
Frequentist Uncertainty Quantification in Semi-Structured Neural Networks

Emilio Dorigatti Benjamin Schubert Bernd Bischl David Rügamer
LMU Munich

HMGU Munich
MCML

HMGU Munich
TU Munich

LMU Munich
MCML

LMU Munich
MCML

TU Dortmund

Abstract

Semi-structured regression (SSR) models jointly
learn the effect of structured (tabular) and unstruc-
tured (non-tabular) data through additive predic-
tors and deep neural networks (DNNs), respec-
tively. Inference in SSR models aims at deriving
confidence intervals for the structured predictor,
although current approaches ignore the variance
of the DNN estimation of the unstructured effects.
This results in an underestimation of the variance
of the structured coefficients and, thus, an increase
of Type-I error rates. To address this shortcoming,
we present here a theoretical framework for struc-
tured inference in SSR models that incorporates
the variance of the DNN estimate into confidence
intervals for the structured predictor. By treating
this estimate as a random offset with known vari-
ance, our formulation is agnostic to the specific
deep uncertainty quantification method employed.
Through numerical experiments and a practical
application on a medical dataset, we show that
our approach results in increased coverage of the
true structured coefficients and thus a reduction
in Type-I error rate compared to ignoring the vari-
ance of the neural network, naive ensembling of
SSR models, and a variational inference baseline.

1 INTRODUCTION

Following the increase in data availability, there is a growing
need for methods in the field of deep learning to meaning-
fully combine non-tabular data (e.g., image and/or text) with
tabular data. Particularly in medicine, most recent studies
include both medical images or genome sequence data and
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Figure 1: The semi-structured regression (SSR) framework
makes it possible to learn from tabular and non-tabular fea-
tures (e.g. image data or tensors) simultaneously, while
providing principled inference for the additive predictor.

tabular patient information such as age, sex, body-mass in-
dex, or medication (see, e.g., Huang et al., 2022; Isobe et al.,
2022; Zheng et al., 2020). Whereas the non-tabular data
is modeled using a variety of deep neural network (DNN)
architectures such as graph neural networks (see, e.g., Fritz
et al., 2022) or (pre-trained) convolutional neural networks
(see, e.g., Lassau et al., 2021), the tabular data is often con-
catenated in the last layer to learn a linear effect for these
features. An alternative method is to extract the DNN’s
latent features learned in the penultimate layer and feed
these into a regression model (see, e.g., Wolf et al., 2022,
for a comparison of approaches). The simple concatenation
of tabular features into the DNN (and, hence, linear effect
assumption of these variables) is potentially not complex
enough to represent real-world relationships. For example,
the effect of medication does not always increase linearly
with increased dosage.

An approach to overcome these limitations is to combine
the structured predictors of a flexible statistical regression
model with deep (or unstructured) neural networks in a one-
step semi-structured regression (SSR) network and jointly
learn the effect of the tabular and non-tabular data (see, e.g.,
Kopper et al., 2021; Baumann et al., 2021; Kook et al., 2022).
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Figure 2: The structured additive predictor of nine SSR models is used to fit a thin plate regression spline on a simulated
dataset (red line), and exhibits moderate overfitting and excessive wiggliness after the initial training with stochastic gradient
descent (left, dashed lines). The predictions of the DNNs could be used to fit additive models (AM) post hoc, however,
the resulting fits (left, dotted lines, and dark gray areas) are still too wiggly even after their smoothness penalty is tuned.
Ensembling the initial SSR models does not result in either better point predictions or reliable confidence intervals (right
top), while ensembling the AMs provides a better average fit with sometimes overly narrow confidence intervals (right
middle). The best fit is instead achieved with our proposed method in Theorem 3: In dense regions of the data distribution,
the DNN uncertainty is very low and does not affect confidence intervals, while at the extremes of the data distribution the
confidence intervals are larger reflecting the increased DNN uncertainty (right bottom).

This approach allows one to incorporate non-linear effects
of tabular data – such as splines – into the network while
extending the class of generalized additive models (GAMs;
Hastie and Tibshirani, 1990) by more complex neural net-
work predictions or non-tabular data (Rügamer et al., 2023).
The SSR framework can also be seen as a GAM where
the DNN provides a sample-specific offset that captures
the effect of the non-tabular features and all interactions
not already codified in the design matrix of the additive
predictor. This point of view is particularly interesting for
medical applications where statistical models such as GAMs
are well-accepted and used for decision-making in critical
situations (see, e.g., Desquilbet and Mariotti, 2010).

Besides prediction on unseen data, an important use of pre-
dictive modeling is interpretation and understanding what
features do and do not affect the response. While provid-
ing a framework with principled inference and interpretable
results using the standard theoretical development of (gen-
eralized) linear models (Casella and Berger, 2021), the use
of SSR models in research domains dominated by p-values
and classical statistical models requires a well-defined and
theoretical-founded quantification of uncertainty, i.e., valid
statistical inference. DNN estimates are intrinsically uncer-
tain for a multitude of reasons, including limited amount
of training data, stochastic optimization procedures, multi-
modality of the likelihood landscape, etc. However, naive
approaches such as last layer inference (see, e.g., Daxberger
et al., 2021) or using the extracted features from a DNN
in a regression model are known to ignore the variance in
the DNN estimation of the unstructured effects, resulting in

an estimator of the structured coefficients with artificially
low variance and consequently increased Type-I (false posi-
tive) error rates. In reality, the variance in the estimation of
the unstructured effects should be propagated to the struc-
tured coefficients in order to obtain confidence intervals of
nominal coverage.

Our contributions: In this work, we quantify how the vari-
ance of the DNN estimation affects the distribution of the
estimator of the structured effects of an SSR model, thus re-
ducing Type-I error rates stemming from ignoring the DNN
uncertainty. By abstracting the DNN as a random, normally-
distributed offset, our framework can make use of any deep
uncertainty quantification (DUQ) method that adheres to
our distributional assumptions. Given such estimation, we
derive exact expressions for the variance of the estimators
of the structured coefficients for linear and additive semi-
structured models and provide asymptotic results for the
structured coefficients relating to generalized linear mod-
els (GLMs; Nelder and Wedderburn, 1972) and generalized
additive semi-structured models. By analyzing the resulting
analytical form of the variance in additive SSR models, we
can answer two critical questions for practitioners – namely,
what happens when DUQ is not performed, and how in-
ference in the SSR model is affected by DNN pretraining.
In both cases, we show that traditional inference methods
based exclusively on residuals are almost surely correct in
the large-sample limit.

We then conduct simulation studies to show the correct-
ness of our framework, first by sampling from our assumed
data-generating process, then by involving an actual DNN
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with realistic, imprecise UQ and non-normally distributed
predictions. In both cases, we show that the confidence
intervals derived with our formulation result in increased
coverage compared to the naive, uncertainty-unaware pro-
cedure and a naive ensembling of SSR models, eventually
reaching nominal coverage in all situations when the DNN
uncertainty is exactly quantified. We finally apply our frame-
work to a real-world dataset of skin lesion images and show
that including the DNN uncertainty greatly improves the
predictive performance and avoids over-confident inference.

Our framework is based on frequentist theory and thus al-
lows practitioners to provide inference statements – such
as p-values and confidence intervals – in a well-established
format without requiring priors to be specified. This al-
lows researchers from other domains to use SSR models
interchangeably with (generalized) linear models or GAMs,
which fosters better comparisons and easier adaptation. To
the best of our knowledge, correct inference for structured
effects in semi-structured models has not been studied yet.

