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Abstract

We introduce the Graph Sylvester Embedding
(GSE), an unsupervised graph representation of
local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation
to capture both network structure and neighbor-
hood proximity in a single representation. Un-
like embeddings based on the eigenvectors of the
Laplacian, GSE incorporates two or more basis
functions, for instance using the Laplacian and
the affinity matrix. Such basis functions are con-
structed not from the original graph, but from one
whose weights measure the centrality of an edge
(the fraction of the number of shortest paths that
pass through that edge) in the original graph. This
allows more flexibility and control to represent
complex network structure and shows significant
improvements over the state of the art when used
for data analysis tasks such as predicting failed
edges in material science and network alignment
in the human-SARS CoV-2 protein-protein inter-
actome.

1 Introduction

Analysis of networks arising in social science, material sci-
ence, biology and commerce, relies on both local and global
properties of the graph that represents the network. Local
properties include similarity of attributes among neighbor-
ing nodes, and global properties include the structural role
of nodes or edges within the graph, as well as similarity
among distant nodes. Graph representations based on the
eigenvectors of the standard Graph Laplacian have limited
expressivity when it comes to capturing local and structural
similarity, which we wish to overcome.

We propose an unsupervised approach to learn embeddings
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that exploit both the Laplacian and the affinity matrix com-
bined into a Sylvester equation. However, to better capture
local as well as structural similarity, we consider the Lapla-
cian and the affinity matrix not of the original graph, but
rather of a derived betweenness centrality graph. Centrality
is a function of the topology of the graph that is not captured
in the original edge weights. We choose node embeddings
based on the Spectral Kernel Descriptors of the solution of
the Sylvester equation, for simplicity, although any number
of alternate descriptors could be employed.

The key to our approach is three-fold: (i) The betweenness
centrality of edges, defined as the fraction of shortest paths
going through that edge, to capture semi-global structure in
the original graph; (ii) The use of both the Laplacian and the
affinity matrix of the centrality graph, to modulate the effect
of local and global structure; (iii) The use of the Sylvester
equation as a natural way of combining these two graph
properties into a single basis.

Our approach is related to uncertainty principles of graph
harmonic analysis, that explore the extent in which signals
can be represented simultaneously in the vertex and spec-
tral domains. We extend this approach to characterize the
relation between the spectral and non-local graph domain
spread of signals defined on the nodes.

We illustrate the use of our method in multiple unsuper-
vised learning tasks including network alignment in protein-
to-protein interaction (PPI) for the human-SARS-CoV-2
protein-protein interactome and forecasting failure of edges
in material science.

2 Related Work

For a graph G = (V,W) with vertices in the set V =
{1,2,..., N} and edge weights in W = {(w;;)(4, ) € V},
where w;; denotes the weight of an edge between nodes
1 and j, we measure the centrality of an edge by the frac-
tion of the number of shortest paths that pass through that
edge, called edge betweenness centrality (EBC). From the
betweenness centrality of the edges of G, we construct a
modified graph with the same connectivity of G, but edges

'Work done while at University of California, Los Angeles.
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Figure 1: Construction of the Graph Sylvester Embedding (GSE): (a) the original graph is transformed into the centrality

graph, by replacing w; ; with wF; (b) W5 and L5

are combined into a Sylvester equation, whose solution is used to

define (c¢) node embeddings using the Spectral Kernel, from which edge embedding can be constructed. From the color
signatures (best seen zoomed in), we can see that nodes that have different structural properties have different descriptors,
whereas nodes with similar structural properties have similar descriptors even when they are not adjacent.

weighted by their EBC value. The result is called edge be-
tweenness centrality graph (BCG), or centrality graph for
short, and denoted by G, which measures the importance of
edges given the adjacency matrix.

Graph centrality-based measurements, such as vertex cen-
trality, eigenvector centrality [20], and edge betweenness
centrality [30] have been widely used in network analysis
and its diverse applications [7, [10]]. There is a large body of
work that focuses on graph embedding methods that, similar
to our approach, aim to learn a function ® : V — R™ from
the graph nodes into a vector space R™ [24}[1,133,/43]]. Such
methods construct graph representations that are based on
either local or structural similarities.

Graph convolutional networks [26} [11} 42] are among the
most popular methods for graph-based feature learning,
combining the expressiveness of neural networks with the
graph structures. Typically, these methods assume that node
features or attributes are available, while we focus on prob-
lems where only the graph network is available. There is
also a large body of work that focuses on graph embed-
ding methods that, similar to our approach, only assume
that the affinity matrix is given as an input. Such methods
construct graph representations that are based on either lo-
cal or structural similarities [24} |1} 33| 43]. Most Graph
convolutional networks architecture designs capture low-
frequency information. Recently, [31] proposed a Gaussian
process model using spectral graph wavelets to optimize the
model hyperparameters of the wavelets, which was shown
to achieve a low approximation error in dense areas of the
graph spectrum.

Uncertainty principles in graphs have been explored by
[2,40], extending traditional uncertainty principles of sig-
nal processing to more general domains such as irregular

and unweighted graphs [35]. [2] provides definitions of
the graph and spectral spreads, where the graph spread is
defined for an arbitrary vertex, and studies to what extent
a signal can be localized both in the graph and spectral
domains.

