
MMD-B-Fair: Learning Fair Representations with Statistical Testing

Namrata Deka Danica J. Sutherland
dnamrata@cs.ubc.ca

University of British Columbia
dsuth@cs.ubc.ca

University of British Columbia & Amii

Abstract

We introduce a method, MMD-B-Fair, to learn
fair representations of data via kernel two-sample
testing. We find neural features of our data
where a maximum mean discrepancy (MMD)
test cannot distinguish between different values
of sensitive attributes, while preserving informa-
tion about the target. Minimizing the power of
an MMD test is more difficult than maximizing
it (as done in previous work), because the test
threshold’s complex behavior cannot be simply
ignored. Our method exploits the simple asymp-
totics of block testing schemes to efficiently find
fair representations without requiring complex
adversarial optimization or generative modelling
schemes widely used by existing work on fair
representation learning. We evaluate our ap-
proach on various datasets, showing its ability to
“hide” information about sensitive attributes, and
its effectiveness in downstream transfer tasks.

1 INTRODUCTION

Machine learning systems are increasingly being used for
making critical and sensitive real-life decisions in domains
like finance, criminal reform, hiring, health, etc. (Flores et
al. 2016; Skeem and Lowenkamp 2016; Bogen and Rieke
2018; Chouldechova et al. 2018; Lebovits 2018; Ledford
2019; B. Wilson et al. 2019) The importance of designing
non-discriminatory learning algorithms that can mitigate
various biases regarding private and protected features like
gender or race is crucial to building trustworthy AI systems.
Often data collected from the real world are plagued with
issues like under-representation of minority groups, corre-
lated sensitive and target features, or drastic distributional
shifts between training and testing phases (Gianfrancesco
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et al. 2018; Jo and Gebru 2020). All of these can lead to bi-
ased models that can make undesirable mistakes in the real
world, and therefore we need to address this issue and de-
velop systems that are robust to biases in data distributions.

Fair representation learning is one approach towards this
goal, which tries to find data representations that satisfy
certain fairness objectives (Zemel et al. 2013; Edwards
and Storkey 2016; Louizos et al. 2016; Madras et al. 2018;
Zhang et al. 2018; Lahoti et al. 2020). Most deep learning-
based fair representation learning methods take one of two
broad approaches: try to disentangle latent factors with
a generative variational model then ultimately discard the
sensitive factor from the representation, or mitigate bias
via adversarial techniques where discriminator(s) attempt
to predict the sensitive group from a learnt encoded repre-
sentation. In this work, we explore a different route, using
deep kernels and statistical two-sample testing.

Statistical two-sample tests are used to determine whether
two sets of data samples come from the same underlying
distribution. Our method is centered around the idea that if
a machine learning system is fair with respect to certain
protected attributes, then that system’s representation of
one sensitive group should not be statistically distinguish-
able from the other. Our method learns fair representations
by optimizing a neural network to minimize the test power
– the ability of a two-sample test to correctly distinguish
two sets of samples – for samples differing by the sensi-
tive class label, while still finding a useful representation
by maximizing the test power and/or classification accu-
racy for distinguishing “target” labels.

This framework avoids learning a generative model of the
data or explicit adversarial training, by instead relying on
tests based on the maximum mean discrepancy (MMD)
(Gretton et al. 2012) to compare different samples of rep-
resentations. We use the MMD in a novel way, combin-
ing existing work on power optimization (Sutherland et al.
2017; Liu et al. 2020) with block testing (Bounliphone et
al. 2016) to give an effective criterion for driving down the
test power of sensitive tests – a problem not handled well by
previous work which focused only on maximizing power.
Our method is supported by theoretical results as well as
good empirical performance.
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We first give a self-contained introduction to MMD-based
testing in Section 2, establishing all the tools we will need
for our method for learning fair kernels and representations
(Section 3), and emphasizing aspects important to our ap-
proach.

2 PRELIMINARIES

Based on i.i.d. samples SP and SQ from distributions P
and Q, respectively, the two-sample testing problem asks
whether SP, SQ come from the same distribution: does
P = Q? We use the null hypothesis testing framework,
i.e. ask whether we can confidently say that the observed
SP and SQ would be unlikely to be so different if P = Q.

Traditional methods for two-sample tests, including t-tests
and Kolmogorov-Smirnov tests, do not scale to complex
high-dimensional distributions. Another modern approach
is based on classification accuracy; we will describe our
approach’s relationship to that scheme shortly.

2.1 MAXIMUM MEAN DISCREPANCY (MMD)

The MMD (Gretton et al. 2012) is a measure of the distance
between distributions. For distributions P and Q over a
domain X (the set of conceivable data points), the MMD
is defined in terms of a kernel k : X × X → R giving the
“similarity” of individual data points. This kernel should
be positive semi-definite, the simplest case being the linear
kernel k(x, y) = x⊤y, and the paradigmatic example being
a Gaussian kernel k(x, y) = exp(− 1

2σ2 ∥x− y∥2).
If X,X ′ ∼ P and Y, Y ′ ∼ Q, then

MMD(P,Q; k) =
√
E[k(X,X ′) + k(Y, Y ′)− 2k(X,Y )].

With a characteristic kernel k, such as the Gaussian, we
have that MMD(P,Q; k) = 0 if and only if P = Q. Thus,
we can run a two-sample test by estimating the MMD, and
rejecting the null hypothesis that P = Q if the estimated
MMD is too large to have occurred by chance.

