
Efficient and Light-Weight Federated Learning
via Asynchronous Distributed Dropout

Chen Dun Mirian Hipolito Chris Jermaine Dimitrios Dimitriadis Anastasios Kyrillidis
Rice University Microsoft Research Rice University Microsoft Research Rice University

Abstract

Asynchronous learning protocols have regained
attention lately, especially in the Federated Learn-
ing (FL) setup, where slower clients can severely
impede the learning process. Herein, we propose
AsyncDrop, a novel asynchronous FL frame-
work that utilizes dropout regularization to handle
device heterogeneity in distributed settings. Over-
all, AsyncDrop achieves better performance
compared to state of the art asynchronous method-
ologies, while resulting in less communication
and training time overheads. The key idea re-
volves around creating “submodels” out of the
global model, and distributing their training to
workers, based on device heterogeneity. We rigor-
ously justify that such an approach can be theoret-
ically characterized. We implement our approach
and compare it against other asynchronous base-
lines, both by design and by adapting existing syn-
chronous FL algorithms to asynchronous scenar-
ios. Empirically, AsyncDrop reduces the com-
munication cost and training time, while match-
ing or improving the final test accuracy in diverse
non-i.i.d. FL scenarios.

1 Introduction

Background on Federated Learning. Federated Learning
(FL) [28, 24, 20] is a distributed learning protocol that has
witnessed fast development the past demi-decade. FL de-
viates from the traditional distributed learning paradigms
and allows the integration of edge devices —such as smart-
phones [38], drones [32], and IoT devices [29]— in the
learning procedure. Yet, such real-life, edge devices are ex-
tremely heterogeneous [41]: they have drastically different
specifications in terms of compute power, device memory
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and achievable communication bandwidths. Directly apply-
ing common synchronized FL algorithms –such as FedAvg
and FedProx [24, 28] that require full model broadcasting
and global synchronization– results often in a “stragglers”
effect [30, 16, 39]; i.e., computationally powerful edge de-
vices wait for slower ones during the synchronization step.

The ubiquitous synchronous training. One way to handle
such issues is by utilizing asynchrony instead of synchrony
in the learning process. To explain the main differences,
let us first set up the background. In a synchronous dis-
tributed algorithm, a global model is usually stored at a
central server and is broadcast periodically to all the partici-
pating devices. Then, each device performs local training
steps on its own model copy, before the device sends the up-
dated model to the central server. Finally, the central server
updates the global model by aggregating the received model
copies. This protocol is followed in most FL algorithms,
including the well-established FedAvg [28], FedProx [24],
FedNova [42] and SCAFFOLD [20]. The main criticism
against synchronous learning could be that it often results
in heavy communication/computation overheads and long
idle/waiting times for workers.

Asynchrony and its challenges. The deployment of a asyn-
chronous learning method is often convoluted. In the past
decade, HogWild! [31, 27] has emerged as a general asyn-
chronous distributed methodology, and has been applied
initially in basic ML problems like sparse linear/logistic re-
gression [51, 50, 15]. Ideally, based on sparsity arguments,
each edge device can independently update parts of the
global model –that overlap only slightly with the updates
of other workers– in a lock-free fashion [31, 27]. This way,
faster, more powerful edge workers do not suffer from idle
waiting due to slower stragglers. Yet, the use of asynchrony
has been a topic of dispute in distributed neural network
training [7, 4]. Asynchronous training often suffers from
lower accuracy as compared to synchronized SGD, which
results in the dominance of synchronized SGD in neural
network training [4].

Resurgence in asynchrony. Recently, asynchronous meth-
ods have regained popularity, mainly due to the interest in
applying asynchronous motions within FL on edge devices:
the heterogeneity of edge networks, the ephemeral nature of
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the workers, the computational, communication and energy
restriction of mobile devices are some impediments towards
applying synchronous algorithms in realistic environments.
Yet, traditional off-the-shelf asynchronous distributed algo-
rithms still have issues, which might be exacerbated in the
FL setting. As slower devices take longer local training time
before updating the global model, this might result in in-
consistent update schedules of the global model, compared
to that of faster devices. This might have ramifications: i)
For FL on i.i.d. data, this will cause the gradient staleness
problem and result in convergence rate decrease; and, ii) on
non-i.i.d. data, this will result in a significant drop in global
model final accuracy.

As solutions, novel approaches on asynchronous FL propose
weighted global aggregation techniques that take into consid-
eration the heterogeneity of the devices [46, 5, 36]; yet, these
methods often place a heavy computation/communication
burden, as they rely on broadcasting full model updates
to all the clients and/or the server. Other works monitor
client speed to guide the training assignments [25, 3]. Fi-
nally, recent efforts propose semi-asynchronous methods,
where participating devices are selected and buffered in
order to complete a semi-synchronous global update peri-
odically [16, 45]. A thorough discussion on the existing
asynchronous methods in FL can be found in [47].

What is different in this work? As most algorithms stem
from adapting asynchrony in synchronous FL, one still
needs to broadcast the full model to all devices, following
a data parallel distributed protocol [11, 33], regardless of
device heterogeneity. This inspire us to ask a key question:

“Can we select submodels out of the global model
and send these instead to each device, taking into
account the device heterogeneity?”

We answer this question affirmatively, by proposing a novel
distributed dropout method for FL. We dub our method
AsyncDrop. Our approach assigns different submodels
to each device1; empirically, such a strategy decreases the
required time to converge to an accuracy level, while pre-
serving favorable final accuracy. This work attempts to rein-
stitute the discussion between synchrony and asynchrony in
heterogeneous distributed scenarios, as in FL. Our idea is
based on the ideas of HogWild! [31, 27] –in terms of sparse
submodels– and Independent Subnetwork Training (IST)
[49, 10, 26, 44] –where submodels are deliberately created
for distribution, in order to decrease both computational and
communication requirements.

Yet, we deviate from these works: i) The combination of
HogWild! and IST ideas has not been stated and tested
before this work, to the best of our knowledge. ii) While
HogWild!-line of work provides optimization guarantees,

1We consider both random assignment, as well as structured
assignments, based on the computation power of the devices.

we consider the non-trivial, non-convex neural network set-
ting and provide theoretical guarantees for convergence;
such a result combines tools from asynchronous optimiza-
tion [31, 27], Neural Tangent Kernel assumptions [18],
dropout theory analysis [26], and focuses on convolutional
neural networks [23], deviating from fully-connected layer
simplified scenarios. Finally, iii) we provide system-level
algorithmic solutions for our approach, mirroring best-
practices found during our experiments. Overall, the contri-
butions of this work can be summarized as follows:

• We consider and propose asynchronous distributed
dropout (AsyncDrop) for efficient large-scale FL. Our
focus is on non-trivial, non-convex ML models –as in neu-
ral network training– and our framework provides specific
engineering solutions for these cases in practice.

• We theoretically characterize and support our proposal
with rigorous and non-trivial convergence rate guarantees.
Currently, our theory assumes bounded delays; our future
goal is to exploit recent developments that drop such
assumptions [22]. Yet, our theory already considers the
harder case of neural network training, which is often
omitted in existing theory results.

• We provide specific implementation instances and share
“best practices” for faster distributed FL in practice. As
a side-product, our preliminary results include baseline
asynchronous implementations of many synchronous
methods (such as FedAvg, FedProx, and more), that are
not existent currently, to the best of our knowledge.

2 Problem Setup and Challenges
Optimization in neural network training. We consider
FL scenarios over supervised neural network training: i.e.,
we optimize a loss function ℓ(·, ·) over a dataset, such that
the model maps unseen data to their true labels, unless
otherwise stated. For clarity, the loss ℓ(W, ·) encodes both
the loss metric and the neural architecture, with parameters
W. Formally, given a data distribution D and {xi, yi} ∼ D,
where xi is a data sample, and yi is its corresponding label,
classical deep learning aims in finding W⋆ as in:

W⋆ = argmin
W∈H

{
L(W) := 1

n

n∑
i=1

ℓ (W, {xi, yi})

}
,

where H denotes the model hypothesis class that “molds”
the trainable parameters W.

The minimization above can be achieved by using different
approaches, but almost all training is accomplished via a
variation of stochastic gradient descent (SGD) [35]. SGD
modifies the current guess Wt using stochastic directions
∇ℓit(Wi) := ∇ℓ(Wi, {xit , yit}). I.e., Wt+1 ← Wt −
η∇ℓit(Wt). Here, η > 0 is the learning rate, and it is a
single or a mini-batch of examples. Most FL algorithms are
based on these basic stochastic motions, like FedAvg [28],
FedProx [24], FedNova [42] and SCAFFOLD [20].
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FL formulation. Let S be the total number of clients in
a distributed FL scenario. Each client i has its own local
data Di such that the whole dataset satisfies D = ∪iDi, and
usually Di ∩ Dj = ∅,∀i ̸= j. The goal of FL is to find a
global model W that achieves good accuracy on all data D,
by minimizing the following optimization problem:

W⋆ = argmin
W∈H

{
L(W) := 1

S

S∑
i=1

ℓ (W,Di)

}
,

where ℓ (W,Di) = 1
|Di|

∑
{xj ,yj}∈Di

ℓ (W, {xj , yj}).
With a slight abuse of notation, ℓ (W,Di) denotes the local
loss function for user i, associated with a local model Wi

(not indicated above), that gets aggregated with the models
of other users. Herein, we consider both i.i.d. and non-i.i.d.
cases, since local data distribution Di can be heterogeneous
and follow a non-i.i.d. distribution.

Algorithm 1 Meta Asynchronous FL
Parameters: T iters, S clients, l local iters., W as current
global model, Wi as local model for i-th client, α ∈
(0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do
Wi,t ←W
//Train Wi for l iters. via SGD

for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model

W← (1− α) ·W + α ·Wi,t

end for

Details of asynchronous training. An abstract description
of how asynchronous FL operates is provided in Algorithm
1. In particular, given a number of server iterations T , each
client i gets the updated global model Wt from the server,
and further locally trains it using Di for a number of local
iterations l.2 Asynchronous FL assumes each client has
different computation power and communication bandwidth;
this can be abstracted by different wall-clock times required
to finish a number of local training iterations. Thus, when
client i has completed its round, the updated model is shared
with the server to be aggregated, before the next round of
communication and computation starts for client i. This is
different from classical synchronous FL, where the global
model is updated only when all participating clients finish
(or time-out) certain local training iterations.

2Details on the use of the optimizer, how it is tuned with respect
to step size, mini-batch size, etc. are intentionally hidden at this
point of the discussion.

