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Abstract

As data-driven methods are deployed in real-
world settings, the processes that generate the
observed data will often react to the decisions
of the learner. For example, a data source may
have some incentive for the algorithm to provide
a particular label (e.g. approve a bank loan),
and manipulate their features accordingly. Work
in strategic classification and decision-dependent
distributions seeks to characterize the closed-
loop behavior of deploying learning algorithms
by explicitly considering the effect of the classi-
fier on the underlying data distribution. More re-
cently, works in performative prediction seek to
classify the closed-loop behavior by considering
general properties of the mapping from classifier
to data distribution, rather than an explicit form.
Building on this notion, we analyze repeated risk
minimization as the perturbed trajectories of the
gradient flows of performative risk minimization.
We consider the case where there may be multi-
ple local minimizers of performative risk, moti-
vated by situations where the initial conditions
may have significant impact on the long-term be-
havior of the system. We provide sufficient con-
ditions to characterize the region of attraction
for the various equilibria in this settings. Addi-
tionally, we introduce the notion of performative
alignment, which provides a geometric condition
on the convergence of repeated risk minimization
to performative risk minimizers.

1 INTRODUCTION

Data-driven methods are growing increasingly popular in
practice. Most classical machine learning and statistical
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methods view the underlying process which generates the
data as fixed: the study is primarily focused on the mapping
from data distributions to classifier. However, it is impor-
tant to consider the effects in the other direction as well:
how does the classifier chosen by a learner change the data
distribution the learner sees? In particular, how do we close
the loop around machine learning deployments in practice?

These closed loop effects can arise in many real world set-
tings. One instance is strategic classification: whenever a
data source has a stake in which label a classifier applies
to it, they will seek cost-effective ways to manipulate their
data to earn the desired label. For example, credit scoring
classifiers are heavily guarded for fear of the potential for
gaming (Hardt et al., 2016). Alternatively, deployments of
the classifier can both skew future datasets and also have
causal influences over the real-world processes at play. For
example, a classifier that predicts crime recidivism influ-
ences the opportunities available to individuals (Dressel
and Farid, 2018).

Formally, we consider this problem in the framework in-
troduced in Perdomo et al. (2020). Let ℓ(z, x) denote the
loss when the learner’s decision is x (e.g. x can be the pa-
rameters of the chosen classifier) and the data has realized
value z. Furthermore, let D(x) denote the data distribution
when the learner’s decision is x. In this framework, the
performative risk is given by:

PR(x) = EZ∼D(x)[ℓ(Z, x)] (1)

Whereas classical machine learning results treat the distri-
bution Z ∼ D as fixed, the performative prediction frame-
work models the decision-dependent distribution as a map-
ping D(·). However, in many real world-deployments, this
decision-dependent distribution shift may not be explicitly
included in the learner’s updates. This leads to algorithms
based on inexact repeated minimization. Define the decou-
pled performative risk as:

R(x1, x2) = EZ∼D(x2)[ℓ(Z, x1)] (2)

The decoupled performative risk R(x1, x2) separates the
two ways that the decision variable x affects the performa-
tive risk. Through the x1 argument, x affects the classifica-
tion error; through the x2 argument, x causes a decision-
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dependent distribution shift. Thus, when the decision-
dependent distribution shift is not accounted for, the re-
peated gradient descent method yields the following update
rule:

xk+1 = xk − αk(∇x1R(xk, xk) + ηk) (3)

Here, (ηk)k is some zero-mean noise process. Note that
the gradient is evaluated only with respect to the first argu-
ment, i.e. the updates are based only on the effect of x on
the loss function, and ignore the distribution shift caused
by x. In other words, the learner draws several observa-
tions from the distribution D(xk), and, treating this distri-
bution as fixed, updates their model parameters xk+1 based
on stochastic gradient descent: they are descending the gra-
dient of the cost function y 7→ R(y, xk).

In this paper, we shall analyze the steady-state behavior of
the continuous-time flows corresponding to Equation (3):

ẋ = −∇x1R(x, x) (4)

The connections between the flow of Equation (4) and the
repeated gradient descent method in Equation (3) can be
drawn using results in stochastic approximation, i.e. the
latter can be seen as a noisy forward Euler discretization of
the former. For more details, we refer the reader to Borkar
(2008).

In particular, we focus on settings where there may be mul-
tiple local equilibria, and classify their regions of attraction
for these equilibria. In many settings of interest, there may
be multiple steady-state outcomes, and it is of interest to
determine which outcome will be chosen by the dynamics
in Equation (3). Our results allow us to characterize which
regions of the parameter space will converge to which equi-
libria. We discuss this example in greater formal detail in
Section 3.1.

Our main theoretical results can be informally summarized
as follows. Theorem 1 states that trajectories of inexact re-
peated risk minimization will converge exponentially fast
to a neighborhood of local performative risk minimizers,
and stay in this neighborhood for all future time. It also
provides a sufficient condition to under-approximate the
regions of attraction for each local performative risk mini-
mizer. In the special case of vanishing perturbations, these
trajectories will converge to the minimizers themselves. As
a corollary, this implies that performatively stable points
will be near performatively optimal points, which was first
observed in Perdomo et al. (2020) under a different set of
conditions. We note that Theorem 1 requires conditions
on the curvature of the performative risk: the sublevel sets
{x : PR(x) ≤ c} must grow in a precise fashion, such that
upper and lower bounds on the performative risk PR(x)
imply upper and lower bounds on the norm of the argu-
ment x. Furthermore, the gradient of the performative risk
must not vary too wildly around nearby points. This is for-
malized in Assumption 1. Theorem 2 states a geometric

condition on the performative perturbation which ensures
that trajectories of repeated risk minimization will converge
to local performative risk minimizers, intuitively based on
the idea that the perturbation does not push against con-
vergence. This result does not require the strong curvature
assumptions of Theorem 1.