U -STATISTIC ESTIMATOR Our “default” estimator
will be the U -statistic estimator, which is unbiased for
MMD2, and has almost minimal variance among unbiased
estimators:1

M̂MD
2

U(SP, SQ; k) =
1

m(m− 1)

∑

i ̸=j

Hij (1)

Hij = k(Xi, Xj) + k(Yi, Yj)− k(Xi, Yj)− k(Yi, Xj),

where SP = {X1, . . . , Xm}, SQ = {Y1, . . . , Ym} are i.i.d.
samples from P and Q respectively.

1The MVUE would simply also include the k(Xi, Yi) terms;
the difference in practice is usually trivial, but this form is slightly
simpler and allows exact expressions for the variance.

The most common scheme for testing based on (1) is
to choose some kernel k a priori, then reject the null
hypothesis H0 that P = Q if the scaled estimator

m M̂MD
2

U(SP, SQ; k) is larger than a threshold cα. cα

should have PrH0

(
m M̂MD

2

U(SP, SQ; k) > cα

)
≤ α, i.e.

we have α probability of incorrectly rejecting H0 when
it is true. The estimate is scaled by m because, as m

grows, this choice makes m M̂MD
2

U(SP, SQ; k) converge
in distribution to a fixed distribution: an infinite mixture
of χ2 variables, with weights depending on P = Q and k,
but independent of m. We can then estimate the thresh-
old cα, the (1 − α)th quantile of that distribution, with a
scheme known as permutation testing, generally the pre-
ferred method in this case: randomly divide SP ∪ SQ into

two, compute m M̂MD
2

U, and repeat, taking the empirical
quantile of those samples (Sutherland et al. 2017).

BLOCK ESTIMATOR An alternative approach, called
B-testing by Zaremba et al. (2013), randomly divides the
available samples into b blocks each containing B samples.
This is more computationally efficient in its estimator and
also allows avoiding permutation testing, as we will see

shortly. We compute M̂MD
2

U on each block separately;
each of those terms will be an independent unbiased es-
timator of the squared MMD, so we then average them,

obtaining the estimator M̂MD
2

B.

Under H0, the estimate in each block converges as B → ∞
to the distribution- and kernel-dependent infinite mixture
of χ2 variables. Whether under H0 or H1, however, the
average of b of these independent estimates will converge
to a normal distribution by the central limit theorem:

√
b(M̂MD

2

B −MMD2)
d−→ N (0, VB), (2)

with VB the variance of M̂MD
2

U on samples of size B
(depending on P, Q, and k). A block test, then, can

take as its test statistic
√
b M̂MD

2

B and use a threshold of√
VB Φ−1(1− α), with Φ the CDF of a standard normal.

To use this method, it remains to estimate
√
VB . Zaremba

et al. (2013) simply took the sample standard deviation
of the b batches, justified since the sample variance con-
verges almost surely to VB . We will employ a different
scheme in our use of the block estimator (to come). Al-
though block tests are more computationally efficient than
U -statistic tests, it turns out they are also proportionally
less powerful (Ramdas et al. 2015); our primary tests will
be based on U -statistics.

2.2 LEARNING DEEP KERNELS

MMD tests work well when the choice of kernel k is ap-
propriate; for complicated distributions, however, simple
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default choices may take unreasonable numbers of samples
to obtain significant power. To try for a powerful test in
complex situations with realistic numbers of samples, we
follow Liu et al. (2020) in seeking the best kernel from a
parameterized family of deep kernels. Specifically, we take
kω as a Gaussian kernel κ on the output of a featurizer net-
work ϕω , kω = κω(ϕω(x), ϕω(y)). Here, ϕω is a deep
neural network that extracts features from input points x
and y, whose parameters are contained within ω, and κω is
a Gaussian kernel on those features whose lengthscale σϕ is
also contained in ω. These kernels have seen success across
a variety of areas (e.g. A. G. Wilson et al. 2016; C.-L. Li
et al. 2017; Jean et al. 2018; Y. Li et al. 2021).

To be able to reliably distinguish two distributions, we wish
to find the deep kernel with the most powerful test: the one
with the highest probability of correctly rejecting the null
hypothesis when the alternative is true. For a U -statistic
test, this probability is asymptotically

PrH1

(
m M̂MD

2

U > cα

)
→ Φ

(
MMD2 −cα/m√

Vm

)
, (3)

where Φ is the CDF of a standard normal distribution, and
Vm is the variance of the M̂MD

2

U estimator for samples
of size m from P and Q with the kernel k (Sutherland et
al. 2017, Equation 2). The terms on the right-hand side
are fixed, unknown quantities depending on P, Q, and k;
MMD2 and cα do not depend on m. This formula comes
from an asymptotic normality result for the estimator when
MMD(P,Q; k) > 0 (Serfling 1980, Section 5.5).

Sutherland et al. (2017) and Liu et al. (2020) conducted
tests by dividing each of SP and SQ into “training” and
“test” sets, finding a kernel approximately maximizing (3)
on the training sets, and then using that kernel to run a
standard two-sample test on the independent test sets. To
roughly maximize (3), they maximized an estimator of
MMD2 /

√
Vm, the leading term when m grows and the

test is reasonably likely to reject (mMMD2 > cα).

Although this was not done in prior work, it will be impor-
tant for our purposes to emphasize that (3) is the asymptotic
expression for the power of a test using m samples, and so
a given k, P, and Q correspond to a whole curve of asymp-
totic powers depending on m. Inside (3), both MMD2 and
cα are independent of m, while, as we will see, Vm’s depen-
dence on m is exactly known thanks to the well-understood
theory of U -statistics. Thus, we can estimate the power of
an m-sample test using a different number of samples n.
For instance, we could get a rough estimate of the power of
a large-sample test (m = 2, 000) using a small minibatch
of size n = 32.