3 Challenges in Asynchronous FL and
Related Work

Challenges. Asynchronous steps often lead to inconsistent
update schedules of the global model and are characterized
by gradient staleness and drifting. Real-life FL applica-
tions include edge devices with limited communication and
computation capabilities (e.g., how often and fast they can
connect with the central server, and how powerful as devices
they are). For instance, edge devices such as IoT devices
or mobile phones [29], might only be able to communicate
with the server within short time windows, due to network
conditions or user permission policy.

Figure 1: Potential issues in asynchronous FL.

Consider the toy setting in Figure 1. The two clients (Clients
A and B) have a significantly different update schedule on
the global model: Here, Client A has higher computational
power or communication bandwidth –compared to client B–
potentially leading to model drifting, lack of fair training and
more severe gradient staleness. On top, consider these two
clients having different local (non-i.i.d.) data distributions.

Related Work. The issue of model drifting due to data “non-
iidness” is a central piece in FL research. Algorithms, such
as FedProx [24], utilize regularization to constrain local
parameters “drifting" away from previous global models.

The gradient staleness problem has been widely studied
in asynchronous FL, like in [46, 5, 36, 25, 3]. These ap-
proaches can be summarized as weighted asynchronous
FedAvg protocols, in which the weight of each local client
update is proportional to the “capabilities” of the client. This
should decrease the negative impact from stale gradients
by slower clients. Semi-asynchronous methods have been
proposed [16, 45]; yet, they require fast clients to wait until
all other clients’ updates are completed, in order to receive
the updated model for the next round of local training.

Finally, numerous quantization [2, 48] and sparsification
[1, 19] techniques have been proposed for reducing compu-
tation and communication costs in FL.
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4 Asynchronous Distributed Dropout

(Distributed) Dropout. Dropout [40, 37, 12, 6] is a widely-
accepted regularization technique in deep learning. The
procedure of Dropout is as follows: per training round, a
random mask over the parameters is generated; this mask
is used to nullify part of the neurons in the neural network
for this particular iteration. Variants of dropout include
the drop-connect [40], multisample dropout [17], Gaussian
dropout [43], and the variational dropout [21].

The idea of dropout has also been used in efficient dis-
tributed and/or FL scenarios. [13] introduces FjORD and
the Ordered Dropout, a synchronous distributed dropout
technique that leads to ordered, nested representation of
knowledge in models, and enables the extraction of lower
footprint submodels without the need of retraining. Such
submodels are more suitable in client heterogeneity, as they
adapt submodel’s width to the client’s capabilities. See also
Nested Dropout [34] and HeteroFL [8].

Algorithm 2 Asynchronous dropout (AsyncDrop)
Parameters: T iters, S clients, l local iters., W as current
global model, Wi as local model for i-th client, α ∈
(0, 1), η step size.

∞
W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do

Generate mask Mi,t

Wi,t ←Wt ⊙ Mi,t

//Train Wi,t for l iters. via SGD

for j = 1, . . . , l do
Wi,t ←Wi,t − η ∂L

Wi,t

end for
//Write local to global model

Wt+1 ←Wt ⊙ (Mi,t)
c

+((1− α) ·Wt + α ·Wi,t) ⊙ Mi,t

end for

Our proposal and main hypothesis. We focus on the
asynchronous version of distributed dropout. We study
theoretically whether asynchrony provably works in non-
trivial non-convex scenarios –as in training neural net-
works– with random masks that generate submodels for
each worker. The algorithm is described in Algorithm 2,
dubbed as AsyncDrop, and is based on recent distributed
protocols [49, 10, 26, 44]; key features are highlighted in
teal-colored text. The main difference from Algorithm 1
is that Algorithm 2 splits the model vertically per iteration,
where each submodel contains all layers of the neural net-
work, but only with a (non-overlapping) subset of neurons
being active in each layer. Multiple local SGD steps can
be performed without the need for the workers to commu-
nicate. See also Figure 2 for a schematic representation of
asynchronous distributed dropout for training a CNN.

Theoretical Results. We are interested in understanding
whether such a combination of asynchronous computing
and dropout techniques lead to convergence and favorable
results: given the variance introduced by both asynchronous
updates and training of submodels, it is not obvious whether
–and under which conditions– such a protocol would work.

For ease of presentation and clarity of results, we analyse
a one-hidden-layer CNN, and show convergence with ran-
dom filter dropout. Consider a training dataset (X,y) =

{(xi, yi)}ni=1, where each xi ∈ Rd̂×p is an image and yi
being its label. Here, d̂ is the number of input channels
and p the number of pixels. Let q denote the size of the
filter, and let m be the number of filters in the first layer.
Based on previous work [9], we let ϕ̂(·) denote the patch-
ing operator with ϕ̂(x) ∈ Rqd̂×p. Consider the first layer
weight W ∈ Rm×qd̂, and second layer (aggregation) weight
a ∈ Rm×p. We assume that only the first layer weights W
is trainable. The CNN trained on the means squared error
has the form:

f(x,W) =
〈
a, σ

(
Wϕ̂ (x)

)
, ;
〉
,L (W) = ∥f(X,W)− y∥22 ,

where f(x, ·) denotes the output of the one-layer CNN for
input x, and L(·) is the loss function. We use the ℓ2-norm
loss for simplicity. We make the following assumption on
the training data and the CNN weight initialization.

Assumption 4.1 (Training Data) Assume that for all i ∈
[n], we have ∥xi∥F = q−

1
2 and |yi| ≤ C for some constant

C. Moreover, for all i, i′ ∈ [n] we have xi ̸= xi′ .

Note that this can be satisfied by normalizing the data. For
simplicity of the analysis, let d := qd̂.

Assumption 4.2 (Initialization) w0,i ∼ N
(
0, κ2I

)
and

ai,i′ ∼
{
± 1

p
√
m

}
for i ∈ [m] and i′ ∈ [p].

In an asynchronous scenario, the neural network weight
is updated with stale gradients due to the asynchronous
updates, where δt is the delay at training step t. We assume
δt is bounded by a constant E. Then, a simple version of
gradient descent under these assumptions looks like:

Wt = Wt − η∇WL (Wt−δt) , δt ≤ E,

where Wt−δt indicates that the gradient is evaluated on a
earlier version of the model parameters. Given the above,
we provide the following guarantees:

Theorem 4.1 Let f(·, ·) be a one-hidden-layer CNN with
the second layer weight fixed. Let ut abstractly represent the
output of the model after t iterations, over the random selec-
tion of the masks. Let E denotes the maximum gradient de-
lay/staleness. Let ξ denote the dropout rate (ξ = 1 dictates
that all neurons are selected), and denote θ = 1− (1− ξ)S
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Figure 2: Schematic representation of AsyncDropout. a) This is a simple representation of a CNN model. Our algorithm
applies for arbitrary depth of CNNs (ResNets) as well as other architectures (MLPs, LSTMs, etc); here we restrict to a
shallow CNN for illustration purposes. b) Per request, random sub-sampled CNN models are created that result into different
subnetworks. c) These submodels are distributed to devices with different computational capabilities (here GPU, CPU,
or a smartphone). d) Without loss of generality, we assume that all devices train locally the submodel for l iterations. e)
However, each device finishes local training in different timestamps (shown as different colored arrows: red: slow speed;
orange: moderate speed; blue: fast speed). f) Yet, the global model is asynchronously updated and new submodels are
created without global synchronization. g) The above procedure is repeated till convergence.

the probability that a neuron is active in at least one sub-
network. Assume the number of hidden neurons satisfies
m = Ω

(
max{n

4K2

λ4
0δ

2 max{n, d}, n
λ0
}
)

and the step size

satisfies η = O
(
λ0

n2

)
. Let κ be a proper initialization scal-

ing factor, and it is considered constant. We use λ0 to denote
the smallest eigenvalue of the Neural Tangent Kernel matrix.
Let Assumptions 1 and 2 be satisfied. Then, the following
convergence rate guarantee is proved to be satisfied:

EMt

[
∥ut+1 − y∥22

]
≤

(
1− θηλ0

4

)t

∥u0 − y∥22

+O

(
θηλ30ξ

2κ2E2

n2
+
ξ2(1− ξ)2θηn3κ2d

mλ0
+
η2θ2nκ2λ0ξ

4E2

m4
+
ξ2(1− ξ)2θ2η2n2κ2d

m3λ0

+
ξ2(1− ξ)2θ2η2κ2λ0E2

m3
+
ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+
nκ2

(
θ − ξ2

)
S

)

Remark #1. This theorem states that the sum of the
expected weight differences in the t-th iteration (i.e.,
EMt [∥ut+1 − y∥22]) converges linearly to zero, as dictated

by the red term –
(
1− θηλ0

4

)t

∥u0 − y∥22– up to an error
neighborhood, denoted with the Big-Oh notation term on
the right hand side of the expression. Focusing on the latter,
there are two types of additive errors: i) the orange-colored
terms origin from the dropout analysis: the term 1 − ξ
is often called as “dropout rate” (when ξ = 0, no neu-
rons are selected and the loss hardly decreases, while when
ξ = 1, all neurons are selected, and the orange-colored
terms disappear). ii) the violet-colored terms origin from

the asynchronous analysis: when E = 0 (i.e., we boil down
to synchronous computations), these terms also disappear).

Remark #2. Beyond the above extreme cases, we observe
that the error region terms can be controlled by algorithmic
and model-design choices: e.g., when the size of the dataset
n increases, the first term θηλ3

0ξ
2κ2E2

n2 can be controlled; for
sufficiently wide neural network, the terms with m in the
denominator can be made arbitrarily small; finally, notice
that increasing the number of subnetworks S will drive the
last term in the bound zero.

Vanilla asynchronous distributed dropout in practice.
We test vanilla AsyncDrop with 25% Dropout rate in a
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Table 1: Test accuracy of asynchronous FL baselines vs. AsyncDrop on non-i.i.d. CIFAR100 data over > 100 clients. We
also report the time and communication overhead to reach a certain target accuracy: “Time for XX% Accuracy” denotes the
second lowest test accuracy among all baselines as the target accuracy.