These results allow us to identify the regions of attraction
for various steady-state outcomes. As observed in Miller
et al. (2021), these various outcomes can be interpreted as
different echo chambers: essentially the decision variable
x can act as a sort of self-fulfilling prophecy.1 In settings
with multiple echo chambers, we consider the question of
which echo chamber will come to dominate, based on the
initialization of the learner.

The rest of the paper is organized as follows. In Section 2,
we discuss the related literature. In Section 3, we intro-
duce the problem statement and the mathematical concepts
used for our results, and provide motivating examples in
Section 3.1. In Section 4, we analyze the gradient flow as-
sociated with performative risk minimization, and in Sec-
tion 5, we analyze the flows associated with repeated risk
minimization. We demonstrate numerical results in Ap-
pendix B, and provide closing remarks in Section 6.

2 BACKGROUND

There has been a great deal of interest in studying decision-
dependent distributions. In the context of operations
research, this has been studied under either the name
decision-dependent uncertainty or endogenous uncertainty.
In Jonsbråten et al. (1998), Jonsbråten (1998), and Goel
and Grossmann (2004), the authors considered oil field op-
timization, with a framework that captures how information
revelation can be affected by one’s decisions. In Peeta et al.
(2010), the authors consider infrastructure investment, and
how investments can affect the future likelihood of disas-
ters. For a taxonomy of the work in the operations research
community, we refer the reader to Hellemo et al. (2018).

Another form of decision-dependent distributions is strate-
gic classification. In these works, the data source is seen as
a utility-maximizing agent. The distribution shift resulting
from the learner’s decision is modeled by a best response
function. In Hardt et al. (2016) and Brückner and Schef-
fer (2011), the authors formulate the problem as a Stackel-
berg game where the data source responds to the announced
classifier. In Dong et al. (2018), the authors consider when

1It is worth noting that we take a slightly different interpreta-
tion of an ‘echo chamber’ in this paper. In Miller et al. (2021), the
echo chambers are defined as performatively stable points. In this
paper, we consider the regions near each locally performatively
optimal point as an echo chamber. As we will discuss in Sec-
tion 3.1, we are interested in settings where there may be many
local performative risk minimizers that attract learning methods
depending on initialization.



Roy Dong, Heling Zhang, Lillian J. Ratliff

the data source’s preferences are hidden information and
provide sufficient conditions for convexity of the overall
strategic classification task. In Akyol et al. (2016), the
authors quantify the cost of strategic classification for the
classifier. In Milli et al. (2019) and Hu et al. (2019), the
authors note that certain groups may be disproportionately
affected as institutions incorporate methods to counter data
sources gaming the classifier. In Miller et al. (2020), the
authors formulate strategic classification in a causal frame-
work.

Most related to our work is recent efforts in performa-
tive prediction. This was introduced in Perdomo et al.
(2020). In this formulation, rather than explicitly model-
ing the form of the distribution shift, it proposes to analyze
the decision-dependent distribution shift in terms of general
properties of the D(·) mapping, where D(x) is the distri-
bution of the data when the learner’s decision is x. In Per-
domo et al. (2020), the authors introduced the concepts re-
lated to performative prediction, demonstrated that neither
the performatively stable nor performatively optimal points
are subsets of each other, provided sufficient conditions
for exact repeated risk minimization (defined as finding
the exact minima with respect to D(xk) at each time step)
to converge, and provided conditions in which performa-
tively stable points are near performatively optimal points.
In Mendler-Dünner et al. (2020), the authors analyze inex-
act repeated risk minimization (defined as an update step
with respect to D(xk) at each time step) from a stochastic
optimization framework. In this paper, we build on the in-
exact repeated risk minimization framework. Miller et al.
(2021) provided sufficient conditions for performative risk
itself to be convex. Brown et al. (2020) extended these re-
sults to settings where the distribution updates may have
an internal state. In Drusvyatskiy and Xiao (2020), the
authors show that many inexact repeated risk minimiza-
tion algorithms will also converge nicely, due to the way
in which the performative perturbation decays near the so-
lution. This shares many ideas with our work here, but we
focus on the case where there may be multiple attractive
equilibria, and generalize to settings where the perturbation
itself may not vanish. In contrast to previous works which
provide sufficient conditions to guarantee that an outcome
is approached globally, we focus on understanding local re-
gions of attraction for various outcomes.

This work draws on ideas from control theory; in particu-
lar, the analysis of gradient flows, Lyapunov functions, and
perturbation analysis are the tools we use throughout. We
refer the reader to Hirsch et al. (2012) and Khalil (2001) as
good references for these suite of tools.

Although our work still focuses on repeated risk minimiza-
tion, it is worth noting that many other algorithms exist
for learning with decision-dependent distributions. In Ja-
gadeesan et al. (2022), the authors proposes the performa-
tive confidence bounds algorithm which uses tools from the

bandit literature to explore the distribution map and find a
near-optimal solution. In Izzo et al. (2021a), the authors
proposes an algorithm called performative gradient descent
(PerfGD), which guarantees to find the performatively op-
timal point when D(·) satisfies certain parametric assump-
tions. Later in Izzo et al. (2021b), the author extends the
results to settings where the distribution updates have in-
ternal states. In the same year, Li and Wai (2021) presents
state-dependent stochastic approximation (SA) algorithm
that works in similar settings. Of course, this paragraph is
not a exhaustive treatment of various algorithms in similar
settings.

3 PERFORMATIVE PREDICTION,
FLOWS, AND PERTURBATIONS

In this section, we introduce the mathematical concepts
used throughout this paper. As previously mentioned, the
framework used throughout this paper builds on the frame-
work of performative prediction, introduced in Perdomo
et al. (2020).