To roughly maximize (3), Liu et al. (2020) maximized the

estimator M̂MD
2

U /
√
V̂m,λ, where V̂m,λ estimates Vm by

4

mn3

n∑

i=1




n∑

j=1

Hij




2

− 4

mn4




n∑

i=1

n∑

j=1

Hij




2

+
λ

m
, (4)

using Hij from (1). For Liu et al.’s purposes, m is a simple
scalar multiplier on the objective and so need not be speci-
fied, but it will be important for us to keep track of it, as we
will see. They further proved uniform convergence of the

estimator M̂MD
2

U /
√
V̂m,λ to MMD2 /

√
Vm. Sutherland

et al. (2017) used a more complex unbiased estimator for
Vm (see Sutherland and Deka 2019); an unbiased estimator
for Vm will not be unbiased for MMD2 /

√
Vm, however,

and in fact we prove in Appendix A that no unbiased es-
timator of that quantity exists. The biased estimator also
worked better in our experiments.

Sutherland et al. (2017) further mentioned, but did not try,
using the threshold from permutation testing to estimate the
full quantity (3); this is expected to be important for small
m or for tests with poor power (ignoring the cα term means
the overall asymptotic power cannot be less than 0.5). This
estimator, as an empirical quantile, is almost surely differ-
entiable and straightforward to implement in deep learning
libraries. We explore this further in Section 3.

As argued by Liu et al. (2020, Section 4), learning a deep
kernel for an MMD test is strictly more general than classi-
fier two-sample tests (Lopez-Paz and Oquab 2017; I. Kim
et al. 2020), which train a classifier between P and Q on the
training split, then check whether it has nontrivial accuracy
on the test split. The added generality tends to yield better
tests in practice.

3 LEARNING FAIR REPRESENTATIONS

Let Pa and Qa be conditional distributions on a dataset that
only differ by the value of the binary feature a on which
they condition: e.g. Pa is the distribution of data with a =
0, and Qa the distribution with a = 1. Take corresponding
sample sets SPa , SQa . In this section we will outline our
approach for learning either a fair kernel or a fair vector
representation.

We will assume in this paper that the relevant attributes a
have two possible values, but extensions to a small number
of discrete values are straightforward.

3.1 LEARNING A FAIR KERNEL

Our goal is to find a representation invariant with respect to
a binary sensitive attribute s, meaning that it cannot distin-
guish Ps and Qs: the distribution of data points with s = 0
and those with s = 1. To achieve this, we would like to
find a kernel which, when used in a two-sample test to dis-
tinguish Ps and Qs, achieves negligible power.
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If this were our only goal, however, there is a trivial so-
lution: use, say, k(x, y) = 1. Instead, we would like a
kernel that is also useful to distinguish target pairs of dis-
tributions, say ones useful for a downstream task: one that
has high test power between Pt and Qt. (In practice, we
also include a classification loss in our objective, but we
clarify this straightforward addition later.)

One simple extension to the objective function of Liu et
al. (2020) towards this goal would be to minimize an es-
timate of

(
(MMDt)2/

√
V t
m − (MMDs)2/

√
V s
m

)
, where

(MMDa)2 and V a
m are computed for the learned kernel be-

tween Pa and Qa. However, this tends to be unable to ap-
propriately “balance” the two objectives. If the power for
the target test is near 1, but the sensitive-attribute test still
has high power, this objective would still be just as satisfied
by driving up (MMDt)2/

√
V t
m – increasing the asymptotic

power of the target test, but only just barely – as it would
be by reducing (MMDs)2/

√
V s
m).

To put the two attributes on the same scale, then, we should
consider the full asymptotic power (3), and subtract esti-
mators of the two, resulting in the objective:

Φ

(
(MMDt)2 − ctα/m√

V t
m

)
−Φ

(
(MMDs)2 − csα/m√

V s
m

)
. (5)

To do so, we initially used the permutation test estimator of
the threshold cα, as suggested by Sutherland et al. (2017).
This makes the optimization substantially more computa-
tionally expensive; though it can be computed based on the

same kernel matrix as M̂MD
2

U and V̂m, it requires perhaps
a hundred times as many matrix-vector multiplications as

does M̂MD
2

U. We also found that the strong dependence

between ĉα and M̂MD
2

U computed on the same samples
meant that optimization was rarely able to drive the asymp-
totic power for the sensitive attribute test below about 0.5.
Data splitting helped, but halves the effective batch size,
and computational and sample complexity both suffer.

To avoid this problem, we instead optimize the power of a
block test with b blocks of size B. From the central limit
result (2), we have that the power of a block test is, letting
tα = Φ−1(1− α) where Φ is the standard normal CDF,

ρb,B = Pr
H1

(√
b M̂MD

2

B >
√
VBtα

)

= Pr
H1



√
b (M̂MD

2

B −MMD2)√
VB

> tα −
√
bMMD2

√
VB




→ Φ

(√
b
MMD2

√
VB

− tα

)
. (6)

The block test’s simple asymptotic threshold gives us a
simple form, which is cheaper to compute than using the
permutation test threshold in (3), is valid even for small

values of the population power, and only uses the samples
in the form of the ratio MMD2 /

√
VB , which we already

know we can estimate effectively (Liu et al. 2020). We can
thus estimate the asymptotic power with

ρ̂b,B = Φ


√

b
M̂MD

2

U√
V̂B,λ

− tα


 . (7)

ρ̂b,B will converge uniformly to ρb,B over classes of deep
kernels satisfying some technical assumptions as a corol-
lary of Liu et al. (2020); proof in Appendix B.

