
i ̸∈ S (x∗), which further implies [y]gi = [x∗]gi = 0 for all i ̸∈ S (x∗). Consequently, (S (x∗))c ⊆ (S (y))c, which
implies S (y) ⊆ S (x∗).
Now we prove the second claim S (x∗) ⊆ S (y). Note that ∥[y − x∗]gi∥ ≤ ∥yk − x∗∥ for any i ∈ [nG]. Therefore, when
∥y − x∗∥ < ∆∗, for i ∈ S (x∗), [y]gi cannot be 0 for all i ∈ S (x∗). Otherwise, ∆∗ ≤ ∥[x∗]gi∥ < ∆∗ for i ∈ S (x∗). This
proves that S (x∗) ⊆ S (yk).

A.5 Proof of Theorem 3.4

Theorem 3.4. Let Assumption 3.1–Assumption 3.4 hold, ζ ∈ (0, 2), θ ≥ 2, c = (2θL2
g)/(ζµ

2
f) > 2, and k = ⌈2c− 1⌉.

Consider the sequence {yk} of Algorithm 1 and define the event E id
k = {S(yk) = S(x∗)} for all k ≥ 1. Then, there

exists constants {C41, C42} ⊆ Rn
+ that are independent of k, kδ∗ = (C41/δ

∗)4 and k∆∗ = (C42/∆
∗)4 such that, with

K := max{kδ∗ , k∆∗ , k}, it follows that

P

∞⋂

k≥K

E id
k

 ≥ 1− η0π

2

6
> 0.

Proof. Denote zk = xk − αkdk for all k ≥ 1, then it follows from Assumption 3.1(2) and the triangular inequality that
∥∥∥∥
zk − x∗
αk

+∇f(x∗)
∥∥∥∥ ≤

1

αk
∥xk − x∗∥+ ∥dk −∇f(x∗)∥

≤ 1

αk
∥xk − x∗∥+ ∥dk −∇f(xk)∥+ ∥∇f(xk)−∇f(x∗)∥

≤
(

1

αk
+ Lg

)
∥xk − x∗∥+ ∥dk −∇f(xk)∥ . (36)

Conditioning on the events
⋂∞

k≥k Ei and
⋂∞

k≥k Exi happening (with Ek defined in Theorem 3.1 and Exk defined in Theo-
rem 3.2), it follows from αk ≡ α for all k (Assumption 3.3), Corollary 3.1, and Theorem 3.2 that, there exists a constant
C41 > 0 that is independent of k, for all k ≥ k,

(
1

αk
+ Lg

)
∥xk − x∗∥+ ∥dk −∇f(xk)∥ ≤ C41

√
log k

k
. (37)

10The subdifferential is given by ∂ ∥x∥ = {v ∈ Rn | ∥v∥ ≤ 1}.

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Combining (36) and (37), we know for all k ≥ kδ∗ that C41

√
log k
k ≤ C41/k

4 < C41/k
4
δ∗ = δ∗ 11. Together with

Theorem 3.3 and the definition of yk (line 11 of Algorithm 1), we have S (yk) ⊆ S (x∗) for all k ≥ max{kδ∗ , k}.
It follows from the non-expansiveness (Beck, 2017, Theorem 6.42) of the proximal operator, x∗ =
proxαkr

(x∗ − αk∇f(x∗)), the definition of yk (line 11 of Algorithm 1), and the triangular inequality that

∥yk − x∗∥ =
∥∥proxαkr

(xk − αk∇f(xk))− proxαkr
(x∗ − αk∇f(x∗))

∥∥
≤ ∥(xk − x∗)− αk(dk −∇f(x∗))∥
≤ ∥xk − x∗∥+ αk ∥dk −∇f(x∗)∥ . (38)

Again, conditioning on the events
⋂∞

k≥k Ei and
⋂∞

k≥k Exi happening, it follows from αk ≡ α for all k (Assumption 3.3),
Corollary 3.1, Theorem 3.2, and (38) that, there exist a constant C42 > 0 that is independent of k, such that for all k ≥ k,