2 BACKGROUND

Many sources of uncertainty affect the quality of predic-
tive models, ranging from data issues such as noise and
non-representativeness to inference issues such as training
and hyperparameter tuning, among others. Nonetheless, it
is necessary to accurately quantify the uncertainty of pre-
dictive models in order to ensure that their predictions are
fair, can be trusted, and are safe to use – especially in do-
mains such as medicine and autonomous driving, where real
harm could be done if real-world decisions are based on
wrong, uncertain predictions (see, e.g., Begoli et al., 2019;
Michelmore et al., 2020; Verma and Rubin, 2018).

Recent advances in deep learning made it possible to obtain
accurate predictions for various unstructured data sources
including images, text, and audio. However, DUQ is partic-
ularly difficult, as the theoretical foundations of the field are
still being developed. Additionally, the considerable compu-
tational resources needed for exact UQ further complicate
this approach. Due to these difficulties, a wide range of
methods for DUQ have been proposed recently. For more
information, we refer to Abdar et al. (2021); Gawlikowski
et al. (2021) for an in-depth overview and Appendix A for
further considerations on the topic. The lack of (theoreti-
cally) grounded DUQ methods and the need of practitioners
in certain fields to provide reliable statistical significance
statements motivates the necessity of SSR models and UQ
thereof.

3 INFERENCE IN SSR MODELS

A semi-structured regression (SSR) model (Figure 1) is used
to jointly learn from tabular features through an additive
predictor and non-tabular data through a DNN. We distin-

guish between tabular and non-tabular data mainly by the
modeling approach employed, where tabular data comes in
the form of vectors and is amenable to structured (gener-
alized) linear or additive models, while non-tabular data is
generally represented as tensors and requires unstructured,
non-linear modeling as done by (deep) neural networks.
We assume a two-step fitting procedure for the SSR model
where the DNN is first trained jointly with the additive pre-
dictor on a training dataset using a second, independent,
held-out dataset for early stopping, then inference for the
structured coefficients is performed on the validation set
based on the DNN predictions as well as their associated
(epistemic) uncertainty.1

3.1 Notation and Problem Setup

In this work, we focus on the second step outlined above,
where inference on the structured coefficients is performed.
We denote with X ∈ Rn×d, X = (x⊤

1 , . . . ,x
⊤
n )

⊤ the
design matrix of the tabular features xi ∈ Rd for the n vali-
dation samples, including (possibly) dummy encoding for
factor variables and (possibly) basis expansion for splines,
for a total of d features. We further denote with β ∈ Rd the
true parameters of the additive predictor and with f ∈ Rn

the true additive effect of the non-tabular features, so that
the response to be predicted y = (y1, . . . , yn)

⊤ ∈ Rn is
generated from the linear predictor η := Xβ + f . The
true and unknown unstructured effect f is estimated by a
DNN with suitable architecture and appropriate training
procedure, whose predictions are denoted as z ∈ Rn with
covariance2 Γ ∈ Rn×n derived by an unspecified DUQ
method.

By completely separating the estimation of z and Γ from
the estimation of β, we are able to propose a generic plug-
and-play, future-proof framework that can use any DUQ
method with no modifications, provided that it results in
reliable UQ estimates. Finally, we note that providing a
reliable estimation of Γ is still an open research problem
(see Section 2) that we do not intend to tackle here.

DNN Abstraction and Assumptions: For tractability rea-
sons, in our theoretical derivations, we assume that z is dis-
tributed as N (f ,Γ) with full-rank covariance. We further
assume Γ to represent the true uncertainty of the network,
as in the case of unknown over-/under-estimation, it is not
possible to derive theoretical guarantees on the nominal
coverage of β without further assumptions. Despite our
treatment of Γ as a generic matrix, we later argue that in-
ference on held-out datasets (as described above) naturally
results in diagonal covariance, which is considerably easier
to obtain and deal with when working with large models or

1The aleatoric DNN uncertainty cannot be disentangled from
the aleatoric uncertainty of the SSR model as a whole.

2Throughout the text, we refer to Γ alternatively as covariance
of z and uncertainty of the DNN.
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datasets, thus motivating our two-step approach. Moreover,
we observe in practice that even when z and/or Γ are not
perfectly estimated and the distributional assumptions are
violated, our approach provides more accurate estimation
of the structured coefficients over other baselines (see our
experimental results in Section 4).

To develop our theory, we start by considering the simplest
case where y = η, which allows us to derive exact expres-
sions for the variance of β̂ (Section 3.2). We then proceed
to the most general setting of E[y] = g−1(η) where only
asymptotic expressions can be derived (Section 3.3).

3.2 Exact Inference in Additive SSR Models

Consider the following data-generating process:

y = Xβ + f + ϵ

z ∼ N (f ,Γ)

ϵ ∼ N (0, σ2I)

(1)

where z are the DNN predictions and β is estimated without
further regularization. Under such a model, the additional
variance of z affects inference for β, as stated in Theorem 1.

Theorem 1 (Inference in linear models) Given the data-
generating process in Equation (1), an unbiased estimator
for β is

β̂ = (X⊤X)−1X⊤(y − z)

whose variance is

V[β̂] = (X⊤X)−1X⊤(σ2I + Γ)X(X⊤X)−1.

Given the residuals r = y−Xβ̂−z, an unbiased estimator
of σ2 is

σ̂2 = (r⊤r − tr(Γ))/(n− d)

All proofs are found in Appendix B. The variance of β̂
can be recognized as the familiar ordinary least squares
estimator with heteroscedastic errors (White, 1980), where,
in this case, the sample-specific error stems from the DNN
uncertainty. The additional variance in the estimator of β̂ is
also propagated to the predictions, as stated in Theorem 2.

Theorem 2 (Prediction in linear models) Given the data-
generating process of Equation (1) and the estimator β̂ of
Theorem 1, the variance of the predicted mean is

V[Xβ̂ + z] = σ2H + (I −H)Γ(I −H)⊤

where H = X(X⊤X)−1X⊤.

Looking at Theorem 1, we first notice that when σ2 ≫
tr(Γ)/n, the uncertainty from the DNN has very little effect,
as most of the variance stems from the noise ϵ. Second, in
the limit Γ → diag(γ2/n ·1), i.e., with constant uncertainty
γ2 from the DNN, the variance of the estimated parameters

becomes V[β̂] = (σ2 + γ2)(X⊤X)−1, whose scalar pa-
rameter can be estimated from the residual vector r using
E[r⊤r]/(n− d) = σ2 + γ2. In other words, with constant
DNN uncertainty, inference based on ordinary linear model
theory results in confidence intervals of nominal coverage.
Therefore, our results are especially relevant when the un-
certainty of the DNN 1) is of similar magnitude to or greater
than the noise variance, 2) is highly variable among data
points, and 3) has intricate covariance structure. These re-
sults can be specialized for the common case of a held-out
validation dataset, shedding further light on the properties
of SSR uncertainty.

3.2.1 Inference on Held-out Datasets

As introduced above, we assume a two-step fitting procedure
where z, Γ and β are estimated on a dataset different from
that used to fit the SSR model. We observed empirically
that in some cases and especially with small training sets,
a naive estimation of β on the same training set used to
train the SSR model can result in an artificial shrinkage,
i.e., a bias towards zero, as noted by Rügamer et al. (2023)
and illustrated in Appendix C. This bias can be avoided
in two ways: (1) by warm-starting β̂ before training the
SSR model as β̂ = (X⊤X)−1X⊤y and ignoring the non-
tabular features, as suggested by Rügamer et al. (2023), or
(2) by re-estimating β̂ after training the SSR model on a
held-out dataset, such as the validation set used for early
stopping. We prefer the latter approach, as performance
on a sufficiently large and i.i.d. validation set is a reliable
indicator of out-of-sample generalization and guarantees a
diagonal covariance for z:

Proposition 1 When performing inference on a held-out
dataset that is i.i.d. from the dataset used to fit the SSR
model, the DNN predictions z are conditionally independent
of each other given the training data. Furthermore, their
uncertainty Γ is a diagonal matrix.