In Section 1, we have already defined the performative
risk in Equation (1) and the decoupled performative risk
in Equation (2). Furthermore, we say that x is a local per-
formative risk minimizer is x is a local minima of PR(·).
We say x is locally performatively stable if x is a local
minima of y 7→ R(y, x). In general, neither imply the
other (Perdomo et al., 2020).

Additionally, we consider the performative risk minimiz-
ing (PRM) gradient flow, defined by the following differ-
ential equation:

ẋPR = −∇PR(xPR)

= −∇x1
R(xPR, xPR)−∇x2

R(xPR, xPR)

=: fPR(xPR)

(5)

This vector field can be represented by the gradient of a
function, which lends the flow to nice analysis. Under mild
conditions, the trajectories of Equation (5) will converge to
local minima of the performative risk.

However, as noted in Section 1, many deployments of ma-
chine learning do not explicitly model the distribution shift,
and, consequently, do not directly minimize the performa-
tive risk. We define the repeated gradient descent (RGD)
flow as solutions to the differential equation:

ẋRR = −∇x1R(xRR, xRR) =: fRR(xRR) (6)

We define the performative perturbation:

g(x) := ∇x2
R(x, x) = fRR(x)− fPR(x)

In this paper, we view the PRM gradient flow as the nom-
inal dynamics, and the RGD flow as the perturbed dy-
namics. The PRM gradient flow has nice properties aris-
ing from the fact it is a gradient flow, and, under certain
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conditions on the performative perturbation, we can prove
properties about the RGD flow, which is the quantity of
interest. In particular, we show ultimate bounds on the dis-
tance between the trajectories of RGD flow and the local
performative risk minimizers. This also implies that under
certain conditions on the performative risk, all performa-
tively stable points are near performative risk minimizers,
as was observed in Perdomo et al. (2020).

Throughout this paper, we will be using tools from per-
turbation analysis in control theory. For a complete vec-
tor field ẋ = f(x), let φf (·;x0) denote the unique so-
lution to the differential equation with initial condition
x(0) = x0. For a scalar-valued function V and a vec-
tor field f , we can define the derivative along trajectories
as LfV (x) = ∂V

∂x f(x). We say a point x is an equilib-
rium point if f(x) = 0. An equilibrium point x is lo-
cally asymptotically stable if there exists a neighborhood
U ∋ x such that limt→∞ φf (t;x

′) = x for all x′ ∈ U .
A set A is positively invariant if for all x0 ∈ A and
t ≥ 0, we have φf (t;x0) ∈ A. Additionally, given a set
A ⊂ Rn, we say two points x and y are path-connected
in A if there exists a continuous function γ : [0, 1] → A
such that γ(0) = x and γ(1) = y. This forms an equiva-
lence relation defined on A, and each equivalence class is
a connected component of A. Additionally, we will use
W1(·) to denote the Wasserstein distance, also known as
the earth mover’s distance.

3.1 EXAMPLES

Before we present our analysis of the PRM gradient flow
and the RGD flow, we introduce some examples which mo-
tivate the study of performative risk in non-convex settings
and multiple local equilibria.

3.1.1 Squared error loss and Bernoulli distributions

Consider the loss function ℓ(z, x) = 1
2 |z − x|2, where x is

a scalar. Furthermore, suppose that the decision-dependent
distribution D(x) is simply Z = 1 with probability p(x)
and Z = 0 with probability 1 − p(x), for some function
p(·). In this case, the decoupled performative risk is given
by:

R(x1, x2) = p(x2)

[
1

2
|1− x1|2

]
+ (1− p(x2))

[
1

2
|x1|2

]
=

1

2
[x2

1 + p(x2)(1− 2x1)]

(7)
We will analyze this model in two ways. First, we will con-
sider general p(·), and, fixing the loss function ℓ(·), identify
a class of decision-dependent distribution shifts p(·) which
can still ensure convergence to performative risk minimiz-
ers, using Theorem 2. Second, we will consider a concrete
example for p(·), and demonstrate how to apply Theorem 1
to understand the regions of convergence.

As our concrete example of p(·), consider the following
function as a candidate for p(·):

φ(x) =


exp

(
1 + −1

1−(x−1)2

)
if x ∈ (0, 1)

0 if x ≤ 0

1 if x ≥ 1

(8)

This function is chosen because φ(x) = 1 for x ≥ 1,
φ(x) = 0 for x ≤ 0, and it is continuously differentiable.
The derivative is:

φ′(x) =

{
φ(x) 2(1−x)

(1−(x−1)2)2 if x ∈ (0, 1)

0 otherwise
(9)

φ(·) and its derivative is visualized in Figure 1(a). Since
p(0) = 0 and p(1) = 1 for this choice of p(·), Equation (7)
directly implies that there are two performative risk min-
imizers: x = 0 and x = 1. Similarly, we can see that
these points are performatively stable as well. The corre-
sponding performative risk and gradients are visualized in
Figure 1(b)–(c).

3.1.2 Classification of adversarial agents

As we’ve mentioned, when data-driven algorithms are de-
ployed in real-world settings, it often caused a drift in the
distribution of the data. One source of such drift is the be-
havior of adversarial agents. Here, we consider a simple
classification problem of potentially adversarial agents.

Suppose that each agent are defined by a feature z ∈ Rd

and a binary label y ∈ {−1, 1}, and suppose that they are
drawn i.i.d from a distribution DZ,Y . The task of the clas-
sifier is to correctly predict their labels based on their fea-
tures. For simplicity, we further assume that we are using a
linear classifier defined by

ŷx = sign(⟨x, z⟩),

where x ∈ Rd is the parameter of the classifier. We also
assume that the learner is using a logistic loss function:

ℓ(x, y, z) = log(1 + exp(−y⟨x, z⟩)).