Max. Test Accuracy Time for 32% Accuracy Time Overhead Comm. Overhead

Sync. FedAvg 60.47 3890.6s +69.38% +42.2%

Async. FedAvg 32.47 ± 1.89 3062.5s +33.00% +15.56%
Async. Fed-Weighted-Avg 32.98 ± 1.71 3062.5s +33.00% +15.56%

Async. FedProx 35.75 ± 0.61 3062.5s +33.33% +15.56%
Async. FjORD 12.07 ± 0.83 N/A N/A N/A

AsyncDrop 35.93 ± 0.92 2296.8s [Best] [Best]

FL setting with 104 heterogeneous clients and based on
non-i.i.d. CIFAR100 dataset distribution. Beyond the exten-
sions of FL baselines to the asynchronous setting (FedAvg,
Fed-Weighted-Avg and FedProx), we further extend the
work in [13] into Async. FjORD; further details in Sec
6. As shown in Table 1, AsyncDrop indeed shows im-
provements in three components: final global model test
accuracy, training time and communication cost. These pre-
liminary results demonstrate that AsyncDrop is on track
to improve upon global model drifting, gradient staleness
and computation/communication cost; all within the same
single method.

5 Smart Partition in AsyncDrop for FL

Going beyond AsyncDrop. Despite theoretical support,
AsyncDrop does not count device heterogeneity when
submodels are assigned to the various workers. This could
result into slower convergence rates and/or lower final model
accuracy compared to other asynchronous methods [46, 5,
36, 25, 3] that carefully handle such cases. With non-i.i.d.
data, more frequent updates by faster devices could lead to
model drifting on local data. These facts suggest a more
careful handling of model splitting and model distribution
among heterogeneous workers.

Hetero AsyncDrop: An improved asynchronous so-
lution. We propose to “balance” the contribution from
different devices with the Hetero AsyncDrop method.
Briefly, Hetero AsyncDrop assigns different weights to
different devices, based on the rate update of the weights,
and the computation power of the devices. The description
of Hetero AsyncDrop is provided in Algorithm 3. We
assign model weights that are less updated to the faster de-
vices. Similarly, we assign model weights that are updated
more often – and, thus, converging faster– to the slower de-
vices. The premise behind such a protocol is that all weights,
eventually, will be updated/will converge with a similar rate.

Hetero AsyncDrop: its ingredients. The above are
encapsulated with a weight score function v(·), a device-
capacity score function ψ(·) and the mask generator func-
tion φ(·) in Algorithm 3. The function v(·) quantifies the up-
date speed of each weight. One simple score can be the norm
of weight change: Given predefined grouping of weights

Algorithm 3 Hetero AsyncDrop for Asynchronous FL
Parameters: T iters, S clients, l local iters., W as current
global model, Wi as local model for i-th client, ηg as
global LR, v(·) weight score function, ψ(i) computes the
computation capacity of i-th worker, φ(W, ψ(i), v(·))
is the Smart Dropout function that creates the mask,
based on worker capacity ψ and score v, α ∈ (0, 1).

∞

W← randomly initialized global model.
//On each client i asynchronously:
for t = 0, . . . , T − 1 do
//For i-th fastest worker, φ(·) drops

weights with i-th largest v(·) score

Generate mask Mi,t = φ(Wt, ψ(i), v(·))
Wi,t ←Wt ⊙ Mi,t

//Train Wi,t for l iters. via SGD

for j = 1, . . . , l do
Wi,t ←Wi,t − ηg ∂L

Wi,t

end for
if i-th client is fastest then

Update ηg
end if
//Write local to global model

Wt+1 ←Wt ⊙ (Mi,t)
c

+((1− α) ·Wt + α ·Wi,t) ⊙ Mi,t

//Update score q

v(Wj
t+1) =

∥∥∥Wj
t+1 −Wj

0

∥∥∥
1
, ∀ j ∈ J

end for

in set J , define Wj
t for j ∈ J as the j-th weight/group

of weights of global network at the t-th update. Then, the
score function is selected as: v(Wj

t ) =
∥∥∥Wj

t −Wj
0

∥∥∥
1
, i.e.,

the score function measures how far from the initial values
the j-th group of weights has moved. In our experiments,
we have tested grouping of weights J by filters and by lay-
ers. Further, we have some measure of the computation
capacity of each device ψ(i), and we order the devices in
a descending order with respect to capabilities. The mask
generator function φ(W, ψ(i), v(·)) generates masks that
nullify weights in W, based on the score function v over the
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Table 2: Test accuracy of asynchronous FL baselines vs. (Hetero) AsyncDrop using a ResNet architecture on non-i.i.d
CIFAR10, CIFAR100 and FMNIST data over > 100 clients. We report the time and communication overhead to reach a
certain target accuracy: “Time for XX% Accuracy” denotes the second lowest test accuracy among all baselines as the target
accuracy. Teal colored text indicates favorable performance; red colored text indicates high variance in performance.

CIFAR10 Max. Test Accuracy Time for 35% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 45.79 ± 7.9 2105.5s +33.34% +15.56%
Async. Fed-Weighted-Avg 46.51 ± 6.8 2105.5s +33.34% +15.56%

Async. FedProx 43.97 ± 1.35 2296.9s +45.46% +26.06%
Async. FjORD 23.14 ± 0.90 N/A N/A N/A

FedBuff 35.81 ± 11.83 3012.9s +89.98% +35.75%

Hetero AsyncDrop 50.67 ± 1.75 1579.1s [Best] [Best]
AsyncDrop 48.98 ± 3.87 2009.7s +27.27 % +27.27%

CIFAR100 Max. Test Accuracy Time for 32% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 32.47 ± 1.89 3062.5s +33.38% +15.56%
Async. Fed-Weighted-Avg 32.98 ± 1.71 3062.5s +33.38% +15.56%

Async. FedProx 35.75 ± 0.61 3062.5s +33.38% +15.56%
Async. FjORD 12.07 ± 0.83 N/A N/A N/A

FedBuff 41.91 ± 3.80 4250.1s +85.03% +42.22%

Hetero AsyncDrop 37.26 ± 0.93 2296.8s [Best] [Best]
AsyncDrop 35.93 ± 0.93 2296.8s [Best] [Best]

FMNIST Max. Test Accuracy Time for 57% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 62.47 ± 8.20 787.5s +33.33% +25.00%
Async. Fed-Weighted-Avg 59.30 ± 10.44 1181.3s +100% +87.50%

Async. FedProx 59.91 ± 7.32 1050.0s +77.78% +66.67%
Async FjORD 21.98 ± 9.55 N/A N/A N/A

FedBuff 57.03 ± 11.37 1845.0s +212.38% +150.20%

Hetero AsyncDrop 66.89 ± 5.36 590.6s [Best] [Best]
AsyncDrop 60.02 ± 10.38 787.5s +33.33% +33.33%

weights, and the device capacity list in ψ(·). The Hetero
AsyncDrop strategy is that for the i-th fastest worker, we
drop weights with i-th largest q score.

6 Experiments

Setup. We generate simulated FL scenarios with 104
clients/devices of diverse computation and communication
capabilities. We implement clients as independent processes,
each distributed on different GPUs with access to the same
RAM space. We follow HogWild!’s distributed model [31]:
i) we use a shared-memory system to store the global model;
ii) each simulated client can update/read the global model
in a fully lock free mode; and iii) each client transfers the
local model to the assigned GPU for local training. We
activate 8 clients at any given moment.

We use 25% dropout rate in (Hetero) AsyncDrop for
CNN and MLP, while we use 12.5% for LSTM. Even for
such low dropout rates, the gains in training are obvious and
significant, as we show in the experiments. In the appendix,
we provide ablation studies on how the dropout rate affects
the performance of AsyncDrop-family of algorithms. We
simulate the communication and computation savings by
inserting shorter time delay, based on which we estimate the
training time and communication cost.

Simulation of heterogeneous computations. We abstract
heterogeneous computation and communication capabilities
by “forcing” different delays after each training iteration.
The delay time is inverse proportional to the intended ca-
pacity. In our experiments, we simulated 8 levels of com-
putation and communication capabilities, that are evenly
distributed between the slowest client and fastest clients.
The difference between the slowest and the fastest clients
is selected to be ∼ 5×. We make sure that, at any given
moment, clients with diverse capacity are active. Finally, all
clients with similar computation power shall have similarly
biased local data distribution.3

Problem cases. We experiment on diverse neural network
architectures and diverse types of learning tasks, includ-
ing ResNets on Computer Vision datasets (CIFAR10, CI-
FAR100, FMNIST), MLPs on FMNIST dataset, and LSTMs
on sentimental analysis (IMDB).

Baseline methods. For comparison, the baselines we con-
sider are: i) the asynchronous FedAvg is the direct adap-
tation of FedAvg with asynchronous motions; ii) the asyn-
chronous FedAvg with weighted aggregation represents

3This setting is to avoid the fastest clients with similar compu-
tation power cover all the data, which will reduce the problem into
a trivial synchronous federated learning problem.
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Figure 3: ResNet-based model. Left: CIFAR100 non-i.i.d.; Middle: CIFAR10, non-i.i.d.; Right: FMNIST, non-i.i.d.

the general approach of assigning devices different “im-
portance”, based on their capabilities [46, 5, 36]; iii) the
asynchronous FjORD is our asynchronous adaptation of
[14]; iv) the asynchronous FedProx adds an independent
proximal loss to the local training loss of each device, in or-
der to control gradient staleness and overfiting [24]; and v)
FedBuff is a semi-asynchronous method which uses buffers
for stale updates in a synchronized global scheme [30].

For all baselines and (Hetero) AsyncDrop on CIFAR10,
CIFAR100, FMNIST, we set the local iterations at l = 50
while for IMDB, l = 40. For FedBuff, we set the buffer size
to 4, which is half of the activated clients. We perform 3
trials with different random seeds. We report the maximum
test accuracy, as well as the estimated time and commu-
nication cost to reach a certain target accuracy: we select
the second lowest test accuracy among all baselines as the
target accuracy (third column in result tables).

CNN-based results. We test (Hetero) AsyncDrop on
ResNet34 and using CIFAR10, CIFAR100 and FMNIST
datasets. For the CIFAR10 and CIFAR100 datasets, we
train for 320 epochs, while for the FMNIST dataset, we
train for 160 epochs. We stop the execution when the fastest
client finishes all its epochs. As shown in Table 2, Hetero
AsyncDrop shows non-trivial improvements in final ac-
curacy, training time and communication cost, simultane-
ously. Hetero AsyncDrop shows lower accuracy com-
pared with FedBuff in the CIFAR100 case; yet, it achieves
up to 85% reduction in training time, due to the fact that
FedBuff will require faster workers to wait until the buffer is
filled to update the global model (this also justifies the up to
∼ 42.22% reduction in total communication cost). Finally,
we observe that (Hetero) AsyncDrop shows quite stable
performance; in red color we indicate the variability of re-
sults over trials. The similar training time of some baselines
to reach target accuracy is caused by epoch-wise testing,
using same epoch-wise learning rate schedule and similar
convergence rate as shown in Figure 3.