Using (7), our objective to learn a fair kernel with sensitive
attribute s and target attribute t is

argmin
ω

[
ρ̂sb,B − ρ̂tb,B

]
. (8)

Although we are optimizing a kernel based on the power
ρb,B of a block test, we do not use blocking in our esti-
mator; we just find a more amenable objective based on
the asymptotic power of a hypothetical block test – closely
related to power of the U -statistic test.

3.2 LEARNING FAIR REPRESENTATIONS

So far we have shown how to learn an optimal kernel that
can simultaneously achieve high power for distinguishing
target attributes, and low power for sensitive attributes. If
we wish to learn a feature representation rather than a sin-
gle kernel, however, it is not enough that a particular kernel
cannot distinguish the sensitive attribute; we would ideally
like that no usage of that representation can distinguish be-
tween Ps and Qs, while maintaining that at least one kernel
can distinguish between Pt and Qt. That is, if we separate
into a representation ϕ and a kernel κ on that representa-
tion, we would like to solve

min
ϕ

[
max
κ

ρ̂sb,B −max
κ

ρ̂tb,B

]
(9)

The objective (9) could be optimized with an alternat-
ing minimax optimization scheme for the parameters of
κ, looking something like an MMD-GAN (C.-L. Li et al.
2017; Bińkowski et al. 2018). We find it sufficient in our
experiments to use a much simpler scheme: a grid of Gaus-
sian kernels of varying lengthscales. This finds a fairer ker-
nel than using a single Gaussian, preventing the representa-
tion ϕ from learning to just “hide” information at a very dif-
ferent scale than the single κ examines, while being much
simpler to implement and optimize than in alternating gra-
dient schemes for GAN-like models.

3.3 MARGINAL vs CONDITIONAL POWER

So far in our discussion, the two-sample tests are based on
the marginal distributions Ps = P (X | S = 0) and Qs =
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P (X | S = 1). This setting learns a representation that
optimizes the demographic parity (DP), defined as

DP = 1− |P (T̂ = 1 | S = 0)− P (T̂ = 1 | S = 1)|.

In our approach, this setting has the advantage of not re-
quiring both target and sensitive labels simultaneously for
any data point in the training set: it still works if we have
separate collections of data points labeled for the target and
for the sensitive attribute. Moreover, it works even if we
do not have a high-confidence labeling of the sensitive at-
tribute, but instead have rough estimates collected e.g. via
randomized response methods (Warner 1965). The DP set-
ting, however, struggles when the target and sensitive at-
tributes are strongly correlated, so that the sample pairs
(SPt , SQt) and (SPs , SQs) come from very similar pairs of
distributions; this makes the objective of minimizing the
test power over one pair while maximizing the test power
over the other very difficult.

To solve this, we can instead condition the sensitive pair
over the target distributions, and sample points from Ps|t =
P (X | S = 0, T = t) and Qs|t = P (X | S = 1, T = t)
for all values of T . This is now equivalent to maximizing
for equalized odds with respect to all distinct target classes
t, defined as

EO = 1−
∣∣P (T̂ = t | T = t, S = 0)

− P (T̂ = t | T = t, S = 1)
∣∣.

This modifies the objectives (8) and (9) to, summing over
the possible values of t,

argmin
ω

[(∑

t

ρ̂
s|t
b,B

)
− ρ̂tb,B

]
, (10)

min
ϕ

[
max
κ

(∑

t

ρ̂
s|t
b,B

)
−max

κ
ρ̂tb,B

]
. (11)

It is well-known that perfect demographic parity, DP = 1,
is not generally compatible with perfectly equalized odds,
EO = 1 (Barocas et al. 2018). Even so, Theorem 3.1 of
Zhao et al. (2020) shows that classifiers satisfying EO = 1
have demographic parity gaps ∆DP upper-bounded by the
gap of a perfect classifier, and hence training with an equal-
ized odds criterion does not strongly compromise demo-
graphic parity.

3.4 ADDING A TASK LOSS

Representations with strong power on a target task are
likely able to strongly distinguish at least some portion of
samples as belonging to a certain value of t. If our final goal
is to train a classifier, though, it will help to try to ensure
our representation can classify all points well, by adding a

standard classification loss for t to our objectives, e.g.

min
ϕ,g

[
max
κ

λs

(∑

t

ρ̂
s|t
b,B

)
−max

κ
λtρ̂

t
b,B + λclsL

t(g ◦ ϕ)
]
,

where g is a classifier on ϕ, L(g ◦ ϕ, t) is the cross-entropy
loss of the classifier g(ϕ(x)) with labels t,2 and λs, λt, λcls
control the relative regularization strengths.

4 RELATED WORK

Fair representation learning has of late (deservedly) found
a lot of traction within the deep learning community
(Mehrabi et al. 2021). The growing popularity and success
of adversarial learning has resulted in a substantial num-
ber of adversarial techniques to mitigate bias and enforce
group fairness by training discriminators to distinguish one
sensitive group (or sub-group) from another (Edwards and
Storkey 2016; Xie et al. 2017; Madras et al. 2018; Zhang et
al. 2018; Zhao et al. 2020). However, representations learnt
via adversarial approaches do not completely “hide” sensi-
tive information as the learnt representations are dependent
on the specific function classes (or architectural complex-
ity) used for the discriminators. Variational methods, on
the other hand, focus on learning disentangled latent spaces
where sensitive factors can be separated from non-sensitive
features (Louizos et al. 2016; Creager et al. 2019; Norouzi
2020). Other methods (including our proposed approach)
try to enforce fairness by adding additional constraints in
the learning objective to regularize the learned weights of
the neural networks involved (Kamishima et al. 2012; Ha-
jian et al. 2016; Zafar et al. 2017; Speicher et al. 2018).