∥yk − x∗∥ ≤ C42

√
log k
k . Therefore, when k ≥ k∆∗ , it follows that C42

√
log k
k ≤ C42/k

4 < C42/k
4
∆∗ = ∆∗. Together

with Theorem 3.3 and the definition of yk (line 11 of Algorithm 1), we have S (x∗) ⊆ S (yk) for all k ≥ max{k∆∗ , k}.
Therefore, when k ≥ K = max{kδ∗ , k∆∗ , k}, together with the fact that P

[⋂∞
k≥K E id

k |
⋂∞

k≥k Ei,
⋂∞

k≥k Exi
]
= 1, it

follows that

P

∞⋂

k≥K

E id
k

 =

P
[⋂∞

k≥K E id
k ,
⋂∞

k≥k Ei,
⋂∞

k≥k Exi
]

P
[⋂∞

k≥k Ei,
⋂∞

k≥k Exi |
⋂∞

k≥K E id
k

] ≥ P

∞⋂

k≥K

E id
k ,

∞⋂

k≥k

Ei,
∞⋂

k≥k

Exi

= P

∞⋂

k≥K

E id
k |

∞⋂

k≥k

Ei,
∞⋂

k≥k

Exi

P

∞⋂

k≥k

Ei,
∞⋂

k≥k

Exi

= P

∞⋂

k≥k

Ei,
∞⋂

k≥k

Exi

 ≥ 1− η0π

2

6
,

which completes the proof.

A.6 Proofs for additional lemmas

Lemma A.4. Denote F1 = σ(x1) and, for all k ≥ 2, denote Fk as the σ-algebra generated by the random variables
{{Ξ1,i}mi=1, . . . , {Ξ(k−1),i}mi=1} (of which {{ξ1,i}mi=1, . . . , {ξ(k−1),i}mi=1} is a realization) so that {Fk} is a filtration. If
(i) there exists a constant ce > 0 such that for all k ≥ 1, P{∥dk −∇f(xk)∥ ≤ ce | Fk} = 1 and (ii) there exists a constant
cα such that for a given α > 0 and all k ≥ 1, P{χ(xk;α) ≤ cα | Fk} = 1, then there exists a constant Gd > 0 such that
for all k ≥ 1, it holds that P{∥dk∥ ≤ Gd | Fk} = 1.

Proof. To see why the implication holds, we define ỹk = proxαr (xk − α∇f(xk)) and we make an algorithmic choice
αk ≡ α for all k. Since yk = proxαr (xk − αdk), then xk−yk

α − dk ∈ ∂r(yk). It follows from Assumption 3.2.2 that∥∥xk−yk

α − dk
∥∥ ≤ Gr. By the triangle inequality, we have

∥dk∥ ≤ Gr +
∥xk − yk∥

α
≤ Gr +

∥xk − ỹk∥
α

+
∥yk − ỹk∥

α

= Gr + χk(α) +
∥proxαr (xk − αdk)− proxαr (xk − α∇f(xk))∥

α
≤ Gr + χk(α) + ∥dk −∇f(xk)∥ ≤ Gr + cα + ce,

where the penultimate inequality holds by the non-expansiveness of the proximal operator(Beck, 2017, Theorem 6.42).

Lemma A.5. Consider the RDA algorithm with its update defined as

xk+1 = arg min
x∈Rn

{
dTk x+ r(x) +

ρk
k
∥x∥2

}
with dk =

k − 1

k
dk−1 +

1

k
∇ℓ(xk; ξk),

where ξk is a i.i.d sample from P .

11We use the inequality
√

log x
x

< 1

x1/4 for all x > 1.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

1. If ρk = α
√
k for a given k ≥ 1 and α is defined as in Assumption 3.3, then the update can be equivalently written as

xk+1 = proxαkr
(−αkdk) with αk =

√
k

α
.

