
Online Algorithms with Costly Predictions

Marina Drygala Sai Ganesh Nagarajan Ola Svensson
EPFL EPFL EPFL

Abstract

In recent years there has been a significant re-
search effort on incorporating predictions into on-
line algorithms. However, work in this area often
makes the underlying assumption that predictions
come for free (e.g., without any computational or
monetary costs). In this paper, we consider a cost
associated with making predictions. We show that
interesting algorithmic subtleties arise for even
the most basic online problems, such as ski rental
and its generalization, the Bahncard problem. In
particular, we show that with costly predictions,
care needs to be taken in (i) asking for the predic-
tion at the right time, (ii) deciding if it is worth
asking for the prediction, and (iii) how many pre-
dictions we ask for, in settings where it is natural
to consider making multiple predictions. Specif-
ically, (i) in the basic ski-rental setting, we com-
pute the optimal delay before asking the predictor,
(ii) in the same setting, given apriori informa-
tion about the true number of ski-days through its
mean and variance, we provide a simple algorithm
that is near-optimal, under some natural parame-
ter settings, in deciding if it is worth asking for the
predictor and (iii) in the setting of the Bahncard
problem, we provide a (1 + ε)-approximation al-
gorithm and quantify lower bounds on the number
of queries required to do so. In addition, we show
that solving the problem optimally would require
almost complete information of the instance.

1 INTRODUCTION

In recent years there has been an explosion of work that uses
machine learning (ML) predictions in many online learn-
ing problems to improve performance, going beyond worst
case analysis. Many classic online problems are studied

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

in this setting under the umbrella of learning-augmented
algorithms first popularized in the ML community by Lyk-
ouris and Vassilvtiskii (2018) for caching. A similar idea
was initiated by Mahdian et al. (2007) for ad allocations
in the presence of unreliable estimates. In this setting, we
have access to a ML predictor appropriate for the problem,
which may have an unknown error. Algorithms that use
these ML predictions must ensure that, when the predictor
is correct, the performance should match with that of the
offline optimum and gracefully degrade to the best online
algorithm when the ML predictions are unreliable. Existing
work assumes that predictions from the ML oracle are free
of cost. However, in practice, it is natural to consider sce-
narios where this is not true, as obtaining ML predictions
may incur costs that are either computational or monetary
due to necessary data collection processes. This potentially
restricts the amount of calls one could make to the ML ora-
cle to solve the problem at hand and if perhaps the cost is
too high it may not be helpful to even ask for advice. This
perspective introduces new aspects that differ from standard
learning augmented algorithms. That is, without a costly
predictor, it is always in our best interest to ask the predictor
at the beginning of an online prediction interval (t = 0).
However, this need not be the case when the prediction car-
ries a cost. To this end, we conceptualize three fundamental
questions when predictions carry a cost. (i) When do we
ask the predictor? (ii) Given apriori information about the
problem, such as certain useful statistics, should we make
use of the predictor at all? (iii) How often should we ask
the predictor to collect the required information to solve a
problem either optimally or approximately? We remark, that
question (iii) has been studied very recently in the setting of
paging by Im et al. (2022).

In this paper, we study the phenomenon of costly predictions
for online problems through the classic ski-rental problem
for questions (i) and (ii). For question (iii), we require a
setting where we would have repeated calls to the predictor
and we therefore consider the bahncard problem, which is
a well-studied and natural generalization of the ski-rental
problem to a repeated horizon setting Fleischer (2001).



Online Algorithms with Costly Predictions

1.1 Ski-Rental and the Bahncard Problem

The ski-rental problem is a classic online decision-making
problem posed as follows. We will ski for an unknown num-
ber of days t. On the beginning of each day, an irrevocable
decision of whether to rent or buy skis must be made. Skis
can be rented each day at cost 1 or bought for use during the
remainder of the season at cost b. The performance of an
online algorithm is measured against the offline optimum,
which is easily computed once the duration of our ski season
is revealed. The ratio of the cost of an online algorithm to
the offline optimum on the worst-case instance is called the
competitive ratio. It is well known that there is a simple de-
terministic buying strategy that achieves a competitive ratio
of 2 Karlin et al. (1988). Additionally, Karlin et al. (1990)
provide a randomized algorithm that achieves a competitive
ratio of e

e−1 . Both of the above algorithms are tight.

Bahncard problem: The bahncard problem can be
viewed as a generalization of the ski-rental problem to a re-
peated horizon setting. Specifically, each day we take train
trips of a given cost (potentially 0). If we do not have a valid
bahncard at any given point, we have to make an online
irrevocable decision of whether or not to purchase one at
cost B. If we do not purchase one, we must pay full price
for that day’s tickets. If we have a valid bahncard on a given
day, then we get a discount of β ∈ [0, 1] for our ticket (i.e,
discounted cost is β · original cost). Each bahncard is valid
for T days. An algorithm for the bahncard problem should
output the sequence of purchasing times for the bahncards.
It was shown by Fleischer (2001) that there is a simple de-
terministic buying strategy that achieves a competitive ratio
of 2− β. Finally, Karlin et al. (2001) provide a randomized
algorithm that achieves a competitive ratio of e

e−1+β . Note
that when β = 0 and B = b and T → ∞, this reduces to
the ski-rental problem.

1.2 Our Contributions

In this paper, we study the ski-rental and bahncard problem
with predictions that carry a cost (c ≥ 0), and we ask the
following questions: (i) When do we ask the predictor in the
ski-rental problem? (ii) Given apriori information about the
mean and variance of the true number of ski days, should
we ask the predictor? (iii) In the bahncard problem, how
often should we ask the predictor for the true number of
trips taken in certain intervals?

Ski-rental with Costs and Prior Information: For the
first question, we provide a simple algorithm that waits for
an optimum amount of time (roughly

√
cb days) to ask for

the prediction and following it’s advice thereafter. We show
that this algorithm is optimal by minimizing the competitive
ratio whilst considering the cost of asking for a prediction.
To address the second question, we propose a simple de-
terministic algorithm which is near-optimal (tight up to a

constant, for any randomized algorithm) under some natural
parameter settings in deciding whether to ask the predictor,
when only the mean and the variance is known. We show
that there is a threshold function f∗(µ, σ, b), that essentially
computes the “value” of the prediction. For instance, if
µ = b, for a fixed c (say

√
b), we have that as σ varies

and crosses c, the uncertainty on the worst-case distribution
becomes sub-optimal for any algorithm and in which case
it would be better to ask the predictor. We can also make
our algorithms robust to prediction errors by using standard
techniques from Purohit et al. (2018). For completeness, we
describe this in the supplementary sections (A.2,A.6).

Bahncard problem with Few Predictions: Our main
technical contributions are on the bahncard problem, a gen-
eralization of the ski-rental problem to a repeated horizon
setting. When we associate a cost to each prediction, it is
natural to ask how many predictions are required to gather
enough information to output a buying schedule that is close
to optimal. To this end, we characterize the query complex-
ity of solving this problem both optimally and to a factor of
1 + ε. We provide upper and lower bounds on the number
of queries required to achieve a (1 + ε)-approximation al-
gorithm. The upper bound given by our algorithm is nearly
tight. Our approach in this part is based on several novel
ideas and is more technically advanced compared to the
simple and clean algorithms that we analyze for the ski-
rental problem. In particular, we heavily exploit structural
properties of the bahncard problem to compute intervals of
possibly high cost, that we need not obtain information on in
order to compute a good solution. Finally, we describe how
to modify our algorithm to accommodate prediction errors.
This modification requires new ideas on how to partition
the timeline to appropriately to charge costs and prediction
errors.

1.3 Related work

There is plenty of recent work focusing on incorporating ML
predictions in the design of online algorithms. We restrict
our attention to those that are most relevant to us, which are
the buy-or-rent type online problems. For instance, Golla-
pudi and Panigrahi (2019), focused on combining advice
from multiple experts, while Wang et al. (2020) studied the
multi-shop version of the ski-rental problem. Applications
such as caching Rohatgi (2020); Lykouris and Vassilvtiskii
(2018) and scheduling Lattanzi et al. (2020) were also stud-
ied to improve the performance of online algorithms. In
the presence of errors, the main goal is to have the opti-
mal robustness, consistency trade-off Purohit et al. (2018).
Moreover, Bamas et al. (2020) identify a way of utilizing
the primal-dual method in the learning augmented setting
for online covering problems, but we remark that all the
aforementioned papers assume that the predictions come for
free.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

Recent papers such as Anand et al. (2020, 2021), use a PAC
learning approach to create an ML predictor for buy-or-rent
type problems and derive the sample complexity required to
achieve a certain consistency, robustness trade-off.

Meanwhile, Diakonikolas et al. (2021), rely on access to
samples from the distribution of the true number of ski-days
to obtain an algorithm for ski-rental and focus on the number
of samples required to do so. They do this by estimating the
empirical distributions from i.i.d samples. We note that in
studying the value of predictions, we do not have access to
the distribution, nor make any assumptions on it and we only
have access to the mean and variance of the true number of
ski-days.

Query Minimization It is natural to consider repeated
calls to the predictor in online problems such as caching
and scheduling. As such, if there are costs associated with
the prediction, frequent calls may jeopardize the algorithm’s
performance, even if the predictions are correct. Recently
Im et al. (2022) studied the query minimization for the
caching problem in the learning augmented setting, where
they consider predictions that are error-prone. Another re-
cent work Antoniadis et al. (2022), studies paging with
“succinct” predictions by using a one bit prediction along-
side a page request, which is a different model as compared
to Im et al. (2022). As mentioned, we study the bahncard
problem which is a different problem altogether. Also, the
works above do not consider the other aspects such as, when
to ask and the usefulness of a costly predictor in the presence
of simple prior information. In another prior work, Bamas
et al. (2020) does consider the bahncard problem, where
they have free, but error-prone predictions. In addition, they
assume that the forecasts given by the ML algorithm are
complete solutions (i.e., a sequence of purchasing times).
In this paper, we have predictions that provide the true total
cost of trips taken in intervals of desired lengths, which is a
more natural choice of prediction from an ML perspective.

