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Abstract

In real-world decision-making, uncertainty is im-
portant yet difficult to handle. Stochastic dom-
inance provides a theoretically sound approach
to comparing uncertain quantities, but optimiza-
tion with stochastic dominance constraints is often
computationally expensive, which limits practical
applicability. In this paper, we develop a sim-
ple yet efficient approach for the problem, Light
Stochastic Dominance Solver (light-SD), by lever-
aging properties of the Lagrangian. We recast the
inner optimization in the Lagrangian as a learn-
ing problem for surrogate approximation, which
bypasses the intractability and leads to tractable
updates or even closed-form solutions for gradient
calculations. We prove convergence of the algo-
rithm and test it empirically. The proposed light-
SD demonstrates superior performance on several
representative problems ranging from finance to
supply chain management.

1 INTRODUCTION
Decision making under uncertainty (Kochenderfer, 2015)
is an ubiquitous challenge attracting research from a wide
range of communities including machine learning (Sani
et al., 2012; Petrik and Subramanian, 2012; Tamar et al.,
2013, 2015; La and Ghavamzadeh, 2013), operations re-
search (Delage and Mannor, 2010), economics and man-
agement science (Machina and Viscusi, 2013). To date,
decision methods in machine learning primarily focus on
maximizing expected return, which is only applicable to
cases when the decision-maker is risk-neutral. In reality,
most decision-makers are risk-sensitive – many are willing
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to give up some expected reward to protect against large
losses, i.e., demonstrating risk-aversion. Stochastic domi-
nance (SD), introduced in (Mann and Whitney, 1947) and
(Lehmann, 1955), provides a principled approach to com-
paring random variables, standing out as a general and flexi-
ble model for incorporating risk aversion in decision mak-
ing, applied to scenarios ranging from economics (Quirk
and Saposnik, 1962; Rothschild and Stiglitz, 1970, 1971),
finance (Dentcheva and Ruszczyński, 2006), path plan-
ning (Nie et al., 2012), to control and reinforcement learn-
ing (Dentcheva and Ruszczyński, 2008; Haskell and Jain,
2013). Despite the elegance of the concept, an efficient
computational recipe for ensuring stochastic dominance
between general distributions remains lacking, due to the
continuum nature of the criterion. In this paper, we consider
a longstanding challenge (Levy, 1992):

Develop a simple yet efficient algorithm for optimization
with general stochastic dominance constraints.

There have been many attempts to handle stochastic
dominance constraints in optimization. Ogryczak and
Ruszczyński (1999, 2001, 2002) established consistency
between stochastic dominance and mean-risk surrogates.
Therefore, several mean-risk optimization formulations have
been proposed as surrogates for evaluating stochastic domi-
nance conditions. Although the proposed mean-risk models
can be efficiently solved, these surrogates only provide a nec-
essary condition and are unable to model the full spectrum
of risk-averse preferences, and thus might lead to inferior
solutions (Ogryczak and Ruszczyński, 2001).

To bypass suboptimality from surrogates, research on orig-
inal optimization with stochastic dominance was consid-
ered by (Dentcheva and Ruszczyński, 2003). Existing
methods for such problems can generally be categorized
by the underlying stochastic dominance formulations con-
sidered, based on k-th order distribution functions, utility
functions, or the Strassen theorem perspective, respectively.
Based on the direct comparison over distribution functions,
Dentcheva and Ruszczyński (2003, 2004a) derived a linear
programming (LP) formulation for second-order stochas-
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tic dominance constraints. Similarly, Noyan et al. (2006)
derived a mixed-integer programming (MIP) formulation
of first-order stochastic dominance constraints, which was
further adopted in a cutting plane algorithm in (Rudolf and
Ruszczyński, 2008). Instead of stochastic dominance based
on k-th order distribution functions, (Luedtke, 2008) estab-
lished a more compact LP and MIP for second-/first-order
stochastic dominance constraints based on an equivalent
reformulation through Strassen’s theorem (Strassen, 1965).
Alternatively, stochastic dominance can also be character-
ized from a dual view, which leads to an implementation
through robust optimization with respect to utility func-
tions (Post, 2003; Armbruster and Delage, 2015).

Even though these ideas and formulations are inspiring,
they primarily focus on random variables with finite support.
It is always possible to approximate the constraints over
continuous random variables by applying existing methods
with the empirical distribution over samples (Hu et al., 2012;
Haskell and Toriello, 2018), but the size of the resulting
optimization increases at least quadratically with respect to
the number of discretization bins, thus making the memory
and computation costs unaffordable if one seeks a high-
quality solution with a fine discretization.

In this paper, we introduce a novel algorithm, Light Stochas-
tic Dominance Solver (light-SD), as a viable solution to the
question. The proposed light-SD is able to handle general
stochastic dominance constraints while maintaining memory
and computational efficiency, thus enabling applicability to
large-scale practical problems. Our development starts with
the well-established Lagrangian of the optimization with
stochastic dominance constraints, which induces a special
structure in the dual functions and establishes a connection
to utility functions. Although such a connection has been
noted in the literature, it has remained unclear how this can
be exploited for an efficient algorithm, due to the difficulty
in optimizing with an intractable expectation over an infi-
nite number of unbounded functions. We overcome these
difficulties through learning for surrogate approximation.
Specifically, we approximate the intractable expectation via
samples, and optimize with design special parametrized dual
functions for surrogate approximation. These two strategies
pave the way for a simple and efficient algorithm.

The reminder of the paper is organized as follows. First, we
provide the necessary background on optimization with
stochastic dominance constraints and its corresponding
primal-dual form in Section 2. In Section 3.1 we design an
efficient stochastic gradient descent algorithm applicable to
general stochastic dominance constraints with general ran-
dom variables. By scrutinizing the conditions on the dual
functions, we introduce a specially tailored parametrization
for dual functions in Section 3.2. We provide the theoretical
analysis of the proposed light-SD in Section 3.3. Finally,
in Section 5, we conduct an empirical evaluation on syn-
thetic benchmarks and real-world problems, and find that

the proposed light-SD significantly improves performance
in terms of both memory and computation.

Our implementation of light-SD will be re-
leased at https://github.com/google-research/google-
research/tree/master/lightsd.

2 PRELIMINARIES

In this section, we introduce the stochastic dominance con-
cept and specify the optimization problem under stochastic
dominance constraints with concrete applications. Then, we
provide the corresponding primal-dual reformulation, which
inspires our algorithm in next section.

2.1 Optimization with Stochastic Dominance
Constraints

First-order dominance: Let X denote a real valued ran-
dom variable. The corresponding distribution function is
defined as F (X; η) = P (X ⩽ η) for η ∈ R. We say that
a random variable X dominates in the first order a random
variable Y if the following holds:

X ⪰1 Y if F (X; η) ⩽ F (Y ; η), ∀η ∈ R. (1)
First-order stochastic dominance is describing that, when
both X and Y are the outcome of two portfolios, X ⪰1 Y
implies P (X ⩾ η) ⩾ P (Y ⩾ η), which means for any
possible return threshold η, the portfolio X gives at least as
high a probability of exceeding the threshold as Y .