The reason for this is that the DNN weights are kept fixed
when predicting the unstructured effect of the held-out
dataset – meaning that changes in one data point do not
affect the predictions of other samples in this dataset. This
proposition is extremely important for practical applications
of our method, as it is considerably easier and computation-
ally much cheaper to estimate a diagonal Γ instead of its
full-rank counterpart. A diagonal covariance for z allows
us to simplify the covariance expression of Theorem 1 and
obtain two interesting asymptotic results.

Corollary 1 (Large-sample convergence) In the large-
sample limit, on a held-out dataset X i.i.d. from the dataset
used to train the SSR model, the variance of β̂ can be esti-
mated with

V(β̂) = r⊤r/(n− d) · (X⊤X)−1,

where r are the model’s residuals on the held-out dataset.
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In this situation, the sample-specific DNN uncertainty is
"diluted" by a large number of observations and allows one
to perform asymptotically correct inference directly from the
residuals of the held-out dataset, since r⊤r/(n− d) is the
usual estimator of σ̂2 in traditional structured linear models.
Similar reasoning allows us to derive another interesting
corollary connecting uncertainty with DNN pre-training:

Corollary 2 (Small-sample pre-training) Assume that
the DNN was pre-trained on an external, independent
dataset of m samples before fitting the SSR model. Assum-
ing that γi = O(1/m) for all i ∈ 1, . . . , n, when estimating
β̂ on the validation set, we have

V[β̂] = O(σ2 + tr(Γ)/
√
m) · (X⊤X)−1.

In particular, if
√
m = O(n), then we have

V[β̂] = O(r⊤r/(n− d)) · (X⊤X)−1,

where the O(·) notation in case of matrices refers to each
element of the matrix.

In other words, relying exclusively on the residuals of the lin-
ear fit with small n and not modeling the DNN uncertainty
results (in the worst case) in an underestimation of the vari-
ance of β̂. This variance can be reduced by pre-training the
DNN on an external dataset, and when this dataset has size
O(n2), the resulting reduction in variance compensates for
the underestimation arising from not quantifying the DNN
uncertainty. However, the pre-training dataset must be rele-
vant enough to the task at hand that the bound γi = O(1/m)
still holds. While it is hard to establish formal results in this
regard, the fact that pre-training is an effective and widely
used technique suggests that this scaling bound can be rea-
sonably achieved in practice. Although seemingly similar,
note that Corollary 1 provides a convergence statement with-
out DNN pre-training, while Corollary 2 provides an upper
bound when pre-training was performed.

Being able to replace exact UQ with pre-training or com-
pletely ignoring DUQ with large datasets is incredibly useful
for practitioners because proper DUQ is currently a difficult
and open problem (Abdar et al., 2021), while data for pre-
training is relatively easy to find aplenty in many domains.
Even more conveniently, the required scaling of m = O(n2)
can be relaxed with large enough m and n, since at some
point the irreducible aleatoric uncertainty σ2 starts to domi-
nate the residuals. This would result in confidence intervals
that are slightly wider and more conservative but simultane-
ously narrow enough to allow reliable and practically useful
inference, since their width asymptotically approaches zero.

These results may provoke a question regarding the value
added by DUQ. First, note that Corollary 1 holds asymptoti-
cally, and Corollary 2 is a possibly very loose upper bound.
Moreover, sound prediction intervals for y that consider
the DNN uncertainty (Theorem 2) cannot be obtained from

residuals alone, even asymptotically. Second, quantifying Γ
allows decomposing the residual variance into (1) variance
due to measurement noise and (2) variance from the DNN.
This latter variance can be used to detect abnormal, out-of-
distribution samples when applying the model in practice
– for example, in biomedical applications where safety is
critical and models must earn their trust from practitioners
who are often not trained in statistical inference (Gaube
et al., 2021).

3.2.2 Penalized SSR Models

A very similar analysis as shown above carries over to penal-
ized least squares – including in particular Ridge regression
and additive models – by explicitly handling the penalty
term. We consider a setup similar to that described in the
previous section: for additive models, the design matrix
X includes suitable basis expansions for all smooth terms
of interest. We denote the penalty matrix as Sλ, with λ
controlling the amount of regularization. In case of Ridge
regression, we set λ = λ21 and thus Sλ = λ2I , while
for additive models, we use Sλ =

∑
i λiSi with λi and

Si controlling the smoothness of the i-th smooth, whose
coefficients are gathered by Si to form the penalty. With
this setup, inference in additive SSR models is performed
as shown in Theorem 3.

Theorem 3 (Additive inference) Given the data-
generating process in Equation (1), the penalized
estimator for β with penalty Sλ is

β̂ = P (y − z),

where P := (X⊤X +Sλ)
−1X⊤. The estimator variance

is
V[β̂] = P (σ2I + Γ)P⊤,

and an estimator of σ2 is

σ̂2 = (r⊤r − tr(Γ))/(n− d),

where r is the vector of residuals r = y −Xβ − z.

The optimal penalties λ can now be chosen based on (gen-
eralized) cross-validation by deriving a Bayesian posterior
for β and tuning λ via marginal or restricted likelihood
maximization, or via the Demmler-Reinsch orthogonaliza-
tion (Ruppert et al., 2003).

In this case, prediction intervals are not straightforward to
obtain in a frequentist setting due to the bias in β̂ introduced
by Sλ. An empirical Bayesian approach treats Sλ as a
prior for β and results in β̂ ∼ N (β,V[β̂]), allowing further
inference and probabilistic predictions.

3.3 Asymptotic Inference in Generalized SSR Models

We now extend our theory to the more general case of SSR
models with an exponential response distribution. In this
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case, the conditional mean of the response is expressed as a
function of the linear predictor:

E[y|X] = g−1(Xβ + f),

z ∼ N (f ,Γ),
(2)

where, again, we first show how to estimate β without ad-
ditional (explicit) regularization. In contrast to our previ-
ous approach, we now fix the DNN’s prediction ẑ of z
and model the remaining variation in its prediction using
a random effect b ∼ N (0,Γ). This can be seen as a re-
formulation of the linear regression case with z

d
= ẑ + b,

used to derive Theorem 4 for inference in SSR models with
exponential response (and which allows for straightforward
computation, as elaborated afterward).

Theorem 4 (GLM Inference) Inference in a semi-
structured GLM can be performed by solving the equivalent
generalized linear mixed model (GLMM):

E[y|β, z] = g−1(Xβ + ẑ + b)

b ∼ N (0,Γ)

with response distribution D, fixed offset ẑ, and random
effects b. Let W denote the GLM weights and ϕ the scale
parameter for D. Then, β̂ and b̂ can be found by penalized
iterated least squares, producing the asymptotic relation-
ship (Wood, 2006, Equation 3.21):(

β̂

b̂

)
a∼ N

((
β

0

)
, ϕ

(
X⊤WX X⊤W

WX W + ϕΓ−1

)−1
)
.

As most existing routines for GLMM fitting do not readily
work with an externally given variance estimate for the
random offset, we present an adaption to the Fisher Scoring
algorithm (Breslow and Clayton, 1993) in Appendix D that
makes use of conventional GLMM software.

