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Abstract

Temporal models such as Dynamic Bayesian
Networks (DBNs) and Hidden Markov Models
(HMMs) have been widely used to model time-
dependent sequential data. Typically, these ap-
proaches limit focus to discrete domains, employ
first-order Markov and stationary assumptions,
and limit representational power so that efficient
(approximate) inference procedures can be ap-
plied. We propose a novel temporal model for
continuous domains, where the transition distribu-
tion is conditionally tractable: it is modelled as a
tractable continuous density over the variables at
the current time slice only, while the parameters
are controlled using a Recurrent Neural Network
(RNN) that takes all previous observations as in-
put. We show that, in this model, various infer-
ence tasks can be efficiently implemented using
forward filtering with simple gradient ascent. Our
experimental results on two different tasks over
several real-world sequential datasets demonstrate
the superior performance of our model against ex-
isting competitors.

1 INTRODUCTION

Temporal/sequential data modeling problems arise naturally
in a variety of applications from natural language processing
to time series prediction tasks in science and engineering.
In these problem domains, a natural task is to predict the
future, i.e., predict XT+1 given a sequence of observations
up to the present time, i.e., {Xt}Tt=1.

A wide variety of modeling approaches have been proposed
for this task ranging from classical approaches such as
Markov models, e.g., Markov chains, HMMs (Rabiner and
Juang, 1986), dynamic Bayesian networks (DBNs) (Mur-
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phy, 2002), and variants thereof (Touloupou et al., 2020;
Asghari et al., 2020; Li et al., 2019; Grzegorczyk, 2010;
Nasfi et al., 2020), to more modern approaches based on re-
current neural networks (RNNs) (Gregor et al., 2015), e.g.,
long short-term memory networks (LSTMs) (Hochreiter
and Schmidhuber, 1997) and gated recurrent units (GRUs)
(Bahdanau et al., 2014).

In Markov models, in order to make inference and learn-
ing tractable, the next observation is often assumed to be
dependent on only a small preceding window of time, e.g.,
XT+1 is independent of {Xt}T−1

t=1 given XT . This limits
the ability of these models to capture long-range dependen-
cies. Further, much of the work on Markov models focus
on the case of discrete random variables. When modeling
continuous variables is required, the resulting models are
often either limited to simple continuous exponential fam-
ilies for which inference can be done in closed form, e.g.,
multivariate Gaussians, or variational methods (Ranganath
et al., 2014) are used to approximate intractable integrals,
e.g., expectation propagation (Minka, 2013) in DBNs.

On the other hand, RNNs Hochreiter and Schmidhuber
(1997); Bahdanau et al. (2014) attempt to overcome the
finite time window assumption common in Markov models
by using internal state, potentially allowing them to handle
both long-term and short-term data dependencies. How-
ever, RNNs are purely discriminative, i.e., they do not yield
a model of the joint distribution over the entire sequence.
Therefore, they cannot jointly consider predictions over mul-
tiple time-steps. In particular, RNNs have limited ability to
handle more sophisticated prediction tasks in which the data
in each time slice may only be partially given, e.g., predict
the future given only partial observations of the present.

Our aim in this work is to build a general modeling frame-
work for continuous, temporal domains that combines RNNs
and Markov models in an effort to overcome their comple-
mentary limitations. Specifically, we make the following
contributions.

1. We propose a novel probabilistic representation in con-
tinuous, temporal domains that overcomes the finite
time window assumption. The transition distribution
we produce is conditionally tractable with parameters
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controlled using RNNs.

2. We explain how maximum a posteriori (MAP) infer-
ence can be performed efficiently in our model, which
allows our model to solve MAP prediction tasks for
queries involving variables across potentially all of
the time slices at the same time. This overcomes a
limitation of pure RNN solutions.

3. We evaluate the the performance of our model against
two competitive baseline models on a diverse collec-
tion of real-world sequential datasets under four dif-
ferent metrics through two different prediction tasks:
trajectory prediction and sequence completion. Our
experimental results demonstrate the superior discrimi-
native performance of our model.

2 RELATED WORK

The field of tractable probabilistic models (TPMs) and prob-
abilistic circuits (PCs) (Rahman et al., 2014; Liang et al.,
2017; Lowd and Domingos, 2008; Choi et al., 2020) seeks
to learn probabilistic models that admit polynomial time
exact inference algorithms for various reasoning tasks such
as computing the posterior marginal distribution over a sub-
set of variables given observations and finding the most
likely assignment to non-evidence variables. Recently, there
has been a growing interest in designing tractable models
more generally, and tractable temporal models specifically.
Murphy (2002) presents a technique called the interface
method for converting discrete dynamic Bayesian networks
(DBNs) to junction trees, and showed that when the number
of nodes in the interface between two time adjacent slices
is bounded by a constant, inference in DBNs is tractable.
Melibari et al. (2016) extended sum-product networks to
temporal domains using a template network that is unrolled
just like DBNs. Roy et al. (2021) proposed dynamic cutset
networks that use AND/OR conditional cutset networks to
model the transition distribution such that the joint model
stays tractable. Most of these works focus on discrete do-
mains. In addition, as discussed above, first-order Markov
and stationary assumptions are made in these models, which
limits their representational power and reduces the model’s
expressivity.