Second-order dominance: We say X dominates Y in the
second order if the following holds:
X ⪰2 Y if

∫ η

−∞ F (X;α)dα ⩽
∫ η

−∞ F (Y ;α)dα, ∀η ∈ R.
(2)

Second-order dominance has significant practical value: it
is closely linked to risk-adverse decision making (Ogryczak
and Ruszczyński, 1999, 2001, 2002), and robust optimiza-
tion w.r.t. the family of concave, non-decreasing utility func-
tions (Armbruster and Delage, 2015). In particular, second-
order dominance can be equivalently defined by:
X ⪰2 Y ↔ E[(η −X)+] ⩽ E[(η − Y )+],∀η ∈ R. (3)

High-order dominance: The concept of stochastic dom-
inance has been extended to high-order. Specifically, one
can recursively define the functions
Fk (X; η) =

∫ η

−∞ Fk−1 (X;α) dα = 1
(k−1)!E

[
(η −X)

k−1
+

]
,

(4)
Then, X dominates Y in the kth-order if Fk (X; η) ⩽
Fk (Y ; η) for ∀η ∈ R. By definition, kth-order dominance
implies (k + 1)st-order dominance if the random variables
Fk+1 are well-defined.

We are interested in the following optimization problem:
max
z∈Ω

f(z), s.t. g(z, ξ) ⪰k Y, (5)

where f(·) : Rd → R is the objective function, Ω ⊂ Rd

https://github.com/google-research/google-research/tree/master/lightsd
https://github.com/google-research/google-research/tree/master/lightsd
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denotes the feasible set of decision variables, Y denotes
the reference random variable, and g (·, ·) : Rd × Rp →
R is a given mapping expressing a deterministic outcome
depending on the decision z and random variable ξ.

The optimization (5) can be easily generalized with multi-
ple stochastic dominance constraints, i.e., gi (z, ξ) ⪰k Yi,
∀i = 1, . . . , h, with each random outcome gi (z, ξ) stochas-
tic dominant w.r.t. the corresponding references Yi; and
multivariate stochastic dominance constraints (Dentcheva
and Ruszczyński, 2009).

Below we provide several concrete applications of (5).

• Portfolio Optimization: Consider a set of d financial
assets, whose returns can be captured by a random
variable ξ ∈ Rd. The optimization problem seeks
a portfolio of assets formed by an allocation vector
z ∈ Ω ⊂ Rd

+, |z| = 1. The return of the portfolio
X = ξ⊤z is also a random variable. The objective
of portfolio optimization is to maximize the expected
portfolio return, subject to the constraint that the return
dominates a reference return Y :

maxz∈Ω Eξ

[
ξ⊤z

]
, s.t. ξ⊤z ⪰k Y, (6)

Y can come from a reference portfolio or market in-
dex. Under second-order dominance, this formulation
guarantees a risk-averse decision maker will not prefer
Y to the optimal solution of (6).

• Optimal Transportation: Consider a set of m regions
with demand expressed by a m-dimensional random
variable ξ ∈ Rm. This demand is to be fulfilled by n
warehouses with inventories given by an n-dimensional
random variable Y ∈ Rn (capturing uncertainty in sup-
plier lead time and replenishment availability). The
optimal transport problem seeks a transport map, rep-
resented as a decision variable z ∈ Ω ⊂ Rm×n

+ , where
zij is the ratio of demand ξi being fulfilled by ware-
house j. The decision must satisfy ∀i,

∑
j zij = 1.

Let hij ∈ Rm×n
+ be the transport cost to fulfill a unit

demand from region i by warehouse j. The objec-
tive is to minimize expected transport cost, subject to
the constraint that the demand ξ is dominated by the
warehouse supply Y :

maxz∈Ω −Eξ

[∑
i

∑
j hijzijξi

]
, (7)

s.t. Yj ⪰k

∑
i ξi · zij ,∀j (8)

A standard approach is to rewrite the first-/second-order
stochastic dominance constraints as binary/linear constraints
with O

(
M2
)

auxiliary variables, where M denotes the
support size for discrete variables or the number of dis-
cretization bins for continuous variables. Please refer to Ap-
pendix A for details of the constraint reformulation. Clearly,
the computational cost quickly becomes unacceptable for
large-scale problems. Such computational difficulty is a ma-
jor bottleneck in applying stochastic dominance in practice,

making an efficient and general algorithm an urgent need.

2.2 Primal-Dual Formulation

It is common when solving a stochastic constrained
optimization to consider a relaxation where η ∈
[a, b] (Dentcheva and Ruszczyński, 2003). Given a continu-
ous Fk defined in (4) over [a, b], we define the Lagrangian
Λk (z, µ) : Ω× rca([a, b])→ R of (5) and obtain:

maxz minµ∈rca([a,b]) Λ
k(z, µ) =

f(z)−
∫ b

a

[Fk (g(z, ξ); η)− Fk(Y ; η)] dµ (η) , (9)

where rca([a, b]) are the regular, countably additive mea-
sures on [a, b], i.e., the dual space of the continuous function
space given by the Riesz representation theorem. Under
some regularity conditions, the Λk(z, µ) in (9) can be equiv-
alently reformulated as
max

z
min
u∈Uk

L(z, u) = f(z) + Eξ [u(g(z, ξ))]− E [u(Y )] ,

(10)

where Uk :=

{
u (·)

∣∣∣∣∫ b

a
Fk (X; η) dµ(η) = −E [u(X)] ,

∀µ ∈ rca([a, b])

}
denotes the feasible set of dual functions for the k-th order
dominance constraints. Obviously, the major difference
between k-th order stochastic dominance mainly lies in the
construction of the dual functions.

Theorem 1 (Theorem 1 (Dentcheva and Ruszczyński,
2004b)). Under regularity conditions on the solution to (5)
under a first-order dominance condition, U1 in (10) is the set
of nondecreasing and left continuous functions over [a, b].

Similarly, one can characterize the dual function for the
second-order dominance constraints.

Theorem 2 (Theorem 4.2 (Dentcheva and Ruszczyński,
2003)). Under some regularity conditions, the Lagrangian
can be reformulated as (10) with u (·) ∈ U2, U2 is the set of
concave and nondecreasing functions over [a, b].

This primal-dual view connects stochastic dominance with
the utility function perspective (Von Neumann and Mor-
genstern, 2004). In fact, instead of fully specifying the
utility function, (10) can be understood as a robust optimiza-
tion with respect to all possible utilities, ensuring for the
worst-case utility function in the set that the solution is still
preferable to the reference strategy, therefore, demonstrating
the benefits of the stochastic dominance comparison.

Although the duality relation and optimality condition
through the Lagrangian (9) and (10) has been established
in (Dentcheva and Ruszczyński, 2003) (please refer to Ap-
pendix B for completeness), the Lagrangian forms are still
intractable in general due to

i), the intractable expectation in the optimization,

ii), the infinite number of unbounded functions in dual
feasible set Uk.
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3 LIGHT STOCHASTIC DOMINANCE
SOLVER

In this section, we exploit machine learning techniques to
bypass the two intractabilities of Lagrangian (10) discussed
in previous section. These machine learning techniques
eventually lead to a simple yet efficient algorithm for general
optimization problems with stochastic dominance, while
obtaining rigorous guarantees.

3.1 Stochastic Approximation

We first introduce the stochastic approximation scheme for
the Lagrangian (10) to handle the intractable expectation.
Specifically, we define

L̂(z, u) = f(z) + 1
N

∑N
i=1 (u(g(z, ξi))− u(yi)) (11)

with {ξi}Ni=1 ∼ p(ξ) and {yj}Nj=1 ∼ p(y). Consider a
stochastic approximation algorithm that alternates between
solving û∗ = argminu∈U L̂(z, u), and updating z with a
stochastic gradient∇zL̂(z, û

∗), which leads to Algorithm 1.