3.3.1 Generalized Additive SSR Models

The previous considerations can be extended to include
non-linear structured effects into the additive predictor η.
The resulting model (a semi-structured GAM) allows the
incorporation of more flexible yet interpretable univariate or
low-dimensional multivariate smooth effects (while other,
higher-order interactions can be represented with the DNN
part of the SSR model). While GAMs for Gaussian response
can be estimated as stated in Theorem 3, a more flexible
approach is to treat the smooth terms as random effects (see,
e.g., Ruppert et al., 2003). This allows GAMs and their (co-
)variance terms in Γ to be estimated by a linear mixed model
solver or, in the general case, using an iterative mixed model
procedure (Breslow and Clayton, 1993). Having framed
semi-structured GLMs as a mixed model (Theorem 4), the
extension of our approach to semi-structured GAMs, result-
ing in a mixed GAM (GAMM), is therefore straightforward
and covered by the same theoretical results.
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Figure 3: Coverage (top) and power (bottom) of confidence
intervals for β with a simulated DNN giving correlated pre-
dictions with variance of γ2 (x-axis) and when accounting
(orange) and neglecting (blue) the DNN uncertainty in The-
orem 4.

4 EXPERIMENTAL RESULTS

We introduce simulation studies on synthetic datasets to
validate our theoretical development with simulated (Sec-
tion 4.1) and real (Section 4.2) DNNs, then use a real-world
data set to demonstrate our framework’s practical applica-
bility and advantages (Section 4.3). In both cases, we are
mainly interested in the confidence intervals for β, which
should ideally reach the nominal coverage level α. Un-
less otherwise specified, we used α = 0.15 and show 90%
confidence intervals in the plots.

4.1 Data-Generating Process Investigation

We first simulate a dataset following the data-generating
process of Equation (2) in order to test theoretical properties
of our assumed model with known DNN predictions and
uncertainty. For this, we use n = 100 observations, d = 4
structured coefficients, and a Poisson response distribution.
We sample both β and f from standard Normal distributions.
We use Γ = γP to sample z, where γ2 ∈ {0.01, 0.1, 1, 2}
and P is a full-rank matrix of random correlations.3 We
simulate 250 random datasets for each value of γ2, and,
for each dataset, we estimate β and compute the empirical
power and coverage of the confidence intervals resulting
from the asymptotic result of Theorem 4. We compare two
scenarios: (1) when the true γ2 is used, i.e., when correctly
accounting for uncertainty in the DNN predictions, and (2)
when the estimation is performed with γ2 = 0, as is the
case when no UQ is performed.

3Given a random n × n matrix A with Aij ∼ N (3/4, 1),
we compute Pij = A⊤

i Aj(A
⊤
iiAiiA

⊤
jjAjj)

−1/2, resulting in
correlations between 0.3 and 0.4.
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Figure 4: Coverage (y-axis) of confidence intervals for β for different ways of training the SSR model and the DNN, for
different number of training samples (columns) and magnitude of the unstructured effect (rows). Bayes-by-backprop (BBP,
light blue) and an ensemble of SSR models (SSR Ens., dark blue) directly provide confidence intervals and do not require
our framework. Ensembles of DNNs (DNN Ens., light orange) and Monte Carlo Dropout (DNN MCD, dark orange) both
provide an estimation of z and Γ that is used by our GLMM. Ignoring these Γ results in two uncertainty-unaware baselines
using the predictions of a single network or the average prediction of an ensemble. Finally, combining z and f allows us
to compute the exact uncertainty associated with z and thus derive an oracle baseline using our GLMM method with this
uncertainty.

Results: Without considering uncertainty from the DNN,
coverage becomes progressively worse as the simulated
DNN predictions become more uncertain,4 while nominal
coverage can be achieved in all cases when accounting for
DNN uncertainty using our GLMM approach (Figure 3).
However, accounting for the uncertainty decreases the power
of the test with increased DNN influence as structured ef-
fects naturally become more uncertain. We can thus con-
clude that our approach yields valid inference with nom-
inal coverage and is well aware of the DNN prediction
uncertainty. Not accounting for the additional uncertainty
gives overconfident results that never yield nominal cov-
erage while also not being aware of the increased DNN
uncertainty. In this case, we also observe no change in
power for varying DNN prediction influence.

4.2 Power and Coverage for Semi-Structured
Uncertainty Quantification

We now turn to the application of our framework under
controlled settings to investigate its power and coverage
properties in practice. We generate f in Equation (2) from
a randomly initialized DNN comprising of one hidden layer
with eight neurons and tanh activation, and normalize both
Xβ and f to unit standard deviation before generating the

4Note that Corollary 1 refers to OLS models and thus does not
apply here.

observations from a Poisson distribution:

yi ∼ Poi(exp(x⊤
i β + τfi)), i = 1, . . . , n, (3)

where we used τ ∈ {0, 1
2 , 2} to modulate the influence of

the unstructured part on the response, including a scenario
where no real unstructured effect is present (τ = 0). For
each value of τ , we generate 150 training datasets with 75,
500, and 2000 samples and fit an ensemble of K = 25 SSR
models respectively for each dataset. The ensembles are
formed by DNNs with two hidden layers of 12 neurons each
and ReLU activation, and an external validation set is used
both for early stopping and to estimate β̂, z, and Γ (see
Appendix E for further details).

Uncertainty Quantification: We evaluate in total eight
different approaches for the UQ of structured effects β̂. As
alternative approaches to UQ for SSR models, we consider
ensembles (Lakshminarayanan et al., 2017), which are fre-
quently found to be among the best-performing methods
in the field (Wilson and Izmailov, 2020) despite their sim-
plicity, thus representing a likely choice of current SSR
users seeking to perform UQ. We also consider Bayes-by-
backprop (BBP; Blundell et al., 2015), a variational infer-
ence approach using a mean field approximation for all
parameters of the SSR model. To quantify uncertainty with
our proposed method, we consider two different ways of
obtaining the uncertainty from the DNN: ensembles and
Monte Carlo Dropout (MCD; Gal and Ghahramani, 2015).
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ferent UQ methods (x-axis) when predicting η (red circles)
and f (blue triangles) compared to the GLMM uncertainty.

Both methods can be seen as producing samples from the
posterior weight distribution of the DNN, from which we
can derive both z and Γ (diagonal, as per Proposition 1) as
their mean and variance, respectively. Moreover, having ac-
cess to the true unstructured effect f (which is unavailable in
real-world applications) allows us to simulate perfect DUQ
by an oracle using the exact uncertainty Γ(e) associated with
z:

Γ
(e)
ii =

1

K − 1

K∑
k=1

(zik − fi)
2, (4)

where zik is the prediction for the i-th example by the k-
th ensemble network / Monte Carlo sample, and Γij = 0
for i ̸= j. Finally, we consider two uncertainty-unaware
baselines obtained by discarding Γ from the Monte Carlo
dropout approximation and aforementioned DNN ensem-
bles. The former corresponds to fitting an SSR model with
a single DNN and is understood to be the standard SSR
training procedure with no additional UQ considerations,
and the latter sheds light on how improved estimation of z
can on its own improve inference of β̂.