Query minimization has also been considered in relation to
other traditional combinatorial optimization problems. The
Minimum Spanning Tree (MST) problem has been studied
in the setting in which the edge weights are uncertain and
the goal is to identify a minimum-weight spanning tree with
the fewest number of queries Erlebach et al. (2008); Megow
et al. (2017). Other settings have also been considered
such as scheduling Dürr et al. (2020), in which queries
can be made to reduce processing times. In Singla (2018),
the author studies the effect of associating a price on the
information required to be collected in order to solve some
combinatorial optimization problems such as MST, in the
presence of some stochastic information about the edge
weights. We remark that our model is different from theirs in
the sense that, even in the presence of existing information,
they pay costs to gather additional information (even if the
distribution is a point distribution). We take a tangential

approach in this paper, to try and understand if one needs to
ask the predictor at all, given apriori information. Finally,
in the bahncard problem, we do not have access to any prior
information.

Bandits with costs The idea of associating costs for ob-
servations has appeared before in the bandit literature Seldin
et al. (2014). In this setting, they have multiple experts and
the game goes for multiple rounds and a reward is given
for each action taken. In addition, they may pay some cost
to observe the rewards for some subset of arms in each
round. To deal with the cost of observations, they maintain
a probability distribution for the experts and the probability
of querying the rewards of arms. In complementary work,
there is also the idea of a budget constrain to observe feed-
back Efroni et al. (2021) in the bandit settings, for instance
in applications like recommendation systems. In Bhaskara
et al. (2021), they consider the online linear optimization
problem with hints and provide an algorithm that achieves
O(log T ) regret with O(

√
T ) hints (which is tight). Re-

cently, Bhaskara et al. (2022), extend the above work to
a probing based model, where the algorithm (is allowed
constant number of probes), provides the oracle with a few
options asking for the best option and obtain improved re-
gret guarantees for the hints problem. Our work deals with
settings that does not have any feedback for the irrevocable
actions that are taken and the game ends as soon as we play
a strategy.

2 THE TIMING AND VALUE OF A
PREDICTION

As a warm-up, we look at the first problem, as to decide,
when to ask the predictor. If the predictor is free (c = 0),
then it is in our best interest to ask at day 0. Now consider
a simple example, where c = 20 and b = 100. If the true
number of days is 10, then by simply asking at day 0, our
competitive ratio will be 3, as opposed to waiting for 10 days.
Thus it is clear, that an improved algorithm might need to
wait a certain amount of time before asking, so as to balance
out different cases based on the outcome of the predictor.
To this end, we can run a simple algorithm as follows. We
wait until a day t∗ to ask the predictor and simply follow its
advice thereafter. Let d∗ be the true number of days that is
unknown to us before asking the predictor. The algorithm
that we call as ToP (Timing of Prediction), is given by:



Buy at day b without asking, if c ≥ θ∗b

Ask predictor on day t∗ + 1 and rent if
d∗ < t∗ + b and c < θ∗b

Ask the predictor at day t∗ + 1 and buy immediately if
d∗ ≥ t∗ + b and c < θ∗b

(1)



Online Algorithms with Costly Predictions

Here, θ∗ is the optimal threshold that can be identified from
our algorithm. Now, we can find the optimal t∗ yielding the
optimal deterministic algorithm for this setting.

Theorem 2.1. The competitive ratio of the algorithm ToP

is maxI
ToP(I)
OPT(I) ≤ min

{
1 +

√
(c+1)2+4c(b−1)+c−1

2b , 2
}

For the proof refer to Appendix A.1.

2.1 Value of a Prediction

To understand the value of a prediction in the presence
of apriori information, we assume that we are given the
mean and the variance of the true number of ski-days. In
practice, mean and variance can be obtained from historical
data and is easier than estimating the apriori distribution of
the true number of days skied. Let X denote the random
variable indicating this quantity, where the mean is denoted
by E[X] = µ and the variance is denoted by Var[X] =
σ2 > 0.

If we are given the apriori distribution, then we can po-
tentially find the best deterministic algorithm by choosing
a buying strategy that minimizes the expected cost in the
following sense:

ALG∗ := min
d≥0

E [1{X ≤ d}X + (d+ b)1{X > d}] .

(2)

Similarly, the (expected) optimum cost is given by:

OPT := E [min{X, b}] . (3)

It is known that in the worst case the competitive ratio for
ALG∗

OPT ≤ e
e−1 and this is the lower bound for any randomized

algorithm for ski-rental due to Yao’s minimax lemma Yao
(1977).

Thus we come to the main question in this section:

Given the mean µ and the variance σ2 of an apriori distri-
bution of the number of ski-days should we pay a cost c to
obtain the prediction?

To this end we work with continuous distributions that are
supported in [0,∞) and buying strategies d ≥ 0, as is
common in the literature Karlin et al. (2001); Madry and
Panigrahi (2011). As stated before we assume that we have
access to the true prediction after paying a cost of c.

Consider, the “algorithm” that simply buys the prediction
on day 0 and follows it thereafter, (PRED) pays:

PRED := c+ OPT (4)

When the full apriori distribution is known, one can possibly
obtain ALG∗ and then compare to PRED and choose the
better of the two. But this is not trivial when only the mean
and the variance are known.

To this end, we consider this simple buy on day 0 or rent for-
ever, which we show is already tight for natural parameters
(µ = Θ(b) and σ = o(b)).

BoR :=

{
Buy on day 0, if µ ≥ b

Rent forever, if µ < b

We identify a threshold function f∗(µ, σ, b), and show that
this is actually the upper bound of BoR. Thus, the thresh-
old function will enable us to decide if we should ask the
predictor. That is if c is greater than this threshold value,
we use BoR, otherwise we ask the predictor, i.e, use PRED.
We call this algorithm VoP (Value of Prediction).

In general, we let any deterministic strategy be denoted by
d, i.e, d buys the ski at the start of day d. We denote the cost
incurred by strategy d to be C(d).

Now, we can state the main theorem of this section.

Theorem 2.2. There exists a threshold function f∗(µ, σ, b),
such that the algorithm VoP satisfies, VoP ≤ OPT +
min (f∗(µ, σ, b), c).

Proof. We first show the upper bounds in Lemma 2.5 and
compute the threshold function f∗(µ, σ, b), by considering
the set of possible distributions with mean µ and variance
σ2, which are supported at exactly two points, which we
will refer to as a two-point distribution and show that it
suffices to study only this class.

Remark 2.3. Under some natural parameter choices, i.e,
when µ = Θ(b) and σ = o(b), the upper bounds are
tight up to a constant in that, there exists distributions
that are supported at exactly two points, such that any ran-
domized algorithm pays (in expectation) at least, OPT +
min

(
1
7 (f

∗(µ, σ, b)), c
)
. See Lemma 2.6 for details.

In the main body, we consider the simplest case, i.,e µ = b
and σ ≤ b, as a warm-up and highlight the relationship
between the cost and the parameters.

Lemma 2.4. If µ = b and σ ≤ b, then we have that algo-
rithm VoP satisfies, VoP ≤ OPT +min

(
σ
2 , c
)
.

Proof. First we assume that we can work with distributions,
that are supported at exactly two points (w.l.o.g) and later
show that this is sufficient. One can represent a two-point
distribution as µ − k1σ and µ + k2σ, where k1 > 0 and
k2 > 0, that has mean µ and variance σ2.

Let p1 > 0 and p2 > 0, be such that, the following equations
hold:



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

p1(µ− k1σ) + p2(µ+ k2σ) = µ (5)

p1(k1σ)
2 + p2(k2σ)

2 = σ2 (6)
p1 + p2 = 1 (7)

Then solving the above set of equations gives us k2 =

√
p1
p2

and k1 =
1

k2
. Thus setting

p1
p2

= l, we can parameterize all

such two-point distributions by l.

Note that BoR always pays b, when µ = b, thus let us define
OPT(l) to be the cost of OPT on the two-point distribution

pµ− σ√
l
=

l

l + 1
and pµ+

√
lσ =

1

l + 1
.

If µ = b, then , µ− σ√
l
< b, as σ > 0. Thus we only require

that
√
l ≥ σ

µ , since the support point must be non-negative.

To find the upper bound on BoR − OPT, we are required to
solve this optimization problem.

max√
l≥σ

b

σ
√
l

l + 1
(8)

This is because OPT = l
l+1 (b−

σ√
l
) + 1

l+1b and BoR pays
b in this setting. It is easy to see that the maximum value of
the above problem is attained at

√
l = 1 and this is feasible

as σ ≤ b and this means that:

BoR − OPT ≤ σ

2
(9)

Now, to see why it suffices to consider only two-point
distributions. Note that OPT = E [1{X < b}X] +
bE [1{X ≥ b}]. The difficult situation is when there are
support points both above and below b. We can set
l

l+1 (µ − σ/
√
l) = E [1{X < b}X]. This can be used to

solve for a unique l∗. Now place the second point that is
µ + σ

√
l∗ and this leaves OPT, µ and σ unchanged. In

addition, our algorithm buys at day 0 and always pays b,
independent of the distribution that is considered.

Finally, it is easy to see that when we take the minimum
of BoR ≤ OPT + σ

2 , and PRED = OPT + c, we get the
required upper bound.

We remark that this upper bound is tight, when we consider
σ = o(b). The worst case two-point distribution, is pb−σ =
1
2 and pb+σ = 1

2 . It is easy to see that buying before b− σ,
costs at least σ

2 and buying after b−σ costs at least σ
2 , when

σ = o(b), (since b− σ > σ). Now renting pays µ = b and
hence the lower bound applies to all deterministic strategies
and it is tight.

From the above case, it is clear that, as long as, σ
2 < c, it

is less expensive to manage this uncertainty, than the cost
you would have to pay to circumvent it completely and in
which case, we do not have to ask the predictor. Now, the
dependence on the parameters becomes more complicated
in other cases. But we can show the following statement in
general.
Lemma 2.5. The algorithm VoP satisfies VoP ≤ OPT +
min (f∗(µ, σ, b), c).

Refer to Appendix A.3, for the full proof.

Finally, we end with the lemma that provides the lower
bounds for other cases which is tight with a loss of small
constant, under certain natural parameter settings, i.e, µ =
Θ(b) and σ = o(b).
Lemma 2.6. If µ = Θ(b) and σ = o(b), then, there exists
two-point distributions with mean µ and variance σ2 such
that any deterministic strategy d, satisfies C(d) − OPT ≥
min

(
1
7f

∗(µ, σ, b), c
)

The proof of the lower bound is in Appendix A.5.