MLP-based and LSTM-based results. We adapt the
(Hetero) AsyncDrop to the MLP model by applying

the hidden neuron Dropout, which is similar to channel
dropout in CNNs (160 epochs). For the LSTM and the
IMDB sentimental analysis dataset (80 epochs), we cre-
ate non-i.i.d. datasets based on different label distribution
in each local training set. As shown in Table 1 in the Ap-
pendix, Hetero AsyncDrop achieves better performance
overall over the MLP model, in terms of accuracy, training
time and communication cost. As shown in Table 2 in the
Appendix, for the LSTM model, Hetero AsyncDrop
shows comparable accuracy with respect to other baselines,
while achieving reduction in training time and communica-
tion cost in most cases. Our conjecture for the lower gain
compared with other architectures is that LSTM-based (or
even RNN-based) architectures might be difficult to our
proposed dropout score mechanism, as the update of each
network parameter is the average of several virtual parame-
ters in the unrolled network.

7 Concluding Remarks
We present (Hetero) AsyncDrop, a novel algorithm for
asynchronous distributed neural network training in the FL
scenario. AsyncDrop operates by asynchronously creat-
ing submodels out of the global model, in order to train those
independently on heterogeneous devices. These models are
asynchronously aggregated into the global model. By only
communicating and training submodels over edge workers,
AsyncDrop reduces the communication and local train-
ing cost. We demonstrate the impact of AsyncDrop on
MLPs, ResNets and LSTMs over non-i.i.d. distributions of
CIFAR10, CIFAR100, FMNIST and IMDB datasets. Addi-
tional experiments in the appendix include ablation analysis
on how dropout ratio, local iteration length and dropout
strategy affect the final performance.

We aim to extend AsyncDrop to other network archi-
tectures, such as Transformers. Further, AsyncDrop is
fully-compatible with various gradient compression meth-
ods, which could potentially further improve the perfor-
mance. We will investigate the prospect of fully integrating
such compression methods within AsyncDrop, both dur-
ing training and communication phases in future work.
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Supplementary material: Efficient and Light-Weight Federated Learning
via Asynchronous Distributed Dropout

1 Experimental Results using AsyncDrop for the MLP and LSTM architectures

We adapt the (Hetero) AsyncDrop to the MLP and LSTM model by applying the hidden neuron Dropout, which is
similar to channel dropout in CNNs. For the LSTM and the IMDB sentimental analysis dataset, we create non-i.i.d. datasets
based on different label distribution in each local training set. For the FMNIST experiments, we train for 160 epochs,
while for the IMDB experiments, we train for 80 epochs. As shown in Table 1, Hetero AsyncDrop achieves better
performance overall over the MLP model, in terms of accuracy, training time and communication cost. As shown in Table 2,
for the LSTM model, Hetero AsyncDrop shows comparable accuracy with respect to other baselines, while achieving
reduction in training time and communication cost in most cases. Our conjecture for the lower gain compared with other
architectures is that LSTM-based (or even RNN-based) architectures might be difficult to our proposed dropout score
mechanism, as the update of each network parameter is the average of several virtual parameters in the unrolled network.

Figure 1: Left: MLP FMNIST non-i.i.d.; Right: LSTM IMDB, non-i.i.d.

Table 1: Test accuracy of asynchronous FL baselines vs. (Hetero) AsyncDrop using a MLP architecture on non-i.i.d
MNIST data over > 100 clients. We report the time and communication overhead to reach a certain target accuracy: “Time
for XX% Accuracy” denotes the second lowest test accuracy among all baselines as the target accuracy.

Max. Test Accuracy Time for 59.95% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 61.59 ± 10.02 1096.1s +33.33% +28.73%
Async. Fed-Weighted-Avg 60.14 ± 10.28 1096.1s +33.33% +28.73%

Async. FedProx 61.25 ± 9.54 1096.1s +33.33% +28.73%
Async. FjORD 36.92 ± 6.00 N/A N/A N/A

FedBuff 59.96 ± 7.64 1827.3s +166.50% +83.90%

Hetero AsyncDrop 61.90 ± 6.39 822.5s [Best] [Best]
AsyncDrop 60.85 ± 9.78 822.5s [Best] [Best]
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Table 2: Test accuracy of asynchronous FL baselines vs. (Hetero) AsyncDrop using a LSTM architecture on non-i.i.d
IMDB data over > 100 clients. We report the time and communication overhead to reach a certain target accuracy: “Time
for XX% Accuracy” denotes the second lowest test accuracy among all baselines as the target accuracy.

Max. Test Accuracy Time for 82% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 83.73 ± 0.18 1875.6s +52.38% +32.06%
Async. Fed-Weighted-Avg 83.26 ± 0.33 1640.6s +33.33% +15.56%

Async. FedProx 83.83 ± 0.20 1406.3 +14.28% -0.95%
Async. FjORD 70.68 ± 9.62 N/A N/A N/A

FedBuff 82.81 ± 0.30 1038.1s +68.71% +14.28%

Hetero AsyncDrop 82.60 ± 0.57 1230.4s [Best] -
AsyncDrop 81.70 ± 1.45 N/A N/A N/A

2 Ablation Study

Dropout Ratio for Hetero AsyncDrop. In this section we analyze how dropout ratio affects the final accuracy and
training time. As shown in Table 3, low dropout rates result in longer training time and lower final accuracy. Lower final
accuracy is mainly due to the fact that AsyncDrop with dropout work as a regularization technique that works favorably
towards better final accuracy. On the other hand, higher dropout rates cause relative reduction in training time, but significant
reduction in the final accuracy. This shows dropping too many parameters causes the training of local model unstable,
reducing the final accuracy of the global model.

Table 3: Test accuracy of Hetero AsyncDrop with different dropout rate on non-i.i.d. CIFAR100 datasets.

Dropout Ratio 0% 25% 50%

Test Accuracy 32.47 ± 1.89 37.26 ± 0.93 23.95 ± 1.07
Time for Accuracy to 23% 2105.4s 1579.1s 1531.2s

Local Iteration Length for Hetero AsyncDrop. In this section we analyze how the number of local iterations (l) affect
the final accuracy and training time. Ideally, longer local training iteration will decrease the communication frequency and,
thus, the communication and time cost. [5, 2] However, as shown in Figure 2, increasing local training iterations cause
significant decrease in final accuracy, which might be due to i) increased gradient staleness from slower clients; ii) more
severe model drifting. In future research, we will study how to improve Hetero AsyncDrop in order to be more robust
for higher l values.

Figure 2: Test Accuracy of Hetero AsyncDrop with different local iteration length on CIFAR100, non i.i.d

The effectiveness of Smart Partition in Hetero AsyncDrop. As shown in Table 4, on all datasets and all network
architectures, Hetero AsyncDrop provides improvements on the final accuracy, while decreasing the variance. This
indicates that Hetero AsyncDrop could be a more stable method that balances heterogeneous clients and data. By



interpreting current experiments, Hetero AsyncDrop gives the most gain on ResNet (or CNN model family), which
utilizes a channel dropout method.

On the other hand, in both MLP and LSTM, we dropout output hidden neurons and the network parameters accordingly.
As filter channels in ResNet are considered to be more semantically disentangled from each other, compared to hidden
neurons in fully connected layers, Hetero AsyncDrop’s score for filters in ResNet capture better which filters are more
frequently/significantly updated (and thus biased towards the faster clients). Thus, our scoring function q(·) targets which
parameters to drop in ResNet architectures. We leave to future research on how to improve our proposed mechanism on
MLP and LSTM architectures, potentially by using a more structured dropout strategy.

Table 4: Test accuracy of Hetero AsyncDrop versus AsyncDrop

Hetero AsyncDrop AsyncDrop Relative Accuracy Gain

ResNet+CIFAR10 50.67 ± 1.75 48.98 ± 3.87 +3.45%
ResNet+CIFAR100 37.26 ± 0.93 35.93 ± 1.07 +2.98%
ResNet+FMNIST 66.89 ± 5.36 60.02 ± 10.38 +11.45%
MLP+FMNIST 61.90 ± 6.39 60.85 ± 9.78 +1.72%
LSTM+IMDB 82.60 ± 0.57 81.70 ± 1.45 +1.10%

Layerwise Smart Partition for AsyncDrop on ResNet. For ResNet architectures, another commonly used dropout
strategy is that of layerwise dropout [3, 2]. We adapt Hetero AsynDrop using layerwise Smart Parition and dropout.
The main difference from original Hetero AsyncDrop algorithm is that we consider each layer as a single unit for
dropout. The Smart Partition score function calculates the total norm change of all parameters in each layer and ranks layers
accordingly. Finally, for the i-th fastest worker, we drop layers with the i-th largest q score. In experiments, we set the
dropout rate to be 25% to keep the submodel size similar to the original AsyncDrop experimebts. As shown in Figure 3,
Layerwise Hetero AsyncDrop results in a non-negligible decease in performance, with respect to the final accuracy.
This might show layer dropping causes increased variance and instability, especially in asynchronous training.

Figure 3: Test Accuracy of Layerwise Hetero AsyncDrop versus all baselines on CIFAR100 non- i.i.d.

The robustness of AsyncDrop to “full stragglers”. We perform additional experiments to demonstrate AsyncDrop is
very robust to “full stragglers”. We use >100 clients and gradually (linear w.r.t. training time) permanently make random
clients go offline until 8 clients left. Here, we evenly drop off clients to ensure the heterogeneity of device and data at
any moment of training. As shown in Table 5 and Figure 4, Hetero AsyncDrop shows non-trivial improvements in
final accuracy, training time and communication cost, simultaneously. Although Hetero AsyncDrop has slightly lower
final accuracy compared with FedBuff, it achieves up to 74.14% reduction in total training time and has significantly lower
variance.
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Figure 4: AsyncDrop on non-i.i.d CIFAR100 with random clients permanently going offline

Table 5: Test accuracy of asynchronous FL baselines vs. (Hetero) AsyncDrop using a ResNet architecture on non-i.i.d
CIFAR100 data over > 100 clients with clients randomly permenantly going offline.