2. Assume r is µr > 0 strongly convex. Further, assume that there are constants {G,D} ⊂ (0,∞) such that, for all
k ≥ 1, it holds that ∥∇ℓ(xk; ξk)∥ ≤ G and ∥x∗∥ ≤ D. If ρk = α

√
k, then

E
[
∥xk − x∗∥2

]
≤ 2

(
αD2 +G2/α

)

µr

1√
k
.

Moreover, for any ϵ > 0 and k ≥ 1, it holds that

P [∥xk − x∗∥ ≥ ϵ] ≤
√

2 (αD2 +G2/α)

µrϵ2
1

k1/4
.

3. Assume f and r are µf > 0 and µr > 0 strongly convex, respectively. Further, assume that there are constants
{G,D} ⊂ (0,∞) such that, for all k ≥ 1, it holds that ∥∇ℓ(xk; ξk)∥ ≤ G and ∥x∗∥ ≤ D. If ρk = α

√
k, then for all

k ≥ 1, it holds that
P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk ,

where ηRDAk = max
{
O
(

1
δ∗·k1/4

)
,O
(

1
∆∗·k1/4

)}
.

Proof. For part 1, let βk = α
√
k. Then

arg min
x∈Rn

{
dTk x+ r(x) +

ρk
k
∥x∥2

}
= arg min

x∈Rn

{
dTk x+ r(x) +

1
1
α

√
k
∥x∥2

}

= arg min
x∈Rn

{
dTk x+ r(x) +

1

αk
∥x∥2

}

= arg min
x∈Rn

{
1

αk
∥x+ αkdk∥2 + r(x)

}
= proxαkr

(−αkdk) .

For part 2, it follows from Xiao (2009, Equation 22) and Xiao (2009, Corollary 2) that for all k ≥ 1,

E
[
∥xk − x∗∥2

]
≤ 2

µrk

(
αD2 +G2/α

)√
k =

2
(
αD2 +G2/α

)

µr

1√
k
.

It follows from Jensen’ inequality that

E [∥xk − x∗∥] ≤
√
E
[
∥xk − x∗∥2

]
≤
√

2 (αD2 +G2/α)

µr

1

k1/4
,

which together with the Markov inequality implies that

P [∥xk − x∗∥ ≥ ϵ] ≤
√

2 (αD2 +G2/α)

µrϵ2
1

k1/4
.

For part 3, consider three events ERDAk,1 := {∥dk −∇f(x∗)∥ < δ∗/2}, ERDAk,2 := {(1/αk + Lg) ∥xk − x∗∥ < δ∗/2}, and
ERDAk,3 := {∥xk+1 − x∗∥ < ∆∗}. It follows from Lee and Wright (2012, Theorem 11, equation (31)) and part 2 of this
lemma that

P
[(
ERDAk,1

)c] ≤ O
(

1

δ∗ · k1/4
)
, (39)

P
[(
ERDAk,2

)c] ≤ O
(

1

δ∗ · k3/4
)
, and (40)

P
[(
ERDAk,2

)c] ≤ O
(

1

∆∗ · k1/4
)
. (41)

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

It follows from the union bound and (39)–(41) that

P
[
ERDAk,1

⋂
ERDAk,2

⋂
ERDAk,3

]
= 1− P

[(
ERDAk,1

)c⋃(
ERDAk,2

)c⋃(
ERDAk,3

)c]

≥ 1−
(
P
[(
ERDAk,1

)c]
+ P

[(
ERDAk,2

)c]
+ P

[(
ERDAk,3

)c])

= 1−max

{
O
(

1

δ∗ · k1/4
)
,O
(

1

∆∗ · k1/4
)}

,

which together with Theorem 3.3 implies that, for any chosen k ≥ 1,

P [S (xk+1) = S (x∗)] ≥ 1− ηRDAk ,

which completes the proof.