So far, we’ve essentially described a ordinary binary clas-
sification problem with linear classifiers. We further as-
sume that once the classifier is deployed, the agents will
potentially alter their features to induce false predictions.
Formally, we assume that if an agent is adversarial, it will
produce a fake feature ẑ such that

ẑ(x, y, z) ∈ argmin
z′

{
−y⟨x, z′⟩+ k

2
∥z′ − z∥22

}
,

and that agents are adversarial with probability

padv(x, y, z) = e−λ1∥ẑ(x,y,z)−z∥2
2 .
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Figure 1: As an illustrative example, we consider a setting where with the squared error is used as the loss function, and
the decision-dependent distribution shift modifies the parameters of a Bernoulli distribution, as discussed in Section 3.1.1.
(a) A visualization of an example decision-dependent distribution shift φ(x), as defined in Equation (8), and its derivative,
as derived in Equation (9). (b) The performative risk with Pr(Z = 1) = p(x) = φ(x). (c) The corresponding gradients for
p(x) = φ(x).

Essentially, we are implicitly describing a ‘cost’ of adver-
sarial behavior, which that is proportional to the squared l2
distance between true and fake features. If the cost is too
high, an agent will be more likely to abandon adversarial
behavior, hence a lower padv .

This adversarial behavior can be thought of a distribution
shift caused by deploying our classifier, and the performa-
tive risk is then given by

PR(x) = E(Ẑ,Y )∼D(x)

[
ℓ(x, Y, Ẑ)

]
= E(Z,Y )∼DZ,Y

[ (1− padv(x, Y, Z))ℓ(x, Y, Z)

+ padv(x, Y, Z)ℓ(x, Y, Ẑ(x, Y, Z).

Our goal here is to find a classifier that minimizes PR(x)
without knowing the behavior pattern of the agents. That
is, we are completely unaware of the dependencies of the
performative risk on x2.

To illustrate, consider the simplest case where d = 1 (i.e.
z, x ∈ R). Specifically, let DZ,Y = N (y, 1). The corre-
sponding performative risk and gradients are illustrated in
Figure 2(d) and (e).

In both these examples, there are multiple performative risk
minimizers and performatively stable points. Performative
risk minimization and repeated gradient descent can con-
verge to different steady-state results, and it is of interest
which initializations will converge to which equilibria un-
der both dynamics. In the sequel, we shall demonstrate how
different functions p(·) can lead to different steady-state
outcomes, as well as how our theoretical results can pro-
vide conditions on p(·) such that we achieve convergence
to performative risk minimizers, even when performing re-
peated approximate risk minimization.

4 ANALYSIS OF PERFORMATIVE RISK
MINIMIZING GRADIENT FLOW

In this section, we consider PRM gradient flow, defined
by Equation (5). We observe that gradient flows provide
complete vector fields, and that trajectories will converge

to local performative risk minimizers under very mild con-
ditions.

First, we state a proposition guaranteeing that flow is well-
defined. The compact sublevel sets ensure that trajecto-
ries of Equation (5) remain bounded, which is sufficient to
guarantee existence and uniqueness of solutions globally.
For proof of the following proposition, we refer the reader
to either Khalil (2001, Section 3.1) or Hirsch et al. (2012,
Section 9.3).

Proposition 1 (Existence and uniqueness of gradient
flows). Suppose the performative risk PR(·) is continu-
ously differentiable, and its sublevel sets {x : PR(x) ≤ c}
are compact for every c ∈ R. Then for any initial con-
dition xPR(0) = x0, there exists a unique solution to the
differential equation in Equation (5), defined for all t ≥ 0.

Next, we note that gradient flows have nice properties from
the perspective of optimization. Namely: every isolated
local minima is locally asymptotically stable, and we can
provide sufficient conditions to characterize a subset of the
region of convergence.

Proposition 2 (Convergence of gradient flows). Suppose
the performative risk PR(·) is twice continuously differen-
tiable, and x∗ is an isolated local performative risk mini-
mizer. Then x∗ is a locally asymptotically stable equilib-
rium of Equation (5). Furthermore, take any c such that
PR(x∗) ≤ c. Let A ⊆ {x : PR(x) ≤ c} denote the con-
nected component of {x : PR(x) ≤ c} that contains x∗. If
x∗ is the only local performative minimizer in A, then all
solutions with initial conditions in A converge to x∗.

Proof. Since x∗ is an isolated local minimizer and the per-
formative risk is twice continuously differentiable, there
exists a neighborhood U ∋ x∗ such that ∇PR(·) is non-
zero for all x ̸= x∗. By continuity, there exists some
constant ϵ such that the connected component of {x :
PR(x) ≤ PR(x∗) + ϵ} containing x∗ is contained in U .
Since it is a sublevel set of PR(·) and LfPR

PR(x) < 0
on its boundary, it is positively invariant. Furthermore,
since LfPR

(x) < 0 for all x ̸= x∗ on this set, x∗ is
locally asymptotically stable by standard Lyapunov argu-
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Figure 2: This is a 1-dimensional illustration of the setting described in Section 3.1.2. When (z, y) ∼ N (y, 1), λ1 = 0.04
and k = 0.4, the corresponding performative risk is visualized in (d), and the corresponding gradients are visualized in (e).

ments (see, e.g. Khalil (2001, Section 4)).

The sublevel sets of the performative risk are positively in-
variant with respect to the PRM gradient flow. Further-
more, because of the continuity of trajectories, each con-
nected component will also be positively invariant. This, in
tandem with the fact that trajectories must either converge
to a local minima or go off to infinity, also implies the pre-
vious proposition.