CIFAR100 Max. Test Accuracy Time for 32.9% Accuracy Time Overhead Comm. Overhead

Async. FedAvg 34.52 ± 0.04 3062.5s +33.38% +15.56%
Async. Fed-Weighted-Avg 32.92 ± 1.75 3445.3s +50.00% +30.00%

Async. FedProx 34.34 ± 0.59 3062.5s +33.33% +15.56%
Async. FjORD 11.93 ± 1.15 N/A N/A N/A

FedBuff 38.52 ± 5.28 4000.1s +74.14% +24.44%

Hetero AsyncDrop 38.03 ± 0.18 2290.1s [Best] [Best]
AsyncDrop 35.33 ± 2.93 2440.4s +6.25% +6.25%

3 Detailed Mathematical Formulation of AsyncDrop

For a vector v, ∥v∥2 denotes its Euclidean (ℓ2) norm. For a matrix V, ∥V∥F denotes its Frobenius norm. We use P (·) to
denote the probability of an event, and I {·} to denote the indicator function. For two vectors v1,v2, we use the simplified
notation I {v1;v2} := I {⟨v1,v2⟩ ≥ 0}. Given that the mask in iteration t is Mt, we denote E[Mt] [·] = EM0,...,Mt

[·].

Recall that the CNN considered in this paper has the form:

f(x, θ) =
〈
a, σ

(
W1ϕ̂ (x)

)〉
.

Denote x̂ = ϕ̂ (x). Essentially, this patching operator applies to each channel, with the effect of extending each pixel to a
set of pixels around it. So we denote x̂

(j)
i ∈ Rqd̂ as the extended jth pixel across all channels in the ith sample. For each

transformed sample, we have that ∥x̂i∥F ≤ √
q ∥xi∥F . We simplify the CNN output as¨

f(x̂,W) = ⟨a, σ (W ⊗ x̂)⟩ =
m1∑
r=1

p∑
j=1

arjσ
(〈

x̂(j),wr

〉)
.

In this way, the formulation of CNN reduces to MLP despite a different form of input data x̂ and an additional dimension of
aggregation in the second layer. We consider training the neural network f on the mean squared error (MSE):

L (W) =
∥∥∥f (X̂,W

)
− y

∥∥∥2
2
=

n∑
i=1

(f (x̂i,W)− yi)
2
.



Similar to HogWild! training is fully lock free and thus cannot prevent several clients from updating the global model at
same time, in order to be closer to real-world case, in theoretical analysis, we extend AsyncDrop by allowing S ≥ 1 clients
–with same computation speed and thus same global model update schedule– to update the global model simultaneously by
averaging their updates. This can be reduced back to original AsyncDrop, by simply setting S = 1 without changing any
part of the analysis.

We assume that we can group all clients by their computation/communication power, such that, in each group, there are
exactly S ≥ 1 clients with the same power; thus, with the same global model update schedule. Each worker will be
independently assigned to different dropout masks to be applied on the global model. All updates from local clients in the
same group will be averaged.

In math, the subnetwork on client s by filter-wise partition is given by:

fm(s) (x̂,W) =

m1∑
r=1

p∑
j=1

m(s)
r arjσ

(〈
x̂(j),wr

〉)
.

Trained on the regression loss, the surrogate gradient on current network parameters is given by:

∇wrLm(s) (W) = m(s)
r

n∑
i=1

p∑
j=1

(fm(s) (x̂i,W)− yi) arjx̂
(j)
i I

{
x̂
(j)
i ;wr

}
.

We correspondingly scale the whole network function:

f (x̂,W) = ξ

m∑
r=1

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr

〉)
.

Assuming it is training on the MSE, we write out its gradient as:

∇wr
L (W) = ξ

n∑
i=1

n∑
j=1

(f (x̂i,W)− yi) arjx̂
(j)
i I

{
x̂
(j)
i ;wr

}
.

In this work, we consider the ASYNDROP with one step of local iteration training and δt ≤ E gradient delay caused by
asynchronous training, given by:

wr,t+1 = wr,t − η
N⊥

r,t−δt

Nr,t−δt

S∑
s=1

∇wr
L
m

(s)
t−δt

(Wr,t−δt) .

Here, let Nr,t = max
{∑S

s=1 m
(s)
r,t , 1

}
, and N⊥

r,t = min
{∑S

s=1 m
(s)
r,t , 1

}
. Intuitively, Nr,t denote the "normalizer" that

we will divide the sum of the gradients from all subnetworks with, and N⊥
r,t denote the indicator of whether filter r is trained

in at least one subnetwork. Let θ = P
(
N⊥

r,t = 1
)
= 1− (1− ξ)p, denoting the probability that at least one of

{
m

(s)
r,t

}S

s=1

is one. Denote u
(i)
t = f (x̂i,Wt). For further convenience of our analysis, we define

ũ
(i)
r,t =

N⊥
r,t

Nr,t

S∑
s=1

m
(s)
r,t û

(s,i)
t ; gr,t =

N⊥
r,t

Nr,t

S∑
s=1

∇wrLm
(s)
t

(Wt) .

Then the AsyncDrop training has the form

wr,t+1 = wr,t − ηgr,t−δt ; gr,t =

n∑
i=1

p∑
j=1

arj

(
ũ
(i)
r,t −N⊥

r,tyi

)
x̂
(j)
i I

{
x̂
(j)
i ;wr,t

}
.

Suppose that Assumptions 1 and 2 in main text hold. Then for all i ∈ [n] we have ∥xi∥F = q
1
2 , and for all i, i′ ∈ [n] such

that i ̸= i′, we have xi ̸= xi′ . As in previous work [1], we have ∥x̂i∥F =≤ √
q ∥xi∥F ≤ 1. Thus, for all j ∈ [p] we have∥∥∥x̂(j)

i

∥∥∥ ≤ 1. Moreover, since xi ̸= xi′ for i ̸= i′, we then have x̂i ̸= x̂i′ , which implies that x̂(j)
i ̸= x̂

(j)
i′ for all i ̸= i′ and

j ∈ [p].
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4 Proof of AsyncDrop Convergence

In this section, our goal is to prove the convergence of extended AsyncDrop. We first state the extended version here, and
proceed proving it.

Theorem 4.1 Let f(·, ·) be a one-hidden-layer CNN with the second layer weight fixed. Let ut abstractly represent the
output of the model after t iterations, over the random selection of the masks. Let E denotes the maximum gradient
delay/staleness. Let ξ denote the dropout rate (ξ = 1 dictates that all neurons are selected), and denote θ = 1− (1− ξ)S

the probability that a neuron is active in at least one subnetwork. Assume the number of hidden neurons satisfies
m = Ω

(
max{n4K2

λ4
0δ

2 max{n, d}, n
λ0
}
)

and the step size satisfies η = O
(
λ0

n2

)
. Let κ be a proper initialization scaling

factor, and it is considered constant. We use λ0 to denote the smallest eigenvalue of the Neural Tangent Kernel matrix. Let
Assumptions 1 and 2 be satisfied. Then, the following convergence rate guarantee is proved to be satisfied:

EMt

[
∥ut+1 − y∥22

]
≤
(
1− θηλ0

4

)t

∥u0 − y∥22

+O

(
θηλ3

0ξ
2κ2E2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0

+
ξ2(1− ξ)2θ2η2κ2λ0E

2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)
.

We care about the MSE computed on the scaled full network:

u
(i)
k = ξ

m∑
r=1

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t

〉)
; L (Wt) = ∥ut − y∥22 .

Performing gradient descent on this scaled full network involves computing:

∇wr
L (Wt) = ξ

n∑
i=1

p∑
j=1

(
u
(i)
t − yi

)
arjx̂

(j)
i I

{
x̂
(j)
i ;wr,t

}
.

We will prove Theorem 4.1 by induction. We assume therom 4.1 is true for all t′ < t and ∥wr,t′ −wr,0∥2 ≤ R := O
(
κλ0

n

)
.

4.1 Change of Activation Pattern

Let R be some fixed scale. For convenience, we denote:

A
(j)
ir =

{
∃w : ∥w −wr,0∥2 ≤ R; I

{
x̂
(j)
i ;w

}
̸= I

{
x̂
(j)
i ;wr,0

}}
.

Note that A(j)
ir happens if and only if

∣∣∣〈x̂(j)
i ,wr,0

〉∣∣∣ < R. Therefore P
(
A

(j)
ir

)
< 2R

κ
√
2π

. Denote:

Pij =
{
r ∈ [m] : ¬A(j)

ir

}
; P⊥

ij = [m] \ Pij .

The next lemma shows the magnitude of P⊥
ij is upper bounded by a controlled quantity.

Lemma 4.1 Let m = Ω
(
R−1 log np

δ

)
. Then with probability at least 1−O(δ) it holds for all i ∈ [n] and j ∈ [p] that∣∣P⊥

ij

∣∣ ≤ 3mκ−1R.

Proof: The magnitude of P⊥
ij satisfies:

∣∣P⊥
ij

∣∣ = m∑
r=1

I
{
A

(j)
ir

}
.



The indicator function I
{
A

(j)
ir

}
has bounded first and second moment:

EW

[
I
{
A

(j)
ir

}]
= P

(
A

(j)
ir

)
≤ 2R

κ
√
2π

,

EW

[(
I
{
A

(j)
ir − EW

[
I
{
A

(j)
ir

}]})2]
≤ EW

[
I
{
A

(j)
ir

}2
]
≤ 2R

κ
√
2π

.

This allows us to apply the Berstein Inequality to get that:

P

(
m∑
r=1

I
{
A

(j)
ir

}
>

2mR

κ
√
2π

+mt

)
< exp

(
− mκt2

√
2π

8
(
1 + t

3

)
R

)
.

Therefore, with probability at least 1− np exp
(
−mκ−1R

)
it holds for all i ∈ [n] and j ∈ [p] that:

∣∣P⊥
ij

∣∣ = m∑
r=1

I
{
A

(j)
ir

}
≤ 3mκ−1R.

Letting m = Ω
(
R−1 log np

δ

)
gives that the success probability is at least 1−O(δ).

4.2 Initialization Scale

Let w0,r ∼ N
(
0, κ2I

)
and aj ∼

{
− 1

p
√
m
, 1
p
√
m

}
for all r ∈ [m] and j ∈ [p]. The following lemmas hold true:

Lemma 4.2 Suppose κ ≤ 1, R ≤ κ
√

d
32 . With probability at least 1− emd/32 we have that:

∥W0∥F ≤ κ
√
2md−

√
mR.

Lemma 4.3 Assume κ ≤ 1 and R ≤ κ√
2

. With probability at least 1 − ne−
m
32 over initialization, it holds for all i ∈ [n]

that:
m∑
r=1

⟨w0,r,xi⟩2 ≤ 2mκ2 −mR2

n∑
i=1

m∑
r=1

⟨w0,r,xi⟩2 ≤ 2mnκ2 −mnR2.

Moreover, we can bound the initial MSE, based on the lemma below:

Lemma 4.4 Assume that for all i ∈ [n], yi satisfies |yi| ≤ C for some C > 0. Then, we have

EW0,â

[
∥y − u0∥22

]
≤
(
p−1 + C2

)
n.