Algorithm 1 Light Stochastic Dominance Solver (light-SD)
1: Initialize z randomly, set number of total iterations T .
2: for iteration t = 1, . . . , T do
3: Sample Sample {ξi, yi}ni=1.
4: Compute û∗ = argminu∈U L̂(z, u).
5: z ← z + γt∇zL̂(z, û

∗).
6: end for

In Algorithm 1, we avoid the first difficulty by using the
stochastic approximation L̂(z, u) to replace intractable ex-
pectation. However, optimization over an unbounded func-
tion space U is in general intractable. Next, we design
the special dual parametrization, which induces an efficient
solver for û∗ in Section 3.2 to bypass the optimization over
an infinite dual feasible set.

3.2 Dual Parametrization

To bypass the computational intractable and PAC unlearn-
able optimization over infinitely many unbounded functions
in the dual feasible set, we introduce bounded parameterized
dual functions, thus reducing the semi-infinite programming
problem to a finite parameter optimization. However, arbi-
trary parameterizations will generate functions outside the
feasible set of utility functions, which breaks the require-
ments of stochastic dominance with specific order.

In this section, inspired by the proofs of Theorem 1 and The-
orem 2, we design specific parametrizations that cover the
corresponding bounded utility function sets, which balances
the tradeoff between sample complexity and relaxation of
the optimization. Meanwhile, for the commonly used first
and second order stochastic dominance constraints, our

parametrization induces an efficient dual solution, which
further reduces the computation complexity. We also intro-
duce the generic parametrization of the dual for high-order
dominance problems.

3.2.1 Parameterization of U1

Following Theorem 1, one straightforward idea is to
parametrize the whole family of non-decreasing functions,
e.g., (Sill, 1997; Dugas et al., 2009; Wehenkel and Louppe,
2019), which, however, is unbounded function space, and
thus, not only computationally intractable but also sample
complexity unbounded. Therefore, we do not directly work
with all non-decreasing functions, but a restricted dual func-
tion space as a surrogate:
Ū1 :=

{
u(x) = Ep(η) [1 (x ⩽ η)] , p(η) ∈ ∆([a, b])

}
,

(12)
where ∆([a, b]) is the set of distribution over [a, b]. This
dual actually can be understood as seeking η ∈ [a, b], such
that F (X; η) > F (Y ; η). This bounded function space
relaxes the original optimization, but makes the problem
statistical learnable as we discussed in Appendix B.1.

With this dual parametrization, the optimal dual function
can be easily obtained. For stochastic approximation with
finite samples X̃ ∼ P (X), let us define

hX̃(η) =
∑

x∈X̃ I (η ⩾ x) . (13)
We overload the notation a bit to denote h{ξi}(η) =∑N

i=1 I (η ⩾ g(z, ξi)).

Given sample {ξi, yi}Ni=1, we define
µ∗({ξi} , {yi}) =

{
η : η ∈ R and h{ξi}(η) > h{yi}(η)

}
,

which is the set of the values of η that violate the constraints.
We omit the arguments of µ∗ when appropriate. Based on
the understanding of dual functions in (12), the optimal dual
function is constructed by putting probability mass on the
step-function with threshold in the set µ∗, i.e.,

U∗
1 = {uη(x) := −I(η ⩾ x), η ∈ µ∗} . (14)

and optimal dual uη∗ , where η∗ = argmaxη∈U∗
1
h{ξ} (η)−

h{y} (η). When {ξ, y}Ni=1 has no duplication, we can use
any convex combination in U∗

1 .

ℎ !! (𝜂)
𝑦"

𝑔(𝑧, 𝜉")

ℎ #! (𝜂)
𝜂𝜇∗

Figure 1: Designed dual function for first order constraints.

The relations among samples g(z, ξi), yi, the corresponding
h{ξi}, h{yi} and the resulting u∗ can be depicted in Figure 1.

Although the above design of the functional space Ū1 is not
exhaustive, it suffices to show that the dominance constraints
are satisfied on the current batch of samples {ξi} and {yi}
only when Ū1 is an empty set for this batch of samples.
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Practical implementation. Note that although µ∗ may
contain infinitely many values, only a finite number of them
would result in distinct gradients with respect to z. Partic-
ularly, a finite set µ̃∗ overlapped with the actual samples
would be sufficient:

µ̃∗ = µ∗
⋂
{{g(z, ξi} ∪ {yi}} . (15)

Furthermore, note that the above function µη is a step func-
tion which is not continuous, and thus, causes difficulty
for gradient-based optimization. To resolve this issue, in-
spired from neural network approximation (Barron, 1993),
we approximate the function with a smoothed basis, i.e.,

Ũ∗
1 =

{
ũη(x) := − tanh

(
η−x
τ

)
, η ∈ µ̃∗} . (16)

With the above construction, we exploit all functions in Ũ∗
1

to obtain û∗(·) =
∑

u∈Ũ∗
1
u(·), upon which we can have the

stochastic gradient for the constrained optimization as
∇zL̂(z, û

∗) = ∇zf(z)+
1
N

∑N
i=1

1
∥µ̃∗∥

∑
u∈Ũ∗

1
∇zu(g(z, ξi)).

(17)

3.2.2 Parameterization of U2

Similar to the above case, we design the dual function
Ū2 :=

{
u(x) = Ep(η) [(η − x)+, p(η) ∈ ∆(a, b)]

}
, (18)

which essentially seeks η such that F2 (X; η) > F2 (Y ; η).
Please refer to Appendix B.2 for the discussion about the
approximation induce by boundedness.

We follow the same paradigm to first define the function
hX̃(η) :=

∑
x∈X̃(η − x)+ (19)

and correspondingly the overloaded definition of
h{ξi}(η) :=

∑N
i=1(η − g(z, ξi))+. The set of η that would

violate the second order stochastic dominance constraints is
defined similarly where

µ∗ =
{
η : η ∈ R and h{ξi}(η) ⩾ hyi

(η)
}
.

In this case, the basis of constructing optimal dual function
can be derived as

U∗
2 = {uη(x) := −(η − x)+, η ∈ u∗} , (20)

and we can obtain the optimal dual by putting mass on the
η∗ = argmaxη∈U∗

2
h{ξ} (η)− hy (η).

ℎ !! (𝜂)
𝑦"

𝑔(𝑧, 𝜉")

ℎ #! (𝜂)

𝜂

𝜇∗

Figure 2: Designed dual function (slope is rescaled for
visualization) for second order constraints.

The relations among samples g(z, ξi), yi, the corresponding
h{ξi}, h{yi} and the resulting u∗ can be depicted in Figure 2.

One can also see through Figure 1 and Figure 2 that, the first
order stochastic dominance constraints are strictly stronger

Table 1: Computation and Memory Cost per Iteration.

Algorithms # of Variables Memory Computation
light-SD Θ(N) Θ(N) Õ(N)
LP-based Θ(N2) Θ(N2) O(N3)

than the second order ones, as µ∗ here is a subset of which
in the first order case.

Practical implementation. Similar to the first order
stochastic dominance, here only a finite subset of µ∗ is
needed to obtain the stochastic gradients, which is anal-
ogous to the previous case in (15). Therefore, we use
û (x) = − 1

∥µ̃∗∥
∑

η∈µ̃∗ (η − x)+, which is a ReLU net-
work, and the gradient w.r.t. x can also be calculated
with (17) using the obtained û. Although we use the av-
erage û, instead of the optimal dual solution with η∗. It
is easy to check û is a psuedo-gradient, and still preserves
convergence (Poljak and Tsypkin, 1973; Yang et al., 2019).