With minimal assumptions, isolated local performative risk
minimizers are all locally attractive in the PRM gradient
flow. In Section 5, we will view the PRM gradient flow as
the nominal dynamics. From this perspective, we analyze
the RGD flow as a perturbation from these nominal dynam-
ics. To be able to do any perturbation-based analysis, we
will need some stronger conditions on the convergence of
the gradient flow associated with performative risk mini-
mization. We note these assumptions here.

Assumption 1 (Sufficient curvature of the PR). Fix some
isolated local performative risk minimizer x∗. We assume
there exists positive constants c1, c2, c3, c4 and δ such that
the following holds in a neighborhood of x∗:

c1|x− x∗|2 ≤ PR(x)− PR(x∗) ≤ c2|x− x∗|2 (10)

c3|x− x∗| − δ ≤ |∇PR(x)| ≤ c4|x− x∗|+ δ (11)

We will let r denote the radius of this neighborhood, so the
above inequalities are valid on the set {x : |x− x∗| ≤ r}.

Assumption 1 provides conditions on which V (x) =
PR(x)− PR(x∗) can be used as a Lyapunov function lo-
cally. Next, we provide conditions directly on the loss ℓ(·)
and the decision-dependent distribution shift D(·) which
can ensure that Assumption 1 holds, or approximately
holds. First, we provide sufficient conditions for the bounds
in Equation (10).

Proposition 3 (Performative risk bounds). Let x∗ be a per-
formative risk minimizer and fix any x. If:

1. ℓ(·, x) is L1 Lipschitz continuous

2. W1(D(x),D(x∗)) ≤ L2|x− x∗|2

3. ℓ(z, ·) is m-strongly convex and L3-smooth for every
z

Then: (m/2 − L1L2)|x − x∗|2 ≤ PR(x) − PR(x∗) ≤
(L1L2 + L3/2)|x− x∗|2.

Proof. First, we can break up the performative risk
into two parts: PR(x) − PR(x∗) = R(x, x) −
R(x∗, x∗) = [R(x, x)−R(x, x∗)]+[R(x, x∗)−R(x∗, x∗)].
Note that R(x, x) − R(x, x∗) = EZ∼D(x)[ℓ(Z, x)] −
EZ∼D(x∗)[ℓ(Z, x)]. Conditions (1) and (2), along with
Kantorovich-Rubenstein duality (Villani, 2003), implies
this quantity is bounded in absolute value: |R(x, x) −
R(x, x∗)| ≤ L1L2|x−x∗|2. On the other hand, R(x, x∗)−
R(x∗, x∗) = EZ∼D(x∗)[ℓ(Z, x)− ℓ(Z, x∗)]. By convexity
and L3-smoothness, ℓ(z, x)− ℓ(z, x∗) ≤ ⟨∇xℓ(z, x

∗), x−
x∗⟩+ L3

2 |x−x∗|2 for any z; taking the expectation and not-
ing that ∇PR(x∗) = 0, we have R(x, x∗) − R(x∗, x∗) ≤
L3

2 |x− x∗|2. In the other direction, using strong convexity
and similar arguments, we get: R(x, x∗) − R(x∗, x∗) ≥
m
2 |x − x∗|2. Combining these results yields the desired

results.

Note that Condition (2) in Proposition 3 is a variation on
the typical ϵ-sensitivity definition. Recall that ϵ-sensitivity
states that for any x and y, W1(D(x),D(y)) ≤ ϵ|x −
y| (Perdomo et al., 2020). In contrast, Condition (2) only
requires this condition to hold around the point x∗, but re-
quires a stricter bound for x close to x∗. This bound is also
more lax than ϵ-sensitivity farther away from x∗.

Next, we provide sufficient conditions for a bound on the
absolute value of the gradient of the performative risk. This
does not exactly recover Assumption 1, as there are addi-
tive constants on the upper and lower bounds which do not
scale with |x− x∗|. However, these additive constants will
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be small for decision-dependent distribution shifts D(·)
with sufficiently small sensitivity parameter ϵ.
Proposition 4 (Gradient bounds of the performative risk).
Let x∗ be a performative risk minimizer and fix any x. If:

1. ℓ(·, x) and ℓ(·, x∗) are both L1 Lipschitz continuous

2. ℓ(z, ·) is m-strongly convex and L3-smooth for every
z

3. D(·) is ϵ-sensitive, i.e. W1(D(x),D(y)) ≤ ϵ|x− y|

4. ∇xℓ(·, x) is L4 Lipschitz continuous

Then: (m − ϵL4)|x − x∗| − 2ϵL1 ≤ |∇PR(x)| ≤ (L3 +
ϵL4)|x− x∗|+ 2ϵL1.

Proof. Similar to the previous proposition, we break apart
this gradient. Note that ∇PR(x∗) = 0, so: |∇PR(x)| =
|∇PR(x)−∇PR(x∗)| = |∇x1

R(x, x)−∇x1
R(x∗, x∗)+

∇x2R(x, x)−∇x2R(x∗, x∗)|. For the ∇x1 terms, we have:
m|x − x∗| ≤ |∇x1R(x, x∗) − ∇x1R(x∗, x∗)| ≤ L3|x −
x∗| by standard convexity arguments, and |∇x1

R(x, x) −
∇x1

R(x, x∗)| ≤ ϵL4|x − x∗| by the same Kantorovich-
Rubenstein duality argument as the previous proposition.
For the ∇x2

terms, note that the mapping x2 7→ R(x, x2)
is ϵL1 Lipschitz continuous. Thus, |∇x2R(x, x)| ≤ ϵL1

and similarly |∇x2R(x∗, x∗)|. Combining these inequali-
ties yields the desired result.