Proof: It is obvious that EW0,â

[
u
(i)
0

]
= 0 for all i ∈ [n]. Moreover:

EW0,â

[
u
(i)2
0

]
=

m∑
r,r′=1

p∑
j,j′=1

Eâ [arjar′j′ ]EW0

[
σ
(〈

x̂
(j)
i ,w0,r

〉)
σ
(〈

x̂
(j′)
i ,w0,r

〉)]
=

1

p2m

m∑
r=1

p∑
j=1

EW0

[
σ
(〈

x̂
(j)
i ,w0,r

〉)2]

≤ 1

p2m

m∑
r=1

p∑
j=1

EW0

[〈
x̂
(j)
i ,w0,r

〉]
≤ p−1

Therefore:

EW0,â

[
∥u0 − y∥22

]
=

n∑
i=1

EW0,â

[(
u
(i)
0 − yi

)2
2

]
=

n∑
i=1

(
EW0,â

[
u
(i)2
0

]
+ y2i

)
≤
(
p−1 + C2

)
n
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4.3 Kernel Analysis

The neural tangent kernel is defined to be the inner product of the gradient with respect to the neural network output. We let
the finite-width NTK be defined as:

H(t)ii′ =

m∑
r=1

p∑
j,j′=1

arjarj′
〈
x̂
(j)
i , x̂

(j′)
i′

〉
I
{
x̂
(j)
i ;wr,t

}
I
{
x̂
(j′)
i′ ;wr,t

}
.

Moreover, let the infinite width NTK be defined as

H∞
ii′ =

1

p2

p∑
j=1

〈
x̂
(j)
i , x̂

(j)
i′

〉
Ew∼N (0,I)

[
I
{
x̂
(j)
i ;w

}
I
{
x̂
(j)
i′ ;w

}]
.

Let λ0 = λmin (H
∞). Note that since x̂i ̸∥ x̂i′ for i ̸= i′. Thus x̂(j)

i ̸∥ x̂
(j)
i′ for i ̸= i′. () shows that the matrix Ĥ(j) , as

defined below, is positive definite for all j ∈ [p]:

Ĥ(j)∞ii′ =
〈
x̂
(j)
i , x̂

(j)
i′

〉
Ew∼N (0,I)

[
I
{
x̂
(j)
i ;w

}
I
{
x̂
(j)
i′ ;w

}]
.

Since H∞ = p−2
∑p

j=1 Ĥ(j)∞, we have that H∞ is positive definite and thus λ0 > 0. The following lemma shows that
the NTK remains positive definite throughout training.

Lemma 4.5 Let m = Ω
(
λ−2
0 n2 log n

δ

)
. If for all r ∈ [m] and all t we have ∥wr,t −wr,0∥2 ≤ R := O

(
κλ0

n

)
. Then with

probability at least 1− δ we have that for all t:

λmin (H(t)) ≥ λ0

2
.

Proof: To start, we notice that for all r ∈ [m]:

EW0,a

 p∑
j,j′=1

arjarj′I
{
x̂
(j)
i ;wr,0

}
I
{
x̂
(j′)
i′ ;wr,0

}
=

1

p2m
Ew∼N (0,I)

[
I
{
x̂
(j)
i ;w

}
I
{
x̂
(j)
i′ ;w

}]
Moreover, we have that: ∣∣∣∣∣∣

p∑
j,j′=1

arjarj′
〈
x̂
(j)
i , x̂

(j′)
i′

〉
I
{
x̂
(j)
i ;wr,0

}
I
{
x̂
(j′)
i′ ;wr,0

}∣∣∣∣∣∣ ≤ 1.

Thus, we can apply Hoeffding’s inequality with bounded random variable to get that

P
(∣∣H(0)i,i′ −H∞

i,i′

∣∣ ≥ t
)
≤ 2 exp

(
−mt2

)
.

Therefore, with probability at least 1−O(δ) it holds that for all i, i′ ∈ [n]:∣∣H(0)i,i′ −H∞
i,i′

∣∣ ≤ log n
δ√

m
,

which implies that:

∥H(0)−H∞∥ ≤ ∥H(0)−H∞∥F ≤
n
(
log δ−1 + log n

)
√
m

.

As long as m = Ω
(
λ−2
0 n2 log n

δ

)
, we will have:

∥H(t)−H∞∥ ≤ λ0

4
.



Now, we move on to bound ∥H(t)−H(0)∥. We have that:

H(t)i,i′ −H(0)i,i′ =

m∑
r=1

p∑
j,j′=1

arjarj′
〈
x̂
(j)
i , x̂

(j′)
i′

〉
z
(j,j′)
r,i,i′ ,

with

z
(j,j′)
r,i,i′ = I

{
x̂
(j)
i ;wr,t

}
I
{
x̂
(j′)
i′ ;wr,t

}
− I
{
x̂
(j)
i ;wr,0

}
I
{
x̂
(j′)
i′ ;wr,0

}
.

We observe that |z(j,j
′)

r,i,i′ | only if A(j)
ir ∨A

(j′)
i′r . Therefore:

EW

[
z
(j,j′)
r,i,i′

]
≤ P

(
A

(j)
ir

)
+ P

(
A

(j′)
i′r

)
≤ 4R

κ
√
2π

.

For the case j = j′, we first notice that

EW

[(
z
(j,j′)
r,i,i′ − EW

[
z
(j,j′)
r,i,i′

])2]
≤ EW

[
z
(j,j′)2
r,i,i′

]
≤ 4R

κ
√
2π

.

Thus, applying Berstein Inequality to the case j = j′ we have that:

P

(
m∑
r=1

z
(j,j)
r,i,i′ ≥ m

(
EW

[
z
(j,j′)
r,i,i′

]
+ t
))

≤ exp

(
− κmt2

√
2π

8
(
1 + t

3

)
R

)
.

For the case j ̸= j′, we notice that:

EW,a

[
arjarj′z

(j,j′)
r,i,i′

]
= 0.

Moreover: ∣∣∣arjarj′z(j,j′)r,i,i′

∣∣∣ ≤ 4R

p2mκ
√
2π

,

EW,a

[(
arjarj′z

(j,j′)
r,i,i′

)2]
=

1

p4m2
EW

[
z
(j,j′)2
r,i,i′

]
≤ 4R

p4m2κ
√
2π

.

Applying the Berstein Inequality to the case j ̸= j′, we have that:

P

(
m∑
r=1

arjarj′z
(j,j′)
r,i,i′ ≥ t

p2

)
≤ exp

(
− mκt2

√
2π

8
(
1 + t

3

)
R

)
.

Combining both cases, we have that with probability at least 1− p2 exp

(
−mκt2

√
2π

8(1+ t
3 )R

)
, it holds that:

|H(t)i,i′ −H(0)i,i′ | ≤ p−1EW

[
z
(j,j′)
r,i,i′

]
+ t ≤ 2R

pκ
+ t2.

Choose t = κ−1R. Then as long as m =
log np

δ

R , it holds that with probability at least 1−O(δ):

|H(t)i,i′ −H(0)i,i′ | ≤ 3κ−1R.

This implies that:

∥H(t)−H(0)∥2 ≤ ∥H(t)−H(0)∥F ≤ 3nκ−1R.

Thus, ∥H(t)−H(0)∥2 ≤ λ0

4 as long as R = O
(
κλ0

n

)
. This shows that λmin (H(t)) ≥ λ0

2 for all t with probability at least
1−O(δ).
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4.4 Surrogate Gradient Bound

As we see in previous section, the AsyncDrop scheme can be written as

wr,t+1 = wr,t − ηgr,t−δt ; gr,t =

n∑
i=1

p∑
j=1

arj

(
ũ
(i)
r,t −N⊥

r,tyi

)
x̂
(j)
i I

{
x̂
(j)
i ;wr,t

}

with ũ
(i)
r,t defined as

ũ
(i)
r,t =

N⊥
r,t

Nr,t

S∑
s=1

m
(s)
r,t û

(s,i)
t =

m∑
r′=1

p∑
j=1

(
N⊥

r,t

Nr,t

S∑
s=1

m
(s)
r,tm

(s)
r′,t

)
︸ ︷︷ ︸

νr,r′,t

arjσ
(〈

x̂
(j)
i ,wr,t

〉)

The mixing of the surrogate function ũ
(i)
r,t can be bounded by

EMt

[
ũ
(i)
r,t

]
=

S∑
s=1

m∑
r′=1

p∑
j=1

EMt

[
m

(s)
r,tm

(s)
r,t′ ·

N⊥
r,t

Nr,t

]
ar′jσ

(〈
x̂(j),wr,t′

〉)
= ξθ

m∑
r′=1

p∑
j=1

arjσ
(〈

x̂(j),wr,t

〉)
+ (1− ξ)θ

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t

〉)
= θu

(i)
t + (1− ξ)θ

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t

〉)
︸ ︷︷ ︸

ϵ̂
(i)
r,t

Therefore,

EMt [gr,t] =

n∑
i=1

n∑
j=1

arjEMt

[
ũ
(i)
t −N⊥

r,tyi

]
x̂
(j)
i I

{
x̂
(j)
i ;wr,t

}
= ξ−1θ∇wr

L (Wt) + (1− ξ)θ

n∑
i=1

p∑
j′=1

arj′ ϵ̂
(i)
r,tx̂

(j)
i I

{
x̂
(j)
i ;wr,t

}
︸ ︷︷ ︸

ϵr,t

Now, we have ∣∣∣ϵ̂(i)r,t

∣∣∣ ≤ 1√
m

∥wr,t∥2 ; ∥ϵr,t∥2 ≤ n√
m

∣∣∣ϵ̂(i)r,t

∣∣∣ ≤ n

m
∥wr,t∥2

Moreover, we would like to investigate the norm and norm squared of the gradient. In particular, we first notice that, under
the case of N⊥

t,r = 1, we have

gr,t = ξ−1∇wrL (Wt) +

n∑
i=1

p∑
j=1

arj

(
ũ
(i)
r,t − u

(i)
t

)
x̂
(j)
i I

{
x̂
(j)
i ;wr,t

}

Thus, we are interested in ∥ũr,t − ut∥2. Following from previous work [4] (lemma 19, 20, and 21), we have that

EMt

[
νr,r′,t | N⊥

r,t = 1
]{ξ if r ̸= r′

1 if r = r′
Var
(
νr,r′,t | N⊥

r,t = 1
)
=

{
θ−ξ2

S if r ̸= r′

0 if r = r′



Therefore

EMt

[
∥ũr,t − ut∥22 | N⊥

r,t = 1
]