3.2.3 Parameterization of Uk

In our paper we mainly focus on the first and second order
SD constraints, as these are most practically useful ones. For
completeness we present the derivations of higher-order SD
constraints here. The derivation of the Lagrangian for (5)
with high-order dominance constraints also suggests a neu-
ral network architecture for parameterizing functions in Uk,
as shown in Appendix B.2. Specifically, we consider the
function parametrization as:
uθ(x) =

∫ x

a
. . .
∫ xk−2

a

(∫ xk−1

a
ϕθ(t)dt+ β

)
dxk−2 . . . dx1,

(21)
where ϕθ(t) ⩾ 0 is a bounded non-negative function and
can be easily satisfied by applying activation functions like
relu or softplus to the output layer. Since the integration
is one-dimensional, the numerical quadrature can be used
in the forward-pass. This parametrization directly follows
the derivation of dual function for high-order stochastic
dominance, therefore, satisfying the requirements.

For higher-order SD we can no longer achieve a closed-form
solution even with finite samples. We consider gradient de-
scent for seeking the optimal inner solution. Specifically,
the gradient calculation can be easily implemented by ex-
ploiting the linearity of integration and differentiation, i.e.,

∇θu(x) =∫ x

a
. . .
∫ xk−2

a

(∫ xk−1

a
∇θϕθ(t)dt+ β

)
dxk−2 . . . dx1.

The gradient calculation is quite similar to the forward-pass
through numerical quadrature layer, but with gradients w.r.t.
the parameters of first layer.

3.3 Theoretical Analysis

The proposed light-SD can be understood as optimization
with a learned surrogate approximation. In fact, for second-
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order case, we can characterize the global optimal conver-
gence with the learned surrogate.

Theorem 3. If f and g are both concave, ℓ (z) :=
minu∈Ū2([a,b]) L(z, u) is concave with respect to z. With

stepsize γt = O
(

1√
T

)
, we define z̄T =

∑T
t=1 γtzt∑T
t=1 γt

where {zt}Tt=1 are the iterates from light-SD, and z∗ =
argmaxz∈Ω ℓ (z) is the optimal solution. Under the as-
sumption that ∥∇zf(z)∥22 ⩽ C2

f and ∥∇zg(z, ξ)∥22 ⩽ C2
g ,

with probability 1− δ, we have

E [ℓ (z∗)− ℓ (z̄T )] = O
(

(|a|+|b|)+
√

log(1/δ)√
N

+ 1√
T

)
.

The theorem implies that besides the standard conver-
gence rate for stochastic gradient for convex function, i.e.,

O
(

1√
T

)
, there is an extra error O

(
(|a|+|b|)+

√
log(1/δ)√

N

)
,

which comes from optimization using the learned surrogate
with N -finite samples. To balance these two errors, one can
use T samples in each iteration, which leads to total error
in rate Õ

(
1√
T

)
. With fewer samples in each batch, e.g.,

N ∼ O (Tα) with α ∈ (0, 1), we obtain Õ
(
T−α

2

)
.

The proof is obtained by characterizing the approximation
error induced in each step in the mini-batch stochastic gradi-
ent descent. Due to the space limitation, we omit the details.
Please refer to Appendix B.3 for the complete proof. The
proof in fact can be of independent interests. It improves the
results from (Nouiehed et al., 2019) by exploiting stochastic
gradient to make the computation tractable. Meanwhile, we
relax the strongly convex requirement. Comparing to (Hu
et al., 2021), the proof considers the mini-batch in the al-
gorithm, while the algorithm proposed in (Hu et al., 2012)
requires full batch updates.

The proposed light-SD is efficient in terms of both memory
and computation cost, bypasses notorious difficulties in
realizing stochastic dominance constraints, as discussed
in Appendix A. We compare the computation and memory
cost with the existing LP-based algorithm in Table 1. With
an interior-point solver for LP (Nesterov and Nemirovskii,
1994), the proposed light-SD reduces both computation and
memory cost to linear w.r.t. N , therefore, is scalable for
practical problems.

Although we focused on SD over scalar random vari-
able, light-SD can be extended to multivariate SD con-
straints (Dentcheva and Ruszczyński, 2009), where one
extra random projection will be introduced to project multi-
variate random variables to scalar.

4 RELATED WORK

This work bridges several topics, including robust optimiza-
tion, decision making under uncertainty, ML for optimiza-
tion, and optimization with approximated gradients.

ML for optimization. Leveraging machine learning to help
optimization has raised a lot of interest in recent years. Some
representative works include leveraging reinforcement learn-
ing (Khalil et al., 2017; Bello et al., 2016), unsupervised
learning (Karalias and Loukas, 2020), and learning guided
search (Li et al., 2018) for combinatorial optimization and
stochastic optimization (Dai et al., 2021). One main goal
has been to leverage the generalization ability of neural
networks to help solve new instances from the same distri-
bution better or faster. While these successes inspired and
motivated this work, one key distinction is that we solve indi-
vidual problems with guarantees and without meta-training.
This principle is similar to model-based black-box optimiza-
tion (Snoek et al., 2012; Papalexopoulos et al., 2022), where
surrogate models are estimated iteratively and used to guide
the optimization. To the best of our knowledge, this is the
first stochastic approach for solving optimization problems
with stochastic dominance constraints that is both scalable
and achieves provable global convergence.

Robust optimization/decision making under uncertainty.
Robust optimization and decision making under uncertainty
have been longstanding topics in artificial intelligence. For
example, utility elicitation (Chajewska et al., 2000; Boutilier
et al., 2006) considers the problem of maximizing expected
utility under feasibility constraints without precise knowl-
edge of the utility function. A standard approach is to min-
imize mini-max regret subject to constraints on possible
utility functions, thereby achieving worst case robustness to
the true underlying utility. Much of the work in this area has
considered structured problem formulations using graphical
models, to simply the constraints and utility function forms.
Here we handle more flexible formulations through neural
network parameterizations of the dual functions.

5 EXPERIMENTS

We evaluate the proposed light-SD using two practical prob-
lem formulations, namely portfolio optimization and the
stochastic optimal transport problem as defined in Section 2.

Baselines: We compare light-SD against a list of prominent
algorithms. Most such algorithms convert SD constraints
into either a LP (SDLP, cSSD1, cSSD2) or a MIP formula-
tion (cFSD, FDMIP).

• SDLP (Dentcheva and Ruszczyński, 2003) handles 2nd-
order SD constraints by converting them into linear con-
straints via sampling. It scales poorly since the number of
constraints and variables grows quadratically with respect
to the sample size.

• cSSD1 (Luedtke, 2008) reduces the growth of the number
of constraints to a linear scale, but the number of variables
still grows quadratically.

• cSSD2 (Luedtke, 2008) has the same theoretical complex-
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Figure 3: Each dot in the above figure represents the objective and CVI of corresponding solution obtained by different
methods over multiple random seeds. Generally light-SD achieves better objective value (i.e., higher return or lower cost)
and lower CVI compared to alternative methods.
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Figure 4: Solution quality w.r.t. different number of samples for baseline methods.

ity as cSSD1 but may yield many fewer nonzero elements
in the LP formulation.

• FDMIP (Noyan et al., 2006) handles 1st-order SD using a
MIP formulation. The number of variables and constraints
both grow quadratically. MIPs are also harder to solve
than LPs of the same scale.

• cFSD (Luedtke, 2008) handles 1st-order SD and improves
the MIP formulation by reducing the number of con-
straints to a linear scale.

• Greedy sets a lower-bound for the minimization objective
without considering the SD constraints.

Since the 1st-order SD conditions also imply satisfaction
of the 2nd-order conditions, the minimization objective
achieved by FDMIP or cFSD upper-bounds that of the 2nd-
order formulations. Meanwhile, given that the 2nd-order
constraints are necessary for the 1st-order constraints, we
leverage the 2nd-order formulations as approximations to
the 1st-order SD problems, following (Noyan et al., 2006).
As a result, we compare all the above methods to light-SD
for both 1st and 2nd-order SD constrained optimizations.