3 CIRCUMVENTING FREQUENT
COSTLY PREDICTIONS

In this section, we consider our final question. That is, how
often must we ask for predictions in order to gain sufficient
information to solve an instance of the bahncard problem
optimally or approximately.

Recall, that in a traditional instance of the bahncard problem,
we are given a cost B of purchasing a card, a time horizon
of T for which a card is valid, and a discount rate β ∈
[0, 1). Then, at each point i = 0, . . . , N − 1 over a finite
time horizon lasting N days, a travel request is revealed in
the form of a cost ci of tickets that need to be purchased
immediately.

If we have a consecutive set i, i+ 1 . . . , i′ of days, together
we say they form an interval. We denote such an interval
by [i, i′]. We will sometimes use [i, i′) to denote [i, i′ − 1].
The intervals (i, i′) and (i, t′] are defined analogously. The
traveler needs to decide when to purchase discount cards
online. If a bahncard was purchased at some time i+ 1−
T, . . . , i − 1, then they pay pi = βci to travel on day i.
Otherwise, they can purchase a card for cost B, and pay
a price pi = βci for their travels, or opt to pay a price
of pi = ci. The goal is to minimize the total expenditure
namely,

mB +

N∑
i=1

pi,

where m is the number of cards purchased. A solution to the
problem can be represented as a possibly empty sequence
τ = (τ1, . . . , τm), of time points in 0, . . . , N − 1 at which
we buy our cards.



Online Algorithms with Costly Predictions

We wish to gain an intuition about the minimum quantity
of information we must extract about the structure of the
cost distribution (c0, . . . , cN−1) to be able to improve on
the tight bound of 2 − β for the online setting without
predictions. This approach is motivated by the scenario in
which we can use a predictor to estimate our travel behaviour
beforehand for some portion of our lifetime. An example of
this would be travel behaviour over holidays.

The authors of Bamas et al. (2020) consider a model in
which the predictor suggests a complete buying schedule
for the cards. It is natural, however to consider a predictor
that for a given time interval, for example a duration of
one month, can estimate the total cost of the trips taken
during that time period. We show in Theorem 3.2 that if
we limit ourselves to periods of one day we require Ω(N)
queries to get a (1 + ϵ)-approximation, further motivating
the prediction model in which we can query longer intervals.

To this end, we will be presented with a predictor who we
can provide a length L, where 1 ≤ L ≤ N and a day
t ≤ N − L, and in turn the predictor will inform us of the
value of

t+L∑
i=t

ci.

We will call such a predictor an interval estimator.

In section 3.1 we provide lower bounds on the number of
predictions required from our interval estimator to deter-
mine the optimal solution and a (1 + ϵ)-approximation,
respectively. As we will see in Theorem 3.1, in order to
compute the optimal solution we require Ω(N) queries. In
addition we show in Theorem 3.3, we show that to get a
(1 + ϵ)-approximation of the optimal offline solution, we
require Ω(N/T ) queries from the predictor.

In section 3.2 we give a nearly tight (1 + ϵ)-approximation
algorithm, where we exploit structural properties of the
bahncard problem to avoid querying sections of lifetime.

3.1 Lower Bounds on Number of Predictions

In this section, we present the lower bounds on the query
complexity of the bahncard problem.

Theorem 3.1. Suppose we are given an interval estima-
tor. Then in expectation any randomized algorithm requires
Ω(N) queries to determine the optimal solution.

Proof. By Yao’s Principle, it suffices to give a distribution
over a family X of instances of the bahncard problem, such
that in expectation, any deterministic algorithm must query
Ω(N) times to distinguish between instances whose set of
optimal solutions are disjoint.

We create such a family X as follows. Fix some T ≥ 1
and N ≥ 2T . Let B = T and β = 0. For each day
i = 1, . . . , N − T add the following instance to X . The

cost of the trips on days i and i+ 1 are 0 and 2 respectively,
and the cost of the trips on each remaining day is 1. Call the
resulting instance, instance i. Finally, add to X the instance
in which the cost of the trips on each day is 1. We call this
final instance the uniform instance.

One can construct an optimal solution to the uniform in-
stance by purchasing any number of bahncards beginning
on or before day N − T whose validity periods do not in-
tersect. Similarly, one can construct an optimal solution to
instance i by purchasing a card at the beginning of day i+1
and any number of additional cards so that all cards begin
on or before day N − T and have non-intersecting validity
periods.

If given the uniform instance, U , in order for any algorithm
to be certain it has produced the optimal solution, it must
distinguish U from the remaining instances in X . Any given
query can distinguish U from at most two other instances
in X . Since we have N − T non-uniform instances this
requires at least N−T

2 queries.

Instead, if we are presented with instance i to distinguish
instance i from the rest of X , we must query an interval that
ends precisely after day i or one that begins precisely on
day i+ 1.

Let QA be the random variable that takes on the number
of queries required by an algorithm A over the uniform
distribution of instances over X . Suppose that we draw
an instance X from our probability distribution. Observe
that after A has made at most N/4 queries, with probability
at least 1/2 A has not determined with certainty which
instance X is. Thus the expected number of queries is
Ω(N) as required.

Hence by Yao’s principle no randomized algorithm can de-
termine the optimal solution with fewer than Ω(N) queries,
in expectation.

The proofs of the following theorems are similar and are
provided in the appendix.

The intuition behind Theorem 3.2 is as follows. If we can
only query single days then it may take many queries to
determine if in any given time period it is worthwhile to buy
a bahncard. The proof proceeds by constructing a family of
instances, where one instance can be obtained from another
by shifting around ticket purchases from various days.

The proof of Theorem 3.3 also uses a similar argument.

Theorem 3.2. Suppose we are given an interval estimator
that only queries single days. Then, in expectation, any
randomized (1+ϵ)-approximation algorithm requires Ω(N)
queries to determine the optimal solution, in expectation.

Theorem 3.3. Suppose that we are given an interval es-
timator. Then, in expectation any randomized (1 + ϵ)-



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

approximation algorithm requires Ω(N/T ) queries to de-
termine the optimal solution.

3.2 A Nearly Tight Algorithm

Here we present an algorithm that returns a (1 + ϵ)-
approximation for the bahncard problem, when compared
to the optimal offline solution. The number of queries our
algorithm requires has near optimal dependence on N/T .

The following observations are central to our approach.

(a) If a card OPT (I) has little ticket costs at the beginning
or end of its validity period we may shift its purchase
time at a small charge.

(b) Suppose we know that we will purchase a card during
an interval I = [s, s′]. Then, if s+ T ≥ s′, there is no
need to gather information about costs in [s′, s+ T ] as
we will have a valid card during this time period.

We formalize these observations, and then apply a binary-
type search on intervals with large cost to pinpoint days that
we will restrict our purchases to at a small charge.

As noted, we will make use of the optimal offline algorithm
for the bahncard problem presented by the authors of Fleis-
cher (2001), presented in Theorem 3.4. Proof details are
provided in the appendix.

Theorem 3.4. Fleischer (2001) Suppose we are given an in-
stance I = ((c0, . . . cN−1), T, B, β) of the bahncard prob-
lem where (c0, . . . cN−1) is known in advance. Then we can
solve I optimally.

To aid us in formalizing our approach, we define the Mod-
ified Bahncard Problem (MBP). An instance I of MBP is
given by ((c0, . . . , cN−1),P, B, β), where P is a set con-
taining elements of the form (i, Pi). Each such element
(i, Pi) corresponds to a bahncard that can be purchased at
time i ∈ {0, . . . , N − 1}, with validity period Pi. Again,
we pay B for each card we purchase and pi for each day,
where we recall that pi = βci if there is a valid bahncard
during day i and pi = ci otherwise. We wish to purchase
the set of bahncard in P that minimizes the cost.

Note that an instance

I = ((c0, . . . , cN−1), T, B, β)

of the bahncard is equivalent to the instance

I ′ = ((c0, . . . , cN−1),P, B, β)

of MBP, where

P = {(i, T ) : i ∈ 0, . . . , N − 1}.

If we have complete information about the ticket costs in-
curred during the validity periods of each card in P , then

we can solve an offline instance of MBP optimally using
essentially the same construction as in Theorem 3.4. This is
formalized in Observation 3.5. In general for a set of days
D ⊆ N , we say D is fully-determined if we know∑

i∈D

ci.

Observation 3.5. Suppose we are given an instance I =
((c0, . . . cN−1),P, B, β) of MBP, such that each pair of
consecutive points i, i′ in

{i : (i, P ) ∈ P} ∪ {i+ T : (i, P ) ∈ P} ∪ {0, N},

satisfy the property that [i, i′) is fully-determined. Then we
can efficiently solve the instance I.

Throughout, we will refer to multiple MBP instances, so
we introduce some notation. For an instance I of MBP, we
will use OPT (I) to denote a fixed optimal solution to I,
and opt(I) to indicate the cost of such a solution. Note that
OPT (I) can be represented by a subset of P .

Consider the following fact, the proof of which can be found
in the appendix.

Fact 3.6. Suppose we are given an instance I =
((c0, . . . cN−1), T, B, β) of the bahncard problem. If we
extend the validity period of all bahncards to 2T , we can
restrict our purchase times to integer multiples of T with-
out increasing the value of the optimal solution. Call the
resulting modified instance of MBP, I ′. During any period
I of the lifetime, if OPT (I ′) purchases b bahncards during
I , then we can assume that OPT (I) purchases at most 2b
bahncards during I . Furthermore

1

2
opt(I) ≤ opt(I ′) ≤ opt(I). (10)

First, we present an approach that requires

O

(
N

T
+

(
b

γ

)b

log(T )

)
(11)

queries to obtain a (1 + γ) approximation, where b is an
upper bound on the number of bahncards purchased by
OPT (I). Taking γ = ϵ, then gives the desired result.

We begin by querying the intervals

[0, T ], [T, 2T ], . . . , [(⌈N/T ⌉ − 1)T,N ],

so that we may apply Observation 3.5 to solve the instance
I ′ described in Fact 3.6. Suppose that this solution pur-
chases b′ cards. Then by Fact 3.6, if we define

b = min{N/T, 2b′}, (12)

we obtain that b∗ ≤ b, where b∗ is the number of cards
purchased by OPT (I∗). We define g = 2opt(I ′), and note
that by Equation (10) g ≥ opt(I).