Several studies have explored the use of neural networks to
summarize historical information or generate parameters for
other models. For example, Shao et al. (2020), Thoma et al.
(2021), and Dong et al. (2022) use neural networks to gen-
erate parameters. However, when applied to the temporal
domain, these models still require the use of the first-order
Markov assumption, which limits their ability to express
complex relationships. An alternative approach is to use re-
current neural networks as an aggregation function in Graph
Neural Networks Zhou et al. (2020) to summarize historical
information, and then use the latter to model sequential data.

However, these models are discriminative and have the same
limitations as RNNs. Liu et al. (2020) show that Gaussian
processes (GPs) provide another option for modeling se-
quential data. However, GPs only model the uncertainty
over the output, and most existing works focus on a single
or a small number of response variables.

Our work differs from these previous works in several ways.
First, we propose a new probabilistic framework for rep-
resenting and reasoning about uncertainty in continuous
sequential domains. Second, we explore different tractable
densities and neural network architectures for generating
the parameters of the underlying probabilistic model. Fi-
nally, our model is generative and is designed to handle long
multivariate sequences with a large number of variables.
In particular, it can capture both long-term and short-term
dependencies by harnessing the power of RNNs, without
requiring the first-order Markov and stationary assumptions.
We believe that generative models are more promising for
complex sequential prediction tasks since they can infer the
missing information jointly using both historical and future
observations.

3 OUR MODEL

In this section, we introduce our proposed dynamic model
and its architecture. In what follows, we will use bold up-
percase letters to denote a set of random variables, e.g., X ,
while a single random variable is denoted using uppercase
letters, e.g., A. Instantiations (configurations) of random
variables are denoted by lowercase letters. For example, x
is a possible configuration of all variables in X and a is
a possible value that the random variable A can take. For
random variables that evolve over time, we use {Xt}Tt=1 to
denote the sequence of (sets of) random variables generated
by evolving X from time step 1 to time step T . All random
variables considered in this paper are assumed to be defined
over the real domain R unless otherwise noted.

3.1 Model Architecture

Given a sequence of random variables {Xt}Tt=1, their joint
distribution p({Xt}Tt=1) can be factorized using the chain
rule as follows.

p({Xt}Tt=1) = p(X1)

T∏
t=2

p(Xt|X1, . . . ,Xt−1)

As the transition distribution p(Xt|X1, . . . ,Xt−1) be-
comes increasingly difficult to model as the time t → ∞,
existing works often simplify the transition distribution as
p(Xt|Xt−1) using first-order Markov and stationary as-
sumptions. However, such assumptions can hurt the model’s
representational power especially when the sequential data
has long-term dependencies. In this work, we directly
model the full transition distribution p(Xt|X1, . . . ,Xt−1)
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by combining Recurrent Neural Networks (RNNs) with
Probabilistic Graphical Models (PGMs).

Modern RNNs such as Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and Gated Recurrent
Units (GRUs) (Bahdanau et al., 2014) maintain a hidden
state ht that preserves all important information up to time
t. Specifically, ht is computed based on the previous hidden
state ht−1 and input Xt−1, i.e., ht = RNN(ht−1,Xt−1).
As a result, ht depends on all {Xi}t−1

i=1 as well as a special
input h1, which is the initial hidden state 1.

Based on this observation, we model the full transition dis-
tribution as a continuous density over just the current time
slice Xt with parameters controlled by a generating func-
tion g taking ht as its input, i.e.,

p(Xt|X1, . . . ,Xt−1) = p(Xt|θt = g(ht)).

Note that the choice of distribution p should be (nearly)
tractable such that maximum-a-posteriori (MAP) and filter-
ing inference can be performed in an efficient way. The
generating function, g, can be learned from data using any
regression method. In this work, we will use a neural net-
work (NN) to learn g for the following reasons: (1) NNs are
very expressive and (2) NNs can be easily stacked on top
of RNNs, which allows the whole model to be trained in an
end-to-end fashion.

Figure 1 shows the detailed architecture for generating the
parameters θt. It is mainly composed of an RNN and an out-
put NN block used to learn the generating function g. The
RNN block takes all previously observed evidence {Xi}t−1

i=1

as input and repeatedly updates its hidden state, ht. As a re-
sult, ht contains all information about previous time slices,
and we can treat this as a feature vector that summarizes the
sequence {Xi}t−1

i=1 . Note that any existing RNN structure
can be used here, e.g., LSTMs and GRUs. It is also possible
to stack multiple layers of RNNs and to take advantage of
future RNN models in our framework.

The output block in Figure 1 takes in the hidden state ht

from the RNN and treats it as a feature vector representing
{Xi}t−1

i=1 . Following Dong et al. (2022), we use multiple
small headers and each of them is responsible for predicting
only a subset (group) of parameters. Compared to using a
single giant header (best efficiency) or one head for each pa-
rameter (most expressive), such a configuration strikes a bet-
ter balance between representational power and efficiency.
Finally, we simply concatenate all subsets of parameters and
output the predicted θt. Note that the detailed configuration
of those headers depends on the continuous density we pick
as well as how we divide parameters into groups.

