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Abstract

Data-to-text (D2T) and text-to-data (T2D) are
dual tasks that convert structured data, such as
graphs or tables into fluent text, and vice versa.
These tasks are usually handled separately and
use corpora extracted from a single source. Cur-
rent systems leverage pre-trained language mod-
els fine-tuned on D2T or T2D tasks. This ap-
proach has two main limitations: first, a sepa-
rate system has to be tuned for each task and
source; second, learning is limited by the scarcity
of available corpora. This paper considers a more
general scenario where data are available from
multiple heterogeneous sources. Each source,
with its specific data format and semantic do-
main, provides a non-parallel corpus of text and
structured data. We introduce a variational auto-
encoder model with disentangled style and con-
tent variables that allows us to represent the di-
versity that stems from multiple sources of text
and data. Our model is designed to handle the
tasks of D2T and T2D jointly. We evaluate
our model on several datasets, and show that by
learning from multiple sources, our model closes
the performance gap with its supervised single-
source counterpart and outperforms it in some
cases. 1

1 INTRODUCTION

Data-to-text (D2T) (Kukich, 1983; McKeown, 1985) is the
task of converting structured data into fluent text. This
generic task is involved in several applications: generating

1The code is available at github.com/sngdng/
MSUnsupVAE.
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Figure 1: The same content can be represented by different
structures and by different texts. We show here an example
from the E2E dataset (Dušek et al., 2019). On the left side,
from top to bottom: knowledge graph, data record, mean-
ing representation, and table.

summaries from patient records (Scott et al., 2013) or from
tables such as summaries of sports games (Wiseman et al.,
2017), generating product descriptions from databases in
e-commerce (Wang et al., 2017), and so on. What makes
this task different from conventional text generation is that
structured data comes in many forms, e.g. web tables,
databases, knowledge graphs, and so D2T systems have
to handle these heterogeneous formats. Text vocabulary
can also vary greatly from one domain to another, and sys-
tems need to adapt to this diversity as well (see Fig. 1).
In addition, both modalities, text and data, are often noisy
and incomplete, and in most practical situations there is
no aligned corpus available, or at best small hand-crafted
corpora. As a concrete example, consider the generation
of product descriptions on an e-commerce website. Items
can be described either as structured tables extracted from
databases or as text. The former provides details of the
characteristics of the items, while the latter summarises this
information for the user. Information can be obtained from
different providers and in different formats, also known as
different sources (Ng et al., 2000). Even from the same
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vendor, descriptions can vary widely depending on the
product category (e.g. high-tech products and clothing).
They may be quite noisy, such as unstructured sentences
or series of keywords instead of a plain description, and in
many cases only the text or data is available. In this case,
the supervised formulation falls short, as we need to be able
to use non-parallel data.

Text-to-data (T2D) is the dual task that aims at extracting
relevant information from text and identifying their rela-
tions in order to generate structured data in a pre-defined
format. Current T2D approaches are mainly limited to the
conversion from text to graphs (Ye et al., 2021; Agarwal
et al., 2020; Paolini et al., 2021). Until now, both tasks
have been handled separately through different methods.

Recent advancements in LLMs have enabled encoding var-
ious forms of information in text and viewing D2T and T2D
as dual tasks within a unified framework. However, exist-
ing systems have primarily focused on simplified scenarios
to meet these requirements:

(i) First, to the best of our knowledge, all models to date
consider a single source for data and text, and deal with
a data format and a text style as defined by the training
corpus. However, in practice, one is faced with hetero-
geneous formats, where data is collected from multiple
sources, each with its own specificity. This also holds
for related NLP tasks including Question Answering (Chen
et al., 2020b; Talmor and Berant, 2019; Nan et al., 2022)
and Formal-Language-to-Text (Shu et al., 2021; Chen et al.,
2020c). This variety of data sources has led to the develop-
ment of systems adapted to each case, resulting in architec-
tures designed specifically for knowledge graphs (Ke et al.,
2021; Zhao et al., 2020), tables (Liu et al., 2017; Rebuffel
et al., 2020; Cao, 2020; Liu et al., 2019), and so on. Re-
cent work unifies multiple sources of structured data while
considering a diversity of tasks, such as Structured Knowl-
edge Grounding (SKG) (Xie et al., 2022), by grounding
both user requests and structured data in a common struc-
tured template.