B Experiments

B.1 Discussions on the performance gaps in different methods

First, ProxSVRG performs poorly on test instances induced by the datasets phishing, rcv1, real-sim, and news20. It can
be checked that these datasets cover different sample sizes and decision variable dimensions. We attribute the cause of
poor performance to the inner loop length parameter, which is difficult to choose to work on all test instances. In the
experiments, we set it to 1 for all cases to follow the original paper’s experimental setting (Xiao and Zhang, 2014).

Second, SAGA performed quite well on the first 32 test instances, where the memory limit is not violated, and failed on the
remaining 48 test instances (marked as the darkest red) because the program terminates immediately due to memory limits
being exceeded.

Third, RDA appears to perform poorly compared with PStorm (S-PStorm) because the prox step of RDA only applies to
its initial point x0 = 0 with updated search direction −αkdk (see Lemma A.5(1)), whereas PStorm (S-PStorm) applies
the prox step at the up-to-date iterate xk.

Finally, one can see that S-PStorm significantly outperforms PStorm. We attribute this to a combination of the stabiliza-
tion that we introduced and that the step size for PStorm was designed for nonconvex problems (for our tests, nonetheless,
we fine-tuned the step size for PStorm to be fair).

B.2 Additional results

We visualize three metrics: the distance to the optimal solution ∥xk − x∗∥ (x∗ is obtained by the FaRSA-Group algo-
rithm), the error in the gradient evaluation ϵk (defined in Theorem 3.1), and the sparse structure of major iterates, which
can be found in the first, second, and third column of Figure 3, respectively. The first metric measures the convergence
speed of {xk}, the second metric shows how fast the error in the stochastic gradient estimator dk (defined in Algorithm 1
line 9) diminishing to zero, and the third metric visualizes the progress made with respect to support identification.

For demonstration, we only show results on six moderate-size datasets with randomly picked problem parameters Λ = 0.1
and number of groups ⌊0.5n⌋. We remark that in some plots, lines that represent different algorithms could visually
overlap. For example, the green line (S-PStorm) and purple line (SAGA) overlap in the first column for dataset phishing
and rcv1.12 We also emphasize that SAGA does not appear in the Figure 3(f) due to memory limitation.

From the first and the second column of Figure 3, it can be observed that the rates at which the xk converges to x∗

and ϵk converges to 0 seem to be bounded by O(
√
log k/k), which matches our theoretical results in Theorem 3.1 and

Theorem 3.2. We can also observe that for the relatively large datasets rcv1 and real-sim, 1000 data passes is not enough
to obtain accurate estimates of x∗, but a decent ratio of zeros groups is identified nonetheless.

12The reason is that the numerical difference between ∥xk − x∗∥ for S-PStorm and SAGA is of order 10−2.

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Figure 3: Visualization of three metrics: the distance to optimal solution ∥xk − x∗∥ (the first column), error in the gradient
evaluation ϵk (the second column), and the progress of support identification on different datasets (the third column). We
added a dotted reference line corresponding to

√
log k/k (for k ≥ 2) for the plots in the first and second columns. In

addition, we added a horizontal black reference line for the plots in the third column to indicate the number of zero groups
at the optimal solution x∗.

0 100 200 300 400 500
number of data pass

10−6

10−4

10−2

100

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 100 200 300 400 500
number of data pass

10−10

10−8

10−6

10−4

10−2

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 100 200 300 400 500
number of data pass

40

45

50

55

60

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG SAGA

(a) a9a

0 100 200 300 400 500
number of data pass

10−5

10−4

10−3

10−2

10−1

100

101

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 100 200 300 400 500
number of data pass

10−13

10−11

10−9

10−7

10−5

10−3

10−1

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 25 50 75 100 125 150 175 200
number of data pass

80

100

120

140

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG SAGA

(b) w8a

0 5 10 15 20 25 30 35
number of data pass

10−5

10−4

10−3

10−2

10−1

100

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 5 10 15 20 25 30 35
number of data pass

10−15

10−12

10−9

10−6

10−3

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 5 10 15 20 25 30 35
number of data pass

24.0

24.5

25.0

25.5

26.0

26.5

27.0

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG SAGA

(c) covtype

0 200 400 600 800 1000
number of data pass

10−1

100

101

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 200 400 600 800 1000
number of data pass