There have also been, in particular, several MMD-based ap-
proaches to fair/invariant representation learning. Louizos
et al. (2016) used the MMD as a regularizer to train fair
variational autoencoders to impose statistical parity be-
tween embeddings across different sensitive groups. Re-
cently, Oneto et al. (2020) used the MMD with a similar in-
tuition to ours to learn representations that transfer better to
unseen tasks in a multitask setting. Veitch et al. (2021) use
the MMD as regularizers to a classifier, choosing between
the marginal and conditional form based on the causal di-
rection of the task, to enforce counterfactual invariance.
Most recently Lee et al. (2022) proposed using the MMD
to perform fair principal component analysis by penalizing
the measure between dimensionality-reduced distributions
over different protected groups. Our approach, although
similar in spirit, uses the power of MMD two-sample tests
rather than the raw MMD estimate, which avoids several
pitfalls and is particularly important when simultaneous

2For the equalized-odds objective, we evaluate the classifica-
tion loss on all samples. For the demographic parity version, we
only evaluate it on the points from SPt and SQt , to ensure the
method does not require any samples with both s and t values.
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Figure 1: Fairness-accuracy trade-off curves on the test set
of (top) Adult, (middle) COMPAS and (bottom) Heritage
Health. Higher values for all metrics are better.

maximization and minimization are required – something
not previously explored in the kernel-methods community.

In Section 5, we compare to several different baselines.
LAFTR (Madras et al. 2018) employs an adversarial net-
work to predict the sensitive class using the representa-
tions being simultaneously learnt by a target predictor.
CFAIR (Zhao et al. 2020) conditionally aligns the repre-
sentations for accuracy-fairness trade-off by using two ad-
versaries (one for the positive class label, one for the nega-
tive). FCRL (Gupta et al. 2021) controls the mutual infor-
mation between the representations and the sensitive labels
with contrastive information estimators. sIPM (D. Kim et
al. 2022) employs the sigmoid Integral Probability Metric
(IPM) as the deviance measure over the learnt representa-
tions. This is perhaps the most closely related method to
our approach, using an IPM measure to regularize the pre-
diction function.

5 EXPERIMENTS

We evaluate both versions, (9) and (11), of our proposed
regularizer; we call these MMD-B-Fair (DP) and MMD-
B-Fair (Eq). We also evaluate baselines sIPM (D. Kim et
al. 2022), FCRL (Gupta et al. 2021), CFAIR (Zhao et al.
2020) and LAFTR (Madras et al. 2018). One testbed is

the widely used UCI Adult dataset (Dua and Graff 2017),
a structured dataset predicting whether an individual’s in-
come is above $50,000 USD while being fair to their gen-
der. We also evaluate performance on COMPAS3 which
which contains criminal records of over 5000 people living
in Florida. The task to predict recidivism (binary) within
the next two years while being sensitive to an individual’s
race (also binary). The other dataset we evaluate on is the
Heritage Health4 dataset, which contains records of insur-
ance claims and physician information of over 60,000 pa-
tients. The primary task is to predict Charlson index, an
estimate of the risk of a patient’s death over the next ten
years, without being biased by the age at which they first
claimed an insurance cover.

We present results of fairness-accuracy trade-offs and vari-
ous downstream tasks along with an ablation study to inves-
tigate the importance of all of the terms in our loss function.
Our code is available at github.com/namratadeka/mmd-b-
fair.

EXPERIMENTAL SETUP We train all the models
across different choices of their respective fairness hyper-
parameters. For both versions of out method we set λs to
{0, 0.1, 1, 10, 100, 1000, 10000} with a fixed λt and λcls of
1. For sIPM, CFAIR and LAFTR we set the regularization
strength to the same set of values as λs, and for FCRL we
use a subset of the hyperparameters (β and λ) proposed in
their paper. We train all models with a minibatch size of 64
and report performance over ten independent seeds. Wher-
ever possible, the encoder architecture is shared across dif-
ferent methods.

FAIRNESS Firstly, we examine the fairness-accuracy
tradeoff fronts obtained by sweeping over the fairness hy-
perparameters in Figure 1. The x-axis is the target accu-
racy; the y-axis reports the Demographic Parity (DP) and
Equalized Odds (EO), averaged over both positive and neg-
ative target classes. Note that higher values are better.

For the Adult dataset (Figure 1, top), the MMD-B-Fair (Eq)
outperforms the baselines, concurrently achieving high ac-
curacy scores and fairness measures, and hence lying closer
to the desirable top-right corner. Both of our methods and
sIPM perform equally well on the COMPAS dataset (Fig-
ure 1, middle) while on Heritage Health (Figure 1, bottom)
sIPM performs better than MMD-B-Fair (Eq) on the lower
accuracy regime but has comparable measure as the target
accuracy increases.

EXAMINING LEARNT REPRESENTATIONS One
popular method for evaluating fair models is to examine
if the learnt representations contain enough information to
predict the sensitive labels: if all information regarding the

3github.com/propublica/compas-analysis
4foreverdata.org/1015/

https://github.com/namratadeka/mmd-b-fair
https://github.com/namratadeka/mmd-b-fair
github.com/propublica/compas-analysis
foreverdata.org/1015/
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Figure 2: Downstream sensitive label classification over fair representations. 0.5 is ideal.