Improved Inference of β: The most immediately visi-
ble trend is an improvement in coverage as the size of the
training set and the magnitude of the unstructured effect τ
decrease. In all cases, the oracle GLMM provided higher
coverage than the GLMM with estimated uncertainty, which
in turn was better than the models that ignored DNN uncer-
tainty (Figure 4). Confirming previous observations in the
literature (Wilson and Izmailov, 2020), ensembles produce
more reliable uncertainty estimates, which translates to bet-
ter coverage from our GLMM models compared to MCD
uncertainty. However, except in difficult scenarios with a
small training set (n = 75), the oracle GLMMs reached
nominal coverage (with ensemble uncertainty) or close to
it (with MCD uncertainty with τ = 2). Moreover, reaching

nominal coverage with the oracle uncertainty but imperfect
point predictions suggests that biased estimation of f by z
does not negatively affect inference on β, given that such a
bias is reflected correctly in Γ. This is an important finding,
as in principle, it does not preclude the use of post-hoc DUQ
methods – meaning that practitioners do not have to alter
the training procedure of their DNN. These observations
confirm that our approach is theoretically correct given per-
fect UQ, that a diagonal approximation to the uncertainty Γ
is sufficient, and that violations of the normality assumption
on the DNN predictions do not prevent our method from
notably increasing coverage.

As for the baselines, the behavior of BBP is strongly de-
pendent on both n and τ , where an increase in n decreases
coverage and an increase in τ increases coverage. The
ensemble of SSR models also presents highly variable be-
havior – considerably under-covering with τ = 2 but gen-
erally reaching closer to the nominal coverage level as n
increases. After controlling for τ and n, BBP did not sig-
nificantly increase the coverage odds (CO) compared to the
uncertainty-unaware baseline (CO=1.02, p = 0.73), and the
ensemble of SSR models performed similarly as the GLMM
with MCD uncertainty (CO=0.97, p = 0.62). Compared
to the uncertainty-unaware baseline, our GLMM improved
the CO by 35% using MCD uncertainty and 76% using the
ensemble uncertainty, and our GLMM with ensemble un-
certainty increased the CO by 36% compared to the SSR
ensemble and by 40% compared to MCD uncertainty (all
p < 10−16).

Impact of DUQ on the Coverage of β: We next investigate
the connection between the quality of the estimated DNN
uncertainty by the ensemble and the quality of β̂. We use
z and diag(Γ) to derive 85% confidence intervals for f ,
and we compute the quality of the DNN uncertainty for a
dataset as the average coverage of f across all data points.
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Pen. Age (M) Age (F) aR2 DE

No img. .0002 .0028 .0019 .13 .30
No unc. .0002 .032 .017 .11 .32

Ours .1000 .044 .046 .31 .39

Table 1: Comparison of three models trained on the
melanoma dataset, one using only structured features (“no
img.”), an SSR model without uncertainty (“no unc.”) and
one using our GLMM. The columns show the penalty for
the patient random effect, the p-values of smooth age terms
for male (M) and female (F) patients, the adjusted R2 of the
model, and the deviance explained (DE).

We then bin the coverage of f , and for each bin, we com-
pute the coverage of β achieved by the four UQ methods.
For all methods except for the oracle UQ, coverage of β
tends to increase as the DNN uncertainty is quantified more
precisely, and again our GLMM provides confidence inter-
vals with coverage closest to the nominal level (Figure 5) –
significantly higher than the ensemble and GLM intervals.

Improved Inference of f and y: We now analyze the
effect of (D)UQ on prediction accuracy, again using the
uncertainty derived from the ensemble. Correcting z with
the random effects estimated by the GLMM provides new
estimators f̂ = ẑ + b̂ and η̂ = Xβ̂ + f̂ that are more
accurate than just using z, reducing the root mean squared
error (RMSE) of η and f by 20% or more compared to
not performing DUQ and by about 10% compared to when
the empirical method is used (Figure 6). The reduction in
RMSE is particularly evident on smaller training datasets
with a large unstructured effect, i.e., when DNN uncertainty
plays a larger role. However, with large training sets and
a weak unstructured effect, the empirical method achieves
better predictions of η.

4.3 Real-World Application

We finally apply our framework to the ISIC 2020 Challenge
dataset (Rotemberg et al., 2021), which contains 32,531
dermoscopic images of skin lesions and information on
the patient, with the goal of predicting whether the lesion
is benign or malignant. As there could be several lesions
associated with the same patient, we fit a binomial GAMM
that includes a patient-specific random effect, a term for the
site where the lesion was found, two smooth terms for the
age of male and female patients, and the image of the lesion
as non-tabular input modeled by a convolutional DNN. We
omit all patients with less than four lesion images and use
the remaining 1,409 patients (25,461 lesions, 389 malignant)
to fit an ensemble of ten DNNs via stratified cross-validation
by performing a grid search on the smoothing parameter
for the patient random effect and selecting the best based
on the model’s deviance explained on a held-out dataset of

100 patients (3,217 lesions, 59 malignant). Finally, we use
another held-out dataset of 100 patients (2,950 lesions, 54
malignant) for the final model fit and report results on this
dataset (see Appendix F for more details).

The baseline that omits the lesion image yields an adjusted
R2 of 13% and explains 30% of the deviance, while the
model that includes the average ensemble prediction with-
out its uncertainty obtains an adjusted R2 of 11% and 32%
of deviance explained. Instead, our approach of incorporat-
ing the uncertainty of the ensemble obtains R2 = 31% and
explains 39% of the deviance (Table 1). The penalty associ-
ated with our model for the patient random effect is consid-
erably larger compared to the uncertainty-unaware model,
suggesting that the latter mistakenly attributes some of the
DNN uncertainty to patient variability. As expected, our
model presents larger p-values, reducing over-confidence by
accounting for the DNN uncertainty (since the lesion site is
never found to be significant by any model). Finally, using
each network in the ensemble to build a separate SSR model
results in adjusted R2 values ranging from 8% to 11% and
explains deviance values ranging from 24% to 31%.

5 DISCUSSION AND CONCLUSION

We showed how to perform valid statistical inference for the
structured coefficients of a SSR model with theoretically-
sound foundations, reducing the rate of Type-I errors and
improving predictive performance. By analyzing the asymp-
totic variance-covariance of the structured coefficients we
also showed that for additive SSR models explicit DNN un-
certainty quantification is unnecessary (in the large-sample
limit), and that (for small datasets) it can be replaced for
pre-training on another larger (but relevant) dataset.

Experiments on simulated and real-world data confirmed
the correctness of our approach as well as its superiority
over alternative SSR UQ methods, including naive ensem-
bling of SSR models and a variational approximation to
the structured coefficients. However, it is important to note
that the empirical performance of our method is inevitably
tied to the performance of the specific method employed to
quantify the DNN uncertainty, in the sense that bad estima-
tion of the DNN output cannot be overcome by our method.
Empirical benchmarking of several DUQ methods in con-
junction with our framework thus constitutes an important
future research direction. Further societal impacts of our
work are discussed in Appendix G.

In conclusion, theoretically grounded and asymptotically
correct statistical inference with our method reduces the rate
of false discoveries and misleading interpretations of struc-
tured effects, thereby increasing the trustworthiness of SSR
models and their applicability in safety-critical scenarios.
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A DEEP UNCERTAINTY QUANTIFICATION

Given the difficulty of exact DUQ, practitioners must often resort to cheaper approximations, the most common of which
are Bayes-by-backprop (BBP, Blundell et al., 2015), Monte Carlo Dropout (MCD, Gal and Ghahramani, 2015), Deep
Ensembles (Lakshminarayanan et al., 2017), the Laplace approximation (Daxberger et al., 2021), Stochastic Gradient
Langevin Dynamics (SGLD, Welling and Teh, 2011), Stochastic Weight Averaging (SWAG, Maddox et al., 2019), Deep
Kernel Learning (DKL, Wilson et al., 2015), the Jackknife (Alaa and van der Schaar, 2020), and many others. Given all
these competing approaches, it is not trivial to understand when they work well and when they do not, with each method
having their own strength and weaknesses and considerable effort spent on benchmarks and comparisons (Wilson and
Izmailov, 2020; Izmailov et al., 2021; Abdar et al., 2021; Wang and Yeung, 2016; Gawlikowski et al., 2021). The necessity
of benchmarking our method along with all these DUQ approaches is therefore unavoidable.