Other related work includes different approaches in man-
ifold learning [34} 15, 41]], manifold regularization [22, 17,
13116k 12 (181 114, [15]], graph diffusion kernels [9]], commu-
nity detection in networks [25]] and kernel methods widely
used in computer graphics [3}139] for shape detection. Most
methods assume that signals defined over the graph nodes
exhibit some level of smoothness with respect to the con-
nectivity of the nodes in the graph and therefore are biased
to capture local similarity.

The Sylvester equation was previously employed in a vari-
ety of graph mining applications such as network alignment
and subgraph matching (44, |19]. Most previous works used
the continuous Sylvester equation with two similarity input
matrices corresponding to the two graphs. We propose a dif-
ferent approach, where we solve the discrete-time Sylvester
equation using the similarity matrix and its associated Lapla-
cian.

3 Preliminaries and Definitions

Consider an undirected, weighted graph G = (V, V). The
degree d(i) of a node is the sum of the weights of edges
connected to it. The combinatorial graph Laplacian is de-
noted by L, and defined as L = D — W, with D the
diagonal degree matrix with entries d;; = d(¢). The eigen-
values and eigenvectors of L are denoted by Aqy,..., An
and ¢1, ..., ¢n, respectively. The normalized Laplacian is
defined as Ly = D LD 3 =1- D 3WD~3 and its
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real eigenvalues are in the interval [0, 2]. In this work we
use the normalized Laplacian L, which from now on we
refer to as L for simplicity.

3.1 Centrality Graph

The edge betweenness centrality (EBC) is defined as

BE _ ost(wij)
wif =3 0w M
s#t 8

where o, is the number of the shortest distance paths from
node s to node ¢ and o4 (w;;) is the number of those paths
that includes the edge w;;. Since we do not use other forms
of centrality in this work, we refer to EBC simply as central-
ity. Accordingly, the (edge betweenness) centrality graph
BCG is defined as G = (V, W5¢) which shares the same
connectivity but modifies the edges of G to be wF. For-
mally, the similarity matrix representing the connect1v1ty of
gis

”st(wij)

ifi~ jin G
(W)z}jBE = {257575 0 Ot J

2
else.

Note that while G and G share the same connectiv-
ity, their spectral representation given by the eigen-
system of the graph Laplacian LZF, the eigenvalues
and their associated eigenvectors AL”7 . AL"" and
gbLBE, ey gbL , are rather different. Importantly, the
eigenvectors ¢pP¥ ... $RF provide a different realization
of the graph structure in comparison to the eigenvectors of
the input weights of the graph, that is captured by a differ-
ent diffusion process around each vertex. We denote with
pW"" , ®L"" the matrices corresponding to the eigenvector
decomposition of WBZ LBF respectively.

3.2 Structural and local similarity trade-off Via Total
Vertex and Spectral Spreads

The eigensystems of the Laplacian LZF and the affinity
matrix WEF provide two alternative basis functions that
capture different properties of the graph structure (see Fig[2]
for an illustration). One way to study how basis functions
characterize a network’s structure and local properties is by
using the concepts of vertex spread and spectral spread:

Definition 1 (7otal vertex domain spread)

The global spread of a non zero signal x € 1?(G) with re-
spect to a matrix W (corresponding to an arbitrary affinity
matrix) is defined as

1 N 1
gW(X) = ||XH2 ;w”x(z)x(j) = ‘ X||2XTWX (3)

where i ~ j corresponds to vertices connected in the simi-
larity graph W.

Definition 2 (Spectral spread) [2|]
The spectral spread of a non zero signal x € 1?(G) with
respect to a similarity affinity matrix W is defined as

gL = H?Z MEOP = X T @

where

2(1) = w(i)¢f (i) )
is the graph Fourier transform of the signal x € 12(G) with
respect to the eigenvalue \;.

The trade-off can be realized by characterizing the domain
enclosing all possible pairs of vertex and spectral spreads of
the BCG.

Definition 3 Feasibility domain of G

D(SI”SW) = {(va SW)| gL(X) = SLagW(X) = SVV} (6)
where x € 12(G).

Specifically, searching for the lower boundary of the fea-
sibility domain of the vertex and spectral spreads of G is
shown to yield a generalized eigenvalue problem, whose
corresponding eigenvectors produce a representation which
trades off local and structural node similarity. We can write
the generalized eigenvalue problem (T8)) using the matrix
pencil L(p) _

L(B)x = 7x (7)

where

and the eigenvector x solving (I8) is also a minimizer for
the lower boundary of the curve enclosing the feasibility do-
main of the spreads (see the appendix for additional details).
The scalar § € R controls the trade-off between the total
vertex and spectral spreads. The generalized eigenvalues
problem formulated above resembles similar formulations
in the literature using the graph Laplacian ([2]] and [3]).
The formulation suggested above is made in the context of
the generalized eigenvalues problem that emerges from the
trade-off between local and structural similarity definitions,
which was proved in the Appendix for completeness.