Online Algorithms with Costly Predictions

As b may be Ω(N/T ) we show in the appendix how to
modify our approach, by essentially “splitting” our instance
into smaller instances. The splitting procedure fixes a card
purchase once we know that OPT (I) has accumulated
sufficient cost since the last split. The upper bound on the
number of queries required in this case is

O

(
N

T
log(T )

)
,

for fixed ϵ.

Next we define any subset S of days in the lifetime of I to
be γ-light if the total ticket costs during S does not exceed
gγ
b , and γ-heavy otherwise. Note that if b = 0, then we need

not proceed any further, so this quantity is well-defined. The
notion of γ-lightness is motivated by point (a).

We construct a subset D of days so that the instance

I∗ = ((c0, . . . cN−1),P∗, B, β)

of MBP where

P∗ = {(i, T ) : i ∈ D}

that has the desirable property that

opt(I∗) ≤ (1 + γ)opt(I).

Furthermore we show that in our construction of D we fully-
determine the validity periods of all cards in P∗ using at
most the number of queries given in Equation (11).

Suppose that we have a solution including a bahncard end-
ing at day s, and that there is a later date s′ such that the
ticket costs in I = [s, s′) exceed g. If we do not wish to
accumulate ticket costs exceeding opt(I) we must purchase
an additional card during I . This motivates the construction
of the algorithm Construct-Starting-Points(s), which takes
as input a point s and suggests at most 2b

γ +1 starting points
for the next card for which to purchase the next card, given
that we have a card ending at s.

Construct-Starting-Points(s) outputs a set Ds ⊆ [s,N) and
terminates when one of the following conditions is met.
Either Ds contains a point s′ such that [s, s′) has ticket costs
exceeding g or Ds contains a point s′ such that s′+T ≥ N .
The second condition is included as we may assume that
no card is purchased later than s′. The algorithm proceeds
as follows. First, we initialize d = s, and while neither
termination condition is met, we let t0 = d, . . . , tk = N
be the maximal subset of [d,N ] such that [ti, ti+1) is fully-
determined for each i = 0, . . . k − 1 (Recall that an interval
is fully-determined if we know the total cost of the tickets
purchased during the interval).

If [t0, t1) is a single γ-heavy day then we add t1 to Ds,
and update d to be t1. If [t0, tk) is γ-light then we add tk
to Ds and terminate. Otherwise, take k′ to be the largest

{
T

a b c d e a
′

b
′

c
′

d
′

e
′

Figure 1: Illustration of the construction of Da =
Construct-Starting-Points(a). In this figure Da, consists of
{a, b, c, d, e}. During our construction of D we would run
Construct-Starting-Points on each point in {a′, b′, c′, d′, e′}.
In this depiction e− a < T and hence [a, e) has ticket costs
exceeding g. Note that [a, b] and [d, e] may be composed of
many minimal fully-determined sub-intervals as specified
by the update procedure.

value in 0, . . . , k − 1 such that J = [t0, tk′) is γ-light. If
[tk′ , tk′+1) is γ-light or a single heavy day we add tk′ to Ds.
In addition, we update d to be tk′ . Otherwise we let m be
the midpoint of [tk′ , tk′+1), and we query [tk′ ,m). Then we
update our list of points to be t0, . . . , tk′ ,m, tk′+1, . . . , tk
and repeat. Let

D1 = Construct-Starting-Points(0),

be a set of suggested locations for our first card. We cre-
ate additional sets D2, . . . Db+1 as follows. Suppose that
D1, . . . , Dj have been constructed. We let

Dj+1 =
⋃

s∈Dj

Construct-Starting-Points(s+ T )

The shift of T days to the right in construction of Dj+1

is motivated by point (b). After D is complete we ensure
with at most one additional query for each element i of D
that [i, i + T ) is fully determined so that we may apply
Observation 3.5 to solve I∗.

We remark that we need not run Construct-Starting-Points
to completion for each point s as we may examine intervals
of the lifetime repeatedly. However, we have chosen our
construction of D for simplicity of exposition.

As a result of our careful construction of D we get Theorem
3.7, whose proof we provide in the appendix.
Theorem 3.7. The instance I satisfies

opt(I∗) ≤ (1 + γ)opt(I),

and D requires at most

O

(
N

T
+

(
b

γ

)b

log(T )

)
queries to compute.

We can make our algorithm consistent and robust to errors
via the following theorem which we prove in the appendix
(C.3). Here we let ALG(I) denote our robust buying sched-
ule. Recall that our prediction algorithm is parameterized by
γ, and guarantees a solution of cost at most (1 + γ)opt(I)
under the assumption that the predictions are correct.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

Theorem 3.8. For a fixed λ ∈ (0, 1) ALG(I) is a solution
with performance guarantee at most

(
1 + 1

λ

)
opt(I). In

the case that the predictions are perfect, we pay at most
(1 + max{2γ, λ})opt(I).

Acknowledgements

This work was supported by the Swiss National Science
Foundation project 200021-184656 “Randomness in Prob-
lem Instances and Randomized Algorithms.”

References

Keerti Anand, Rong Ge, and Debmalya Panigrahi. Cus-
tomizing ml predictions for online algorithms. In Interna-
tional Conference on Machine Learning, pages 303–313.
PMLR, 2020.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Pan-
igrahi. A regression approach to learning-augmented
online algorithms. Advances in Neural Information Pro-
cessing Systems, 34, 2021.

Antonios Antoniadis, Joan Boyar, Marek Eliáš, Lene M
Favrholdt, Ruben Hoeksma, Kim S Larsen, Adam Polak,
and Bertrand Simon. Paging with succinct predictions.
arXiv preprint arXiv:2210.02775, 2022.

Etienne Bamas, Andreas Maggiori, and Ola Svensson. The
primal-dual method for learning augmented algorithms.
arXiv preprint arXiv:2010.11632, 2020.

Aditya Bhaskara, Ashok Cutkosky, Ravi Kumar, and Man-
ish Purohit. Logarithmic regret from sublinear hints. Ad-
vances in Neural Information Processing Systems, 34:
28222–28232, 2021.

Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas
Kollias, and Kamesh Munagala. Online learning and ban-
dits with queried hints. arXiv preprint arXiv:2211.02703,
2022.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali
Vakilian, and Nikos Zarifis. Learning online algorithms
with distributional advice. In International Conference
on Machine Learning, pages 2687–2696. PMLR, 2021.

Christoph Dürr, Thomas Erlebach, Nicole Megow, and Julie
Meißner. An adversarial model for scheduling with test-
ing. Algorithmica, 82(12):3630–3675, 2020.

Yonathan Efroni, Nadav Merlis, Aadirupa Saha, and Shie
Mannor. Confidence-budget matching for sequential bud-
geted learning. arXiv preprint arXiv:2102.03400, 2021.

Thomas Erlebach, Michael Hoffmann, Danny Krizanc,
Matús Mihal’Ák, and Rajeev Raman. Computing min-
imum spanning trees with uncertainty. arXiv preprint
arXiv:0802.2855, 2008.

Rudolf Fleischer. On the bahncard problem. Theoretical
Computer Science, 268(1):161–174, 2001.

Sreenivas Gollapudi and Debmalya Panigrahi. Online al-
gorithms for rent-or-buy with expert advice. In Inter-
national Conference on Machine Learning, pages 2319–
2327. PMLR, 2019.

Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Puro-
hit. Parsimonious learning-augmented caching. arXiv
preprint arXiv:2202.04262, 2022.

Anna R Karlin, Mark S Manasse, Larry Rudolph, and
Daniel D Sleator. Competitive snoopy caching. Algorith-
mica, 3(1):79–119, 1988.

Anna R Karlin, Mark S Manasse, Lyle A McGeoch, and
Susan Owicki. Competitive randomized algorithms for
non-uniform problems. In Proceedings of the first annual
ACM-SIAM symposium on Discrete algorithms, pages
301–309, 1990.

Anna R Karlin, Claire Kenyon, and Dana Randall. Dynamic
tcp acknowledgement and other stories about e/(e-1). In
Proceedings of the thirty-third annual ACM symposium
on Theory of computing, pages 502–509, 2001.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley,
and Sergei Vassilvitskii. Online scheduling via learned
weights. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1859–
1877. SIAM, 2020.

Thodoris Lykouris and Sergei Vassilvtiskii. Competitive
caching with machine learned advice. In International
Conference on Machine Learning, pages 3296–3305.
PMLR, 2018.

Aleksander Madry and Debmalya Panigrahi. The semi-
stochastic ski-rental problem. In IARCS Annual Confer-
ence on Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS 2011). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2011.

Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi.
Allocating online advertisement space with unreliable
estimates. In Proceedings of the 8th ACM conference on
Electronic commerce, pages 288–294, 2007.

Nicole Megow, Julie Meißner, and Martin Skutella. Ran-
domization helps computing a minimum spanning tree
under uncertainty. SIAM Journal on Computing, 46(4):
1217–1240, 2017.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving
online algorithms via ml predictions. Advances in Neural
Information Processing Systems, 31:9661–9670, 2018.

Dhruv Rohatgi. Near-optimal bounds for online caching
with machine learned advice. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1834–1845. SIAM, 2020.

Yevgeny Seldin, Peter Bartlett, Koby Crammer, and Yasin
Abbasi-Yadkori. Prediction with limited advice and



Online Algorithms with Costly Predictions

multiarmed bandits with paid observations. In Interna-
tional Conference on Machine Learning, pages 280–287.
PMLR, 2014.

Sahil Singla. The price of information in combinatorial
optimization. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
2523–2532. SIAM, 2018.

Shufan Wang, Jian Li, and Shiqiang Wang. Online algo-
rithms for multi-shop ski rental with machine learned
advice. Advances in Neural Information Processing Sys-
tems, 33, 2020.

Andrew Chi-Chin Yao. Probabilistic computations: Toward
a unified measure of complexity. In 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977),
pages 222–227. IEEE Computer Society, 1977.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

A Missing Proofs in Section 2

A.1 Competitive Ratio of ToP

Proof of Theorem 2.1. Let t∗, be our deterministic strategy and let d∗, be the day chosen by the online adversary (which is
unknown to us).