From a high level perspective, DUQ methods can be partitioned into those focusing on weight-space uncertainty and those
focusing on functional uncertainty: while methods in the former class (including, e.g., BBP, SGLD and SWAG) try to derive
a distribution for the model’s parameters, methods in the latter class (e.g., MCD, DKL, and the Jackknife) only focus on
deriving a distribution for the model’s predictions. However, functional uncertainty methods cannot be applied as-is to
our goal of deriving an estimator for the structured coefficients of a SSR model, thus excluding a significant portion of the
literature on DUQ. Since our method only makes use of the DNN predictions and their distribution, it opens the door to
using functional DUQ methods in SSR inference. Weight-space methods to quantify the uncertainty of the DNN predictions
usually require repeatedly sampling from the posterior distribution of the weights and running a separate forward pass
for each sample, aggregating the model’s predictions into their mean and variance. As argued in Proposition 1, it is not
necessary to quantify the entire variance-covariance matrix on held-out datasets, and as shown in Section 4.2, our method is
robust towards non-normality of the predictions.

Another distinction of DUQ methods is between ad hoc and post hoc methods, where the former type of method estimates
uncertainty during DNN training with specific procedures and the latter derives the uncertainty after the DNN is fully trained.
BBP and DKL are examples of ad hoc methods, while Laplace and SWAG are examples of post hoc approaches. The
method we proposed is also part of the post hoc category, as we require a trained DNN to derive an estimator for β, although
the DNN uncertainty can be derived using both method types during the first stage of training the SSR model.

B PROOFS

B.1 Proof of Theorem 1

The data generating process is y = Xβ + f + ϵ with f being the true, unknown unstructured effect and ϵ ∼ N (0, σ2I).
The unstructured effect f is estimated by an uncertainty-aware DNN as z ∼ N (f ,Γ) with known Γ.

The estimator for β is obtained from y − z = Xβ by multiplying both sides by (X⊤X)−1X⊤ to the left. This estimator
is unbiased:

E[β̂] = (X⊤X)−1X⊤E[y − z] (5)

= (X⊤X)−1X⊤(Xβ + f − f) (6)

= (X⊤X)−1X⊤Xβ = β. (7)

B.1.1 Confidence Intervals

To compute the variance of β̂, we leverage the identity V(β̂) = E[β̂β̂⊤] − E[β̂]E[β̂]⊤. From Equation (5) it follows
E[β̂]E[β̂]⊤ = ββ⊤, while the first term is:

E[β̂β̂⊤] = E[(X⊤X)−1X⊤(y − z)(y − z)⊤X(X⊤X)−1] (8)

= (X⊤X)−1X⊤ · E[(y − z)(y − z)⊤] ·X(X⊤X)−1 (9)

Its middle term expands to

E[(y − z)(y − z)⊤] = E[(Xβ + f + ϵ− z)(Xβ + f + ϵ− z)⊤] (10)

= E[Xββ⊤X + ϵϵ⊤ + (f − z)(f − z)⊤ + 2Xβϵ⊤ + 2Xβ(f − z)⊤ + 2(f − z)ϵ⊤] (11)

= Xββ⊤X + σ2I + Γ, (12)
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where we used the fact that f − z ∼ N (0,Γ) and is independent of ϵ. Then,

E[β̂β̂⊤] = (X⊤X)−1X⊤ · (Xββ⊤X⊤ + σ2I + Γ) ·X(X⊤X)−1 (13)

= ββ⊤ + (X⊤X)−1X⊤(σ2I + Γ)X(X⊤X)−1, (14)

which implies that

V[β̂] = (X⊤X)−1X⊤(σ2I + Γ)X(X⊤X)−1 (15)

= σ2(X⊤X)−1 + (X⊤X)−1X⊤ΓX(X⊤X)−1, (16)

where the second expression makes it clear how much variance is added by additionally estimating f through z.

B.1.2 Residuals

The residuals are r = y −Xβ̂ − z = ϵ+ (f − z), and since ϵ ⊥⊥ (f − z), they are distributed as r ∼ N (0, σ2I + Γ).
Thus,

E[r⊤r] (a)= tr
{
(σ2I + Γ)

}
(b)
= nσ2 + tr(Γ),

(17)

where tr(·) is the trace operator, (a) follows due the quadratic form of the inner product of residuals with zero mean and
covariance as in Equation (5), and (b) follows as tr(·) is a linear mapping.

B.2 Proof of Theorem 2

The prediction intervals are constructed based on V[Xβ̂ + z], computed using the variance decomposition. First, note that
E[Xβ̂ + z] = Xβ + f , thus,

V[Xβ̂ + z] = E[(Xβ̂ + z)(Xβ̂ + z)⊤]− (Xβ + f)(Xβ + f)⊤ (18)

= σ2H + (H − I)Γ(H − I)⊤. (19)

B.3 Proof of Proposition 1

Let D = PX ×PU ×PY be the data distribution with PX , PU and PY the distributions of, respectively, the tabular features,
non-tabular features and response, and let (X̃, Ũ , Ỹ ) ∼ Dn be the dataset used to fit the SSR model. Further, let zi and
zj be the DNN predictions for two test data points ui,uj ∼ PU independent of each other and of Ũ . Note that these
predictions are obtained after the SSR model is fit on X̃ and Ũ to predict Ỹ and its parameters are fixed.

Then, Proposition 1 states that zi and zj are conditionally independent of each other, given (ui,uj , X̃, Ũ , ỹ). This can be
proved by noting that changing ui (respectively, uj) will not affect zj (respectively, zi), as the entire SSR model (including
the DNN) is fixed. Therefore, given a held-out dataset (X,U ,Y ) ∼ Dm, the covariance Γ of z is a diagonal matrix.
Moreover, the entries on the diagonal are i.i.d. because ui and uj are i.i.d. themselves.

B.4 Proof of Corollary 1

We assume that Corollary 1 is applied to a held-out dataset with tabular features X that was not used for training the DNN
so that Proposition 1 applies, i.e., the predictions of any two samples are conditionally independent, given the training set
and their features. Therefore:

E[(X⊤ΓX)ij ] =

n∑
k=1

n∑
ℓ=1

xkixℓjE[Γkℓ] (20)

(a)
=

n∑
k=1

xkixkjE[Γkk] (21)

:= γ2X⊤X (22)
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Figure 7: Demonstration of Corollary 1 on simulated data generated following the same protocol of Section 4.1 (using
correlated z) but with Gaussian response and identity link. The coverage of β is computed when using the true σ2 and Γ to
estimate V[β̂] (red circles), when only σ2I is used (green triangles), and when r⊤r/(n− d) is used (blue squares).

where step (a) follows because Γ is diagonal due to Proposition 1 and we use γ2 := E[Γkk]. Since the elements of Γ are
i.i.d. (Proposition 1), we can use the strong law of large numbers to estimate γ2 with tr(Γ)/n with almost sure convergence
guarantees. Using this estimator with Equation (22) and substituting into Equation (16) completes the proof in combination
with Equation (17).