An illustration of how local and global structures are cap-
tured by the Laplacian and the similarity graph in the noise-
free case of the Barbell graph is shown in Fig[2] The eigen-
vector associated with the smallest non-zero eigenvalues of
the graph Laplacian LZ¥ (blue color, Figb)) captures the
global structure while the eigenvector of W5# (Figc))
provides complementary information which emphasizes
structural similarity. The proposed embedding (detailed in
the next section) is obtained via the solution of the Sylvester
embedding modulates the effect of both.



Graph Spectral Embedding using the Geodesic Betweenness Centrality

(a)

Figure 2: Illustration of the trade-off between local and global structures node similarity in the barbell graph (a) using

different basis functions. Figures (b) and (c) illustrate the entries of the eigenvectors gb%BE

and QSYVBE of LBE and WEE,

respectively. The solution X to the Sylvester equation (with input matrices LZ¥ and W#) modulates the effect of local

similarity, connectivity, and global structure.

4 Proposed Graph Sylvester Embedding

We suggest an embedding that goes beyond the scalar modu-
lation of the generalized Laplacian Eq.(I8) by using a linear
mapping between the subspaces W2% and L2¥. We ex-
ploit the fact that the correspondence between the nodes
represented by the two basis functions of WZ#and LB
is known, i.e., it is the identity map, 7 : WEE — LBF
with 71(WBE(: 4)) = LBE(: i) for each i € V (i.e., the
column index corresponding to each node i € V in WEE
is the same in L), We propose using the solution of a
Sylvester equation as the node feature representation, which
is also the mapping between the nodes’ representations. The
resulting embedding is given by the solution to the discrete
Sylvester equation (or the singular value decomposition as-
sociated with the solution) and will be composed of two
hybrid representations associated with the graph networks
and local connectivity. The proposed method is coined
Graph Sylvester Embedding (GSE).

The discrete-time Sylvester operator S(X) = AXB — X is
used to express the eigenvalues and eigenvectors of A and
B using a single operator S, where we solve

S(X)=AXB-X=C )

using C =1 I € RNXN is the identity matrix), A =

WBE B = LLBE,

N N N
e M o N
© 2 =1 ! =1 an 0 =1

{)\ZLBE} be the corresponding eigenvectors and

=1
elgenvalues of A and B, respectively.

We will assume that the eigenvalues of A and B satisfy

that )\}BEAJWBE # 1, Vi, 7, hence the operator S(X) :
RN*N s RNXN js non-singular and has N2 matrix eigen-
values and eigenvectors. Note that the Sylvester equation
has a unique solution for any C if and only if S is non-
singular, which occurs if and only if AL”" AW”" £ 1 Vi, j.
By choosing C = T and ordering the columns in A and
B based on the identity map, 7 : A — B we obtain that
each column in X provides a node representation to its
corresponding node 7 € V.

Note that we can also express the solution X to the Sylvester
equation Eq.(9) using the Kronecker product ®:

I-BT®A)z=c (10)

where we vectorize X and C to obtain its equivalent vec-
tor representation x = vec (X) and ¢ = vec(C). Since the
Sylvester equation can be written using the Kronecker prod-
uct, then all known properties of the Kronecker product are
carried on to the proposed graph Sylvester embedding. One
important property is invariance to permutations.

Proposition 1 Suppose that P € RNXN s a permutation
matrix, A = PTAP, and B = PTBP, and assume that
X, X are two solutions to the discrete-time Sylvester equa-
tion Eq. (@ with the associate matrices A, B and A, B,
respectively, and /\LBE WBE # 1, Vi, j, then
PTXP

X = (11)

Proof: See Appendix.

The resulting solution of X can be described using the fol-
lowing conditions. Assume that A\W"" /\?BE # 1Vi, j, and
that the graph representation encoded in A and B has the



Shay Deutsch, Stefano Soatto

WBE X LBE . X =C

LBE
@ WBEN LBE
5 et sf_\ & Gl i

Figure 3: In the proposed Graph Sylvester Embedding (GSE), the mapping between two basis functions is used to construct
the proposed embedding, exploiting the known correspondence between the two alternative graph representations.

same order based on the identity map, and C = I. Then the
solution X to the discrete-time Sylvester system Eq.(9) is
unique where

X = UV EvE T (12)
(¢WBE)t¢I,‘BE

where CZ i= T See proof in the appendix.

AWBEALEE _
K J

Remark 1: Eq. (12) shows the analytical solution to the
Sylvester equation. In practice, one can use fast iterative
methods [28]. Also note that under the assumptions that
)\zWBE)\?BE # 1Vi, j, the solution X is unique [28]]. We
note that Sylvester’s equation can be generalized to include
multiple terms, thus allowing one to incorporate multiple
basis functions. We illustrate the concept with two bases,
to capture local and global statistics of the topology of the
network, and leave extension to additional bases, that can
be specific to particular domains or tasks, for future work.

Remark 2: One can view the solution X to the Sylvester
equation as a polynomial of the matrices A and B ([23])),
where using higher-order polynomials in W2, LEF can
be interpreted as imposing smoothness in the embedding
space.

Remark 3:Our analysis shows that the proposed transfor-
mation is invariant to permutation, which is an important
property for ensuring stable graph embedding. Specifically,
this property implies that nodes with the same topological
neighborhood will yield the same output. Note that while
it is a necessary condition in order to generalize well to
new data or applications, it doesn’t provide classification
guarantees.