In this paper, we will consider two possible choices of con-
tinuous densities, Gaussian Bayesian networks and mix-
tures of independent Gaussians, but similar ideas can be

1The initialization is typically a zero vector; though it may vary
depending on the deep learning framework used.
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Figure 1: The neural architecture for generating the parame-
ters θt of the transition distribution p(Xt|θt).

applied into other densities as well. In particular, we con-
sider Gaussian Bayesian Networks (GBNs) (Grzegorczyk,
2010) where the conditional distributions are modeled using
conditional linear Gaussians (CLGs). This model is fully
tractable even if the underlying graph structure is not a tree
(Koller and Friedman, 2009). Each node (variable) xi in a
GBN has three types of parameters: (1) a standard deviation
σi > 0, (2) a bias bi, and (3) a weight vector wi. We first
create two headers to predict all standard deviations {σi}
and biases {bi}, respectively. Then, we create one header
for each weight vector wi. Note that the total number of
headers is linear in the number of variables n = |X|, but
in the most general case, the total number of parameters
can grow quadratically in n. In order to avoid this poten-
tial quadratic dependence on n, we restrict the number of
parents of each node to a constant k. In addition, for the
header that predicts {σi}, we clip the output with a prede-
fined threshold t > 0 to ensure all standard deviations are
strictly positive (and thus we get a valid Gaussian density).

The second continuous density we consider is mixtures of
independent multivariate Gaussians. This distribution is not
fully tractable in general, but it admits efficient and almost
exact inference in practice. Specifically, MAP inference can
be done by conducting several iterations of gradient ascent
starting from the mean of each component. In the case of
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marginal MAP inference, we just need to marginalize each
component first and then conduct MAP inference on the
mixtures of marginals. For a mixture with k components,
the parameters we need to estimate are the mean vectors
{ui}, a standard deviation vector {σi} for each of the com-
ponents, and a vector of mixture weights w of size k, which
controls the relative importance of each component. The
configuration of headers in this case is quite straightforward.
We create one header for each of the parameter vectors
σi,µi,w. So, the total number of headers is 2k + 1. Simi-
larly, we will use a predefined threshold to guarantee that σ
and w are greater than zero. In addition, we normalize the
mixture weight vector w such that its components sum to
one.

3.2 Learning

Since the parameters of our model are controlled by the
neural architecture shown in Figure 1, our objective is to
learn such a neural network given N sequences {{Xt =
xt}Ti

t=1|i = 1, 2.., N} with different lengths, the ith se-
quence has length Ti. Note that the prior distribution p(X1)
is represented as a special transition distribution p(X1|X0),
where X0 is the zero vector. In other words, the prior dis-
tribution is also learned from our neural architecture and is
represented in the same way as the transition distributions.
As we will see in later sections, this simplifies the inference
procedure and makes the optimization process elegant and
efficient.

We use the Adam optimizer from PyTorch Paszke et al.
(2019) to train the whole neural network (the detailed con-
figuration can be found in Section 4). For a given sequence
{xt}Tt=1, we feed {xt}T−1

t=1 along with x0 to the neural net-
work and use the output parameters {θt}Tt=1 to evaluate the
negative sequence loglikelihood of the sequence, i.e.,

L({xt}Tt=1) = −
T∑

t=1

log p(xt|θt = g(ht)) (1)

It should be noted that the neural network is trained using
mini-batch. We use the above equation to calculate the loss
of each sequence in the batch and sum it together. After that,
the parameters are updated by conducting back propagation
through the entire network.

3.3 Inference

In this work, we evaluate the learned model’s discriminative
performance via a general MAP prediction task in sequential
domains. Formally, we define a partially observed sequence
as {Xt}Tt=1 = {Y t,Et = et}Tt=1, where Et are the ob-
served/evidence variables with observed values et. The Y t

are unknown and the inference task is to predict them based
on the evidence, i.e., by maximizing the sequence likelihood.
Note that the observed variables Et may be different at each

Algorithm 1: Inference algorithm for MAP task
Input: (1) a partially observed sequence with T time

slices {Xt}Tt=1 = {Y t,Et = et}Tt=1 ; (2) a trained
RNN and generating function g; (3) max number of
iteration allowed for gradient ascent nIter; (4)
learning rate lr.

Output: the original sequence with Y t predicted, i.e.,
{Y t = yt,Et = et}Tt=1.
x0 ← 0 ;
h0 ← 0 ;
t← 1 ;
while t ≤ T do

ht ← RNN(ht−1,xt−1) ;
θt ← g(ht) ;
Conduct MAP inference to get the best estimation
yt ∈ argmaxy p(y, et|θt) ;

xt ← (yt, et) ;
t← t+ 1 ;

end
Fix all parameters inside RNN and function g ;
Set {yt}Tt=1 as the parameter to optimize ;
i← 1 ;
while i ≤ nIter do

Evaluate the negative loglikelihood loss L using
equation (1), respect to sequence {yt, et}Tt=1 ;

Back propagate the loss L and calculate the
gradient yt

g respect to all yt ;
Update yt ← yt − lr · yt

g ;
i← i+ 1 ;

end
Return the predicted sequence {yt, et}Tt=1 ;

time slice, with possibly no observations for a given slice t,
in which all variables Xt = Y t must be inferred.

This task contains the typical one-step future prediction
as a special case, e.g., predict all of slice t given all of
the preceding time slices, as well as longer time horizon
predictions, e.g., predict the next k time steps of a sequence
{xt}Ti

t=1 (also known as the trajectory prediction problem).
This is done by creating a partially observed sequence of
length T + k where all variables up to current time T are
observed and all variables after T are unknown, i.e.,{

Y t = ∅,Et = xt, ∀t ≤ T

Y t = Xt,Et = ∅, ∀t > T
.

For this task, we propose the two phase inference algorithm
shown in Algorithm.1. In the first phase, we conduct local
MAP inference step by step from the beginning to the final
time slice. In each step, we predict the best estimation of
Y t = yt for the current time slice, and the predicted values
yt are used for subsequent MAP inference. All predictions
generated in this fashion are locally optimal – only the
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Table 1: The train and test size, number of variables, average
length and type of all datasets (after pre-processing).