Plots in Figure 7 using simulated data confirm that the corollary holds even for relatively modest sample sizes. When γ2 is
comparable or larger compared to σ2, the DNN uncertainty dominates and ignoring it completely results in under-coverage
(green triangles), while using the residuals r provides nominal coverage in all cases where n ≥ 10. However, with real
DNNs, the number of required samples may be considerably larger.

B.5 Proof of Corollary 2

As in the proof of Corollary 1, we assume that a held-out dataset is used, and thus, we treat Γ as diagonal with elements
γ2
1 , . . . , γ

2
m grouped into the vector γ. Consider the singular-value decomposition X = UDV ⊤, with U⊤U = I . Then,

X⊤ΓX = V DU⊤ΓUDV ⊤. Let Ui and Uj be the i-th and j-th columns of U , then we have

(U⊤ΓU)ij = (U⊤diag(γ2)U)ij =
∑
k

ukiukjγ
2
k = ⟨Ui ⊙Uj ,γ

2⟩ ≤

√√√√(∑
k

u2
kiu

2
kj

)
·

(∑
k

γ4
k

)
, (23)

where ⊙ is the element-wise (Hadamard) product, ⟨·, ·⟩ is the dot-product, and the last step is due to the Cauchy-Schwartz
inequality. Note that in general,

∑
k a

2
k ≤ (

∑
k ak)

2 when ak ≥ 0 for all k. Let m be the number of samples used to
pre-train the DNN. Then using ak = γ2

k and assuming that γ2
k = O(1/m) (a reasonable assumption, formally proven in

many common cases in statistical inference), we have that O(
∑

k γ
4
k) = O(n/m2) and O(

∑
k γ

2
k) = O(n/m), and thus

O

(∑
k

γ4
k

)
= O

 1

m

(∑
k

γ2
k

)2
 . (24)
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This allows us to continue the derivation as

(U⊤diag(γ2)U)ij = O


√√√√ 1

m

(∑
k

γ2
k

)2

·

(∑
k

ukiukj

)2
 (25)

= O

(
1√
m

∑
k

γ2
k ·
∑
k

ukiukj

)
(26)

= O
(
tr(Γ)

√
m · (U⊤U)ij

)
(27)

= O
(
tr(Γ)/

√
m · Iij

)
, (28)

where we could elide the square root in Equation (25), as both terms are non-negative before squaring. This implies that

X⊤ΓX = V DU⊤diag(γ2)UDV ⊤ (29)

= O
(
tr(Γ)/

√
m
)
· V D2V (30)

= O
(
tr(Γ)/

√
m
)
·X⊤X. (31)

Plugging this into the expression for V[β̂] gives the desired result. Further assuming that
√
m = O(n) gives O(σ2 +

tr(Γ)/
√
m) = O(σ2 + tr(Γ)/n) = O(r⊤r/n), as argued in the proof of Theorem 1.

B.6 Proof of Theorem 3

The coefficients are estimated by solving the standard penalized least squares problem:

β̂ = argmin
β

||y −Xβ − z||+ β⊤Sλβ = (X⊤X + Sλ)
−1X⊤(y − z) (32)

Due to the penalty, we now obtain a biased estimate of β:

E
[
β̂
]
= (X⊤X + Sλ)

−1X⊤(Xβ + f + ϵ− (X⊤X + Sλ)
−1X⊤f (33)

= (X⊤X + Sλ)
−1(X⊤X)β (34)

To compute the variance of such estimate, we use the equality V[β̂] = E
[
β̂β̂⊤

]
− E

[
β̂
]
E
[
β̂
]⊤

. Thus:

E
[
β̂
]
E
[
β̂
]⊤

= (X⊤X + Sλ)
−1(X⊤X)ββ⊤(X⊤X)(X⊤X + Sλ)

−1 (35)

and:

E
[
β̂β̂⊤

]
= (X⊤X + Sλ)

−1X⊤E
[
(y − z)(y − z)⊤)

]
X(X⊤X + Sλ)

−1 (36)

= (X⊤X + Sλ)
−1X⊤(Xββ⊤X⊤ + σ2I + Γ)X(X⊤X + Sλ)

−1, (37)

which gives:

V[β̂] = (X⊤X + Sλ)
−1X⊤(σ2I + Γ)X(X⊤X + Sλ)

−1. (38)
(39)

C ESTIMATION OF STRUCTURED COEFFICIENTS

We observed empirically that a naive estimation of β̂ on the same training set used to train the SSR model can (in some
cases and especially with small training sets) result in an artificial shrinkage, i.e., a bias towards zero, as already noted
by Rügamer et al. (2023). This bias can be avoided in two ways: (1) by warm-starting β̂ before training the SSR model as
β̂ = (X⊤X)−1X⊤y, as suggested by Rügamer et al. (2023), or (2) by re-estimating β̂ after training the SSR model on a
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Figure 8: Estimation error (y-axis) for each coefficient (x-axis) when an OLS model is fit on tabular features and DNN
predictions z without uncertainty on the same training set used to fit the SSR model (subset: train.), on the validation set
used for early stopping (subset: valid.), and on an independent test set (subset: test), for training sets of size 500 and 5,000
samples.

held-out dataset. For simplicity, in all experiments we used the same validation set we used for early stopping, and while
this may introduce some bias we have not observed any adverse effects.

We showcase this effect with a simulation study on a synthetic dataset constructed by drawing two random numbers a and b
for each sample i, and generating the response as yi = (a− 5.5)+ τ(b− 5.5), where τ ∈ R. As tabular features, we encode
a as a one-hot vector of dimension 10, so that the true coefficient βj , j ∈ {1, . . . , 10} has value j − 5.5. As non-tabular
features, we encode b with a handwritten image of the digit n randomly sampled from the MNIST dataset. For each value of
τ ∈ {0, 1/2, 2}, we generate 25 datasets with 500 samples and 25 datasets with 5,000 samples, and fit an SSR model using
a DNN with three convolutional layers with 32, 64 and 128 filters respectively of size 3× 3 and identical padding, with
leaky ReLU activation and interleaved with 2× 2 max-pooling layers, after which we perform global average pooling, place
a hidden fully-connected layer of 64 neurons and leaky ReLU activation, and the final output layer. We train the SSR model
with a batch size of 128 and initial learning rate of 0.01, decimating it when no improvement in validation mean squared
error (MSE) is observed for five epochs and early stopping of the training when the validation MSE does not improve for
more than eight epochs. After the SSR model is trained, we fit an OLS model on training, validation, and test sets using the
tabular features and the DNN predictions as fixed offset, and we compute the estimation error of β̂. Note that here we do not
use any DUQ method, as we intend to demonstrate a general danger (unwanted shrinkage) when training SSR models.

A bias towards zero is clearly visible on the training set with 500 samples and τ = 2, especially for the estimation of true
coefficients with large absolute value, and decreases to almost zero as the influence of the non-tabular features vanishes as
well as when the training set becomes larger (Figure 8). No systematic bias is observed on validation or test sets, although
with small training sets, the estimation error is quite large.