Evaluation Metrics: We evaluate algorithm performance
by solving the stochastic optimization problem and evaluat-
ing their solution quality with respect to both the objective
value and the compliance to the stochastic dominance con-
straints. Specifically we have:

• Optimality Ratio (obj-ratio) is |Objective−Objective∗|
Objective∗ .

When the optimal solution is known we evaluate how
closely a solution approximates the optimal value.

• Objective. When the optimal solution is unknown, we
can still compare the objective values of different solu-
tions (i.e., the portfolio return or the transportation cost)
with higher (lower) value for maximization (minimiza-
tion) problem indicating better algorithm quality.

• Constraint Violation Index for k-th order (CVI@k).
Based on the fact that F k

X(η) = 1
(k−1)! ||max(0, η −

X)||k−1
k−1 (Prop. 1 (Ogryczak and Ruszczyński, 2001)), we

can empirically compare F k
X(η) and F k

Y (η) for a given
η. To evaluate how faithful a solution satisfies the k-th
order stochastic dominance constraint for η ∈ [a, b], we
introduce constraint violation index, CVI@k as
Eη∼U(a,b)

[
I
{
E
[
(η −X)k−1

+

]
> E

[
(η − Y )k−1

+

]}]
to measure the degree of constraint violation within [a, b].

For all methods we run for at most 1 hour with CPUs and
compare their final solutions. light-SD can be further accel-
erated with P100 GPUs. For each configuration we run with
5 random seeds and report the corresponding mean and stan-
dard deviations of the evaluation metrics. Full experimental
results are included in Appendix C.

5.1 Portfolio Optimization

We consider the portfolio optimization problem as in Eq. (6)
with two experiment setups.
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Figure 5: Convergence of light-SD w.r.t CVI and transportation cost under different SD constraints.

Table 2: Obj-ratio and CVI compared to optimal solution.

light-SD 2nd-order LP
Constraints obj-ratio CVI obj-ratio CVI

1st Order 0.19% 5.37% 3.36% 26.27%
2nd Order 0.00 0.00 0.00 0.00

Table 3: light-SD running on CPUs or GPUs for 1 hour.
CVI@2 Cost

GPU CPU GPU CPU
Small Network 0.04% 0.05% 31.64 31.64
Mid Network 0.00% 0.00% 43.17 43.31

Large Network 0.05% 0.08% 52.35 60.53

Small-Scale Experiment: We first verify the correctness of
light-SD using a small-scale portfolio optimization problem
identical to the one used in (Dentcheva and Ruszczyński,
2003). In this setup, eight assets including NASDAQ, S&P
500, U.S. long-term bonds, etc, are considered to form a
portfolio whose performance is measured in terms of yearly
returns. The distributions of the yearly returns are estimated
using the historical data of these eight assets over 22 years
(Table 8.1 in (Dentcheva and Ruszczyński, 2003)).

The reference policy is an equally weighted portfolio with
an expected return of 10.6%. In this simple setting we only
have 22 observations in total, so both the baseline solvers are
able to achieve the optimal solution under the 2nd and 1st
SD constraints, respectively. So we primarily evaluate the
quality of light-SD and compare with 2nd-order LP relax-
ation for the 1st-order MIP constraints. Specifically under
the 1st and 2nd order constraints, the optimal policy would
yield 10.65% and 11.00% expected returns, respectively.
We can see in Table 2 that light-SD achieves a better error
ratio than the 2nd-order LP approximation for the 1st-order
constraints, while being almost perfect in solving with the
2nd-order constraints.

Large-Scale Experiment: For the large-scale experiment,
we sample different sets of stocks listed on NASDAQ and
consider their daily returns from Jan 1, 2015 to May 1, 2022
for assessment. Concretely, we evaluate portfolios consist-
ing of {20, 50, 100} stocks. For each portfolio size setting,
we first fit a density model p(ξ) using kernel density estima-
tion, which serves as the distribution for random variable

ξ. We train all the methods using samples from p(ξ), and
evaluate against the actual daily returns.

Since the baseline methods only work for finite sam-
ples from p(ξ), we vary the number of samples within
{32, 64, 128, 256, 512} and evaluate the solution against the
actual daily returns from Jan 1, 2015. For the constrained
optimization, we report the trade-off between objective op-
timality and constraint satisfaction in Figure 3. From the
top row we can see that light-SD achieves almost zero CVI
for most random seeds, and relatively high portfolio returns.
For some rare cases, the baseline methods yield higher re-
turns but also a much higher CVI, due to the insufficiency
of approximating constraints with a finite sample. The com-
putational complexity of the traditional baseline methods
generally limits their applicability to optimizing portfolios
with more granular returns.

To provide a more intuitive understanding of how good the
portfolio obtained by light-SD compared to the reference
policy, we further report standard deviation, sharp ratio and
largest drawback in Table 4. Overall it indeed improves the
return while reduces the risks in terms of the variance and
worst case performance. Please refer to Appendix C for
more details about the problem settings and the full results.

5.2 Stochastic Optimal Transport

We consider the optimal transport problem as defined in
Eq. (7), with three different scales of network structures.
In the experiment, demands and supplies are synthetically
generated. To make the problem more realistic, we assume
p(ξ) is a multi-modal distribution where each mode corre-
sponds to a multivariate Gaussian. The mean configuration
of each mode is sampled from a Poisson distribution with
mean equals to 10.0 for each region and covariance a ran-
dom positive-definite matrix. The supply distribution is
configured similarly, but with a larger expected supply that
can cover the expected total demand.

The general experimental setting is similar to portfolio opti-
mization, with one subtle but major difference – here we are
seeking a transport plan where the total demand attributed
to each warehouse is dominated by the supply at that ware-
house. The change of the dominance direction makes little
difference for light-SD, but causes major problems for the
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baseline approaches. For example, the constraints of cSSD2
become quadratic instead of linear, thus making cSSD2
nontrivial to solve. We report the trade-offs between trans-
portation cost and CVI in Figure 3 on large networks with
100 regions/nodes. In almost all cases it appears that light-
SD achieves a clear win over the baselines. The baselines
either struggle with finding feasible solutions or suffer from
high transportation costs. Our hypothesis is that the mul-
timodality of p(ξ) makes the required number of samples
grows significantly relative to the single mode case, making
the baselines very difficult to scale up.

5.3 Efficiency

CPU or GPU: The above results of light-SD are obtained
using a P100 GPU. As the LP/MIP baselines cannot leverage
the advantages of GPUs, we here include extra results of
running light-SD on the same CPU-only machines.

light-SD is able to finish the solving for each of the instances
of each portfolio optimization settings in 30 mins. For
stochastic OT the computation is more intense, and we
report the quality comparison between CPU/GPU based
light-SD in Table 3. Overall running light-SD would take
a bit longer and thus obtain slightly worse results than on
GPU. But the results are still significantly better than all
other baselines.

Baseline sample efficiency: We plot the CVI of the baseline
methods under different sample sizes (from 32 up to 512) in
Figure 4. A maximum of 512 samples is selected as limits
modern solvers to take less than 1 hour. light-SD is also
plotted as a line in Figure 4 as a comparison, since it is
not affected by finite samples. For portfolio optimization,
more samples generally lead to better CVI satisfaction in
the baseline methods. For the stochastic OT problem, this
observation does not hold for growing sample size, due to
the difficulty of the multi-modal distribution estimation.

Convergence of light-SD: We visualize the convergence
of CVI and the objective value with light-SD in Figure 5.
For both problems we can see that light-SD converges in
around 104 steps with a batch size of 512. Moreover, the
stochastic OT problem takes more steps in finding a feasible
solution compared to the portfolio optimization problem.
This in turn justifies that with finite samples, it is hard for
the baseline approaches to find a near optimal solution.