4.1 Spectral Representation of GSE

By our specific construction of matrices in the Sylvester
equation Eq.(T2) we have that the ith row of the solution
X captures local and global statistics of the topology of the
network with respect to the node ¢. This is an important
property which was achieved by our choice of C =1, and

using the same order of the graph representation encoded
in WBE and LBF. It is now possible to construct graph
embedding from X. We employ graph embedding using the
spectral decomposition of X.

Given the Singular Value Decomposition X = UAV* and
equally spaced scales {t,}, we compute a node embedding
for each node ¢ € G using the Spectral Kernel descriptor of
X using

dj(xiyts) _ thsexp <_ (log(ts) - log(/\l)) > (ul)Q(i)
=1

202

13)

where U = {w;},V = {v;}, and A = {\;} correspond to
the left and right singular eigenvectors, and singular values,
respectively, m is the number of the largest eigenvalues its
associated eigenvectors used in the SVD decomposition,
and ¢ are normalizing constants.

Remark: Note that the spectral kernel descriptor in Eq.(I3)
is similar to the WKS descriptor [3] proposed to describe the
spectral signature of the Laplace- Beltrami operator (LBO).
For applications using Sylvester embedding shown in this
work, we find the descriptor in Eq.(T3) effective as it weighs
the eigenvalues equally and separates the influence between
different eigenvalues.

4.2 Spectral Graph Wavelet Descriptor

We demonstrate that while we used node embeddings that is
based on the Spectral Kernel Descriptors of the solution of
the Sylvester equation, different descriptors could be built
on this basis. The basis functions and descriptors would
ideally capture a unique signature of invariant geometric
structure in multiple scales. The basis functions and descrip-
tors would ideally capture a unique signature of invariant
geometric structure in multiple scales. Capturing such a
unique signature is very challenging for high dimensional
noisy data. Spectral graph wavelet (SGW) transform [21]]
provide a useful tool to construct robust descriptors, due to
their their vertex and spectral localization. We describe an
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Algorithm 1: Graph Sylvester Embedding (GSE)
Input: Graph G = (V, W), embedding dimension m.
equally spaced scales .

Output: Node Embedding y; € R™ foreachi € G
Step 1: Compute the G using Eq.(2).

Step 2: Compute
LBE =1— (DBE)f
computed in Step 1.
Step 3: Solve the discrete-time Sylvester equation:

s WBE(DBE)~3 using §

AXB-X=C (15)

using A = WBE B =LBE andC=1.

Step 4: Compute the largest m singular values and
associated singular vectors of X = UAV™*.

Step 5: Foralli € G, Vs = 1,2, ..m, compute the
spectral kernel descriptor ¢ (x;, t5) in Eq.(13) using ¢,
and the largest m singular vectors and values
corresponding to Uand A, respectively. Alternatively,
compute the Spectral Graph Wavelet descriptor
described in Sec. .21

alternative way to construct the spectral descriptors which
is based on the Spectral Graph Wavelets. The descriptors
are constructed by taking the spectral graph wavelet trans-
form using functions corresponding to each of the fixed
dimensions of the the solution of the Sylvester equation
X. We describe the SGW transform for a fixed dimension
m in X. Given x,, € R", a scalar function defined on
G , corresponding to the m’th fixed dimension of X, we
compute

N
= K(t\) me(j)@(j)@(i)

=1

N
Uy, (i) = D Kt M) &m (M) i (i)
= (14

where x(t;\;) is a smooth kernel function, and X,,(\;)
denotes the graph Fourier transform of x,,. For a fixed
dimension m we obtain J descriptors which aggregate in-
formation from all the J spectral bands, while also being
localized in the vertex domain. Thus for an input vector
corresponding to x,, we obtain as an output J vectors in
R Then concatenate all the computed spectral graph trans-
forms {Wy, (:,t;)}, inscalest;,1 < j < J, for each of the
corresponding X,, ,1 < m < N, in a matrix form.

5 Experimental Results

We evaluate our method on real-world networks in several
applications including material science and network align-
ment of Protein-Protein interactions (PPIs) networks using
a recent dataset that has been used to study Covid-19, the

SARS-CoV-2. We compare GSE to known and existing
state of the art methods in the respective applications.

Evaluation metrics: In the problem of network alignment
we use the percentage of correct node correspondence found
to evaluate our method, based on the known ground truth
correspondence between the two networks. In detecting
failure edges in material science we measure the success
rate using sensitivity. To detect failured edges, we use the
graph embedding obtained by each method to cluster the
data into two approximately equal size clusters using spec-
tral clustering . We then choose the cluster with the largest
betweenness centrality mean value. For further validation,
we test the statistical significance of each method by com-
puting the p values using hyper-geometric distribution (see
the Appendix). Note that GSE(Wave kernel) corresponds to
GSE computed using the spectral Wave Kernel Descriptor
signature (WKS) and GSE(SGW) corresponds to the GSE
computed using the Spectral Graph Wavelet descriptor de-
scribed in Sec.