Name #Train #Test #Var. Len. Type
japanvowels 270 370 12 16 Audio
arabicdigit 6599 2200 13 40 Speech

finger-movement 316 100 28 50 EEG
lsst 2384 2387 6 36 Other

face-detection 2933 996 144 62 EEG
natops 180 180 14 51 HAR

heartbeat 176 183 61 405 Audio
word-recognition 275 300 9 144 Motion

wing-beat 8122 511 199 8 Sensor
brown 6004 1502 100 22 NLP

conll2000 1598 400 100 16 NLP

evidence from previous time slices are used for each new
prediction.

In the second phase, we conduct gradient ascent over the
sequence loglikelihood to jointly optimize the predictions of
all variables of interest {Y t}Tt=1. This optimization process
can be conducted in a very efficient and elegant way. Recall
that the loss function for training the neural architecture was
the negative sequence loglikelihood, which means we can
treat the gradient ascent process as “training” the network
using just one sequence. The only difference is that the pa-
rameters of the neural networks are now fixed, and we treat
the input {Y t}Tt=1 as the parameters in the optimization
process. The whole inference procedure is efficient since
(1) the continuous density is (nearly) tractable and (2) the
gradient ascent process is equivalent to training the model
using only one sequence.

4 EXPERIMENTS

In this section, we demonstrate the practical performance
of our model against other existing competitors through
three sets of experiments: trajectory prediction, sequence
completion and comparison of generative performance.

We used nine real-word sequential datasets from the Time
Series Classification Repository (William, 2021). We se-
lected different types of datasets in order to ensure that
we have diversity in terms of sequence length, number
of sequences and number of features. In addition, we
also considered two natural language processing (NLP)
datasets: Brown Corpus (Francis and Kucera, 1979) and
conll2000 (Sang and Buchholz, 2000). For these datasets,
we treated each sentence in the corpus as a time series, and
used a pre-trained Glove word embedding model (Penning-
ton et al., 2014) to convert each word into a 100-dimensional
vector.

We pre-processed all 11 datasets by first removing sequences
whose lengths were less than seven. After that, following

Uria et al. (2016), we removed one of the features from ev-
ery pair of features whose Pearson correlation coefficient is
greater than 0.98. All datasets were normalized by subtract-
ing the mean and then dividing by the standard deviation.
The detailed information of each sequential dataset after
pre-processing is shown in Table. 1. Note that for the last
two NLP datasets, the train/test split is not defined from the
data source, and we randomly chose 80% of the sequences
for the training split and the remaining sequences were used
to form the test split. We additionaly set aside 20% of the
training instances for validation purposes.

We considered two strong NN-based competitors along with
two variants of our model in the experiments.

1. NN-GBN: a strong generative baseline model in which
the transition distribution is modeled as a Gaussian
Bayesian Network (GBN) and Parameter Generation
Neural Networks (PGNNs) (Dong et al., 2022) are
used to control the parameters of the GBN. Note this
model makes two assumptions that are standard in tem-
poral domains: the first-order Markov and stationary
transition distribution assumptions.

2. GRU: a strong discriminative baseline model that
uses Gated Recurrent Units (GRUs) (Bahdanau et al.,
2014) to predict the next state given all previously
observed states. Compared to Long-Short Term Mem-
ories (LSTMs) (Hochreiter and Schmidhuber, 1997),
GRU is more efficient to train and often achieves com-
parable or better performance (Chung et al., 2014).

3. GRU-GBN: a variant of our model where we use GRU
as the RNN block (see Figure 1) and GBNs as the
underlying template continuous density.

4. GRU-IndMGx3: a variant of our model where the
underlying continuous density is replaced with a three-
component mixture of multivariate Gaussians with di-
agonal covariance matrices.

Note that for the NN-GBN and GRU-GBN models, each
node (random variable) inside the GBN is restricted to have
up to 5 parents to ensure that these two models scale lin-
early in the dimension of the datasets, which allows them to
handle large datasets like wingbeat efficiently.

We evaluated the discriminative regression performance of
the above models using three standard regression metrics
implemented in scikit-learn (Pedregosa et al., 2011): Mean
Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE) and Median Absolute Error (MdAE).

In addition, we are also interested in how well the predicted
values can be used to make decisions (Bi and Bennett, 2003).
In such cases, we only care about whether the predicted
values are within some error threshold of the true value and
the absolute difference is ignored. For example, consider
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Table 2: Trajectory prediction performance of our models (GRU-GBN, GRU-IndMGx3) against NN-GBN, GRU on eleven
real-world sequential datasets under MAPE, MAE, MdAE and MREC metrics (Best results and results within 5% deviation
to the best are marked in bold).