If c ≥ θb, we never ask the predictor and we simply use the standard deterministic strategy to obtain a competitive ratio of 2.
Otherwise rent until t∗, and we ask the predictor on day t∗ + 1, and then continue to rent if d∗ − t∗ ≤ b and buy otherwise.

If d∗ ≤ t∗, d∗ ≤ b, then we get the optimal solution.

If d∗ > t∗, and d∗ ≤ b, then our ratio is d∗+c
d∗ which is maximized when d∗ = t∗ + 1. Worst case guarantee is t∗+1+c

t∗+1 .

If d∗ > b, but d∗ − t∗ ≤ b, then our ratio is d∗+c
b which is maximized when d∗ = t∗ + b. Worst case guarantee is t∗+b+c

b .

If d∗ > b, but d∗ − t∗ > b, then our ratio is t∗+b+c
b .

We want to minimize the maximum of t∗+1+c
t∗+1 = 1 + c

t∗+1 and t∗+b+c
b = 1 + t∗+c

b . Equating these two, we can solve for
the required t∗ and substituting this we get the competitive ratio.

We get the competitive ratio to be exactly:

1 +

√
(c+ 1)2 + 4c(b− 1) + c− 1

2b
(13)

Thus , for this to be less than 2, we can enforce the above ratio to be less than 2 and this gives us the optimal θ. Now we
show that this will give us the optimal deterministic algorithm.

Let (t, θ), be the parameters of any deterministic algorithm ALG(t, θ), such that if c < θb, this algorithm asks for the
prediction at the start of day t, otherwise buys at the start of day b (the optimal deterministic strategy when there is no
prediction, which is 2 competitive). If an algorithm asks for the prediction, then from the aforementioned proof, it is
clear that the competitive ratio is minimized with the particular t∗. Now, let us set c = θ

′
b. Then from Equation 13,

the competitive ratio (when the prediction is obtained) is specified by some function g(b, θ
′
). It is easy to see that this

function is increasing in θ
′
. We claim that setting g(b, θ

′
) = 2, gives us θ∗, the optimal threshold. Now, consider a different

threshold θ
′′

. If θ
′′
< θ∗, then for all costs, such that θ ≤ θ

′′
, both algorithms will have the same competitive ratio. But for

θ
′′
< θ < θ∗, ALG(t∗, θ∗) will have competitive ratio which is less than 2. However, ALG(t, θ

′′
) will be 2 competitive,

for any t. A similar argument can be made if θ
′′
> θ∗ and thus the optimal deterministic algorithm is given by (t∗, θ∗).

A.2 Modifying ToP for error-prone predictions

The main modification we make is that, when ToP asks for a prediction and say y is the prediction, we buy at the start of
t∗ + ⌈λb⌉ from the day of asking the predictor, if y ≥ t∗ + b, else we buy at the start of t∗ + ⌈b/λ⌉, if y < t∗ + b, exactly
as prescribed by Purohit et al. (2018) and similarly define η = |x− y|, where x is the true number of ski-days.

Following the analysis of Theorem 2.2 in Purohit et al. (2018), we can show that: The robustness bound in this case is:
ALG ≤ ( t

∗+c
b + 1 + 1/λ)OPT and this can be upper bounded by :

For the smoothness, we get the following: ALG ≤ ( t
∗+c
b + 1 + λ)(OPT + η) and ALG ≤ ( t

∗+c
b + 1)OPT + η

1−λ . Now,
putting the above two conditions together, we get that: ALG ≤ ( t

∗+c
b + 1 + λ)OPT + η

1−λ . Finally, we get that:

ALG
OPT

≤ min{ t
∗ + c

b
+ 1 + 1/λ,

t∗ + c

b
+ 1 + λ+

η

(1− λ)OPT
}.

Here 1 + t∗+c
b is exactly given by the expression in 13.

A.3 Upper Bound Proof

The full threshold function f∗(µ, σ, b), mentioned in the paper is given by:



Online Algorithms with Costly Predictions

When µ ≥ b

f∗(µ, σ, b) =


1
2

(√
σ2 + (µ− b)2 − (µ− b)

)
, if µ ∈ [b, b+

√
b2 − σ2] and σ ≤ b

b

1 + µ2

σ2

, otherwise
(14)

When µ < b,

f∗(µ, σ, b) =


1

2

(√
σ2 + (b− µ)2 − (b− µ)

)
, if b−

√
b2 − σ2 ≤ µ < b and σ ≤ b

µ− b
σ2

µ2 + 1
, otherwise

(15)

Full proof of Lemma 2.5. First we assume that we can work with distributions, that are supported at exactly two points and
later show that this is sufficient. One can represent a two-point distribution as µ − k1σ and µ + k2σ, where k1 > 0 and
k2 > 0, that has mean µ and variance σ2.

Let p1 > 0 and p2 > 0, be such that, the following equations hold:

p1(µ− k1σ) + p2(µ+ k2σ) = µ (16)

p1(k1σ)
2 + p2(k2σ)

2 = σ2 (17)
p1 + p2 = 1 (18)

Then solving the above set of equations gives us k2 =

√
p1
p2

and k1 =
1

k2
. Thus setting

p1
p2

= l, we can parameterize all

such two-point distributions by l.

First consider µ ≥ b.

BoR always pays b, when µ ≥ b, thus let us define OPT(l) to be the cost of OPT on the two-point distribution pµ− σ√
l
=

l

l + 1

and pµ+
√
lσ =

1

l + 1
.

To get meaningful upper bounds we are interested in the case when µ− σ√
l
≤ b, otherwise, OPT pays b and BoR = OPT.

Also, the point µ− σ√
l
≥ 0. Thus we can define the feasible set for the optimization problem as the following:

lf :=

{
l :

σ

µ
≤

√
l ≤ σ

µ− b

}
(19)

If µ = b, then , µ− σ√
l
< b, as σ > 0. Thus we only require that

√
l ≥ σ

µ .

To find the upper bound on BoR − OPT := maxlf (BoR − OPT(l)), where,

(BoR − OPT(l)) =
σ
√
l − (µ− b)l

l + 1
(20)

This is because OPT = l
l+1 (µ− σ√

l
) + 1

l+1b and BoR pays b in this setting.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

Thus, the max value attained is given by (see Claim A.1), maxlf (BoR − OPT(l)) =
1
2

(√
σ2 + (µ− b)2 − (µ− b)

)
, if

µ ∈ [b, b+
√
b2 − σ2] and σ ≤ b

b

1 + µ2

σ2

, otherwise
(21)

Now let us consider µ < b.

Our algorithm rents as long as σ
µ < b−µ

σ or if (σµ ≥ b−µ
σ and σ < µ).

max
lf

σ
√
l − (b− µ)

l + 1
(22)

Here, the feasible set is considering the following cases: When µ+
√
lσ ≥ b (otherwise OPT pays µ, same as BoR) and

such that µ− σ√
l
≥ 0. Combining the two conditions, we have:

lf :=

{
l :

√
l ≥ max

{
σ

µ
,
b− µ

σ

}}
(23)

See Claim A.2, for the details of the above optimization problem.

Finally, we get the maximum value attained, which is:

max√
l≥max{σ

µ , b−µ
σ }

σ
√
l − (b− µ)

l + 1
=


1

2

(√
σ2 + (b− µ)2 − (b− µ)

)
, if b−

√
b2 − σ2 ≤ µ ≤ b and σ ≤ b

µ− b
σ2

µ2 + 1
, otherwise

(24)

Now, to see why it suffices to consider only two-point distributions. Note that OPT = E [1{X < b}X]+bE [1{X ≥ b}]. The
difficult situation is when there are support points both above and below b. We can set l

l+1 (µ− σ/
√
l) = E [1{X < b}X].

This can be used to solve for a unique l∗. Now place the second point that is µ + σ
√
l∗ and this leaves OPT, µ and σ

unchanged. In addition, our algorithm either buys at day 0, when µ ≥ b, and either rents forever when µ < b. In these cases
the cost of the algorithm depends only on µ and b,independent of the distribution that is considered.

Finally, it is easy to see that when we take the minimum of BoR ≤ OPT + f∗, and PRED = OPT + c, we get the required
upper bound.

A.4 Proof of Claims in Section 2

Claim A.1. It holds that:

max
σ
µ≤

√
l≤ σ

µ−b

σ
√
l − (µ− b)l

l + 1
≤ 1

2

(√
σ2 + (µ− b)2 − (µ− b)

)

Proof. Now consider,

max
σ
µ≤

√
l≤ σ

µ−b

σ
√
l − (µ− b)l

l + 1
. (25)



Online Algorithms with Costly Predictions

Set
√
l = σ

µ−t , such that 0 ≤ t ≤ b. Then, max0≤t≤b
b− t

1 + (µ−t)2

σ2

, Then set x = µ− t, such that µ− b ≤ x ≤ µ, we have

finally:

max
µ−b≤x≤µ

x− (µ− b)

1 + x2

σ2

(26)

When µ ≥ b, we have that the unconstrained maximum above gives us exactly
1

2

(√
σ2 + (µ− b)2 − (µ− b)

)
, when

certain conditions on µ and σ are satisfied, the x∗ = µ− b+
√

σ2 + (µ− b)2. This means that the maximum value is given
as follows, substituting x∗ in the above expression, we have the following:√

σ2 + (µ− b)2

1 +
((µ−b)+

√
σ2+(µ−b)2)2

σ2

(27)

Now, in the above equation, set y =
√
σ2 + (µ− b)2 and therefore, µ− b =

√
y2 − σ2.Now the maximum value can be

written as:
y

1 +
(
√
y2 − σ2 + c)2

σ2

(28)

=
1

2

σ2y

y2 + y
√
y2 − σ2

(29)

=
1

2

σ2

y +
√
y2 − σ2

(30)

=
1

2
(y −

√
y2 − σ2) (31)

=
1

2

(√
σ2 + (µ− b)2 − (µ− b)

)
(32)

Otherwise, the maximum occurs on the boundary point that is x∗ = µ and this gives us
b

1 + µ2

σ2

, but this maximum value

has to be less than the unconstrained max and hence we get the bound above. The reason for this is that the function
above is increasing until µ− b+

√
σ2 + (µ− b)2. Suppose, µ− b+

√
σ2 + (µ− b)2 > µ, then the maxima is attained at

x∗ = µ.