D FITTING PROCEDURE FOR GLMMs AND GAMMs

Given that the conditional distribution of y given the features is in the exponential family, finding the Maximum Likelihood
estimator for β for fixed ẑ and b = b̂ in the model

E[y|β, z] = g−1(Xβ + ẑ + b)

b ∼ N (0,Γ)
(40)
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is a convex problem and can be solved using the Fisher Scoring algorithm (see, e.g., Nelder and Wedderburn, 1972). Further,
given fixed β = β̂ and ẑ, the optimization of (40) is also a convex problem in b and can also be solved using Fisher Scoring.
When the only random effect in the GLMM is the DNN, the procedure proposed by Breslow and Clayton (1993) can be
applied. This iterative procedure is initialized by taking µ0 = y + κ and η0 = g(µ0), with κ small constants to avoid
numerical problems when applying g and g′, and the procedure is repeated until β̂n and b̂n converge. The new estimates β̂′

and b̂′ of β and b are computed from the pseudo-responses Yn as follows:

η̂n = Xβ̂n + ẑ + b̂n (41)

µ̂n = g−1(η̂n) (42)
Yn = η̂n − ẑ + diag(y − µ̂n)g

′(µ̂n) (43)

Vn = W−1
n ϕ+ Γ (44)

β̂n+1 = (X⊤V −1 + nX)−1X⊤V −1
n Yn (45)

b̂n+1 = ΓV −1
n (Yn −Xβ̂n+1), (46)

where Wn are the GLM weights and ϕ is the scale parameter of y.

For designs with more random effects or smooth terms, a more general approach is needed. As the optimization problem in
β, b is also convex, a cyclic coordinate-wise optimization routine (see, e.g., Boyd et al., 2004) alternating the two Fisher
Scoring steps can be used to find the joint optimum. Similarly, a GAM formulation of our SSR model can be optimized
using the same routine, as the defined penalties for b and smooth functions are separable. In particular, such an alternating
procedure allows using readily available software for the optimization of β (by introducing ẑ + b̂) as an offset, while the
optimization of b given Γ and other effects is straightforward to implement.

This leads to Algorithm 1, which can be used to estimate SSR models based on individual optimization routines opt1 and
opt2 (such as Fisher Scoring) for the optimization problem in β and b, respectively (also returning the Hessian H of the
GLM/GAM). If the model in (40) contains additional random effects based on structured features, a GLMM fitting routine
such as in Bates et al. (2014) can be used in the optimization step opt1.

Algorithm 1 SSR Optimization for Inference

Input: X,y,λ, ẑ,Γ; small constant ξ;
Set b̂(0) = 0; i = 1; δ = ξ + 1;
while ξ < δ do
β̂(i) = opt1(b(i−1),X,y,λ, ẑ);
b̂(i),H = opt2(β(i),X,y,λ, ẑ,Γ);
δ = max

{
|β̂(i) − β̂(i−1)|, |b̂(i) − b̂(i−1)|

}
;

i = i+ 1;
end while
Output: β̂ = β̂(i−1), b̂ = b̂(i−1),H

E POISSON SIMULATION DETAILS

We simulate the unstructured effect fi of sample i by randomly sampling a vector ui of du = 8 normally and independently
distributed features, i.e., uij ∼ N (0, 1). We then transform this vector with a randomly initialized DNN h with one hidden
layer with eight neurons and tanh activation and linear output activation to obtain fi := h(ui), and we finally normalize
f to unit standard deviation. We also sample tabular features xij and βj from N (0, 1) and obtain the linear predictor
ηi = x⊤

i β + τfi, removing all outliers |ηi| ≥ 3 before obtaining the observations yi ∼ Poi(exp(ηi)).

To fit the dataset, we use a DNN with three hidden layers of 12 units each and ReLU activation. We initialize the structured
coefficients as β̂ = (X⊤X)−1X⊤y and train the SSR model for 75 epochs with batch size of 128, weight decay of 10−5

and learning rate of 0.075, halving the learning rate if the validation loss did not improve in the last five epochs and early
stopping if the validation loss on an external dataset of 100 samples did not improve in the last ten epochs.
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F REAL-WORLD APPLICATION DETAILS

Dataset The original dataset contains 33,126 data points and 2,056 patients, from which we omit 595 data points with
missing information as well as all patients with less than four lesions, resulting in a final data set with 32,236 data points and
1,759 patients.

Tabular features We model the tabular features using dummy encoding for the site where the lesion image was taken
(head/neck: 1,751 images, upper extremity:4,835 images, lower extremity: 8,223 images, oral/genital: 118 images,
palms/soles: 365 images, torso: 16,336 images), the sex of the patient (female: 15,340 images, male: 16,288 images), the
age of the patient (mean: 48, median: 50, first quartile: 40, third quartile: 60, minimum: 10, maximum: 40), an interaction
term between sex and age, and a patient-specific random effect.

Non-tabular features We resize all images to 128× 128 and normalize the intensity of each channel separately between
0 and 1. The effect of the skin lesion image was modeled with a convolutional DNN that used two blocks of two 3 × 3
convolutional layers followed by 2× 2 max pooling, the first block having 16 filters and the second block having 32 filters.
After the second max pooling, the filters are flattened into a vector of size 26,912 units, followed by a fully connected layer
with 256 units and finally the output layer. Each layer is followed by ReLU activation and dropout with p = 0.3 except for
the output layer that had linear activation and no dropout.

Model training We use a random selection of 1,409 patients for training the SSR models, performing a grid search on the
penalty of the patient random effect using the values {1× 10−1, 2× 10−1, 5× 10−1, 1× 10−2, 2× 10−2, 5× 10−2, 1×
10−3, 2× 10−3, 5× 10−3, 1× 10−4, 2× 10−4, 5× 10−4}. For each value, we performed ten-fold stratified cross-validation,
training the SSR model with a batch size of 1,024, learning rate of 0.001, weight decay of 0.0001, exponential learning rate
decay with exponent 0.99, and clipping gradients to a maximum norm of 10. We monitored the area under the precision-recall
curve (AUPRC) on the validation set and early-stopped training when the AUPRC did not improve for 20 epochs.

Penalty tuning and model testing For each fold, we use the model with the highest validation AUPRC to predict the
unstructured effect of the lesion image of the remaining 340 patients, thus obtaining the predictions of ten networks for
each random effect penalty and computing z as the average ensemble prediction and Γ as a matrix with the variance of the
predictions as diagonal. We split the 340 patients into a tuning subset of 170 patients and a testing subset of 170 patients.
For each penalty value, we use the tuning subset to fit a GLMM with z as a fixed offset and select the model with the largest
explained deviance. We then use the predictions of this model on the testing subset to fit another GLMM, whose results
are presented in the main text as the model without uncertainty. Similarly, we use both z and Γ and the fitting procedure
of Appendix C to fit a model on the tuning subset for each penalty value, selecting the penalty which explains the largest
deviance and using the corresponding predictions on the test set to refit and interpret the model.

G SOCIETAL IMPACT

With its rigorous theoretical foundations, our work contributes to less heuristic and more principled applications of deep
learning, resulting in more reliable and trustworthy outcomes. As opposed to traditional, uncertainty-unaware SSR models
that provide overconfident statements, the main outcome of our framework is wider confidence intervals for the structured
coefficients, resulting in more conservative inference and thus reduced false discovery rate. In light of the reproducibility
crisis plaguing certain research areas (Shrout and Rodgers, 2018), we thus hope that our work will reduce the effort wasted
by the research community as a result of incorrect inferences of early works.

With our work, we also hope to facilitate the use of deep learning techniques in applications that still rely on classical
statistical inference to control the risk of harmful decisions, without sacrificing UQ and interpretability of the inferred effects.
We also hope that our method would benefit other additional use-cases of important practical concern, such as using the
DNN uncertainty for anomaly detection and thus refraining from predicting anomalous inputs or appropriately warning
end-users about the issue. However, as a methodological paper, many ethical issues related to our work are highly dependent
on the specifics of the practical application that it is applied to, and especially in data-driven fields, practitioners should
take extreme care in the way hypotheses are generated and tested to avoid misleading results (Ioannidis, 2005; Taylor and
Tibshirani, 2015).
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