Metric Model japanvowels natops fingermov. lsst wordrec. conll2000 arabicdigit heartbeat facedetect wingbeat brown

MAPE

NN-GBN 1.540 3.170 3.860 2.747 1.148 1.490 3.493 3.729 4.597 17.917 2.129
GRU 2.331 3.009 1.571 8.939 0.870 1.753 3.322 3.536 5.979 14.130 1.674

GRU-GBN 1.520 1.242 1.399 3.238 0.771 2.178 4.058 3.535 4.882 17.505 2.540
GRU-IndMGx3 1.493 1.730 1.841 2.296 0.899 4.367 3.473 3.222 6.659 2.323 4.522

MAE

NN-GBN 0.262 0.156 0.316 0.413 0.286 0.803 0.528 0.356 0.548 0.274 0.820
GRU 0.224 0.109 0.153 0.472 0.226 0.797 0.464 0.298 0.512 0.207 0.794

GRU-GBN 0.232 0.100 0.130 0.425 0.212 0.838 0.499 0.358 0.518 0.251 0.835
GRU-IndMGx3 0.226 0.097 0.207 0.416 0.219 0.976 0.467 0.341 0.542 0.205 0.939

MdAE

NN-GBN 0.215 0.124 0.261 0.274 0.189 0.665 0.430 0.228 0.415 0.103 0.682
GRU 0.179 0.080 0.123 0.347 0.145 0.663 0.379 0.199 0.386 0.071 0.655

GRU-GBN 0.185 0.077 0.099 0.282 0.128 0.705 0.409 0.236 0.389 0.091 0.694
GRU-IndMGx3 0.182 0.075 0.113 0.261 0.119 0.800 0.377 0.214 0.413 0.066 0.747

MRAR

NN-GBN 8.714 16.497 6.742 21.048 11.094 2.626 4.365 12.851 4.835 20.902 2.497
GRU 10.532 21.651 13.544 11.147 14.160 2.615 5.129 12.518 4.798 26.576 2.684

GRU-GBN 10.410 23.398 16.762 22.501 16.129 2.452 4.649 11.366 4.738 23.177 2.446
GRU-IndMGx3 10.342 24.022 14.862 23.466 17.197 4.212 5.191 14.055 4.337 27.959 6.006

Figure 2: Average relative performance (the higher, the
better) of each model against NN-GBN over all datasets for
each metric, in the trajectory prediction task.

a temperature prediction scenario where we use a model
to predict the temperature of the next day given previous
days’ temperatures. Suppose that a person will go out for
fun only if the temperature is below 90◦F. Assume that
the true temperature is 100◦F, and therefore, any predicted
temperature that is within a 10% error threshold of the true
value will not affect the decision to go out.

None of the above standard error metrics reflect the correct-
ness of the model when used as part of a decision-making
processes based on thresholds. To assess this, we added one
more evaluation metric based on Regression Error Charac-
teristic (REC) curves proposed by Bi and Bennett (2003).
These curves are similar to Receiver Operating Characteris-
tic curves Hanley and McNeil (1982) that are widely used
for assessing the performance of classification algorithms.
Specifically, the REC curve is calculated as follows. For a
given error threshold p, it first calculates r as the ratio of pre-
dicted values that fall into an interval centered at true value t
with a width of 2p. By varying the threshold p and calculat-

ing the corresponding ratio r, we can obtain an REC curve
formed by points {(pi, ri)}. This curve is strictly increasing
and the area under the REC curve can serve as an indicator
of the model’s decision performance. In our evaluation, we
will refer to this area as the Mean Regression Error Charac-
teristic (MREC) score. In the following experiments, as we
are more concerned about relative errors, we will consider
error thresholds from the set {5%t, 10%t, ..., 50%t} where
t is the true value of the variable.

All models are implemented using Pytorch (Paszke et al.,
2019) and trained using the Adam optimizer for a fixed
number of epochs (120). As for hyperparameter tuning,
we employ Optuna (Akiba et al., 2019) to conduct efficient
and intelligent search over the hyperparameter space for 50
trials where the objective is defined to minimize the loss
on the validation set. The hyperparameters we consider
and their respective proposal distributions are: (1) drop out
probability from a uniform distribution over the interval
[0, 0.4]; (2) maximum learning rate from a log-uniform
distribution over the interval [10−4, 5× 10−2]; (3) hidden
size for GRU (feature size for NN-GBN) from a uniform
distribution over the interval [2D,min(8D, 103)], where
D is the dimension of the dataset, and (4) weight decay
from a log-uniform distribution over the interval [10−4, 1].
The best hyperparameters found for each model under each
dataset can be found in the Appendix B.

All experiments were conducted on a workstation with a
16-core Intel Xeon Gold 6130 CPU and two Quadro P5000
GPUs. The datasets and code used in the experiments is
publicly available on GitHub 2.

2https://github.com/LeonDong1993/Probabilistic RNN
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Figure 3: Regression Error Characteristic (REC) curve of four models on lsst, conll2000 and wingbeat datasets for the
trajectory prediction task.

4.1 Trajectory Prediction

In this set of experiments, we consider the trajectory predic-
tion problem where we aim to predict the next few states
based on what we have observed so far. Specifically, for
each sequence in the test set, we manually mask the last
three observed states and ask the above models to predict
those states given all previous states as input.

We evaluated the performance of each model under each
metric for all of the datasets. We present the full results in
Table 2 and summarize these results by calculating the aver-
age relative performance of four models against NN-GBN
over all datasets, under each evaluation metric. Specifically,
the relative performance of a model M under metric C is
calculated as the performance of M on metric C divided
by the performance of NN-GBN on metric C. If smaller
values are better for a given metric C, we invert the result so
that higher relative performances are always better. Figure
2 shows the summarized results.