Claim A.2. It holds that:

max√
l≥max{σ

µ , b−µ
σ }

σ
√
l − (b− µ)

l + 1
≤ 1

2

(√
σ2 + (b− µ)2 − (b− µ)

)

Proof. First let us look at the condition when σ
µ ≥ b−µ

σ . Then,

µ2 − µb+ σ2 ≥ 0 (33)

Solving for the above gives us that µ ∈ (0, b−
√
b2−4σ2

2 )
⋃
( b+

√
b2−4σ2

2 , b), if, σ < b/2. Also, if σ ≥ b/2, then the above
equation is always satisfied.

Let us assume that σ ≥ b/2 and thus σ
µ ≥ b−µ

σ . Thus the optimization problem becomes:

max
x≥σ

µ

σx− (b− µ)

x2 + 1
(34)

Now, we have to note that the above function is increasing in the interval x ∈ [
b−µ−

√
(b−µ)2+σ2

σ ,
b−µ+

√
(b−µ)2+σ2

σ ],

with the unconstrained maximum at x∗ =
b−µ+

√
(b−µ)2+σ2

σ . Now, we know that σ
µ ≥ b−µ

σ , but additionally, if σ
µ >



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

b−µ
σ +

√
(b−µ)2+σ2

σ , then the maximum occurs at the boundary, i.e, x∗ = σ
µ . Now the latter condition holds when

µ2 − 2µb+ σ2 > 0 (35)

This implies that µ < b−
√
b2 − σ2, if σ ≤ b. But the above equation is true if σ > b, regardless of the value of µ. When

σ < b/2, we have the same conditions for σ
µ > b−µ

σ +

√
(b−µ)2+σ2

σ and σ
µ > b−µ

σ . But in addition, we might have b−µ
σ > σ

µ .

Thus we can say that the maximum is attained in the interior point (x∗ =
b−µ+

√
(b−µ)2+σ2

σ ), if σ
µ < b−µ

σ or b−µ
σ ≤ σ

µ ≤
b−µ
σ +

√
(b−µ)2+σ2

σ .Combining these two we get that, as long as σ
µ ≤ b−µ

σ +

√
(b−µ)2+σ2

σ is satisfied, we have the maxima
at the interior.

But, when we have σ < b/2, we note the following fact:

(
b−

√
b2 − 4σ2

2
,
b+

√
b2 − 4σ2

2
) ⊆ (b−

√
b2 − σ2, b) (36)

Thus we get the following cases:

argmax√
l≥max{σ

µ , b−µ
σ }

σ
√
l − (b− µ)

l + 1
=

{
b−µ+

√
(b−µ)2+σ2

σ , if b−
√
b2 − σ2 ≤ µ ≤ b and σ ≤ b

σ
µ , otherwise

(37)

This gives us the required maximum values. The maximum is calculated using the exact same technique as in Claim A.1, i.e,
set y =

√
(b− µ)2 + σ2.

Finally, we get the maximum value attained, which is:

max√
l≥max{σ

µ , b−µ
σ }

σ
√
l − (b− µ)

l + 1
=


1

2

(√
σ2 + (b− µ)2 − (b− µ)

)
, if b−

√
b2 − σ2 ≤ µ ≤ b and σ ≤ b

µ− b
σ2

µ2 + 1
, otherwise

(38)

A.5 Lower Bound Proof

Proof of Lemma 2.6. We begin with µ = b. Now consider the distribution supported at points pb−σ = 1
2 and pb+σ = 1

2 .

If d ≤ b− σ, we have that

C(d)− OPT = d+ b− (
1

2
(b− σ) +

1

2
b) (39)

= d+
σ

2
(40)

≥ σ

2
(41)

If d > b− σ, then, we have:

C(d)− OPT = (
1

2
(b− σ) +

1

2
(d+ b))− (

1

2
(b− σ) +

1

2
b) (42)

=
d

2
(43)

≥ b− σ

2
(44)

≥ σ

2
(45)



Online Algorithms with Costly Predictions

The last inequality just follows from the fact that b− σ > σ, when σ = o(b).

For µ > b. We provide our choices of
√
l, below.

√
l =


σ

µ−b+ 1
2

√
σ2+(µ−b)2

, if µ ∈ (b, b+
√
b2 − σ2]

σ
µ−σ , if µ > b+

√
b2 − σ2

(46)

Let us see the lower bound for the first case:

If µ ∈ (b, b+
√
b2 − σ2] and σ ≤ µ− b, then, we use the following distribution: Choose

√
l = σ

µ−b+ 1
2

√
σ2+(µ−b)2

. This

makes one point of the support at b− 1
2

√
σ2 + (µ− b)2. The above conditions ensure that this is valid, i.e, we have that

b ≥
√

σ2 + (µ− b)2. If d ≤ b− 1
2

√
σ2 + (µ− b)2:

C(d)− OPT ≥
0.5
√

σ2 + (µ− b)2

1 +
((µ− b) + 0.5

√
σ2 + (µ− b)2)2

σ2

(47)

≥
0.5 ∗

√
σ2 + (µ− b)2

1 +
((µ− b) +

√
σ2 + (µ− b)2)2

σ2

(48)

=
1

4
(
√
σ2 + (µ− b)2 − (µ− b)) (49)

The above bound follows from steps that are used to simplify Equation (27). If d > b− 1
2

√
σ2 + (µ− b)2:

C(d)− OPT ≥
b− 0.5

√
σ2 + (µ− b)2

1 +
σ2

((µ− b) + 0.5
√

σ2 + (µ− b)2)2

(50)

≥
b− 0.5

√
σ2 + (µ− b)2

1 +
σ2

(µ− b)2

(51)

≥
b− 0.5

√
σ2 + (µ− b)2

2
(52)

≥ 1

4

√
σ2 + (µ− b)2 (53)

≥ 1

4

√
σ2 + (µ− b)2 − 1

4
(µ− b) +

1

4
(µ− b) (54)

Also, the renting strategy is lower bounded by buying at day 0. Thus, C(d)− OPT ≥ 1
2f

∗(µ, σ, b).



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

When µ > b+
√
b2 − σ2, we will use the following distribution: pµ− σ√

l
= σ, i.e,

√
l = σ

µ−σ . Now, we have for different
buying strategies: Let d ≤ σ, then:

C(d)− OPT = d+
(b− σ)σ2

σ2 + (µ− σ)2
(55)

≥ (b− σ)σ2

σ2 + µ2
(56)

≥ 1

2

bσ2

σ2 + µ2
(57)

We can use the fact that b− σ > σ. Now, when d > σ/2, we have:

C(d)− OPT =
d(µ− σ)2

σ2 + (µ− σ)2

≥ σ(µ− σ)2

σ2 + µ2

≥ σ2b

σ2 + µ2

(58)

The last line is due to the fact that if µ− σ > σ and µ− σ > b, as σ < µ− b, both are due to the fact that µ = Θ(b), while
σ = o(b).

Note, that the renting strategy clearly is lower bounded by the buying at day 0 strategy since µ > b and thus all the above
lower bounds carry over. Again, we have that C(d)− OPT ≥ 1

2f
∗(µ, σ, b), in this case as well.

For µ < b, if σ = o(b) and µ = θ(b), we always have that µ ≥ b −
√
b2 − σ2 and σ < µ, i.e, we have that σ

µ < b−µ
σ <

b−µ
σ +

√
(b−µ)2+σ2

σ . Also, we may assume that σ < b− µ.

When σ ≤ (b− µ), use
√
l = b−µ

σ + 2

√
(b−µ)2+σ2

σ

When renting, we have:

C(d)− OPT =
µ+ σ

√
l − b

l + 1

=
2
√

(b− µ)2 + σ2

(b−µ+2
√

(b−µ)2+σ2)2

σ2 + 1

≥ 1

4

2
√

(b− µ)2 + σ2

(b−µ+
√

(b−µ)2+σ2)2

σ2 + 1

1

4
(
√
(b− µ)2 + σ2 − (b− µ))

(59)



Online Algorithms with Costly Predictions

When, d > µ− σ/
√
l, we have:

C(d)− OPT =
d

l + 1

=
1

l + 1
(µ− σ2

b− µ+ 2
√
(b− µ)2 + σ2

)

=
1

(b−µ+2
√

(b−µ)2+σ2)2

σ2 + 1
(µ−

σ2(2
√
(b− µ)2 + σ2 − (b− µ))

3(b− µ)2 + 4σ2
)

≥ 1

(b−µ+2
√

(b−µ)2+σ2)2

σ2 + 1
(µ−

σ2(2
√
(b− µ)2 + σ2 − (b− µ))

3(b− µ)2 + 4σ2
)

≥ 1

(b−µ+2
√

(b−µ)2+σ2)2

σ2 + 1
(µ+

b− µ

7
−

2
√

(b− µ)2 + σ2

7
)

≥ 1

(b−µ+2
√

(b−µ)2+σ2)2

σ2 + 1
(
6b

7
−

2
√
(b− µ)2 + σ2

7
)

≥ 1

(b−µ+
√

(b−µ)2+σ2)2

σ2 + 1

4
√
(b− µ)2 + σ2

28

1

7

 √
(b− µ2) + σ2

(b−µ+
√

(b−µ)2+σ2)2

σ2 + 1


≥ 1

14
(
√
(b− µ)2 + σ2 − (b− µ))

(60)

We used that µ > b −
√
b2 − σ2, b ≥

√
(b− µ2) + σ2 and σ ≤ (b − µ). Finally, the reduction to the lower bound is

following the steps in Equation (27). The strategy of buying at day d, that is less than the first support point, is lower
bounded by the cost of renting since b > µ and hence we are done.

Finally, we have C(d)− OPT ≥ 1
7f

∗(µ, σ, b), combining all the above cases.