10−7

10−6

10−5

10−4

10−3

10−2

10−1

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 200 400 600 800 1000
number of data pass

5

10

15

20

25

30

35

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG SAGA

(d) phishing

0 200 400 600 800 1000
number of data pass

10−1

100

101

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 200 400 600 800 1000
number of data pass

10−5

10−4

10−3

10−2

10−1

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG SAGA
√

log k/k

0 200 400 600 800 1000
number of data pass

23200

23300

23400

23500

23600

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG SAGA

(e) rcv1

0 200 400 600 800 1000
number of data pass

10−1

100

101

‖x
k
−
x
∗ ‖

RDA PStorm S-PStorm ProxSVRG
√

log k/k

0 200 400 600 800 1000
number of data pass

10−6

10−5

10−4

10−3

10−2

10−1

er
ro

ri
n

th
e

gr
ad

ie
nt

es
tim

at
e

RDA PStorm S-PStorm ProxSVRG
√

log k/k

0 200 400 600 800 1000
number of data pass

10200

10250

10300

10350

10400

10450

nu
m

be
ro

fz
er

o
gr

ou
ps

RDA PStorm S-PStorm ProxSVRG

(f) real-sim

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Finally, we provide the raw data for the metrics of total identification (Table 3), first identification (Table 4), first consistent
identification (Table 5), and the last iterate support recovery (Table 6); for an explanation of their precise meaning, revisit
Section 4.2. All results (excluding FaRSA-Group which is a deterministic algorithm) are reported as the average of three
independent runs. In all tables, the problem instance is formatted as (dataset name)-(value of Λ)-(ratio of # of groups).

We remark that NaN represents that a particular method failed to identify the support within 1000 data pass. We also
removed the instances that all five methods failed to identify the support.

Table 3: Total number of support identifications.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 976.0 987.0 1000.0 899.0 988.0
a9a-0.1-0.5 790.0 893.0 75.0 NaN 895.0
a9a-0.1-0.75 932.0 965.0 998.0 547.0 966.0
a9a-0.1-1.0 932.0 965.0 998.0 547.0 966.0
a9a-0.01-0.25 NaN NaN NaN NaN 93.0
a9a-0.01-0.5 578.0 788.0 706.0 NaN 786.0
a9a-0.01-0.75 652.0 825.0 84.0 NaN 825.0
a9a-0.01-1.0 652.0 825.0 84.0 NaN 825.0
covtype-0.1-0.25 998.0 999.0 1000.0 998.0 1000.0
covtype-0.1-0.5 1000.0 999.0 1000.0 999.0 1000.0
covtype-0.1-0.75 1000.0 999.0 1000.0 999.0 1000.0
covtype-0.1-1.0 1000.0 999.0 1000.0 999.0 1000.0
covtype-0.01-0.25 1000.0 1000.0 1000.0 1000.0 1000.0
covtype-0.01-0.5 1000.0 1000.0 1000.0 1000.0 1000.0
covtype-0.01-0.75 994.0 991.0 999.0 837.0 1000.0
covtype-0.01-1.0 994.0 991.0 999.0 837.0 1000.0
phishing-0.1-0.25 792.0 896.0 991.0 NaN 895.0
phishing-0.1-0.5 390.0 694.0 901.0 NaN 695.0
phishing-0.1-0.75 420.0 710.0 502.0 NaN 710.0
phishing-0.1-1.0 326.0 662.0 28.0 NaN 667.0
w8a-0.1-0.25 960.0 979.0 997.0 749.0 980.0
w8a-0.1-0.5 906.0 952.0 891.0 120.0 954.0
w8a-0.1-0.75 886.0 942.0 951.0 NaN 942.0
w8a-0.1-1.0 886.0 942.0 951.0 NaN 942.0
w8a-0.01-0.5 164.0 581.0 NaN NaN 580.0
w8a-0.01-0.75 NaN 185.0 NaN NaN 195.0
w8a-0.01-1.0 NaN 185.0 NaN NaN 195.0
real-sim-0.1-0.25 NaN NaN NaN NaN 212.0
real-sim-0.1-0.5 326.0 NaN 163.0 NaN 664.0
news20-0.1-0.25 38.0 NaN NaN NaN 26.0
news20-0.1-0.5 6.0 NaN NaN NaN 312.0
url-combined-0.1-0.25 4.0 NaN NaN NaN 2.0
avazu-app.tr-0.1-0.25 6.0 NaN 4.0 3.0 3.0
avazu-app.tr-0.1-0.5 2.0 NaN 3.0 2.0 2.0
avazu-app.tr-0.1-0.75 2.0 NaN 2.0 2.0 2.0
avazu-app.tr-0.1-1.0 NaN NaN 2.0 1.0 1.0
avazu-app.tr-0.01-0.25 6.0 NaN 3.0 NaN 3.0
avazu-app.tr-0.01-0.5 2.0 NaN 2.0 NaN 2.0
avazu-app.tr-0.01-0.75 2.0 NaN 1.0 NaN 2.0
avazu-app.tr-0.01-1.0 NaN NaN 2.0 NaN 1.0