10−1 100 101 102 103 104

regularization strength λs

0.0

0.1

0.2

0.3

0.4

P
ow

er

Sensitive MMD Test Power

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

0.90

0.92

0.94

0.96

0.98

1.00

D
P

Demographic Parity

MMD-B-Fair (Eq)

MMD-B-Fair (Eq)[λcls = 0]

MMD-B-Fair (Eq)[λt = 0]

M̂MD
2

U/
√
Vm, [λt = 0]

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Accuracy

0.90

0.92

0.94

0.96

0.98

1.00

E
O

Equalized Odds

MMD-B-Fair (Eq)

MMD-B-Fair (Eq)[λcls = 0]

MMD-B-Fair (Eq)[λt = 0]

M̂MD
2

U/
√
Vm, [λt = 0]

Figure 3: Top: Empirical test power of an optimized MMD
test. Bottom: Ablation study on Adult.

sensitive labels is successfully hidden in the representation
learning phase, then subsequent classifiers will struggle to
classify test points as per the sensitive labels.

We train two-layer MLP classifiers on all the represen-
tations, and show in Figure 2 the sensitive classification
performance as a function of the sensitive regularization
strengths used to train the fair models. Both versions of our
method, as well as FCRL, are able to maintain the desired
random accuracy score of 50% over sensitive labels across
all regularization strengths for the Adult dataset. For COM-
PAS and Heritage Health, none of the methods remain at
50% when finetuned and FCRL has slightly lower accura-
cies than our methods. sIPM converges to a low accuracy
as the fairness regularization is strengthened, while clas-
sifiers over CFAIR and LAFTR easily achieve high sen-
sitive accuracy even with strong regularization indicating
their failure to “hide” sensitive information.

Checking whether this accuracy is 50% is essentially a
classifier-based two-sample test (Lopez-Paz and Oquab
2017) between Pa and Qa, based on the learnt represen-

tation. We can also try using a more sensitive measure of
whether these representations are the same: the power of an
MMD two-sample test with a learned kernel, which is more
general and often more powerful than a classifier-based test
(Liu et al. 2020). For models with classification accuracies
significantly above 50%, this power will be near-perfect,
but it might be that even if few individual points can be
correctly classified, a two-sample test might be able to dis-
tinguish the distributions as a whole. We run this check for
our methods on Adult in Figure 3(top), using a Gaussian
kernel with learnt lengthscale on a one-layer MLP archi-
tecture trained to roughly maximize the asymptotic power

as in Liu et al. (2020) (maximizing M̂MD
2

U /
√

V̂m,λ). We
then evaluate the empirical power of the test, how many
times it rejects the null hypothesis, while repeating the test
with 64 samples at a time.

Strikingly, two-sample tests here are far more sensitive
measures of attribute leakage than classification accu-
racy, achieving nontrivial power across all regularization
strengths for MMD-B-Fair (DP). The equalized odds ver-
sion of our method in particular manages to make the rep-
resentations significantly less distinguishable, however.

Figure 4 shows t-SNE visualizations of latent space em-
beddings, further demonstrating that our method’s repre-
sentations separate the target attribute well and make the
sensitive attribute difficult to distinguish.

FAIR TRANSFER LEARNING One major aim of fair
representation learning, rather than simply finding a fair
classifier, is to be able to use the same representation for
more than one potential downstream task. We would like
our representation to give good (and fair) performance for
classifiers when trained on tasks unknown at representation
learning time, even classifiers that are trained without any
concern about fairness at all: the representation should en-
force it.

To model this situation, we take representations learned to
predict Charlson Index on Heritage Health and use them to
predict each of five Primary Condition Groups, which were
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Figure 4: t-SNE visualizations of Adult representations, colored by target attribute (top) and sensitive attribute (bottom).

not used in the original representation learning phase. We
train these classifiers without regard to fairness by simply
minimizing the cross-entropy loss.

Transfer Label LAFTR CFAIR FCRL sIPM
MMD-B-Fair

(DP)
MMD-B-Fair

(Eq)

acc 57.2 62.5 58.0 72.8 71.3 70.3
MSC2a3 DP 52.3 65.1 99.2 69.3 72.2 84.5

Eq 57.4 70.1 98.0 69.9 71.8 86.6

acc 72.9 72.2 53.9 72.4 70.7 69.4
METAB3 DP 52.3 65.1 97.7 54.5 65.6 82.1

Eq 61.3 77.1 97.6 63.4 74.6 92.1

acc 66.4 65.9 59.3 70.6 67.5 67.8
ARTHSPHIN DP 52.3 65.1 98.0 74.6 83.0 87.7

Eq 54.9 70.1 98.1 76.7 84.9 90.0

acc 64.4 61.9 60.1 68.0 67.1 67.3
NEUMENT DP 52.3 65.1 99.1 72.9 86.8 94.5

Eq 54.9 69.7 97.5 73.2 86.7 95.4

acc 71.0 67.3 69.3 73.5 73.0 72.5
MISCHRT DP 52.3 65.1 98.6 85.0 87.2 96.4

Eq 59.4 79.0 98.2 88.5 88.6 97.5

Table 1: Using Heritage Health representations to predict
various downstream tasks. Red marks the best result per
row, blue second-best, and green third-best.

Table 1 shows the resulting accuracy and fairness scores
of downstream classifiers trained on each representation.
With these representations, MMD-B-Fair (Eq) provides
stronger fairness results than any competitor except FCRL
(which is quite inaccurate), while being more accurate than
any competitor except sIPM (which is quite unfair).