Comparison with other methods: Our baseline for com-
parison with the proposed Graph Sylvester Embedding is
using the concatenated spectral embedding corresponding
to both the Laplacian and the affinity matrix. We coin the
concatenated bases as St.(WEF LBF)  We compare to
the spectral Wave Kernel Descriptor signature (WKS) [3]
(coined L desc.). (—) in the Tables indicates methods that
failed to converge or provided meaningless results.

We compare with a representative of graph embeddings
methods including Laplacian Eigenmaps [5], node2vec [1]],
and NetMF [24]. We also test against methods that were
specifically tailored to this applications we explored includ-
ing methods for graph alignments [44} 45] and methods
based on betweenness centrality for detecting failured edges

[7].

5.1 Detect Failed Edges in Material Sciences

Forecasting fracture locations in a progressively failing dis-
ordered structure is a crucial task in structural materials [7]].
Recently, networks were used to represent 2 dimensional
(2D) disordered lattices and have been shown a promising
ability to detect failures locations inside 2D disordered
lattices. Due to the ability of BC edges that are above the
mean to predict failed behaviors [7], we expect the edge
embedding based on EBC to be effective. As shown in the
experimental results below, our proposed edge embedding
improves robustness in comparison to simpler methods
such as the one employed in [7] or methods that are based
n "standard" Laplacian embedding. We first describe how
to employ edge embedding (proposed node embedding
detailed in Sect. [)) for this task.
Edge Embedding using GSE: Edge embedding is
constructed by first applying our node embedding and then
using the concatenated nodes features to construct the edge
embeddings. To forecast the failed edges, we construct a
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new graph where nodes correspond to the edge embedding
features and then apply spectral clustering to cluster the
edges into two groups. We apply the same strategy to test
spectral descriptors which are based on the graph Laplacian.

Dataset: The set of disordered structures was derived from
experimentally determined force networks in granular mate-
rials [6]]. The network data is available in the Dryad reposi-
tory [8]. We tested 6 different initial networks, with mean
degrees z = 2.40, 2.55,2.60, 3.35, 3.0, 3.6, following the
same datasets corresponding to different initial granular con-
figurations.

Implementation Details: In all experiments, we used
¢ = 1, for all ¢, ¢; corresponds to the coefficients in
the wave kernel signature WKS (Eq. (I3)). We used a fixed
number of total 800 scales ¢, in all experiments. We mea-
sure the success rate in detecting failure edges in terms of
the sensitivity (true positive rate). We report experimental
results for a varying number of singular eigenvectors u; in
the SVD of the solution X to the Sylvester equation, which
is then employed to compute edge embeddings (as described
above, based on the node embeddings detailed in Algorithm
1).

Table |1| shows a comparison of our method where we re-
port the results using m = 800 for all methods which are
based on eigensystem computation (this the same number
of eigenvectors and associated eigenvalues computed for the
spectral methods which are based on graph Laplacian such
as LE and spectral descriptors).

Note that the networks tested in Table [T] are all extremely
sparse, but their geometry is different. The high variance in
the success detection rates of failed edges for some methods
in Table 1 is related to the differences in the structure of the
network topology in the tested networks. Incorporating a
model that trades off between local similarity, connectivity,
and global structure, our method was shown to be more
robust when tested on different network topologies. Our
framework relies on the edge betweenness centrality which
is shown to be an effective measure to capture the network
topology; however, it is non-local and prone to noise which
affects the results on the networks due to the differences in
their topology.

5.2 Network Alignment on PPI networks with human
protein interactors of SARS-CoV-2

Effective representation of nodes with similar network
topology is important for network alignment applications,
where the network structure around each node provides
valuable information for matching and aligning the net-
works. Network alignment of Protein-protein interactions
(PPIs) networks is considered as an important first step
for the analysis of biological processes in computational
biology. Typically, popular methods in this domain gather

statistics about each node in the graph (e.g: node degree)
followed by an optimization methods to align the network.
For PPI networks, it is assumed that a protein in one PPI
network is a good match for a protein in another network if
their respective neighborhood topologies are a good match
[36]. In this case, features or nodes attributes are in general
not available which makes this task of network alignment
and finding node correspondence more challenging, with
only the graph network to rely on.

Dataset: We test using the STRING network from
the STRING database, a PPI network that consists of
18,886 nodes and 977,789 edges. The STRING network
includes 332 human proteins that physically interact with
SARS-CoV-2. It is likely to have both false positives and
false negatives edges. We aim to find network alignment
between two copies of the STRING network, using an
additional STRING network which is created by randomly
removing 10% of the network edges. We also test on the
Lung network [38]], which is a more recent PPI networks
with known human protein interactors of SARS-CoV-2
proteins that consists of 8376 nodes, 48522 edges, and 252
human proteins that physically interact with SARS-CoV-2.
Implementation details: Given the node correspondence
of the protein interactors of SARS-CoV-2, we connect each
pair of nodes corresponding to the same human protein
interactors of SARS-CoV-2 with an edge, which is resulted
in a network composed of the two STRING networks. We
then apply the proposed GSE to generate node embeddings.
We used 5-fold cross validation, where in each experiment
we used 50% of the known human proteins in the STRING
and Lung networks.