=

n∑
i=1

EMt


 m∑

r′=1

p∑
j=1

(νr,r′,t − ξ) arjσ
(〈

x̂
(j)
i ,wr′,t

〉)2

| N⊥
r,t = 1


=

n∑
i=1

m∑
r′=1

EMt

[
(νr,r′,t − ξ)

2 | N⊥
r,t = 1

] p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr′,t

〉)2

≤ 1

mp

n∑
i=1

m∑
r′=1

EMt

[
(νr,r′,t − ξ)

2 | N⊥
r,t = 1

] p∑
j=1

σ
(〈

x̂
(j)
i ,wr′,t

〉)2
≤ 1

mp

n∑
i=1

∑
r′ ̸=r

Var
(
νr,r′,t | N⊥

r,t = 1
) p∑
j=1

σ
(〈

x̂
(j)
i ,wr′,t

〉)2
+

1

mp

n∑
i=1

EMt

[
(νr,r,t − ξ)

2 | N⊥
r,t = 1

] p∑
j=1

σ
(〈

x̂
(j)
i ,wr′,t

〉)2
≤ 1

mpS
(θ − ξ)

∑
r′ ̸=r

n∑
i=1

p∑
j=1

〈
x̂
(j)
i ,wr′,t

〉2
+

1

mp
(θ − ξ2)

n∑
i=1

p∑
j=1

〈
x̂
(j)
i ,wr,t

〉2
With high probabilty it holds that

m∑
r=1

n∑
i=1

p∑
j=1

〈
x̂
(j)
i ,wr,0

〉2
≤ 2mnpκ2 −mnpR2

Thus, with sufficiently large m, the second term is always smaller than the first term, and we have

EMt

[
∥ũr,t − ut∥22 | N⊥

r,t = 1
]
≤ 8nκ2(θ − ξ2)S−1

Now, we can compute that

EMt

[
∥gr,t∥2 | N⊥

r,t = 1
]
= EMt

∥∥∥∥∥∥
n∑

i=1

p∑
j=1

arj

(
ũ
(i)
r,t − u

(i)
t

)
x̂
(j)
i I

{
x̂
(j)
i ;wr,t

}∥∥∥∥∥∥ | Nr,t = 1

+

ξ−1θ ∥∇wrL (Wt)∥2

=

√
n

m
EMt

[
∥ũr,t − ut∥2 | Nr,t = 1

]
+ θ

√
n

m
∥ut − y∥2

≤ nκ

√
θ − ξ2

mS
+ θ

√
n

m
∥ut − y∥2

And we know that gr,t = 0 when N⊥
r,t = 0. Therefore,

EMt

[
∥gr,t∥2

]
≤ θnκ

√
θ − ξ2

mS
+ θ2

√
n

m
∥ut − y∥2

Similarly

EMt

[
∥gr,t∥22 | N⊥

r,t = 1
]
=

2n

m
EMt

[
∥ũr,t − ut∥22 | Nr,t = 1

]
+

2θ2n

m
∥ut − y∥22

≤
16n2κ2

(
θ − ξ2

)
mS

+
2θ2n

m
∥ut − y∥22

and thus

EMt

[
∥gr,t∥22

]
≤

16θn2κ2
(
θ − ξ2

)
mS

+
2θ3n

m
∥ut − y∥22



Manuscript under review by AISTATS 2023

4.5 Step-wise Convergence

Consider

EMt

[
∥ut+1 − y∥22

]
= ∥ut − y∥22 − 2 ⟨ut − ut+1,ut − y⟩+ ∥ut − ut+1∥22
= ∥ut − y∥22 − 2 ⟨I1,t + I2,t,ut − y⟩+ ∥ut − ut+1∥22
≤ ∥ut − y∥22 − 2 ⟨I1,t,ut − y⟩+ 2 ∥I2,t∥2 ∥ut − y∥2 + ∥ut − ut+1∥22

Let Pij =
{
r ∈ [m] : ¬A(j)

ir

}
. Here I1,t and I2,t are characterized as in previous work.

I
(i)
1,t =

p∑
j=1

∑
r∈Pij

arj

(
σ
(〈

x̂
(j)
i ,wr,t

〉)
− σ

(〈
x̂
(j)
i ,wr,t+1

〉))

I
(i)
2,t =

p∑
j=1

∑
r∈P⊥

ij

arj

(
σ
(〈

x̂
(j)
i ,wr,t

〉)
− σ

(〈
x̂
(j)
i ,wr,t+1

〉))

We first bound the magnitude of I2,t

∣∣∣I(i)2,t

∣∣∣ = 1

p
√
m

p∑
j=1

∑
r∈P⊥

ij

∣∣∣(σ (〈x̂(j)
i ,wr,t

〉)
− σ

(〈
x̂
(j)
i ,wr,t+1

〉))∣∣∣
≤ 1

p
√
m

p∑
j=1

∑
r∈Pij

∥wr,t −wr,t+1∥2

≤ η

p
√
m

p∑
j=1

∑
r∈Pij

∥gr,t−δt∥2

≤ η√
m

· 3mκ−1R ·

(
nκ

√
θ − ξ2

mS
+ θ

√
n

m
∥ut−δt − y∥2

)

= 3κ−1θη
√
nR ∥ut−δt − y∥2 + 3ηnR

√
θ − ξ2

S

Thus

EMt

[
∥I2,t∥2

]
≤ EMt

[√
nmax

i∈[n]

∣∣∣I(i)2,t

∣∣∣]
≤ η

p

√
n

m
max
i∈[n]

p∑
j=1

∑
r∈Pij

EMt

[
∥gr,t−δt∥2

]
≤ η

√
n

m
· 3mκ−1R ·

(
nκθ

√
θ − ξ2

mS
+ θ2

√
n

m
∥ut−δt − y∥2

)

= 3κ−1θ2ηnR ∥ut−δt − y∥2 + 3θηn
3
2R

√
θ − ξ2

S

Therefore, given assumption ∥ut−δt − y∥2 ≥ ∥ut − y∥2

EMt

[
∥I2,t∥2 ∥ut − y∥2

]
≤ 6θηnκ−1R ∥ut−δt − y∥22 + 3S−1θ

(
θ − ξ2

)
ηn2κR

Letting R = O
(
κλ0

n

)
gives that

EMt

[
∥I2,t∥2 ∥ut − y∥2

]
= O (θηλ0) ∥ut−δt − y∥22 +O

(
θηλ0(θ − ξ2)S−1nκ2

)



As in previous work, I(i)1,t can be written as

EMt

[
I
(i)
1,t

]
= ξ

p∑
j=1

∑
r∈Pij

arjEMt

[
σ
(〈

x̂
(j)
i ,wr,t

〉)
− σ

(〈
x̂
(j)
i ,wr,t+1

〉)]

= ξ

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,EMt

[wr,t −wr,t+1]
〉
I
{
x̂
(j)
i ;wr,t

}

= ξη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,EMt [gr,t−δt ]

〉
I
{
x̂
(j)
i ;wr,t

}

= ξη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,EMt

[gr,t−δt − gr,t + gr,t]
〉
I
{
x̂
(j)
i ;wr,t

}

= ξη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,EMt

[gr,t]
〉
I
{
x̂
(j)
i ;wr,t

}
+

ξη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,EMt [gr,t−δt − gr,t]

〉
I
{
x̂
(j)
i ;wr,t

}

= ηθ

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,∇wr

L (Wt)
〉
I
{
x̂
(j)
i ;wr,t

}

+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}

+ ηθ

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,∇wrL (Wt−δt)−∇wrL (Wt)

〉
I
{
x̂
(j)
i ;wr,t

}

+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t−δt − ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}
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= ηθξ

n∑
i′=1

p∑
j,j′=1

∑
r∈Pij

(
u
(i′)
t − yi′

)
arjarj′

〈
x̂
(j)
i , x̂

(j′)
i′

〉
I
{
x̂
(j)
i ;wr,t

}
· I
{
x̂
(j′)
i′ ;wr,t

}

+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}

+ ηθ

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,∇wr

L (Wt−δt)−∇wr
L (Wt)

〉
I
{
x̂
(j)
i ;wr,t

}

+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t−δt − ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}
= ηθ

n∑
i′=1

(
H(t)ii′ −H(t)⊥ii′

) (
u
(i′)
t − yi′

)
+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}
︸ ︷︷ ︸

γ1,i,t

+ ηθ

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i ,∇wr

L (Wt−δt)−∇wr
L (Wt)

〉
I
{
x̂
(j)
i ;wr,t

}
︸ ︷︷ ︸

γ2,i,t

+ ξ(1− ξ)θη

p∑
j=1

∑
r∈Pij

arj

〈
x̂
(j)
i , ϵr,t−δt − ϵr,t

〉
I
{
x̂
(j)
i ;wr,t

}
︸ ︷︷ ︸

γ3,i,t

Note that: |γ1,i,t| ≤ ξ(1− ξ)θηm− 1
2

m∑
r=1

∥ϵr,t∥

≤ ξ(1− ξ)θηnm−1 ∥Wt∥F

≤ O

(
ξ(1− ξ)θηnκ

√
d

m

)
Given that:

∥∥∥(u(i)
t−δt

− u
(i)
t

)∥∥∥
2
=

∥∥∥∥∥∥ξ
m∑
r=1

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t−δt

〉)
− ξ

m∑
r=1

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t

〉)∥∥∥∥∥∥
2

≤ ξ

m∑
r=1

p∑
j=1

∥∥∥arjx̂(j)
i

∥∥∥
2
∥wr,t−δt −wr,t∥2 ≤ ξ

1√
m
RE

We show:

∥∇wrL (Wt−δt)−∇wrL (Wt) ∥2

=

∥∥∥∥∥∥ξ
n∑

i=1

p∑
j=1

(
u
(i)
t−δt

− yi

)
arjx̂

(j)
i I

{
x̂
(j)
i ;wr,t−δt

}
− ξ

n∑
i=1

p∑
j=1

(
u
(i)
t − yi

)
arjx̂

(j)
i I

{
x̂
(j)
i ;wr,t

}∥∥∥∥∥∥
2

≤ ξ

n∑
i=1

p∑
j=1

∥∥∥arjx̂(j)
i

∥∥∥
2

∥∥∥(u(i)
t−δt

− yi

)
I
{
x̂
(j)
i ;wr,t−δt

}
−
(
u
(i)
t − yi

)
I
{
x̂
(j)
i ;wr,t

}∥∥∥
2

≤ ξ

n∑
i=1

p∑
j=1

∥∥∥arjx̂(j)
i

∥∥∥
2

(∥∥∥(u(i)
t−δt

− u
(i)
t

)∥∥∥
2
+
∥∥∥(u(i)

t − yi

)∥∥∥
2

)
≤ ξ2

n

m
RE + ξ

√
n

m
∥ut − y∥2



Thus,

∥γ2,i,t∥2 ≤ 2ηθnm−2ξ2RE + ηθξn
1
2m− 3

2 ∥ut − y∥2

Given that: ∥∥∥ϵ̂(i)r,t−δt
− ϵ̂

(i)
r,t

∥∥∥
2
=

∥∥∥∥∥∥
p∑

j=1

arjσ
(〈

x̂
(j)
i ,wr,t−δt

〉)
−

p∑
j=1

arjσ
(〈

x̂
(j)
i ,wr,t

〉)∥∥∥∥∥∥
2

≤
p∑

j=1

∥∥∥arjx̂(j)
i

∥∥∥
2
(∥wr,t−δt −wr,t∥2 + ∥wr,t∥2)