6 CONCLUSION

We introduce the stochastic dominance concept to the ML
community as a principled way to handle uncertainty com-
parisons. On the other hand, we exploit ML techniques to
provide an efficient new way to handle the constraints, solv-
ing a long-standing OR problem. Specifically, by exploiting
stochastic approximation and special dual parametriztion,
we bypass the difficulties in the Lagrangian of optimiza-

tion with stochastic dominance constraint, and achieve a
simple yet efficient algorithm. The proposed light-SD is
empirically scalable and theoretically guaranteed.
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timization with stochastic dominance constraints. Journal
of Banking & Finance, 30(2):433–451, 2006.

Yu Marco Nie, Xing Wu, and Tito Homem-de Mello. Op-
timal path problems with second-order stochastic domi-
nance constraints. Networks and Spatial Economics, 12
(4):561–587, 2012.

Darinka Dentcheva and Andrzej Ruszczyński. Stochastic dy-
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Appendix

A Existing Stochastic Dominance Reformulations

We review the existing representative reformulations of stochastic dominance from distribution function, utility function
and Strassen theorem, respectively. We mainly focus on first-/second-order stochastic dominance constraints with discrete
random variables as the original papers specified.

Denote g (z, ξ) = W , and the support for W and Y is {g(z, ξi) = wi}Mi=1 and {yk}Kk=1. Without loss of generality, we
assume {yk}Kk=1 are ordered y1 ⩽ y2 ⩽ . . . ⩽ yK . We denote the distributions of W and Y are described as

P (W = wi) = pi, and P (Y = yk) = qk.

Distribution function reformulation: Based on the stochastic dominance condition definition through 2nd distribution
functions, Dentcheva and Ruszczyński (2004a) reformulates

W ⪰2 Y ⇐⇒ ∃s ∈ RMK
+ , s.t.,

{∑M
i=1 pisik ⩽

∑K
j=1 qj (yk − yj)+ , k = 1, . . . ,K

sik + wi ⩾ yk, i = 1, . . . ,M ; k = 1, . . . ,K

}
. (22)

Similarly, Noyan et al. (2006) reformulates first order stochastic dominance as

W ⪰1 Y ⇐⇒ ∃β ∈ {0, 1}MK
, s.t.,

{ ∑M
i=1 piβik ⩽

∑k−1
j=1 qj , k = 1, . . . ,K

wi + Cβik ⩾ yk, i = 1, . . . ,M ; k = 1, . . . ,K

}
, (23)

where C is a sufficient large scalar.

Utility function reformulation: In Armbruster and Delage (2015), the property that the nondecreasing and convex function
for discrete variables are piece-wise linear functions has been exploited, then, the second order stochastic dominance can be
reformulated as

W ⪰2 Y ⇐⇒ ∀(v, u) ∈ RM , (α, β) ∈ RK , s.t.,



∑
i pi(viwi + ui) ⩾

∑
k qkαk

ykvi + ui ⩾ αj ,∀i = 1, . . . ,M, k = 1, . . . ,K
(αk+1 − αk) ⩾ βk+1(yk+1 − yk),

(αk+1 − αk) ⩽ βk(yk+1 − yk),∀k = 1, . . . ,K
(v, β) ⩾ 0

.

 (24)

We emphasize that this utility function reformulation of stochastic dominance is highly related to the proposed method.
However, the major difference is that we introduce neural network to parametrize the dual function space, which enables the
efficient stochastic gradient calculation, while the reformulation (24) is nonparametric, relying on all the samples in the
dataset.

Strassen theorem reformulation: Luedtke (2008) exploits the Strassen theorem, which leads to several equivalent
reformulations of first and second stochastic dominance. We list the one representative for each condition below, respectively,

W ⪰2 Y ⇐⇒ ∃π ∈ RMK
+ , s.t.,

{∑K
k=1 yjπik ⩽ wi,

∑K
k=1 πik = 1, i = 1, . . . ,M∑M

i=1 piπik = qk, k = 1, . . . ,K

}
(25)

W ⪰1 Y ⇐⇒ ∃π ∈ {0, 1}MK
, s.t.,

{∑K
k=1 yjπik ⩽ wi,

∑K
k=1 πik = 1, i = 1, . . . ,M∑M

i=1 pi
∑k−1

j=1 πik =
∑k−1

j=1 qj , k = 2, . . . ,K

}
(26)
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B Details of Proofs

In this section, for completeness, we provide the proofs for Theorem 1 from (Dentcheva and Ruszczyński, 2004b) and
Lagrangian for high-order, from which Theorem 2 is a corollary from (Dentcheva and Ruszczyński, 2003). The major proofs
of these two theorems are largely the same, only the conditions and assumptions are different.

In fact, the neural parametrization we proposed can be inspired by the proofs of these theorems.

B.1 Proof for Theorem 1

We first specify the assumptions with the full theorem.
Assumption 1. There is an optimal solution z∗ to (5).
Assumption 2. There exists z0 ∈ Ω, such that

max
η∈[a,b]

{
F (g(z, ξ); η) +

∫ η

a

Dzϕz(ξ)dξ − F (Y ; η)

}
< 0.

Assumption 3. The reference variable Y has continuous CDF.
Theorem 4 (Theorem 1 (Dentcheva and Ruszczyński, 2004b)). Denote the probability density of g(z, ξ) as ϕz(·), which is
continuously differentiable w.r.t. z and its derivative Dzϕz (·) is bounded, under Assumption 1 2, and 3 with k = 1, we can
represent the Lagrangian of (5) as (10) where u (·) ∈ U1, where U1 is the set of nondecreasing and left continuous functions
over [a, b].

Proof. Under the Assumptions, the KKT optimality condition is that there exists a non-negative µ∗ ∈ rca([a, b]) and
µ∗ ̸= 0, such that

⟨DzΛ(z
∗, µ∗), x− z⟩ = 0, ∀x ∈ Ω,

∫ b

a

(F (g(z, ξ); η)− F (Y ; η))dµ(η) = 0.

We extend the measure µ to the whole real line by setting 0 outside of [a, b], then, we have∫ b

a

F (Y ; η)dµ(η) =

∫ b

−∞
P (Y ⩽ η)dµ(η) =

∫ b

−∞

∫ η

−∞
dPY (y)dµ(η)

=

∫ b

−∞

∫ b

y

dµ(η)dPY (y) =

∫ b

−∞
µ([y, b])dPY (y) = E [µ([y, b])] ,

where the second line of the equation comes from Fubini’s theorem.

Define u∗(·) = −µ∗([·, b]), due to the non-negativity of µ∗, the u∗ (·) in U1. Therefore, we conclude that Λ(z, µ) =

f(z)−
∫ b

a
[F1(g(z, ξ); η)− F1 (Y ; η)] dµ(η) can be reformulated as L (z, u) in (10) without loss of optimality.

Remark (Surrogate with the augmented probability measure dual for U1): For each positive µ (η) ∈ rca([a, b]), we
can define the normalized µ̃(η) = µ(η)∫

µ(η)dη
∈ ∆([a, b]), which is a probability distribution. We augment the probability

measure space with zero measure, denoted as ∆̃ ([a, b]) := ∆([a, b])∪0. It is straightforward to check that if the non-negative

µ∗ (η) satisfies the KKT conditions, we can find µ̃∗ (η) =

{
µ∗(η)∫
µ∗(η)dη

, µ∗ (η) ̸= 0

0, µ∗ (η) = 0
such that µ̃∗ (η) ∈ ∆̃ ([a, b]) also

satisfies KKT conditions. Specifically, we have the surrogate objective as

min
µ̃(η)∈∆([a,b])∪0

Λ(z, µ̃) = f(z)−λ
∫ b

a

(Fk(g(z, ξ); η)− Fk (Y ; η)) dµ(η) =

{
f(z), if F1(g(z, ξ); η) ⩽ F1 (Y ; η) , ∀η
f(z)− λC(z), o.t.