A.6 Modifying VoP for error-prone predictions

Firstly, observe that, the algorithm that decides the threshold for asking the predictor depends only on b, the mean (µ) and
the standard deviation σ and not on the error of the predictor. Recall that the algorithm PRED asks the prediction after
paying cost c. Now, we have different buying strategies , denoted by d. Now if the algorithm PRED, after paying a cost c,
buys at day d, then it pays the following:

PRED(d) := E [1{X ≤ d}X + (d+ b)1{X > d}] . (61)

Let d∗, be the true buying strategy that minimizes the following,

PRED(d∗) := min
d≥0

PRED(d). (62)

Also recall that

OPT := E [min{X, b}] .

We assume that the prediction gives a buying strategy d̂. Then, we consider the following algorithm: If d̂ < b, then buy at
max{λb, d̂}, otherwise buy at min{d̂, b/λ}. Let |d̂− d∗| = η.

We will compare our algorithm to PRED(d∗) and note that PRED(d∗) ≤ e
e−1OPT. Considering different cases of operation

of our algorithm, the consistency in the worst case is PRED ≤ c+max{min{µ, λb},min{λµ, b}}+ OPT and the worst
case robustness is PRED ≤ c+ min{µ,b}

λ + OPT.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

Now, this implies, we recover the well known consistency and robustness when the true distribution is a point distribution,
we get consistency, which is PRED ≤ c+ (1 + λ)OPT and robustness which is PRED ≤ c+ (1 + 1

λ )OPT.

B Missing Proofs in Section 3.1

Proof of Theorem 3.2. Again, we proceed in the same fashion as in Theorem 3.1. Let X be the following family of instances.
Fix T , and take B = T,N = T, β = 0. Add to X an instance U with ticket purchases of 2B/3 on day 0 and no other ticket
purchases. We call U the uniform instance. Next, for each day i = 1, . . . , T − 1, add to X the instance that purchases a
ticket of cost 2B/3 on day i, a ticket of cost 2B/3 on day 0 and no other tickets. We call such an instance, instance i. Note
that the only (1 + ϵ)-approximation for the uniform instance purchases no cards, but the only (1 + ϵ)-approximation for the
remaining instances purchases a card immediately. To distinguish the uniform instance from all other members of X , N − 1
queries are required. To distinguish instance i from all other instances we must query day i. Hence, we can again represent
any deterministic algorithm as a sequence of days we query that terminates once it has determined which instance it has
been presented with.

Consider the distribution over X that selects the uniform instance with probability 1/2 and the remaining instances with
equal probability.

Let QA be the random variable that takes on the number of queries required by an algorithm A over the uniform distribution
of instances over X . Suppose that we draw an instance X from our probability distribution. Suppose that A makes at most
N/2 queries. Then with probability at least 3/4 A has not determined with certainty which instance X is. Thus the expected
number of queries is Ω(N) as required. We again apply Yao’s principle to obtain the desired result.

Proof of Theorem 3.3. Fix T and and a value c > 0. Let N = c(3T + 1), select some B > 0 sufficiently large and take
β = 0.

Construct the following family X of instances. For each j = 1, . . . , c, there are ticket purchases on day (j− 1)(3T +1)+T
of cost 2B/3. There are additional ticket costs of 2B/3 that fall either on day (j − 1)(3T + 1) + 2T − 1 or day
(j − 1)(3T + 1) + 2T each with probability 1/2. All other days have ticket costs 0.

Note that by our construction, there is a unique optimal solution for each instance X ∈ X . In particular, for j = 1, . . . , c
let section j be time period [(j − 1)(3T + 1), j(3T + 1)). If X has ticket costs on day (j − 1)(3T + 1) + 2T − 1, then
OPT (X) buys one card in section j on day (j − 1)(3T + 1) + T . Otherwise it buys no cards in section j. In addition,
any solution that differs from the optimal one in interval j for j = 1, . . . c incurs an additional cost of at least B/3. Hence
if a solution S differs from OPT (X) in Ω(N/T ) sections it does not give a (1 + ϵ)-approximation. To see this note that
opt(X ) ≤ 4B

3 c for any instance X . Such a solution S will have cost at least opt(X ) + Ω(NB
T ), and thus the approximation

ratio is (1 + Ω(N/T )).

Note that with any given query an algorithm can determine whether or not to buy a card in at most two sections. Thus by
Yao’s principle any randomized algorithm requires Ω(N/T ) queries to obtain a (1 + ϵ)-approximation .

C Missing Proofs in Section 3.2

Proof of Theorem 3.4. We construct G = (V,E) as follows. See Figure 2 for a visualization. The vertex set V is indexed
by {0, . . . , N}. For each day i = 0, . . . , N − 1 we add such an arc (i, i+ 1) to E of length ci. In addition, for each day
i = 0, . . . , N − T we create an arc (i, i+ T ) to E of weight B +

∑i+T−1
j=i βci. For days i = N − T + 1, . . . , N − 1 we

create an arc (i,N) to E of weight B +
∑N

j=i βci. We take s to be 0 and t to be N . If an s, t-path contains an arc (i, i+ 1)
of the first type, then in the corresponding solution to the Bahncard instance there is no valid card during time i. If an
s, t-path contains an arc (i, i+ T ) or (i,N) of the second type, then the corresponding solution purchases a card at time i.
Given a shortest s, t-path in G, it is easy to reconstruct an optimal solution to I.

We note here that we can add extra arcs to our construction, so that we need not assume the validity periods of our cards are
disjoint.



Online Algorithms with Costly Predictions

Figure 2: Construction of the DAG used to solve for the optimal offline solution for a Bahncard instance. In this instance we
have T = 2.

Proof of Observation 3.5. Let V be the same vertex set as in the proof of Theorem 3.4. Instead only add arcs (i, i+ P ) of
weight B +

∑i+P−1
i′=i βci, for each (i, P ) ∈ P . In the case that i+ P extends past N , we would add the arc (i,N) instead.

Then since we do not know the costs ci for each day we instead of adding arcs of the form (i, i+ 1) for each day we add
arcs (i, i′) of cost

∑i′

d=i cd for each minimal fully-determined sub-interval in our lifetime.

Proof of Fact 3.6. Equation (10) follows from the observation that one can construct a solution S to I with a valid card
during each day that OPT (I ′) has a valid card by purchasing at most double the number of cards. Also, given OPT (I) we
can easily construct a solution S′ to I ′ that purchased the same number of cards, and has valid cards whenever OPT (I) has
valid cards.

To see that OPT (I) can be assumed to purchase at most 2b cards, let J = [a, b) be any maximal interval in time where at any
point in time t ∈ (a, b) there exists either a purchase made by OPT (I ′) or by OPT (I) at time τ such that t ∈ (τ, τ + T ).
Suppose that during J OPT (I ′) has bJ valid cards, but OPT (I) has aJ = 2bJ + i cards for i > 0. Then there must exist
at least 2Ti days in J during which OPT (I) has a valid Bahncard but OPT (I ′) whose total ticket costs together exceed
pi, for p = B

1−β . But then we can find an improved solution for instance I by purchasing at most p additional cards and
shifting the original purchases of OPT (I ′) during J , which is a contradiction.

Proof of Theorem 3.7. Recall that b∗ is the number of cards purchased by OPT (I∗). We take b∗ iterations to modify
OPT (I) into a solution S of I∗ at a loss of at most gγ

b at each iteration. Since b∗ ≤ b, this will give us the desired
approximation guarantee. Recall b from Equation 10.

Let τ1, . . . , τb∗ be the purchase times of OPT (I). We construct solutions S0 = OPT (I), S1, . . . , Sb∗ = S such that for
j = 1, . . . , b∗ the solution Sj makes purchases at τ ′1, . . . , τ

′
j , τj+1, . . . τb∗ , where τ ′1 ∈ D1, . . . τ ′j ∈ Dj . We will prove

inductively that the cost of Sj is at most

OPT (I) + j
gγ

b
≤ (1 + γ)OPT (I), (63)

which gives us our desired result.

Clearly the statement holds for j = 0. Suppose now that j > 1 and the statement holds for Sj−1. Then take τ ′j to be
the largest of τ ′j−1 + T and the earliest point in Dj at least τj . In the former case Sj is at least as good at Sj−1 and
hence Equation (63) holds. In the latter case there must exist d, d′ ∈ Construct-Starting-Points(τ ′j−1 + T ) ⊆ Dj such that
τj ∈ [d, d′). To see this if e is the latest point in Construct-Starting-Points(τ ′j−1 + T ), and e < N , then [τ ′j−1 + T, e) has
ticket costs exceeding g and hence OPT (I) must have purchased a card valid during this time period, the earliest of which
must be τj . Hence [τj , τ

′
j) is γ-light and we obtain Equation (63). Note that it is possible that τj = τ ′j , in which case the

statement holds trivially.

To see the bound on the number of queries we note that if q, q′, q′′ are consecutive elements in Construct-Starting-Points(s)
for some s ∈ [0, N), then by construction [q, q′′] is γ-heavy. Thus it must be the case that for any set Ds =

Construct-Starting-Points(s), we have that |Ds| − 1 ≤ 2b
γ . As a result there will be O

((
2b
γ

)j)
points in Dj , for

each j = 1, . . . , b. In this case our query bound will be O

((
2b
γ

)b
log(T )

)
.



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

Figure 3: A visual representing two instances I1, I2 both having time horizon T + ϵT . The ticket costs for I1 and I2 are
represented by the green and red circles respectively. A circle represents ticket costs of B, otherwise there are no ticket
costs.

C.1 Modification of Algorithm for Large b

If our estimate b of b∗ is very large, we can instead take a constant b̃, and assume that OPT (I) purchases a card every time
we see that OPT (I ′) purchases a multiple of b̃ cards. We formalize this notion below.

Definition C.1. Suppose we have an instance I = ((c0, . . . cN−1), T, B, β) of the Bahncard problem, and times 0 =
i0 ≤ i1, . . . ,≤ ik ≤ ik+1 = N . If we split I at i1, . . . , ik we obtain instances I0, . . . , Ik, where instance Ij =
((cij , . . . cij+1−1)), T, B, β).

In Lemma C.2, we bound the increase in cost obtained by splitting an instance.