Depending on the situation, we may be able to directly ver-
ify Assumption 1, although, for more complex settings, this
is likely to be very difficult. Propositions 3 and 4 provide
a set of sufficient conditions for this assumption to approx-
imately hold, but checking the conditions on the decision-
dependent distribution shift D(·) may be difficult in prac-
tice as well. This is one limitation of this current work,
and we believe it is an interesting future research direction
to identify conditions which are easy to verify, even in set-
tings with limited information about the distribution shift
itself.

5 ANALYSIS OF REPEATED RISK
MINIMIZING FLOW

In the previous section, we consider the PRM gradient flow
and showed that the trajectories converge to local perfor-
mative risk minimizers in very general settings. In this
section, we will consider the RGD flow, defined by Equa-
tion (6). The RGD flow is not necessarily a gradient flow,
and generally will not inherit the nice properties we saw in
Section 4.

The following theorem provides conditions on the transient
response and steady-state behavior of the RGD flow. Prior
to T , the trajectories converge exponentially quickly. After
T , we have an ultimate bound that holds.

Theorem 1 (Ultimate bounds for RGD flow). Fix any iso-
lated performative risk minimizer x∗ and suppose the con-
ditions of Assumption 1 hold. Let (ci)4i=1 and δ denote the
constants from Assumption 1 and r > 0 denote the radius
where the inequalities are valid.

Suppose that there exists positive constants ϵ < c23/c4 such
that the following holds on U = {x : |x− x∗| ≤ r}:

|∇x2R(x, x)| ≤ ϵ|x− x∗|+ δ (12)

Additionally, suppose the initial condition satisfies:

|x0 − x∗| ≤
√

c1
c2

r

Take any θ ∈ (0, 1) such that:

δ ≤
√

c1
c2

(1− θ)r(c23/c4 − ϵ)

c4 + 2c3 + ϵ

Then, there exists a T ≥ 0 such that:

• For all t ≤ T :

|φfRR
(t;x0)− x∗| ≤√
c2
c1

exp(−tθ(c23 − c4ϵ)/2c2)|x0 − x∗|

• For all t ≥ T :

|φfRR
(t;x0)− x∗| ≤√
c2
c1

max

{
δ(c4 + 2c3 + ϵ)

(1− θ)(c23 − c4ϵ)
,
δ

c3

}
.

Proof. See Appendix A.

Note that, in the special case where δ = λ = 0, we have
that the RGD flow converges exponentially quickly to x∗

locally. Similarly, in the special case where Assumption 1
holds everywhere (i.e. r = ∞), then there is only one min-
imizer x∗, and all initial conditions converge to a neighbor-
hood of x∗ exponentially fast. In addition, if every con-
dition in Assumption 1 holds with equality, the bounds in
Theorem 1 also hold with equality. Please see Appendix A
for an example where this occurs.

Additionally, note that locally performatively stable points
are equilibria of the RGD flow. This result provides con-
straints on where performatively stable points can be lo-
cated. Consider the special case where Assumption 1 holds
globally (i.e. r = ∞) and, consequently, there exists only
one minimizer x∗. In this special case, Theorem 1 shows
that all performatively stable points must be close to x∗.
The phenomena that, under certain conditions, performa-
tively stable points are near performative risk minimizers,
was first noted in Perdomo et al. (2020). Our results here
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provide another set of conditions under which the same re-
sult holds.

Furthermore, in the presence of Propisition 3 and 4, Theo-
rem 1 can be restated in terms of ℓ(·) and D(·) as follows:

Corollary 1. Let x∗ be a performative risk minimizer and
fix any x. If:

1. ℓ(·, x) and ℓ(·, x∗) are both L1 Lipschitz continuous

2. ℓ(z, ·) is m-strongly convex and L3-smooth for every
z

3. D(·) is ϵ-sensitive, i.e. W1(D(x),D(y)) ≤ ϵ|x− y|

4. W1(D(x),D(x∗)) ≤ L2|x− x∗|2

5. ∇xℓ(·, x) is L4 Lipschitz continuous

Suppose the initial condition satisfies:

|x0 − x∗| ≤
√

m− 2L1L2

L3 + 2L1L2
r

Then, there exists a T ≥ 0 such that:

• For all t ≤ T :

|φfRR
(t;x0)− x∗| ≤√

L3 + 2L1L2

m− 2L1L2
exp

(
−tθ(m− ϵL4)

2

L3 + 2L1L2

)
|x0 − x∗|

• For all t ≥ T :

|φfRR
(t;x0)− x∗| ≤

√
L3 + 2L1L2

m− 2L1L2

·max

{
4ϵL1(L3 + 2m− ϵL4)

(m− ϵL4)2
,

2ϵL1

m− ϵL4

}
.

Proof. This follows immediately by combining Theorem 1
with Propositions 3 and 4.

5.1 Performative alignment

From the previous analysis, we also identify conditions on
the directions of the performative perturbations that are suf-
ficient to show the convergence of Equation (6), the RGD
flow, to performative risk minimizers.

Theorem 2 (Performative alignment). Suppose x∗ is a iso-
lated local performative risk minimizer and the following
holds for all x in a neighborhood of x∗:

|∇x2
R(x, x)|2 ≤ ⟨−∇x1

R(x, x),∇x2
R(x, x)⟩ (13)

Then x∗ is a locally asymptotically stable equilibrium point
of the RGD flow, given by Equation (6). Note that this does
not require Assumption 1.

Proof. Let V (x) = PR(x) − PR(x∗). Since x∗ is a lo-
cally asymptotically equilibria of the PRM flow, we have:
V (x∗) = 0, V (x) > 0 for x ̸= 0, and LfPR

V (x) < 0
for x ̸= 0. The performative alignment condition ensures
that LfPR+gV (x) < 0 as well, and the desired result fol-
lows.