,

where C(z) > 0 is a function of µ̃∗
z(η), indicating the level of violation of stochastic dominance constraint of z, and λ > 0

is the weight. If ∥f∥∞ ⩽ C, we set λ ⩾ 2C
ϵ , we always have

f(z)− λC(z) ⩽ f(z∗), ∀z s.t. C(z) > ϵ,

which means we relax the optimization by increasing the feasible set of stochastic dominance constraints with ϵ.

We will consider this relaxed problem instead the original one as a surrogate. The suboptimality gap of the relaxed problem
solution is controlled by λ. Without loss of generality, we set λ = 1 for simplicity in our discussion. Practically, the λ can
be tuned.
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B.2 Proof for Theorem 2

We first specify the Lagrangian for high-order dominance constraint.

Theorem 5 (Theorem 7.1 Dentcheva and Ruszczyński (2003)). Under the assumption that ∃z̃ ∈ Ω such that
infη∈[a,b] (Fk (Y ; η)− Fk (g(z̃, ξ); η)) > 0, for k ⩾ 2, we can represent the Lagrangian of (5) as (10) with u(·) ∈ Uk,
where

Uk =
{
u(·) : [a, b]→ R

∣∣u(k−1)(t) = (−1)kϕ(t)
}
,

where u(i) denotes the ith derivative and ϕ (·) is a non-negative, nonincreasing, left-continuous, and bounded function.

Proof. We introduce the Lagrangian for the optimization (5) with infinite constraints as

Λ(z, µ) = f(z)−
∫ b

a

(Fk(g(z, ξ); η)− Fk (Y ; η)) dµ(η),

where µ ∈ rca([a, b]). Under the assumptions, by the KKT condition in abstract space (Bonnans and Shapiro, 2013,
Theorem 3.4), there exists a non-negative measure µ∗ ∈ rca([a, b]) such that

Λ(z∗, µ∗) = max
z∈Ω

Λ(z, µ∗),

∫ b

a

Fk (g(z, ξ); η)− Fk (Y ; η) dµ∗ (η) = 0.

We extend the measure µ to the whole real line by setting 0 outside of [a, b], then, we have∫ b

a

Fk(Y ; η)dµ(η) =

∫ b

−∞

∫ η

−∞
Fk−1(Y ; t)dtdµ(η) (27)

=

∫ b

−∞

∫ b

t

dµ(η)Fk−1 (Y ; t) dt =

∫ b

−∞
µ([t, b])Fk−1 (Y ; t) dt. (28)

Denote u(·) ∈ Uk such that u(k−1)(t) = (−1)kµ([t, b]), u(i)(b) = 0, for i = 1, . . . , k − 2, then, we can rewrite∫ b

a

Fk(Y ; η)dµ(η) = (−1)k
∫ b

−∞
Fk−1(Y ; t)du(k−1)(t).

We further apply integration by parts k − 1 times,

(−1)k
∫ b

−∞
Fk−1(Y ; t)du(k−1)(t) = −

∫ b

−∞
u(t)dF (Y ; t) = −E [u(Y )] + C,

Therefore, we conclude the Lagrangian can be reformulated as L(z, u) in (10) with uk ∈ Uk without loss of optimality.

Proof of Theorem 2. Theorem 2 can be directly obtained from Theorem 5 with k = 2.

Remark (Surrogate with the augmented probability measure dual for U2): Similarly, we also define the normalized
µ̃(η) ∈ ∆([a, b]), which is a probability distribution, for each positive µ ∈ rca([a, b]), and keep µ̃ (η) = 0 if µ (η) = 0 and
the KKT conditions still preserved for the corresponding µ̃ ∈ ∆̃ ([a, b]). We consider

min
µ̃(η)∈∆([a,b])∪0

Λ(z, µ̃) =

{
f(z), if F2(g(z, ξ); η) ⩽ F2 (Y ; η) , ∀η
f(z)− C(z), o.t.

,

where C(z) > 0 is a function of µ̃∗
z(η), indicating the level of violation of stochastic dominance constraint of z, and λ > 0

is the weight. Similar to the relaxation of the first-order stochastic dominance constraint, we also obtain an approximate
solution whose suboptimality gap is controlled by λ. Without loss of generality, we set λ = 1 for simplicity in our discussion.
Practically, the λ can be tuned.

Remark (High-order dual parametrization): Since µ∗ ⩾ 0, the (k − 1)st derivative of u is monotone. We can exploit
the proposed monotonic neural network in U1 for modeling uk−1, therefore, we have

u(x) =

∫ x

a

. . .

∫ xk−2

a

(∫ xk−1

a

ϕu(t)dt+ β

)
dxk−2 . . . dx1.

As we discussed in Section 3.2.3, one can exploit relu or softplus to obtain a non-negative neural network for ϕ(t)
parametrization. We emphasize that the obtain non-negative neural network is bounded for learnability, but implicitly
introduces approximation error comparing to the unbounded dual space.
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Remark (Trade-off in sample complexity and approximation error): Based on our discussion for the parametrization of
U1, U2 and Uk, the scale of the dual function is either controlled by λ or the neural network parametrization, which balances
the tradeoff between learnability and approximation error. Specifically, with bounded dual function parametrization, we can
achieve efficient sample complexity for some approximation solution; while with unbounded dual function parametrization,
the approximation error becomes zero, but the problem becomes unlearnable, i.e., the sample complexity is infinite. We can
always tune λ in practice to achieve the delicate balance.

B.3 Proof for Theorem 3

Proof. We prove the claims sequentially.

Concavity. The concavity of L(z, u) w.r.t. z is straightforward by applying the composition rule. Specifically, u ∈ U2 is
always nondecreasing and concave, therefore, u(g(z, ξ)) is concave w.r.t. z. Obviously, L(z, u) = f(z) + E [u(g(z, ξ))]−
E [u(y)] is concave.

Global Convergence. Recall the notations,
L (z, u) =f (z) + Eξ [u (g(z, ξ))]− Ey [u (y)] ,

L̂ (z, u) =f(z) +
1

N

N∑
i=1

(u (g(z, ξi)))− u (yi)) ,

for coherent with literature, we define the
ℓ (z, u) = −L (z, u) , and ℓ̂ (z, u) = −L̂ (z, u) .

Then, the problem is equivalently considering
min
z

max
u∈U2

ℓ (z, u) , and min
z

max
u∈U2

ℓ̂ (z, u) .

We denote
ℓ(z) = max

u∈U2

ℓ(z, u), with z∗ = argmin
z

ℓ(z), u∗ = argmax
u∈U2

ℓ (z∗, u)

and
ℓ̂ (z) = max

u∈U2

ℓ̂ (z, u) with ûz = argmax
u∈U2

ℓ̂ (z, u) .