Lemma C.2. Suppose we are given an instance I of the Bahncard problem and we split I at k timepoints i1, . . . , ik to
obtain Bahncard instances I0, . . . , Ik. Then,

k∑
j=0

opt(Ij) ≤ opt(I) + kB

Proof. For each j = 0, . . . , k we construct a solution Sj for Ij such that total costs paid by S0, . . . , Sk together is at most
the claimed bound. Suppose that OPT (I) purchases a card at time i such that ij ≤ i < ij+1, then Sj will also purchase a
card at time i. Suppose now that OPT (I) purchases a card at time i such that ij − T + 1 ≤ i < ij , then Sj will purchase a
card at time ij . Note that these solutions together use at most k more cards than OPT (I), and have valid Bahncards during
all times when OPT (I) has one. One can observe that the validity periods of the cards purchased may intersect, but this
can be fixed by shifting purchase times while only improving cost.

To obtain a (1 + ϵ)-approximation algorithm we can select b̃, γ such that

ϵ =
1

b̃
+ γ +

γ

b̃

and split I after each point in time that OPT (I ′) sees b̃ cards. Formally, we define i1, . . . , ik as follows. Let i0 = 0 and
while there are more than least b̃ cards purchased by OPT (I ′) after the most recently defined ij we let ij+1 be the point
in time where OPT (I ′) purchases its b̃ + 1st card after ij . Let I0, . . . , Ik be the instances that result from splitting at
i1, . . . , ik.

Then we solve each instance separately to get a (1 + ϵ)-approximation using O

((
b̃
γ

)b̃
N
b̃T

log(T )

)
queries.

C.2 A Note on Simpler Approaches

Simpler algorithms may work when the ticket costs are (say) uniformly distributed. But consider the algorithm that makes at
most N/(εT ) queries. We claim that this does not suffice in general (e.g. Figure 3). Suppose for simplicity that β = 0,
meaning that if we have a valid Bahncard we do not need to pay any additional costs to obtain tickets. Note that the instance
I1 has an optimal solution which purchases a card at time t and pays B. On the other hand, I2 has an optimal solution
which buys no cards and pays 2B. However querying intervals of length ϵT does not allow us to distinguish between these
two instances.

C.3 Making the Bahncard Algorithm Robust to Errors, Proof of Theorem 3.8

This section is devoted to relaxing the assumption that our interval estimator from Section 3 returns the true ticket costs of
the requested interval, while still producing a high quality solution. Suppose now that our interval estimator can make errors.



Online Algorithms with Costly Predictions

Formally, given an instance I of the Bahncard problem, if we present the predictor with a length L, where 1 ≤ L ≤ N and
day t ≤ N − L we obtain a value x that is a prediction of the quantity

t+L∑
i=t

ci.

However, in this setting x may differ from this quantity by an arbitrary amount. For a subset I of our time horizon, let xI ,
denote the total predicted ticket costs over days in I .

We call a predictor satisfying Equation (64)

xI1 + xI2 = xI1∪I2 + xI1∩I2 . (64)

for any two subsets I1, I2 of the time horizon. internally consistent, and assume that our predictor has this natural property.
With this assumption we can then use the algorithm from Section 3 to obtain a sequence of buying times τ1, . . . τkpred

, for
a given instance I which we denote by PRED(I). The goal is to develop an algorithm that takes PRED(I) as input,
and outputs a sequence of buying times t1, . . . , tk, which we denote by ALG(I) whose solution cost is close to that of
(1 + γ)opt(I) if our prediction has few errors. Otherwise the solution cost should be close to that produced by the best
online algorithm without predictions if the prediction is error-prone.

To quantify how well an algorithm achieves the above goals it is standard to identify a parameter λ ∈ (0, 1) that signifies
how much we trust our predictor Purohit et al. (2018); Bamas et al. (2020). As λ approaches 0, we place full trust in our
prediction. On the contrary, as λ approaches 1, we do not trust our predictor.

Our algorithm uses the techniques from Purohit et al. (2018) in the ski-rental setting to the repeated horizon setting, to make
our algorithm robust. Their paper characterizes the error as the absolute difference between the actual number of ski days, x,
and the predicted number of ski days, y. They break down the problem into a few cases depending on the values of x and
y. With this breakdown, they give an algorithm that provides a good performance guarantee in terms of robustness and
consistency.

We say that a given point t in our lifetime is a predicted discount time, or discount time if there exists a buying time
τ ∈ PRED(I) such that t ∈ [τ, τ + T ). Otherwise, we say that t is a predicted full-price time or full-price time. Recall
that an interval was γ-light if the total ticket predicted ticket purchases during the interval did not exceed gγ

b . Recall, that
under the assumption that the prediction is perfect, b is the upper-bound on the number of Bahncards purchased by OPT (I),
that we computed in Equation 12. Under this same assumption opt(I) ≤ g ≤ 2opt(I).

Note that p = B
(1−β) is the total number of ticket costs that we need to incur during any given period of length T to break

even, when we purchase a Bahncard for the same period.

We build ALG(I) as follows. At each point in time t, we maintain a counter rt that is 0 whenever there is a valid Bahncard
at time t. Otherwise, rt is the minimum of the total tickets purchased since the last Bahncard expired and the number of
tickets purchased in the previous T days. For a time t, let t(r), denote the earlest time point that tickets purchased at t(r)
contribute to rt. If ALG(I) purchases a card at time t, we define the interval [t(r), t) be the counting period of t. The union
of the counting period and the validity period of a purchase of ALG(I) will be referred to as the relevance period of the
purchase.

We purchase a Bahncard at time t if either (i) t is contained in a discount interval and rt ≥ pλ, or (ii) t is contained in a full
price interval and rt ≥ p/λ.

Note that the solutions OPT (I), ALG(I) and PRED(I) are sets of card purchases. However, for simplicity we will often
abuse notation and say that A purchases a card at time t, if t ∈ A and A ∈ {OPT (I), ALG(I), PRED(I)}. Alternatively,
we will say that A has a valid card during [t, t+ T ).

Proof of Theorem 3.8. First, we partition the timeline into segments, called chains. Informally, each chain will correspond
to an interval of time for which every point in the interval corresponds to the relevance period of a Bahncard purchase in
ALG(I) or the validity period of a Bahncard purchase in OPT (I).

Formally, consider each maximal sub-interval I = [ts, te) of the life-time such that for all internal points t′ ∈ (ts, te) we
have that there is either a time τ∗ ∈ OPT (I) such that t′ ∈ (τ∗, τ∗+T ) or a time t ∈ ALG(I) such that t′ ∈ (t(r), t+T ).



Marina Drygala, Sai Ganesh Nagarajan, Ola Svensson

We make the following observation about our set of chains. If there is any point in time t not contained in a chain I , created
in the above process, then both ALG(I) and OPT (I) pay full-price during this time, and make no card purchases. Hence
we can restrict our attention to points in time contained in one of these chains.

Fix a chain I , and let ALGI and OPTI denote the cost that one would pay on Bahncards and tickets by following buying
schedules ALG(I) and OPT (I), respectively over I . We consider three main cases:

Case 1: I = [τ∗, τ∗ + T ), where τ∗ is a card purchased by OPT (I)

By construction the relevance period of a card t in ALG(I) does not intersect with I .

Observe that τ∗ + T must be a full-price time point and by construction of our algorithm its costs do not exceed p/λ, and
we obtain Equation (65).

ALGI

OPTI
≤ p/λ

p
≤ 1

λ
. (65)

Case 2: I contains the relevance period of a purchase t ∈ ALG(I), but is disjoint from the validity period of any
purchase of OPT (I).

By our construction of chains, I must contain the relevance period of exactly one card purchase t ∈ ALG(I). It must be
that t is a discount time point, for otherwise OPT (I) must intersect with the counting period of t.

Let I1 = [t(r), t), I2 = [t, t+ T ). By our choice of algorithm, OPTI must accumulate ticket costs of at least λp during I1,
thus in the worst case we can obtain Equation (66).

ALGI

OPTI
≤ B + λp+ βcI2

λp+ cI2

≤ 1 +
(1− β)

λ

(66)

Case 3: I contains purchases from both ALG(I) and OPT (I).

Observe that if m is the number of card purchases in the chain that ALG(I) makes, and n is the number of card purchases
in the chain that OPT (I) makes, then n ≥ m− 1, since the length of the validity period of any card purchased by OPT (I)
is at most the relevance period of any card purchased by ALG(I).

If n ≥ m we conclude that

ALGI

OPTI
≤ mB + np/λ

np

≤ 1 +
1

λ

(67)

Next, we assume that n = m − 1. In this case we know that the earliest purchase in the chain is made by ALG(I) at
time t, a discount time-point. It follows that during the counting period of t there are λp in ticket costs, and the optimal
buying schedule accumulated these ticket costs, as it does not have a valid Bahncard during this time. As a result we obtain
Equation (68).

ALGI

OPTI
≤ mB + λp+ (m− 1)p/λ

(m− 1)p+ λp

≤ 1 +
1/λ+ 1

1 + λ

= 1 +
1

λ

(68)

The above bounds hold for any errors made by our predictor. Next, we argue consistency. Assume that the predictions are
perfect. In this case, if the number of cards b (Recall b from Equation (12)) is 0, then our algorithm will also never buy and
we recover the optimal solution. Otherwise, whenever we have a predicted purchase at time τ , we could have accumulated



Online Algorithms with Costly Predictions

up to gγ
b in ticket costs since the latest point in time between the end of the previous card purchase t by ALG(I) and the

beginning of the latest purchase τ∗ of OPT (I) most τ . In this case we pay a factor of max{ gγ
b , λp} for each such purchase

τ∗. Since g ≤ 2opt(I) when the predictions are perfect, we obtain the result.


	INTRODUCTION
	Ski-Rental and the Bahncard Problem
	Our Contributions
	Related work

	THE TIMING AND VALUE OF A PREDICTION
	Value of a Prediction

	CIRCUMVENTING FREQUENT COSTLY PREDICTIONS
	Lower Bounds on Number of Predictions
	A Nearly Tight Algorithm

	Missing Proofs in Section 2
	Competitive Ratio of ToP
	Modifying ToP for error-prone predictions
	Upper Bound Proof
	Proof of Claims in Section 2
	Lower Bound Proof
	Modifying VoP for error-prone predictions

	Missing Proofs in Section 3.1
	Missing Proofs in Section 3.2
	Modification of Algorithm for Large b
	A Note on Simpler Approaches
	Making the Bahncard Algorithm Robust to Errors, Proof of Theorem 3.8