We refer to Equation (13) as the performative alignment
condition. This condition states that the performative per-
turbation never increases the performative risk, and the
convergence of performative risk minimization is sufficient
to guarantee convergence of repeated risk minimization. In
other words, the perturbation is pointing in the correct di-
rection to ensure that PR(·) − PR(x∗) can still act as a
Lyapunov function.

Another perspective on performative alignment is to con-
sider the performative risk as a bilinear form whose argu-
ments are parameterized by x. In particular, consider the
decoupled performative risk R(·, ·). Let ℓx := ℓ(·, x) and
let µx denote the probability distribution associated with
D(x). Then, we can write R(x1, x2) = ⟨µx2 , ℓx1⟩. From
this perspective, R(·, ·) is a bilinear form in ℓx and µx. As
such, the performative alignment condition becomes a con-
dition on the way in which ℓ and µ are parameterized by
x.

In Appendix B.2, we apply Theorem 2 to the example out-
lined in Section 3.1.1. It provides insight into one of the
ways to use Theorem 2: when we fix a loss ℓ(·), we can
view the performative alignment condition as specifying a
class of decision-dependent distribution shifts which do not
hamper the convergence of RGD to performative risk min-
imizers.

6 CLOSING REMARKS

In this paper, we analyzed the problem of performative pre-
diction in settings where multiple isolated equilibria may
be of interest. We analyzed the gradient flow of performa-
tive risk minimization, and identified regions of attraction
for various equilibria. We viewed repeated gradient descent
flow as a perturbation of the PRM gradient flow. In partic-
ular, we used a Lyapunov function for the PRM gradient
flow to analyze the trajectories of the RGD flow. We found
conditions on which RGD flow will converge to the local
PRM minimizers, and conditions on which they will con-
verge to a neighborhood of PRM minimizers.

These results provide a method to analyze the regions of
attraction for various equilibria under repeated risk mini-
mization. In real-world settings with decision-dependent
distributions, we expect many situations where the initial-
ization may have a significant outcome on the trajectories
and final outcomes.
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Jonsbråten, T. W. (1998). Oil field optimization under price
uncertainty. Journal of the Operational Research Soci-
ety, 49(8):811–818.
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A PROOF OF THEOREM 1

Let V (x) = R(x, x) − R(x∗, x∗). Note that V (x) ≥ 0 on U = {x : |x − x∗| ≤ r} and V (x) = 0 if and only if x = x∗.
Furthermore, note that ∂V

∂x (x) = [∇x1R(x, x) +∇x2R(x, x)].

Consider the function t 7→ V (φfRR
(t;x0)) and its time derivative. Also, let xRR(t) = φfRR

(t;x0). When |xRR − x∗| ≥
δ/c3, taking the derivative along trajectories of the repeated risk minimization flow and using Equations (11) and (12):

LfPR+gV =
∂V

∂x
(fPR(x) + g) = −|∇x1

R+∇x2
R|2 + ⟨∇x1

R+∇x2
R,∇x2

R⟩

≤ − (c3|xRR − x∗| − δ)
2
+ (c4|xRR − x∗|+ δ) |∇x2R|

≤ − (c3|xRR − x∗| − δ)
2
+ (c4|xRR − x∗|+ δ) (ϵ|xRR − x∗|+ δ)

= −
(
c4ϵ− c23

)
|xRR − x∗|2 + (c4δ + 2c3δ + δϵ) |xRR − x∗|

These inequalities are valid so long as xRR(t) stays within U , which we will ensure later in the proof. Note that ϵ is
sufficiently small (by assumption) to ensure that −c23 + c4ϵ < 0.

Let α := c23 − c4ϵ > 0. Take any θ ∈ (0, 1) and note that:

LfPR+gV (xRR) ≤ −θα|xRR − x∗|2 − (1− θ)α|xRR − x∗|2 + (c4δ + 2c3δ + δϵ) |xRR − x∗|

Now, let

µ(θ) := max

{
(c4δ + 2c3δ + δϵ)

α(1− θ)
,
δ

c3

}
.

If |xRR − x∗| ≥ µ(θ), then:

−θα|xRR − x∗|2 − (1− θ)α|xRR − x∗|2 + (c4δ + 2c3δ + δϵ) |xRR − x∗| ≤ 0,

and thus
LfPR+gV (xRR) ≤ −θα|xRR − x∗|2.

Trajectories of Equation (6) has two stages: a transient due to its initial condition, and then an ultimate bound due to the
perturbation. Let T (θ) = inf {t ≥ 0 : |xRR(t)− x∗| ≤ µ(θ)}. Prior to T (θ), we have:

d

dt
V (xRR(t)) ≤ −θα|xRR(t)− x∗|2 ≤ −θα

c2
V (xRR(t))

The latter follows from Equation (10). By the comparison principle (see, e.g. (Khalil, 2001, Lemma 3.4)), we have
V (xRR(t)) ≤ exp(−tθα/c2)V (x0). Again using Equation (10), this yields the following inequality, valid for all t ≤ T (θ):

|xRR(t)− x∗| ≤
√

c2
c1

exp(−tθα/2c2)|x0 − x∗|

Note that this inequality also provides an upper bound on T (θ). Additionally, note that this implies the bound |xRR(t) −
x∗| ≤ r, by our assumption on the initial condition. Prior to T (θ), our trajectory stays in U , where our inequalities are
valid.

At time T (θ), we have |xRR(t)−x∗| ≤ µ(θ). Note that this inequality implies V (xRR(t)) ≤ c2µ
2(θ). Since LfPR+gV <

0 on the boundary of Ω(θ) := {x : V (x) ≤ c2µ
2(θ)}, we have that Ω(θ) is a positively invariant set. So, for all t ≥ T (θ),

we have xRR(t) ∈ Ω(θ). Using Equation (10), we have the following for all t ≥ T (θ):

|xRR(t)− x∗| ≤
√

c2
c1

µ(θ)

The condition on θ ensures that this quantity is bounded by r, and the trajectory stays in U for t ≥ T (θ). This proves our
desired result.