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Table 4: First support identification.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 25.0 14.0 1.0 102.0 13.0
a9a-0.1-0.5 211.0 108.0 660.0 NaN 106.0
a9a-0.1-0.75 69.0 36.0 3.0 454.0 35.0
a9a-0.1-1.0 69.0 36.0 3.0 454.0 35.0
a9a-0.01-0.25 NaN NaN NaN NaN 908.0
a9a-0.01-0.5 423.0 213.0 264.0 NaN 215.0
a9a-0.01-0.75 349.0 176.0 77.0 NaN 176.0
a9a-0.01-1.0 349.0 176.0 77.0 NaN 176.0
covtype-0.1-0.25 3.0 1.0 1.0 1.0 1.0
covtype-0.1-0.5 1.0 1.0 1.0 1.0 1.0
covtype-0.1-0.75 1.0 1.0 1.0 1.0 1.0
covtype-0.1-1.0 1.0 1.0 1.0 1.0 1.0
covtype-0.01-0.25 1.0 1.0 1.0 1.0 1.0
covtype-0.01-0.5 1.0 1.0 1.0 1.0 1.0
covtype-0.01-0.75 3.0 5.0 1.0 1.0 1.0
covtype-0.01-1.0 3.0 5.0 1.0 1.0 1.0
phishing-0.1-0.25 209.0 105.0 10.0 NaN 106.0
phishing-0.1-0.5 611.0 307.0 100.0 NaN 306.0
phishing-0.1-0.75 581.0 291.0 492.0 NaN 291.0
phishing-0.1-1.0 675.0 339.0 734.0 NaN 334.0
w8a-0.1-0.25 41.0 22.0 4.0 252.0 21.0
w8a-0.1-0.5 95.0 49.0 110.0 881.0 47.0
w8a-0.1-0.75 115.0 59.0 38.0 NaN 59.0
w8a-0.1-1.0 115.0 59.0 38.0 NaN 59.0
w8a-0.01-0.5 837.0 420.0 NaN NaN 421.0
w8a-0.01-0.75 NaN 816.0 NaN NaN 806.0
w8a-0.01-1.0 NaN 816.0 NaN NaN 806.0
real-sim-0.1-0.25 NaN NaN NaN NaN 789.0
real-sim-0.1-0.5 675.0 NaN 838.0 NaN 337.0
news20-0.1-0.25 963.0 NaN NaN NaN 504.0
news20-0.1-0.5 995.0 NaN NaN NaN 523.0
url-combined-0.1-0.25 9.0 NaN NaN NaN 5.0
avazu-app.tr-0.1-0.25 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-0.5 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-0.75 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-1.0 NaN NaN 1.0 1.0 1.0
avazu-app.tr-0.01-0.25 3.0 NaN 1.0 NaN 1.0
avazu-app.tr-0.01-0.5 3.0 NaN 1.0 NaN 1.0
avazu-app.tr-0.01-0.75 3.0 NaN 2.0 NaN 1.0
avazu-app.tr-0.01-1.0 NaN NaN 1.0 NaN 1.0