Observe, first, that our models can achieve comparable or
better performance than both the NN-GBN and GRU base-
lines. On the one hand, when compared to NN-GBN, it
is not surprising that our GRU-GBN model is always bet-
ter since it models the full transition distribution (in fact,
NN-GBN can be treated as a special case of our model).
As for the GRU-IndMGx3 model, it achieves significant
performance boost to NN-MG except for MAPE metric
and we found this is caused by some overfitting on two
NLP datasets. On the other hand, compared to GRU, we
can achieve comparable performance in terms of MAE and
MdAE metric and significant better results for both MAPE
and MREC metric. This is not trivial since GRU is a dis-
criminative model that is tailored for this task while ours
are generative models designed for general inference tasks.
Nevertheless, one of the advantages of being generative
is that we can consider all three future states together and
optimize them jointly over the whole distribution, which
explains the competitive results of our models.

Second, if we consider the performance of each model over
all metrics, NN-GBN underperforms the other models in
most cases. This is likely because the first-order Markov
and stationary assumptions used in the model are not satis-
fied on average across the data sets – given the diversity of
our datasets, the average performance of NN-GBN is heav-
ily hurt by those sequential datasets that have long-range
dependencies.

Last, the GRU model has inferior performance on the rel-
ative measures (i.e., MREC, MAPE). On the contrary, our
models tend to exhibit superior performance on relative
measures, especially MREC. These observations reveal an
important difference between our models and GRU: the ratio
of predictions that are within a fixed error threshold of their
true value always appears to be higher under our models.
Heuristically, as the MAE of the different methods tends to
be quite close, this means that our models tend to produce
predictions that are often quite close to the true value but
in rare instances our model can yield very poor estimates.
In contrast, the predictions generated by GRU are neither
particularly close nor particularly far from the true value. To
illustrate this, we show the REC curve of all models for lsst,
conll2000 and wingbeat datasets in Figure 3 (visualizations
for other datasets can be found in the Appendix A). As we
can see, our models have much higher chance to generate
accurate predictions compared to the NN-GBN and GRU
models, especially when the error threshold is small.

In short, although GRU is a discriminative model tailored
for this task, our generative models can still achieve compa-
rable or better performance on standard error metrics such
as MAE while yielding a higher chance to give predictions
within a fixed relative error compared to the two competi-
tors.

4.2 Sequence Completion

In this experiment, we consider a scenario in which the
sequence can have missing entries at each time step. In prac-
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Table 3: Sequence completion performance of our models (GRU-GBN, GRU-IndMGx3) against NN-GBN, GRU on eleven
real-world sequential datasets under MAPE, MAE, MdAE and MREC metrics (Best results and results within 5% deviation
to the best are marked in bold).

Metric Model japanvowels natops fingermov. lsst wordrec. conll2000 arabicdigit heartbeat facedetect wingbeat brown

MAPE

NN-GBN 1.162 2.210 1.812 2.651 1.051 3.780 8.118 12.746 3.989 29.255 2.545
GRU 1.238 1.628 1.210 5.219 1.195 2.097 8.097 7.390 4.911 7.472 1.682

GRU-GBN 0.999 1.086 0.822 3.044 0.902 3.451 5.189 15.682 4.875 21.482 3.078
GRU-IndMGx3 1.038 1.312 1.183 6.739 0.840 3.346 4.430 12.925 5.514 5.823 2.570

MAE

NN-GBN 0.189 0.159 0.224 0.430 0.195 0.773 0.384 0.246 0.514 0.397 0.767
GRU 0.224 0.124 0.162 0.504 0.209 0.776 0.436 0.265 0.499 0.322 0.777

GRU-GBN 0.158 0.089 0.122 0.445 0.153 0.770 0.347 0.241 0.480 0.356 0.755
GRU-IndMGx3 0.196 0.101 0.166 0.480 0.196 0.726 0.360 0.235 0.479 0.324 0.704

MdAE

NN-GBN 0.146 0.114 0.167 0.271 0.104 0.625 0.291 0.144 0.386 0.157 0.614
GRU 0.173 0.087 0.127 0.353 0.119 0.637 0.346 0.167 0.377 0.066 0.640

GRU-GBN 0.116 0.059 0.089 0.267 0.080 0.620 0.261 0.140 0.353 0.124 0.603
GRU-IndMGx3 0.144 0.067 0.106 0.283 0.078 0.569 0.276 0.136 0.353 0.074 0.541

MREC

NN-GBN 12.560 17.873 10.452 19.890 17.907 2.809 6.445 15.278 5.005 15.051 2.929
GRU 10.956 20.975 13.269 11.175 16.040 2.723 5.367 13.212 4.882 24.147 2.736

GRU-GBN 15.836 27.283 18.131 20.196 21.312 2.839 7.444 14.897 5.196 17.435 2.987
GRU-IndMGx3 14.604 27.022 16.334 18.385 21.941 6.130 7.054 15.456 5.050 23.198 8.487

Figure 4: Average relative performance (the higher, the
better) of each model against NN-GBN over all datasets for
each metric, in the sequence completion task.

tice, these types of queries can arise for a variety of reasons
such as equipment malfunctions, measurement failures, data
corruption, human errors, etc. Our task is to complete those
missing entries using their most probable values: in this
task, we are trying to predict the values using evidence from
both previous and future time slices. Recall that GRU mod-
els are not able to make predictions if part of the variables
are not observed in the previous time slices. Therefore, in
order to fill out all missing values, we use GRU to predict
the missing variables starting from the first time slice and
moving forward. Note that, as future information is not used
in the prediction, estimates produced by GRU in this way
are likely to be suboptimal.