Additionally, we can show that this bound is tight by considering the following example. Suppose D(x2) is the point mass
distribution (i.e. p(z) = δ(z−x2)) and l(z, x1) = 1/2|z|2+1/2|x1|2. Then the performative risk is given by R(x1, x2) =
1/2|x1|2 + 1/2|x2|2. It follows that x∗0 is the performative risk minimizer. Following the arguments in Appendix A, one
would find that the dynamics of V (x) = R(x, x)−R(x∗, x∗) follows d

dtV (x(t)) = −2|x(t)− x∗|2 = −2V (x(t)), which
yields |x(t)− x∗| = exp(−2t)|x0 − x∗|.
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Figure 3: We verify that the performative risk bounds in Assumption 1 are satisfied in the example discussed in Section 3.1.
(a) As a function of r (the radius of the domain where the inequalities hold), we show the tightest constants c1 and c2 for
the bound. We also plot

√
c1/c2r, which is the radius of a neighborhood of x = 0 to which Theorem 1 can be applied.

(b) As a function of r, we show the tightest constants for c3 and c4. (c) Choosing the c1 and c2 constants for r = 0.5, we
visualize how the quadratic bounds hold for the performative risk locally.

B NUMERICAL EXAMPLES

In this section, we revisit the models introduced in Section 3.1. We demonstrate how the results of Sections 4 and 5
can be applied. First, we show that the example satisfies Assumption 1 and we calculate its corresponding constants.
Second, we apply Theorem 1 and show the theoretical convergence rates match simulated trajectories. Finally, we also
apply Theorem 2 to the example from Section 3.1.1 and characterize the class of distribution shifts satisfy the performative
alignment condition.

B.1 Checking the curvature of the performative risk and region of convergence

Recall the example from Section 3.1.1, where x was a scalar, the loss function was the squared error, and the decision-
dependent distribution was a Bernoulli random variable whose distribution was determined by p(·). In this section, we
consider the specific decision-dependent distribution shift p = φ, which is defined in Equation (8).

When we consider this example, we can see that the bounds on Assumption 1 cannot hold globally, which matches our
previous observation that there are multiple isolated performative risk minimizers. However, these bounds may hold
locally: we can view the constants (ci)4i=1 from Assumption 1 as a function of the size of the domain r.

For concreteness, let us focus on the equilibrium point x = 0. Recall that Assumption 1 must hold locally, on the domain
{x : |x − x∗| ≤ r}. As we increase r, the constants will worsen; we visualize this in Figure 3(a)–(b). Note that these
bounds only have to hold locally around the equilibria, as visualized in Figure 3(c). Furthermore, the gradient bounds in
Assumption 1 cannot hold beyond r > 0.40, since ∇PR(x) = 0 at that point.

Recall that the convergence results of Theorem 1 can only apply to all initial conditions satisfying |x0 − x∗| <
√
c1/c2r;

we visualize this as well in Figure 3(a). On the set (0, 0.40], we can see the quantity
√
c1/c2r is the largest at r = 0.4,

with constants c1 = 0.50 and c2 = 1.78. Thus, around the equilibrium x = 0, the theorem can be applied to all points in
the set {x : |x| ≤ 0.21}, with δ = 0. Thus, our theorem shows that all points in this neighborhood of x = 0 will converge.
This under-approximates the true region of attraction, which we numerically saw to be {x : x < 0.23}.

B.2 Performative alignment with squared error and Bernoulli distributions

We again consider the example from Section 3.1.1. However, in this section, we consider a general decision-dependent
distribution shift p(·). We suppose that p(0) = 0 and p(1) = 1, so we have two performative risk minimizers as in our
previous example. We have ∇x1

R(x, x) = x − p(x) and ∇x2
R(x, x) = (1/2 − x)p′(x). The performative alignment

condition becomes:
|1/2− x|2|p′(x)|2 ≤ (p(x)− x)(1/2− x)p′(x) (14)

Theorem 2 states that if this condition holds for all x ∈ (0, c), then any initial conditions x0 ∈ (0, c) will converge to x = 0.
Similarly, if this condition holds for all x ∈ (c, 1), then all initial conditions in (c, 1) will converge to x = 1. Theorem 2
also implies that this condition cannot be satisfied for all x ∈ (0, 1), as then these initial conditions would converge to both
x = 0 and x = 1.

If we suppose that p(·) is monotonic on (0, 1), i.e. p′(x) ≥ 0, we can also interpret the performative alignment condition
as follows. For x ∈ (1/2, 1), the performative alignment condition becomes p(x) − x ≥ (1/2 − x)p′(x). In this regime,
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(1/2−x)p′(x) ≤ 0. In this setting, if p(x)−x is too negative, the RGD flow will push x away from the nearby minimizer
x = 1. Similarly, for x ∈ (0, 1/2), the condition becomes p(x)−x ≤ (1/2−x)p′(x). In this regime, (1/2−x)p′(x) ≥ 0,
and the condition states that p(x)− x cannot be too large, or the RGD flow will push x away from the minimizer x = 0.

In this section, we used Theorem 2 to identify conditions on the decision-dependent distribution shift p(·) which ensure
that the performative risk does not increase even when the dynamics follow repeated gradient descent. For this example,
the condition is that p satisfies Equation (14) for all x ∈ (0, c). More generally, the performative alignment condition allow
us to specify a class of distribution shifts which behave well with respect to performative risk minimization.