We compare to network alignment methods, such as Isorank
[36l, Final [44] and iNEAT [45]. For the network align-
ments methods, we provide as an input the corresponding
affinity graphs and a matrix with the known correspondence
between the nodes that correspond to human proteins
that physically interact with SARS-CoV-2. Additionally,
we also tested graph embeddings including Laplacian
Eigenmaps (LE) [4], Locally Linear Embedding (LLE)
[34], Hope [32l], and node2vec [1]] which are given the same
input network. Graph embedding methods are not effective
for this task and thus some of the results are omitted.
Network alignments methods perform better, while our
proposed GSE outperforms all competing methods.

Table 2] shows the percentage of nodes whose nearest
neighbor corresponds to its true node correspondence using
GSE in the STRING and Lung networks. Our proposed
GSE outperforms all competing methods.



Graph Spectral Embedding using the Geodesic Betweenness Centrality

Method /Network Mean deg. Meandeg. Meandeg. Meandeg. Meandeg. Meandeg. Avg. + std
(2.4) (2.6) (3.35) (2.55) 3) (3.6)

FL[7] 85.7% 70% 60% 58.3% 48.4% 58.1% 63.4% + 11.7
NetMF 28% 40 % 2% 45 % 93.9 % 90.0 % 61.4% +252
node2vec 64.2% 55% 40% 79.0 % 69.6% 37.2% 61.4% £ 15.1
LE 64.2% 75% 68.0% 66.6% 63.6% 83.7% 70.1% £ 6.5
L desc. 57.1% 45% 84.0% 45.0% 54.5% 37.2% 53.8% + 15
St.(WBE LBE) 64.2% 75.0% 80.0% 75.0% 78.7% 79.0% 75.3% £+ 27.6
GSE(Wave kernel) 92.8% 80 % 76.0% 75.0% 72.2% 83.7% 799 % + 6.8
GSE(SGW) 92.8% 95% 96 % 833 % 72.7% 81.4 % 86.8%+ 8.4

Table 1: Success rate (%) in detecting failed edges in granular material networks, comparing GSE to different methods. The
network number associated with each Network in parenthesis (Mean deg.) corresponds to the characteristic of the network,
given by its mean degree of edges per node. The column below Avg =+ std shows the average and standard deviation

summarized over all networks.

Table 2: Classification accuracy on network alignment using
PPI interaction networks: (STRING(s) and Lung.

METHOD/DATA STRING (S) LUNG
NODE2VEC 10.4 % - %

ISORANK 23 % 44.2 %
ISORANK USING G 20 % 44.2 %
FINAL 36 % 50.5 %
INEAT 37.0 % 53.5 %
ST.(WPBE LBF) 25.3 % 53.2 %
GSE 61.2% 55.0 %

6 Discussion

We have presented an embedding to represent the local and
global structure of a graph network, constructed without the
need for any supervision nor explicit annotation. Besides the
cost of time and effort, annotating data can create privacy
and security risks. Our focus is on developing expressive
and flexible representations that can be used in a variety of
downstream tasks without human intervention. Flexibility
is exercised through the choice of bases, that are combined
through Sylvester’s equation. In the specific cases we have
experimented with, the bases are chosen to capture local
and structural similarity across the graph network.

Most of the computational burden of our method falls on the
computation of the BCG, which is O(mN') where m is the
total number of edges and NN is the total number of nodes,
thus approximately O (N ?) for sparse graphs. The execution
time of our method with Python code implementation using
Intel Core i7 7700 Quad-Core 3.6GHz with 64B Memory
on a graph network with approximately 2700 nodes and
5429 edges takes about 24.9 seconds.

Computing BC measurements on large graphs is computa-
tionally heavy (O(N?) for sparse graphs), and developing
fast methods for BC measurements is an ongoing research

E 0 1500 2000 200
F singuai evectors used in Number of dimensions used to constrcut the embedding

Figure 4: Sensitivity to parameter selection in network align-
ment of the STRING network, concerning the number of
singular eigenvectors and the number of scales used in the
spectral signature of GSE (a) Accuracy (in percentage of
nodes whose nearest neighbor corresponds to its true node
correspondence) as a function of the number of singular
eigenvectors used in the SVD of X in the network align-
ment of STRING. (b) Shows the accuracy as a function
of the number of scales which was used to construct the
Spectral Kernel descriptor for the network alignment of the
STRING network.

area. With significant progress that has been made in re-
cent years (e.g: [29]) we can foresee extensions to scale our
approach to networks with millions of nodes. In addition,
the effectiveness of BC measurements degrades on larger
graphs due to noise (for example when the graph includes a
large number of nodes with clustering coefficient close to
zero). Applying our approach to small sub-graphs before
aggregating it to the entire graph may be one viable solution.