A Stochastic Gradient Method with Support Identification Guarantees for Structured Optimization

Table 5: First consistent support identification.

instance ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 25.0 14.0 1.0 102.0 13.0
a9a-0.1-0.5 211.0 108.0 NaN NaN 106.0
a9a-0.1-0.75 69.0 36.0 3.0 454.0 35.0
a9a-0.1-1.0 69.0 36.0 3.0 454.0 35.0
a9a-0.01-0.25 NaN NaN NaN NaN 908.0
a9a-0.01-0.5 423.0 213.0 299.0 NaN 215.0
a9a-0.01-0.75 349.0 176.0 NaN NaN 176.0
a9a-0.01-1.0 349.0 176.0 NaN NaN 176.0
covtype-0.1-0.25 3.0 3.0 1.0 11.0 1.0
covtype-0.1-0.5 1.0 3.0 1.0 5.0 1.0
covtype-0.1-0.75 1.0 3.0 1.0 5.0 1.0
covtype-0.1-1.0 1.0 3.0 1.0 5.0 1.0
covtype-0.01-0.25 1.0 1.0 1.0 1.0 1.0
covtype-0.01-0.5 1.0 1.0 1.0 1.0 1.0
covtype-0.01-0.75 29.0 24.0 8.0 879.0 1.0
covtype-0.01-1.0 29.0 24.0 8.0 879.0 1.0
phishing-0.1-0.25 209.0 105.0 10.0 NaN 106.0
phishing-0.1-0.5 611.0 307.0 100.0 NaN 306.0
phishing-0.1-0.75 581.0 291.0 520.0 NaN 291.0
phishing-0.1-1.0 675.0 339.0 997.0 NaN 334.0
w8a-0.1-0.25 41.0 22.0 4.0 252.0 21.0
w8a-0.1-0.5 95.0 49.0 110.0 881.0 47.0
w8a-0.1-0.75 115.0 59.0 65.0 NaN 59.0
w8a-0.1-1.0 115.0 59.0 65.0 NaN 59.0
w8a-0.01-0.5 837.0 420.0 NaN NaN 421.0
w8a-0.01-0.75 NaN 816.0 NaN NaN 806.0
w8a-0.01-1.0 NaN 816.0 NaN NaN 806.0
real-sim-0.1-0.25 NaN NaN NaN NaN 789.0
real-sim-0.1-0.5 675.0 NaN 838.0 NaN 337.0
news20-0.1-0.25 963.0 NaN NaN NaN NaN
news20-0.1-0.5 995.0 NaN NaN NaN 523.0
url-combined-0.1-0.25 9.0 NaN NaN NaN 5.0
avazu-app.tr-0.1-0.25 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-0.5 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-0.75 3.0 NaN 1.0 1.0 1.0
avazu-app.tr-0.1-1.0 NaN NaN 1.0 1.0 1.0
avazu-app.tr-0.01-0.25 3.0 NaN 4.0 NaN 1.0
avazu-app.tr-0.01-0.5 3.0 NaN 4.0 NaN 1.0
avazu-app.tr-0.01-0.75 3.0 NaN 2.0 NaN 1.0
avazu-app.tr-0.01-1.0 NaN NaN 1.0 NaN 1.0

Yutong Dai, Guanyi Wang, Frank E. Curtis, Daniel P. Robinson

Table 6: Last iterate sparsity.