We also denote At =
1
2 ∥zt − z∗∥22, and at = E [At], then we have the recursion as

At+1 =
1

2
∥zt+1 − z∗∥22 =

1

2

∥∥∥zt − γt∇z ℓ̂ (zt)− z∗
∥∥∥2
2

= At +
1

2
γ2
t

∥∥∥∇z ℓ̂ (zt)
∥∥∥2
2
− γt∇z ℓ̂ (zt)

⊤
(zt − z∗) . (29)

By convexity of ℓ̂ (z), we have

−∇z ℓ̂ (zt)
⊤
(zt − z∗) ⩽ ℓ̂ (zt)− ℓ̂ (z∗) . (30)

Combining with (29), this implies that

E [ℓ (zt)− ℓ (z∗)] ⩽
at − at+1

γt
+

γt
2
E
[∥∥∥∇z ℓ̂ (zt)

∥∥∥2
2

]
+ E

[
ℓ̂ (zt)− ℓ (zt)

]
+ E

[
ℓ (z∗)− ℓ̂ (z∗)

]
. (31)

Note that for any z, E
[
ℓ (z∗)− ℓ̂ (z∗)

]
⩽ ϵstat(z) := E

[
supu∈U2

∣∣∣ℓ̂ (z, u)− ℓ (z, u)
∣∣∣]. Let ϵstat := supz ϵstat(z).

By telescoping the sum and invoking convexity of ℓ(z), we further have

E [ℓ (z̄T )− ℓ (z∗)] ⩽
1

T

T∑
i=1

E [ℓ (zt)− ℓ (z∗)] (32)

⩽
1

T

T∑
i=1

[
γt
2
E
[∥∥∥∇z ℓ̂ (zt)

∥∥∥2
2

]
+ 2ϵstat

]
+

1

T

T∑
i=1

at

(
1

γt
− 1

γt+1

)
+

a1
Tγ1

. (33)

where z̄T = 1
T

∑T
i=1 zt. Setting stepsize γt = O

(
1√
T

)
, and under the assumption that

∥∥∥∇z ℓ̂ (z)
∥∥∥
2
⩽ Cf +Cg , we achieve
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the convergence rate,

E [ℓ (z̄T )− ℓ (z∗)] ⩽
1

T

T∑
i=1

(2ϵstat) +
a1√
T

+
Cf + Cg√

2T
. (34)

The statistical error can be bound in standard way. We first calculate the Rademacher complexity of U2, which is formed as
the convex combination of ReLU functions, i.e.,

U2 =
{
u(x) = Eµ(η)

[
(η − x)+

]
, µ (η) ∈ ∆([a, b])

}
.

The empirical Rademacher complexity of U2 with N samples, denoted as RN (U2), is equivalent to the that of ReLU (Mohri
et al., 2018, Lemma 7.4), i.e.,

RN (U2) =
4 (|a|+ |b|)√

N
,

which immediately implies that with probability 1− δ (Mohri et al., 2018, Theorem 3.3),

ϵstat = O

(
(|a|+ |b|) +

√
log (1/δ)√

N

)
.

Combining the ϵstat with (34), we conclude the proof that with probability 1− δ, we have

E [ℓ (z̄T )− ℓ (z∗)] = O

(
(|a|+ |b|) +

√
log (1/δ)√

N
+

1√
T

)
. (35)

C More experimental details

C.1 Large scale portfolio optimization setup

We collect the daily stock prices of over 1,500 stocks listed on NASDAQ during Jan 1, 2015 - May 1, 2022. Then we
calculate the daily return (i.e., the relative gain/loss of each day compared to the day before) of each stock, and compute the
mean/standard deviations of the returns per stock. We select these stocks in a way that no stock would dominate the other
(i.e., no stock would have higher mean return and lower standard deviation than other stocks), so as to avoid trivial solutions.

In reality we would only have a estimated distribution of future returns, so to evaluate the quality of different policies using
historical replay, we first fit a generative distribution over the returns of selected stocks, then use the actual daily return as
the evaluation set to report the mean return and violation index (i.e., CVI) of stochastic dominance. For simplicity we use
KDE with factorized Gaussian distribution assumption, where each dimension has a standard deviation of 0.01 (given that
the mean return is around 0.1%).

C.2 Full experimental results

In the main paper we present the experimental results for the largest problem configurations. Here for the completeness, we
include the results of both 1st and 2nd SD constrained optimizations for all the problem scales.

Objective / CVI trade-offs Figure 6 and Figure 7 shows scatter plot of objective / CVI trade-offs under 1st/2nd order
stochastic dominance constraints, respectively. We can see light-SD achieved almost perfect CVI, while also retaining low
transportation cost (which is slightly higher than the lowerbound obtained by greedy-based approaches, where the greedy
one totally ignores the SD constraints).

Sample complexity for baseline methods Figure 8 and Figure 9 shows that the LP/MIP based approaches are not sample
efficient enough. Compared to the second-order cases, first-order stochastic dominance is even harder (especially given that
the LP based approach are just solving relaxation of the first-order SD constraints).

Convergence behaviors Figure 10 and Figure 11 shows the convergence of light-SD with first/second order SD constraints.

Evaluation on more metrics for the Portfolio Optimization setting



Hanjun Dai, Yuan Xue, Niao He, Bethany Wang, Na Li, Dale Schuurmans, Bo Dai

Po
rt

fo
lio

O
pt

im
iz

at
io

n

0.00 0.05 0.10 0.15 0.20
Portfolio Return 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

CV
I@

1
# stocks=20

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Portfolio Return 

0.0
0.1
0.2
0.3
0.4
0.5
0.6

CV
I@

1

# stocks=50

SDLP cSSD1 cSSD2 FDMIP cFSD light-SD

0.0 0.2 0.4 0.6 0.8
Portfolio Return 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

CV
I@

1

# stocks=100
St

oc
ha

st
ic

O
T

20 40 60 80 100
Transportation Cost 

0.0
0.1
0.2
0.3
0.4
0.5
0.6

CV
I@

1

Small Network

50 100 150 200 250
Transportation Cost 

0.0

0.1

0.2

0.3

0.4
CV

I@
1

Mid Network

SDLP cSSD1 FDMIP cFSD Greedy light-SD

100 200 300 400 500
Transportation Cost 

0.0

0.1

0.2

0.3

0.4

0.5

CV
I@

1

Large Network

Figure 6: Each dot in the above figure represents the objective and CVI@1 (for first-order stochastic dominance constraints)
of corresponding solution obtained by different methods over multiple random seeds. Generally light-SD achieves better
objective value (i.e., higher return or lower cost) and lower CVI compared to alternative methods.
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Figure 7: Each dot in the above figure represents the objective and CVI@2 of corresponding solution obtained by different
methods over multiple random seeds. Generally light-SD achieves better objective value (i.e., higher return or lower cost)
and lower CVI compared to alternative methods.
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Figure 8: Solution quality w.r.t different number of samples for baseline methods on optimization with first order stochastic
dominance constraints.
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Figure 9: Solution quality w.r.t different number of samples for baseline methods on optimization with second order
stochastic dominance constraints.
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Figure 10: Convergence of light-SD w.r.t CVI@1 and objectives under different problem settings.
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Figure 11: Convergence of light-SD w.r.t CVI@2 and objectives under different problem settings.

More evaluation metrics for portfolio optimization In Table 4 we present more metrics in terms of the performance of
portfolio optimization. As the goal of optimization under stochastic dominance constraints is to minimize the risks, we
provide more intuitive metrics in Table 4 to demonstrate the effectiveness of light-SD. We can see that overall it reduces the
variance of the return, and improve the worst case performance. These are indicators of policies with lower risks. Both the
expected returns and Sharpe ratios are also improved.

Table 4: Comparing light-SD against reference policy for portfolio optimization, with more evaluation metrics.

Standard Deviation SharpeRatio Largest Drawback
Reference light-SD Reference light-SD Reference light-SD

10-stocks 1.67 1.61 1.25 1.29 -9.98 -9.70
20-stocks 1.38 1.34 1.23 1.51 -9.74 -9.01
50-stocks 1.23 1.16 1.38 1.90 -8.94 -7.94

100-stocks 1.12 1.16 1.48 2.34 -8.89 -7.49
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