ABLATION STUDY Since our objective consists of
three terms - target classification loss, sensitive powe
and target power - we perform an ablation study in Fig-
ure 3(bottom) to ascertain the contribution of each term to
learning fair representations that can achieve high target ac-
curacy. When the classification loss is turned off by setting
λcls to 0, we see from the tradeoff curve that a downstream
classifier trained on top of the learnt representations fail to
achieve a good accuracy score. Turning off the target power
instead (by setting λt = 0) does not have this effect, how-

ever the fairness metrics are slightly impacted at the high
accuracy regime. Supposing this is not a significant drop in
fairness measures, we also train a model that directly mini-
mizes the normalized sensitive MMD instead of the power
(which, recall from our discussion in Section 3 was used
to balance both sensitive and target terms when used to-
gether). However, in this case we observe that the MMD
measure by itself overwhelms the classifier leading to rep-
resentations that are perfectly fair but come at the cost of
random target classification performance.

6 DISCUSSION

We proposed a method for learning fair kernels as well as
representations built off of two-sample testing – a different
paradigm than previous approaches to learning fair repre-
sentations. Our approach combines two-sample techniques
in a novel way, using the U -statistic estimator to estimate
the power of a block test, which may also be useful for
other testing approaches.

Our method performs well compared to previous ap-
proaches based on adversarial learning and generative
modelling. We provide two different versions of our ap-
proach – the marginal (demographic parity) version which
can be trained using weak set-level labels from disjoint
datasets, albeit at a disadvantage when dealing with corre-
lated features, and a conditional (equalized odds) version,
which can handle correlation between features well. We
also show that, compared to previous approaches, our rep-
resentations transfer well to new tasks with respect to both
accuracy and fairness.

Areas for future work include building in support for
continuous-valued sensitive attributes via the Hilbert-
Schmidt Independence Criterion (Gretton et al. 2008) and
extending to related applications like domain adaptation,
invariant feature learning, causal representation learning,
and so on.
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A Non-existence of an unbiased estimator

Proposition 1. For any fixed kernel k, let J(P,Q) = MMD2(P,Q)/
√

Vm(P,Q) for some m > 2. Let P be some class of
distributions such that {(1−α)P0+αP1 : α ∈ [0, 1]} ⊆ P , where P0 ̸= P1 are two distributions with MMD(P0,P1) > 0.
Then no estimator of J can be unbiased on P .

Proof. We follow Bińkowski et al. (2018) in using the broad approach of Bickel and Lehmann (1969). Let Pα = (1 −
α)P0 + αP1 denote a mixture between P0 and P1.

Suppose there is some unbiased estimator Ĵ(X,Y ), meaning that for some finite n1 and n2,

E
X∼Pn1

Y∼Qn2

Ĵ(X,Y ) = J(P,Q).

Then, for any fixed Q ∈ P , the function

R(α) = J(Pα,Q)

=

∫
· · ·
∫

Ĵ(X,Y ) dPα(X1) · · · dPα(Xn1
) dQn2(Y )

=

∫
· · ·
∫

Ĵ(X,Y ) [(1− α)dP0(X1) + αdP1(X1)] · · · dQn2(Y )

= (1− α)n1 E
X∼Pn1

0
Y∼Qn2

[Ĵ(X,Y )] + · · ·+ αn1 E
X∼Pn1

1
Y∼Qn2

[Ĵ(X,Y )]

must be a polynomial in α.

But, if we pick Q = P1, we will show that

R(α) =
MMD2(Pα,P1)√

Vm(Pα,P1)

is not a polynomial, and thus no unbiased estimator can exist on P .

To do this, we will need some notation, and some unfortunately tedious calculations. Let

Pα = (1− α)P0 + αP1

µα = E
X∼Pα

k(X, ·) = (1− α)µ0 + αµ1

Cα = E
X∼Pα

k(X, ·)⊗ k(X, ·) = (1− α)C0 + αC1,

where µα is the kernel mean embedding of Pα, and Cα its (uncentered) covariance operator. Here k(x, ·) is the embedding
of the point x into the RKHS corresponding to the kernel k, satisfying ⟨k(x, ·), k(y, ·)⟩ = k(x, y), and a ⊗ b is the outer
product of two vectors in a Hilbert space, a linear operator such that [a⊗ b]c = a⟨b, c⟩.
The numerator of R(α) is

MMD(Pα,P1)
2 = ∥(1− α)µ0 + αµ1 − µ1∥2 = (1− α)2 MMD(P0,P1).

The denominator is much more complex, but equation (2) of Sutherland and Deka (2019) shows that

Vm(Pα,P1) =
2

m(m− 1)

[

2(m− 2)⟨µα, Cαµα⟩ − (2m− 3)∥µα∥2

2(m− 2)⟨µ1, C1µ1⟩ − (2m− 3)∥µ1∥2

+ 2(m− 2)⟨µ1, Cαµ1⟩+ 2(m− 2)⟨µα, C1µα⟩ − 2(2m− 3)⟨µα, µ1⟩2

− 4(m− 1)⟨µα, (Cα + C1)µ1⟩+ 4(m− 1)
(
∥µα∥2 + ∥µ1∥2

)
⟨µα, µ1⟩

+ E
(X,X′)∼P2

α

k(X,X ′)2 + E
(Y,Y ′)∼P2

1

k(Y, Y ′)2 + 2 E
X∼Pα,Y∼P1

k(X,Y )2
]
.
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We need not give a full expansion of Vm in terms of α; we will merely show that it is of degree three. Since the ratio of
a degree-two polynomial with the square root of a degree-three polynomial cannot possibly be itself polynomial, that will
suffice to show that R(α) is not polynomial, and hence no unbiased estimator exists.