instance FaRSAGroup ProxSVRG SAGA RDA PStorm S-PStorm

a9a-0.1-0.25 26 26.0 26.0 26.0 26.0 26.0
a9a-0.1-0.5 57 57.0 57.0 56.0 56.0 57.0
a9a-0.1-0.75 86 86.0 86.0 86.0 86.0 86.0
a9a-0.1-1.0 117 117.0 117.0 117.0 117.0 117.0
a9a-0.01-0.25 20 19.0 19.0 18.0 16.0 20.0
a9a-0.01-0.5 44 44.0 44.0 44.0 38.0 44.0
a9a-0.01-0.75 65 65.0 65.0 66.0 58.0 65.0
a9a-0.01-1.0 96 96.0 96.0 97.0 89.0 96.0
covtype-0.1-0.25 11 11.0 11.0 11.0 11.0 11.0
covtype-0.1-0.5 25 25.0 25.0 25.0 25.0 25.0
covtype-0.1-0.75 38 38.0 38.0 38.0 38.0 38.0
covtype-0.1-1.0 52 52.0 52.0 52.0 52.0 52.0
covtype-0.01-0.25 10 10.0 10.0 10.0 10.0 10.0
covtype-0.01-0.5 22 22.0 22.0 22.0 22.0 22.0
covtype-0.01-0.75 33 33.0 33.0 33.0 33.0 33.0
covtype-0.01-1.0 47 47.0 47.0 47.0 47.0 47.0
phishing-0.1-0.25 12 12.0 12.0 12.0 9.0 12.0
phishing-0.1-0.5 25 25.0 25.0 25.0 22.0 25.0
phishing-0.1-0.75 43 43.0 43.0 43.0 41.0 43.0
phishing-0.1-1.0 59 59.0 59.0 59.0 55.0 59.0
w8a-0.1-0.25 57 57.0 57.0 57.0 57.0 57.0
w8a-0.1-0.5 132 132.0 132.0 132.0 132.0 132.0
w8a-0.1-0.75 208 208.0 208.0 208.0 206.0 208.0
w8a-0.1-1.0 281 281.0 281.0 281.0 279.0 281.0
w8a-0.01-0.5 79 79.0 79.0 77.0 67.0 79.0
w8a-0.01-0.75 150 149.0 150.0 149.0 129.0 150.0
w8a-0.01-1.0 214 213.0 214.0 213.0 189.0 214.0
real-sim-0.1-0.25 5211 5210.0 NaN 5210.0 5187.0 5211.0
real-sim-0.1-0.5 10439 10439.0 NaN 10439.0 10394.0 10439.0
news20-0.1-0.25 338697 338697.0 NaN 338661.0 338674.0 338698.0
news20-0.1-0.5 677496 677496.0 NaN 677459.0 677464.0 677496.0
url-combined-0.1-0.25 807983 807983.0 NaN 807982.0 807974.0 807983.0
avazu-app.tr-0.1-0.25 249995 249995.0 NaN 249995.0 249995.0 249995.0
avazu-app.tr-0.1-0.5 499993 499993.0 NaN 499993.0 499993.0 499993.0
avazu-app.tr-0.1-0.75 749990 749990.0 NaN 749990.0 749990.0 749990.0
avazu-app.tr-0.1-1.0 999988 999987.0 NaN 999988.0 999988.0 999988.0
avazu-app.tr-0.01-0.25 249980 249980.0 NaN 249980.0 249973.0 249980.0
avazu-app.tr-0.01-0.5 499978 499978.0 NaN 499979.0 499970.0 499978.0
avazu-app.tr-0.01-0.75 749976 749976.0 NaN 749976.0 749972.0 749976.0
avazu-app.tr-0.01-1.0 999973 999814.0 NaN 999973.0 999965.0 999973.0

	INTRODUCTION
	Related Work
	Contributions
	Notation and Preliminaries

	ALGORITHM
	ANALYSIS
	Assumptions
	Convergence Analysis
	Support Identification

	NUMERICAL EXPERIMENTS
	Problems, Baselines, and Implementation Details
	Numerical Results

	CONCLUSION
	Proofs of Results in Section 3
	Proof of Theorem 3.1
	Proof of Corollary 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proofs for additional lemmas

	Experiments
	Discussions on the performance gaps in different methods
	Additional results