We conducted a simulation experiment to evaluate the mod-
els’ sequence completion performance by randomly remov-
ing 50% of the variables in the last ten time slices of each
sequence in the test set. As before, we present the full
results in Table 3 and summarize the average relative perfor-
mance of all models against NN-GBN over all 11 datasets

in Figure. 4. We also visualized the REC curve of sequence
completion task for all datasets in Appendix A.

In this task, our models are able to achieve significantly
better results compared to both NN-GBN and GRU models,
in almost every metric. There is one exception to this general
observation: the GRU-IndMGx3 model has slightly worse
MAPE compared to GRU, and this, again, appears to be
the result of the overfitting issue discussed in the previous
section. Furthermore, we observed that the performance of
GRU has no improvement over the NN-GBN model if we
jointly consider all four metrics, despite the fact that NN-
GBN only models the one-step simple transition distribution.
The poor performance of GRU is not surprising because one
of the strengths of the statistical models is that they admit
a joint inference procedure over all of the query variables
while GRU does not have such a feature. Specifically, as the
GRU model is trained for the discriminative task, it can only
use past evidence to predict the missing values in current
time slice and use these estimated results to produce further
predictions.

4.3 Comparison of Generative Performance

We compared the generative performance of our models
with the NN-GBN baseline model using the average log-
likelihood of the test-set sequence. The detailed results on
each dataset are presented in Table 4.

We observed that both of our models achieved higher test-
set log-likelihood compared to the baseline, which is not
surprising. Specifically, the RNN-IndMGx3 model outper-
formed all others or achieved similar results in 9 out of the
11 cases, while the RNN-MG model performed the best or
similarly in 4 out of 11 cases. This indicates that our models
are capable of handling long-term dependencies and capture
more complex dynamics inside the sequence.
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Moreover, we found that the RNN-IndMGx3 model had
significantly higher log-likelihood compared to the other
two models. This is likely because the RNN-IndMGx3
model is more expressive than the RNN-MG model and can
easily handle multi-modal distributions.

Table 4: Average test-set loglikelihood achieved on each
dataset for our models against NN-MG (best and results
within 5% deviation to the best are marked in bold).

Dataset NN-MG RNN-IndMGx3 RNN-MG
japanvowels -1.1016 0.6254 1.2994

natops -2.6976 7.2336 5.6073
fingermovement -3.2159 9.1962 12.3232

lsst -2.9415 1.3694 -0.4
wordrecognition 1.5606 3.6882 2.6556

conll2000 -137.9127 -114.2535 -139.2675
arabicdigit -9.2131 -8.1424 -8.1398
heartbeat 2.2209 11.4525 0.2584
facedetect -174.5454 -155.2994 -158.5556
wingbeat -235.3982 -57.2524 -203.3685

brown -137.1666 -103.0166 -136.5463
Average -63.67 -36.76 -56.74

5 DISCUSSION AND CONCLUSION

In this work, we developed a flexible modeling framework
for continuous temporal domains that combines PGMs and
RNNs in a way that overcomes the primary weaknesses
inherent in each approach. We demonstrated the superior
discriminative performance of our framework through two
different prediction tasks on a variety of datasets. In particu-
lar, we found that (1) although our models are generative,
we can achieve comparable or better performance than dis-
criminative models such as GRU; (2) the first order Markov
assumption can hurt a model’s generative as well as discrim-
inative performance, especially on sequential data with long
term dependencies, and (3) our models tend to give highly
accurate predictions in most cases, which makes our model
ideal for scenarios in which decisions are made based on
thresholding the predicted values.

One of the main limitations of our model is that, it is not
tractable when evaluating the likelihood of a partially ob-
served sequence as inference in this case involves a high
dimensional integral over the neural network functions. One
possible approximation method is to use particle filtering
to generate a set of samples for the missing variables and
use those samples to estimate the integral. Another minor
issue is that our model contains several hyperparameters that
require some tuning effort. However, compared to modern
deep neural networks, our architecture is typically small and
the longest training time for all datasets we discussed in
this paper is less than 25 minutes on a low-end GPU. More
detailed training and inference time of all models under each
dataset is included in the Appendix C.

In future work, we hope to explore applications of this
approach to spatio-temporal data as well as to investigate
the performance of a larger variety of RNN architectures
and tractable continuous densities. In addition, we are also
interested in adapting this framework for temporal models
with hidden variables/missing data at training time.
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A Extra Visualizations of Regression Error Characteristic (REC) Curve

As discussed in the experiment section, our models tend to produce predictions that are often quite close to the true value
but in rare instances our model can yield very poor estimates. In contrast, the predictions generated by GRU are neither
particularly close nor particularly far from the true value. We illustrate the REC curve of our models against GRU and
NN-GBN on all of datasets for both trajectory prediction and sequence completion task in Figure.5 and Figure.6, respectively.
As we can see, our models have much higher chance to generate accurate predictions compared to the NN-GBN and GRU
models, especially when the error threshold is small.

Figure 5: Regression Error Characteristic (REC) curve of four models on 11 real-world sequential datasets for trajectory
prediction task.
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Figure 6: Regression Error Characteristic (REC) curve of four models on 11 real-world sequential datasets for sequence
completion task.
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B Best Hyper-Parameters Found for All Models and Datasets

In our study, we used Optuna Akiba et al. (2019) to fine-tune the hyperparameters of our models. Optuna is an automated
hyperparameter optimization framework that uses a sequential model-based optimization (SMBO) algorithm to explore
the hyperparameter space efficiently. One of the main advantages of using Optuna is that it can find good hyperparameters
quickly and efficiently, even for complex models with many hyperparameters.