In our study, we found that spectral embeddings obtained by
solving the Sylvester equation of the edge betweenness cen-
trality graph reveals the node’s network structure, which
is not necessarily possible with the original graph weights.
It is also possible to compute edge betweenness centrality
in a way that takes into account the original weight infor-
mation. For example, by looking into the path evaluation
function that assesses a path between two nodes that is com-
bining both the sum of edge weights and the number of
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shortest distance path as was proposed in [37]. Another pos-
sible direction is to solve a generalized Sylvester equation
which would incorporate both matrices corresponding to the
original weight information and the edge betweenness cen-
trality. Other future work includes expanding our approach
to address applications that include dynamic graphs and
multi-layer graphs, which would include solving Sylvester
equation with time-varying coefficients.
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A Appendix

The lower boundary of the curve enclosing the feasibility domain of the spreads (sg,z=(x), swze(x)), with respect to a
unit norm vector x € [%(G) is defined as

{ s e (SLoe) = min gwss(x) (16)
st groe(x) =spsrand xTx =1
To solve (16), we use the Lagrangian
L(x,8,7) = xIWBEx — g(xTLBEx) — y(xTx — 1) 17

with 8 € R. Differentiating and comparing to zero, we obtain the following eigenvalue problem:

(WHE — BLPF)x = yx (18)
where the eigenvector x solving (T8) is also a minimizer for (T6). Denoting

L(B) = WBE _ gLBE (19)

we can write the generalized eigenvalue problem using the matrix pencil f,( B)
L(B)x = yx (20)

The scalar 5 € R controls the trade-off between the total vertex and spectral spreads. When | 3| is large, the eigenvectors of
L5 (3) reveal structure which is similar to the eigenvectors of L2, while small values of | 3| produce structure which is
similar to those corresponding to WEE,

The analysis above yields the generalized graph Laplacian in Eq.(I8) whose solutions can be used for graph embedding.
One could use different scaling coefficients for the two matrix coefficients, thus giving different weight to the Laplacian and
affinity terms in the resulting embedding. The embedding (coined GSSE), obtained by solving Eq.(I9), is composed of
solutions to the generalized eigenvalue problem that characterize the relationships between these two quantities, specifically
the lower bound of their feasibility domain.

A.1 Node Embeddings using Total Vertex and Spectral Spreads (GSSE)

We present an additional embedding method which is based on the analysis in section 3.2 (Structural and local similarity
trade-off Via Total Vertex and Spectral Spreads) which derived the generalized Laplacian L in Eq.(8). In order to employ L
for analysis and practical considerations it is often useful to encode the network captured in L using a semi-positive definite
operator. For practical consideration, we transform L into a semi- positive definite matrix L A using a simple perturbation
matrix A, where A = pI, p = —Xo, Where \g is the smallest eigenvalue of L, and I is the identity matrix. Setting

LA=L+A 21

N
ensures that L is a semi-positive definite (SPD) matrix. Letting {)\Z} and {)\iA }J\il be the eigenvalues corresponding
i=1 =

toLand L, respectlvely, we can see that the choice made in 1} ensures that the original spacing in eigenvalues of Lis
preserved in La )\ — 2P = )\1+1 \;. The embedding method proposed using L A is coined Graph Spectral Spread
Embedding (GSSE). Note that there is a geometric interpretation that is related to the way I:( B) was obtained from the
lower boundary curve enclosing the feasibility domain D, ., ); Setting instead another perturbation matrix A = uI with
p = —A% and defining

q(8) = min(A(La(5))) (22)
where min(A\(La (8))) corresponds to the minimum eigenvalue of L . we have that
gw(x) — BgL(x) > q(B) (23)

which defines a half plane in Dy, su)-

Properties: The feasibility domain D, . is a bounded set since V(sy sz, swer) € D5 5y s

WBE) JSWBE)

0< spee < ABF and — MW7 < sywue < AW77 (24)

where )\WBEcorresponds to the largest eigenvalue of the affinity graph.



Shay Deutsch, Stefano Soatto

Table 3: Additional validation on the granular material datasets represented by irregular networks: we report p values, testing
the statistical significance of our model for detecting failed edges. The p values are computed using the hypergeometric
distribution.

Method /Network Mean deg. Mean deg. Meandeg. Meandeg. Meandeg. Mean deg.
(2.4) (2.6) (3.35) (2.55) 3) (3.6)
node2vec 1.9-107110"' 3.1072 34-1072 2-.107! 6.3-107* 5-1072
NetMF 8.101 8.101 7.3-107% 5.10°! 22-107% 24-107°
LE 7.4-1071 83-1072 25-107' 5-107! 5-1073 2-1072
L desc. 4.1071 7-1071 21-1072 5-1071 6.5-107% 7-.1071
WEE desc. 3.4-1071 6.1-107' 3.8-107% 99.10® 0.1-100% 34-10°!
St.(WEBE LBE) 2.4-1073 7.1-107* 3-1072 3.1072 4.1072 3.2.1072
GSE (Wave kernel) 2-10~* 26-1072 1-107! 4.107° 1.6-1073 29.1072
GSE (SGW) 1.7-1074 11074 5-107% 4.5-1072 3.1072 7-1072

(b)

Figure 5: Graph embeddings used for forecasting failed edges using t-SNE embedding (a) Contact network (yellow), which
is extracted from the force chains recorded in a 2D assembly of frictional photoelastic disks overlaid on the reconstructed
“pseudo-image" [[7]. (b) shows t-SNE visualization of edge embedding using the proposed Sylvester embedding. Points with
green color correspond to edges whose value is below the mean, and points with red color correspond to edges whose value
is above the mean. The blue enlarged dots correspond to the failed edges in the system which were successfully detected by
each method.