≤ κ

√
2d

m
+

1√
m
RE

We show:∥∥∥ϵ(i)r,t−δt
− ϵ

(i)
r,t

∥∥∥
2
=

∥∥∥∥∥∥
n∑

i=1

p∑
j′=1

arj′ ϵ̂
(i)
r,t−δt

x̂
(j)
i I

{
x̂
(j)
i ;wr,t−δt

}
−

n∑
i=1

p∑
j′=1

arj′ ϵ̂
(i)
r,tx̂

(j)
i I

{
x̂
(j)
i ;wr,t

}∥∥∥∥∥∥
2

≤
n∑

i=1

p∑
j′=1

∥∥∥arj′ x̂(j)
i

∥∥∥
2

(∥∥∥(ϵ̂(i)r,t−δt
− ϵ̂

(i)
r,t

)∥∥∥
2
+
∥∥∥(ϵ̂(i)r,t

)∥∥∥
2

)

≤ n√
m

(
κ

√
2d

m
+

1√
m
RE +

1√
m
κ
√
2dm

)

Thus,

∥γ3,i,t∥2 ≤
√
2ξ(1− ξ)θηnm− 3

2κ
√
d+ 2ξ(1− ξ)θηnm− 3

2RE +
√
2ξ(1− ξ)θηnm−1κ

√
d)

This implies that:

EMt
[⟨I1,t,ut − y⟩] = ηθ

n∑
i,i′=1

(
u
(i)
t − yi

) (
H(t)ii′ −H(t)⊥ii′

) (
u
(i′)
t − yi′

)
+

n∑
i=1

γ1,i,t

(
u
(i)
t − yi

)
+

n∑
i=1

γ2,i,t

(
u
(i)
t − yi

)
+

n∑
i=1

γ3,i,t

(
u
(i)
t − yi

)
= ηθ

〈
ut − y,

(
H(t)−H(t)⊥

)
(ut − y)

〉
+

n∑
i=1

γ1,i,t

(
u
(i)
t − yi

)
+

n∑
i=1

γ2,i,t

(
u
(i)
t − yi

)
+

n∑
i=1

γ3,i,t

(
u
(i)
t − yi

)
≥ ηθ

(
λmin (H(t))− λmax

(
H(t)⊥

))
∥ut − y∥22

−
n∑

i=1

|γ1,i,t| ·
∣∣∣u(i)

t − yi

∣∣∣− n∑
i=1

|γ2,i,t| ·
∣∣∣u(i)

t − yi

∣∣∣− n∑
i=1

|γ3,i,t| ·
∣∣∣u(i)

t − yi

∣∣∣
≥ ηθ

(
λmin (H(t))− λmax

(
H(t)⊥

))
∥ut − y∥22

−
√
nmax

i
|γi,t| ∥ut − y∥2

2ηθ − n
3
2m−2ξ2RE ∥ut − y∥2 − ηθξnm− 3

2 ∥ut − y∥22
−
√
2ξ(1− ξ)θηnm− 3

2κ
√
d ∥ut − y∥2 − 2ξ(1− ξ)θηnm− 3

2RE ∥ut − y∥2√
2− ξ(1− ξ)θηnm−1κ

√
d ∥ut − y∥2

≥ ηθ
(
λmin (H(t))− λmax

(
H(t)⊥

)
−O (λ0)− nm− 3

2

)
∥ut − y∥22

−O

(
ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2n3ξ4R2
E

m4λ0
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+
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ξ2(1− ξ)2θ2η2n2R2
E

m3λ0
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)

For H(t)⊥ we have that

λmax

(
H(t)⊥

)2 ≤
∥∥H(t)⊥

∥∥2
F

≤
n∑

i,i′=1

 p∑
j,j′=1

∑
r∈Pij

arjarj′
〈
x̂
(j)
i , x̂

(j,j′)
i,i′

〉
I
{
x̂
(j)
i ;wr,t

}
I
{
x̂
(j,j′)
i,i′ ;wr,t

}2

≤ n2

m2

(
max
ij

|Pij |
)2

≤ n2κ−2R2

Choosing R = O
(
κλ0

n

)
gives

λmax

(
H(t)⊥

)
≤ O (λ0)

We require m ≥ Ω
(

n
λ0

)
, such that

nm− 3
2 ≤ O (λ0)

Thus, Plugging in λmin (H(t)) ≥ λ0

2 , we have

EMt
[⟨I1,t,ut − y⟩] ≥ ηθλ0

(
1

2
−O (1)

)
∥ut − y∥22

−O

(
ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)
.

Lastly, we analyze the last term in the quadratic expansion

EMt

[
∥ut − ut+1∥22

]
=

n∑
i=1

EMt

[(
u
(i)
t − u

(i)
t+1

)2]

≤ p−1
n∑

i=1

p∑
j=1

m∑
r=1

EMt

[(
σ
(〈

x̂
(j)
i ,wr,t

〉)
− σ

(〈
x̂
(j)
i ,wr,t+1

〉))2]

≤ p−1η2
n∑

i=1

p∑
j=1

m∑
r=1

EMt

[
∥gr,t−δt∥

2
2

]
≤ O

(
θ3η2n2

)
∥ut−δt − y∥22 +O

(
θη2n2κ2

(
θ − ξ2

)
S−1

)
Letting η = O

(
λ0

n2

)
gives

EMt

[
∥ut − ut+1∥22

]
≤ O (θηλ0) ∥ut−δt − y∥22 +O

(
θηλ0κ

2
(
θ − ξ2

)
S−1

)
Putting all three terms together and as ∥ut−δt − y∥22 ≤ ∥ut−E − y∥22, we have that



EMt

[
∥ut+1 − y∥22

]
≤ ∥ut − y∥22 − ηθλ0 (1−O (1)) ∥ut − y∥22 +O (θηλ0) ∥ut−E − y∥22

+O

(
ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)
≤ ∥ut − y∥22 − ηθλ0 (1−O (1)) ∥ut − y∥22 +O (θηλ0) (2 ∥ut−E − ut∥22 + 2 ∥ut − y∥22)

+O

(
ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)
≤ ∥ut − y∥22 − ηθλ0 (1−O (1)) ∥ut − y∥22 +O (θηλ0) (8ξ

2R2
E + 2 ∥ut − y∥22)

+O

(
ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)

Letting O (θηλ0) =
1
4θηλ0,

EMt

[
∥ut+1 − y∥22

]
≤
(
1− θηλ0

4

)
∥ut − y∥22 +

O

(
θηλ3

0ξ
2κ2E2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)

Thus,

EMt

[
∥ut+1 − y∥22

]
≤
(
1− θηλ0

4

)t

∥u0 − y∥22

+O

(
θηλ3

0ξ
2κ2E2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4E2

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0E
2

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0
+

nκ2
(
θ − ξ2

)
S

)
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4.6 Bounding Weight Perturbation

Next we show that ∥wr,t −wr,0∥2 ≤ R under sufficient over-parameterization. To start, we notice that

E[Mt−1][∥wr,t −wr,0∥2] ≤
t−1∑
t′=0

E[Mt′ ]

[
∥wr,t′+1 −wr,t′∥2

]
≤ η

t−1∑
t′=0

E[Mt′ ]

[∥∥gr,t′−δt′

∥∥
2

]
≤ η

t−1∑
t′=0

(
θ2
√

n

m
E[Mt′−1]

[∥∥ut′−δt′ − y
∥∥
2

]
+ θnκ

√
θ − ξ2

mS

)

≤ ηθ2
√

n

m

t−1∑
t′=0

E[Mt′−1]

[∥∥ut′−δt′ − y
∥∥
2

]
+ ηtθnκ

√
θ − ξ2

mS

≤ ηθ

√
n

m
∥u0 − y∥2

t−1∑
t′=0

(
1− ηθλ0

4

)t′

+ ηTθnκ

√
θ − ξ2

mS

+ ηθT ·O
(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)

≤ ηθ

√
n

m

1−
(
1− ηθλ0

4

)t
ηθλ0

4

∥u0 − y∥2

+ ηθT ·O
(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)

≤ ηθ

√
n

m

1−
(
1− ηθλ0t

4

)
ηθλ0

4

∥u0 − y∥2

+ ηθT ·O
(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)
≤ O

(
ηθλ0t

√
n

m

)
∥u0 − y∥2

+ ηθT ·O
(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0
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ξ2(1− ξ)2θ2η2n2κ2d
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)

where the last inequality follows from the geometric sum and β ≤ O
(
p−1
)
. Using the initialization scale, we have that

EW,a,[Mt]

[
∥wr,t −wr,0∥2

]
≤ O

(
ηθλ0tnm

− 1
2

)
+ ηθT ·O

(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)



With probability 1− δ, it holds for all t ∈ [T ] that

∥wr,t −wr,0∥2 ≤ O

(
tλ2

0K

δn
√
m

)
+ ηθT ·O

(
θηλ3

0ξ
2κ2

n2
+

ξ2(1− ξ)2θηn3κ2d

mλ0
+

η2θ2nκ2λ0ξ
4

m4
+

ξ2(1− ξ)2θ2η2n2κ2d

m3λ0
+

ξ2(1− ξ)2θ2η2κ2λ0

m3
+

ξ2(1− ξ)2θ2η2n2κ2d

m2λ0

)

To enforce ∥wr,t −wr,0∥2 ≤ R := O
(
κλ0

n

)
, we then require

m = Ω

(
n3K2

λ4
0δ

2κ2
max{n, d}

)

More specific,

∥wr,t −wr,0∥2 ≤ Rt := O

(
tκλ0

n

)
∥wr,t −wr,t−E∥2 ≤ RE := O

(
Eκλ0

n

)
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