The best hyperparameters discovered for each model under all datasets are presented in Table 5. It is worth noting that,
in our case, the values for the drop rate, learning rate, and weight decay can be any arbitrary continuous number. This is
because Optuna automatically searches for the best value within a given interval, which is different from traditional grid
search where the set of values are predetermined. By leveraging Optuna’s efficient and effective search algorithm, we
were able to identify the optimal hyperparameters for our models in a timely and automated manner, leading to improved
performance on the test set.

Table 5: Best hyper parameters found for all models and datasets.
Dataset Model Hidden/Feature Size Drop Rate Learning Rate Weight Decay

japanvowels

NN-MG 72 0.015719 0.009861 0.000200
RNN 72 0.070386 0.002603 0.000136

RNN-IndMGx3 72 0.056716 0.002332 0.002720
RNN-MG 96 0.036241 0.004912 0.021372

natops

NN-MG 112 0.035675 0.009490 0.000383
RNN 112 0.137134 0.006485 0.000125

RNN-IndMGx3 84 0.027134 0.010418 0.001549
RNN-MG 112 0.024404 0.002890 0.002322

fingermovement

NN-MG 168 0.244687 0.012035 0.002450
RNN 168 0.031809 0.007291 0.000122

RNN-IndMGx3 224 0.048307 0.004367 0.000796
RNN-MG 168 0.018321 0.003374 0.001363

lsst

NN-MG 48 0.051760 0.011565 0.000208
RNN 48 0.069321 0.006024 0.000211

RNN-IndMGx3 48 0.020662 0.015836 0.000301
RNN-MG 36 0.047935 0.021818 0.000215

wordrecognition

NN-MG 72 0.018344 0.013527 0.000156
RNN 18 0.006405 0.028050 0.000189

RNN-IndMGx3 72 0.023400 0.014779 0.000181
RNN-MG 54 0.002958 0.020209 0.001340

conll2000

NN-MG 400 0.116993 0.000261 0.329768
RNN 200 0.060404 0.001736 0.000165

RNN-IndMGx3 400 0.330103 0.006267 0.004380
RNN-MG 200 0.280500 0.007497 0.018540

arabicdigit

NN-MG 104 0.032135 0.016248 0.000233
RNN 104 0.000349 0.001478 0.000172

RNN-IndMGx3 104 0.108671 0.003683 0.000315
RNN-MG 104 0.035049 0.002076 0.001295

heartbeat

NN-MG 244 0.236493 0.009757 0.000498
RNN 366 0.276080 0.001106 0.000162

RNN-IndMGx3 122 0.100064 0.009874 0.004329
RNN-MG 488 0.016831 0.002614 0.043031

facedetect

NN-MG 864 0.132928 0.020272 0.002454
RNN 576 0.190621 0.003568 0.000104

RNN-IndMGx3 576 0.346137 0.004688 0.007418
RNN-MG 576 0.235544 0.002761 0.008861

brown

NN-MG 800 0.175577 0.000207 0.104149
RNN 800 0.010860 0.001171 0.000114

RNN-IndMGx3 200 0.163857 0.005269 0.001261
RNN-MG 400 0.223694 0.047403 0.007399

wingbeat

NN-MG 398 0.353549 0.007781 0.029734
RNN 398 0.154231 0.000418 0.000101

RNN-IndMGx3 398 0.297048 0.010332 0.000299
RNN-MG 796 0.274634 0.003165 0.005794
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C Training and Inference Time for All Models and Datasets

We present the training time (including hyper parameter tuning) and inference/prediction time spent for each model under all
datasets in Table. 6. Specifically, the training time is measured in minutes, representing the time spent after 50 trials using
Optuna. The inference time, measured in seconds, is the total prediction time on 300 test samples. It should be noted that
the training and inference time heavily depend on the hyper-parameters, particularly the hidden/feature size of the model.
Thus, tuning time can be highly biased if Optuna tries more hyper-parameters with large hidden/feature size. The same
applies to inference time if the best parameter found has high hidden/feature size.

We have the following observations. First, RNN is the fastest model for both training and prediction. This is because it is a
discriminative model and it doesn’t need ‘inference’ to generate predictions. Second, our model has a faster training time in
general compared to the NN-MG model. However, when conducting inference, as our model needs to jointly optimize all
missing information using all observations, it is slightly slower than NN-MG. However, we notice that the difference is quite
small and sometimes we are faster as well.

Table 6: The training and the inference/prediction time for all models, datasets.
Phase Model japanvowels natops fingermovement lsst wordrecognition conll2000 arabicdigit heartbeat facedetect brown wingbeat

Tuning (mins)

NN-MG 164.35 161.68 201.57 101.32 142.47 187.77 173.97 223.88 692.78 218.10 253.72
RNN-STD 14.35 13.12 21.63 39.53 35.95 12.57 84.53 133.22 389.78 125.07 36.98

RNN-IndMGx3 64.28 43.32 77.67 172.52 92.62 114.92 274.52 77.87 324.37 142.65 134.25
RNN-MG 64.23 47.67 104.73 132.42 87.68 150.42 286.13 133.07 727.55 308.73 323.03

Inference (secs)

NN-MG 40 29 85 30 45 192 45 255 8002 356 354
RNN-STD 1 1 1 1 6 1 2 32 15 10 1

RNN-IndMGx3 249 260 134 407 895 321 461 1283 1987 245 193
RNN-MG 105 147 94 162 612 251 183 3411 2026 434 638
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