A.2 Forecasting failures edges: additional details and comparisons

We report additional experimental results on the granular material datasets [7]]. In all experiments, we used ¢; = 1, for
all ¢, ¢; corresponds to the coefficients in the wave kernel signature WKS. We used a fixed number of 800 scales ¢ and a
fixed and number of singular eigenvectors corresponding to the number of points. The experiments reported in Table 3]
test the statistical significance of each method by computing the p values using a hypergeometric probability distribution.
Specifically, the total number of edges corresponds to the total population size parameter in the hypergeometric distribution
with the feature that contains K failed edges, the size of the cluster is the number of draws and the number of observed
successes corresponds to the number of edges correctly classified as failed edges.

B Network Alignment

We report additional results and details on the problem of network alignment using the STRING network from the STRING
database. In the experimental results, we used all 332 human proteins known to interact with the Sars-Cov-2 as the
available node correspondence between the two networks we tested on network alignment. From the 18,886 nodes of the
String network we extract the 1000 nodes which correspond to the nodes with the largest diffusion scores and the 332
nodes corresponding to the human proteins known to interact with the Sars-Cov-2, based on the method suggested in [27].
Alignment is performed between two copies of the STRING network, where 10% and 20% edges were removed from the
sub-network consisting of a total of 1332 nodes. It is evident that graph embedding methods such as LLE and LE, which are
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Table 4: Network Alignment using the STRING network: percentage of nodes whose nearest neighbor corresponds to its
true node correspondence using GSE compared to Graph Embedding methods (using all 332 available correspondence).

Method/noisy edges percentage  10% 20%

LE [4] 538% -

LLE [34] 1.5% 1.3%
RL [46] 1% -

HOPE [32] 2% -
Isorank [36]] 41% 40 %
Final [44]] 582% 56.6%
iNEAT [45]] 63.8% 56.1%
GSSE 48 % 2021 %
GSE 76.4% 60%

rooted in manifold learning that is biased to local similarity and heavily relies on graph smoothness are not effective for this
task.

C The Sylvester operator

The discrete-time Sylvester operator S(X) = AXB — X is used to express the eigenvalues and eigenvectors of A and B
using a single operator S, where we solve
S(X)=C (25)

using C = I, (I € RV*¥ is the identity matrix), A = WBF B = LBE,

Proposition 2 Suppose that P € RV is a permutation matrix, A = PTAP, and B = PTBP, and assume that X, X
are two solutions to the discrete-time Sylvester equation Eq. (@) with the associated matrices A, B and A B, respectively,
and )\{JBEAJWBE # 1, Vi, j, then

X =P'XP. (26)

Proof: Given a permutation matrix P € ]RN *N let A = PTAP, and B = PTBP. Assume that X, X are two solutions to
the discrete-time Sylvester equation Eq w1th the associate matrices A, B and A, B, respectively, AXB — X =T and

AXB — X = I Next, note that PT APXPTBP — X = L. Since P is a permutation matrix, we have that P~! = P7 and
by multlplymg P and P” from the left-hand and right-hand sides, we obtain APXPTB-X =1 Denoting Y = PXP7,
since )\}‘ /\;NBE # 1, Vi, j, then X is a unique solution, hence we obtain that X =Y = PXPT.O

The resulting solution of X is described in the next Lemma below. Note that since A = W5 B = LB¥ we have A and
B that are diagonalizable, (with the matrices ®W ", ®L”°” corresponding to the associated eigenvectors of WBE LBE,
respectively).

Lemmal Let A,B, and C € RV*N in the Sylvester equation , with A = WBE B = LBE. Lt {ul}l]\;l,
{/\l};\il’ and {vl}llil, {m}lj\il be the corresponding eigenvectors and eigenvalues of A and B, respectively. Assume

that )\ZWBE )\JI-‘BE = 1Vi, j, and that the graph representation encoded in A and B have the same order based on the identity
map, ™ : A — B with m(A(:,7)) = B(:,4) for each i € V. Then, if C = 1, the solution X to the discrete-time Sylvester
system (23)) is

X =W (et )T 27)
(¢WBE )T¢/IT‘BE

where C; j =

)\YVBE )\LBE 1

Proof: Using A = W5P B = LB% we have that A and B are diagonalizable, A = (I>WBEA(<I>WBE)’1 and B =

@LBjé\(@VZjE)’l where AW"" = diag(/\YVBE,...,)\YVVBE) and AL”" = diag()\}‘BE, ...,)\kBE). Since the matrices
®W7" L7 are orthogonal, we have
(I)WBEAWBE ((I)WBE)TX(I)LBEALBE ((I)LBE)T _X_C (28)
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Multiplying by (<I>WBE)T and ®L”" we obtain

Setting C = (@W"")TX®L"" and using C = I, we have

AWPEEAETT € = (W) (e (30)

Since AW”” is a diagonal matrix, we have that the ith row of AW " CAL"" is ), times the ith row of CAL”" and since
AL isa diagonal matrix, then the ith column of AWPP AL is )\ZLBE times the ith column of AW " C. Combining
the two properties, we obtain that for the (i, j) entry

LBE \ WBF . N BE . 1,BE
FOANT GGy = (6 ) 95

A
(¢WBE)T¢LBE

-, with X = oW C(e¥"")T.0

hence: Cl,j = W
i J
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