To see this, notice that µα and Cα are each linear in α, so that any term containing fewer than three such terms, e.g. ∥µα∥2
or ⟨µα, C1µα⟩, cannot possibly be of degree three and so is not relevant to our goal. The expectations of squared kernels
are also not relevant: the highest-order in terms of α is

E
X,X′∼Pα

k(X,X ′)2 = (1 − α)2 E
X,X′∼P0

k(X,X ′)2 + 2α(1 − α) E
X∼P0

X′∼P1

k(X,X ′)2 + α2 E
X,X′∼P1

k(X,X ′)2

which is O(α2), abusing notation slightly to mean “terms of degree 2 or lower in α.” This leaves us

Vm(Pα,P1) =
2

m(m− 1)

[
2(m− 2)⟨µα, Cαµα⟩+ 4(m− 1)∥µα∥2⟨µα, µ1⟩

]
+O(α2).

We can find the α3 terms by

⟨µα, Cαµα⟩ = (1− α)⟨µα, Cαµ0⟩+ α⟨µα, Cαµ1⟩
= α⟨µα, Cα(µ1 − µ0)⟩+O(α2)

= α2⟨µα, (C1 − C0)(µ1 − µ0)⟩+O(α2)

= α3⟨µ1 − µ0, (C1 − C0)(µ1 − µ0)⟩+O(α2)

and

∥µα∥2⟨µα, µ1⟩ = α⟨µα, µα⟩⟨µ1 − µ0, µ1⟩+O(α2)

= α2⟨µα, µ1 − µ0⟩⟨µ1 − µ0, µ1⟩+O(α2)

= α3⟨µ1 − µ0, µ1 − µ0⟩⟨µ1 − µ0, µ1⟩+O(α2).

Because we assumed MMD(P0,P1) > 0, we have µ1 ̸= µ0. Thus these two terms cancel only if

⟨µ1 − µ0, [(m− 2)(C1 − C0) + 2(m− 1)(µ1 − µ0)⊗ µ1] (µ1 − µ0)⟩ = 0.

Now, suppose we had defined R(α) with Q = Pβ rather than P1 for some other β ∈ [0, 1]. The only relevant thing that
changes is that the lone µ1 above becomes µβ ; the numerator stays quadratic in α. Thus, if the terms cancel for µ1, we
can simply choose a different µβ for which they do not cancel, which will always be possible. Thus the denominator is the
square root of a degree-three polynomial, R(α) is not a polynomial, and no unbiased estimator can exist.

B Uniform convergence of our objective

We show here that optimizing the approximated block-test power from (7) with a finite number of samples from each
conditional distribution works, i.e. as m increases, our power estimate converges uniformly over the parameter space
towards an optimal solution.

Liu et al. (2020) proved that with probability at least 1− δ over the choice of n samples used in the estimators

sup
k∈K

∣∣∣∣∣∣
M̂MD

2

U√
nV̂n,n·n−1/3

− MMD2

√
limm→∞ mVm

∣∣∣∣∣∣
≤ α(K,P,Q, n, δ) (12)

for some function α (given asymptotically in their Theorem 6 and Proposition 9, or with full constants in their Theorem 11
and Proposition 23; see also their Remarks 24 and 25). Here K is the class of considered kernels; note that mVm converges
to a constant.

Notice from (4) that, for any m and ℓ, V̂ℓ,λ = m
ℓ V̂m,λ. Thus we can rewrite (7) as

ρ̂b,B = Φ


√

b
M̂MD

2

U√
V̂B,λ

− tα


 = Φ


√

bB
M̂MD

2

U√
nV̂n,λ

− tα


 = Φ

(√
bB Ĵλ − tα

)
,
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where we defined Ĵλ = M̂MD
2

U /
√

nV̂n,λ.

Defining J = MMD2 /
√
limm→∞ mVm, we can now rewrite (12) more compactly as showing that, with probability at

least 1− δ, supk∈K|Ĵn2/3 − J | ≤ α(K,P,Q, n, δ).

Also, notice from (6) that ρb,B → Φ(
√
bBJ − tα) =: Rb,B , the asymptotic power of a test with b blocks of size B.

Finally, the function x 7→ Φ(
√
bBx− tα) is Lipschitz continuous:

∣∣∣∣
∂

∂x
Φ(

√
bBx− tα)

∣∣∣∣ =
1√
2π

exp

(
−1

2

(√
bBx− tα

)2)
≤ 1√

2π
.

Thus applying this function to each of the terms in (12) yields that, when we use λ = n2/3,

sup
k∈K

|ρ̂b,B −Rb,B | ≤
1√
2π

α(K,P,Q, n, δ).

This shows uniform convergence of each ρ̂b,B to the relevant asymptotic power. By a union bound, this immediately
implies uniform convergence of the objective (8), or (9) for a finite class of “top-level” kernels κ (as we use here), to the
corresponding term based on asymptotic powers. (Convergence of (9) over an infinite class of κ would also follow with a
similar argument to that of Liu et al.)


	INTRODUCTION
	PRELIMINARIES
	MAXIMUM MEAN DISCREPANCY (MMD)
	LEARNING DEEP KERNELS

	LEARNING FAIR REPRESENTATIONS
	LEARNING A FAIR KERNEL
	LEARNING FAIR REPRESENTATIONS
	MARGINAL vs CONDITIONAL POWER
	ADDING A TASK LOSS

	RELATED WORK
	EXPERIMENTS
	DISCUSSION
	Non-existence of an unbiased estimator
	Uniform convergence of our objective