(ii) Secondly, most models are trained in a supervised
setting that requires the manual construction of aligned
datasets. The latter are usually limited in size; for instance,
one of the main D2T reference datasets, WebNLG (Gardent
et al., 2017b), is composed of only 35,000 aligned pairs of
text and knowledge graphs. Some recent works (Jin et al.,
2020; Lebret et al., 2016; Chen et al., 2021a) have proposed
larger datasets, e.g., by collecting texts from Wikipedia
and extracting knowledge graphs from DBPedia (Lehmann
et al., 2015) or Wikidata (Vrandečić and Krötzsch, 2014).
However, as these text-graph pairs have been generated au-
tomatically, they are usually loosely aligned or simply non-
parallel. Some works (Schmitt et al., 2020; Guo et al.,
2020b, 2021) have tackled the non-parallel setting in the
presence of a single source of knowledge graphs.

This paper considers the dual tasks of D2T and T2D within
a unified formalism for multi-source conversion. We as-
sume that structured data and texts are collected from mul-
tiple sources, with each source in a specific structured for-
mat. Our objective is to develop a unique system capable
of performing conversion in both directions for a specified
number of sources, where we convert data from a given
source to text and, given a text, we convert it to any format
from the set of targeted sources. With parameters shared
between sources and tasks, the model can take full advan-
tage of all sources, as opposed to systems trained on each
source independently. We make the additional assumption
that for training, data are collected from each source in-
dependently and are not aligned, i.e., there is no unique
correspondence between a text and data. Given the dif-
ficulty of generating parallel datasets for D2T and T2D,
this is a realistic scenario that allows us to leverage larger
corpora in many practical situations. Note that even for
aligned corpora, most of them are generated automatically,
so the correspondence can be extremely loose. Compared
to the usual single-source supervised or unsupervised set-
tings, where a one-to-one mapping is assumed between
text and data, we consider here a new problem correspond-
ing to a many-to-many mapping between structured data
and text: data comes from multiple heterogeneous sources,
while text can express the same content in multiple ways.

Our contributions are the following:

• We frame D2T and T2D as two complementary
sequence-to-sequence tasks that can be alternately opti-
mized in an end-to-end, cycle-training fashion via iterative
back-translation.

• We propose a latent variable model for handling multi-
source D2T and T2D through a shared model common to
both tasks and to all the sources. Our approach is based on
a pre-trained T5 language model (Raffel et al., 2020) and
leverages the variational autoencoder (VAE) formulation.

• We evaluate our method on several D2T datasets. We
show that by learning from multiple sources, our model
closes the performance gap with its supervised single-
source counterparts on many datasets and even outperforms
them on the DART dataset (Nan et al., 2021). This demon-
strates the utility of learning from multiple heterogeneous
sources in a unified way. Although, for practical reasons,
our experiments have been conducted with the “T5-small”
model, the results remain competitive with current state-
of-the-art obtained with larger models on a portion of the
datasets.

2 RELATED WORK

Data-to-text (T2D). Recent neural approaches have
trained end-to-end models with either encoder/decoder ar-
chitectures (Wiseman et al., 2017; Gardent et al., 2017a),
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or using neural networks as part of a pipeline system
(Moryossef et al., 2019; Castro Ferreira et al., 2019; Pudup-
pully et al., 2019; Laha et al., 2020). In particular, us-
ing large pre-trained language models has been shown
to greatly improve performance, either by simply fram-
ing data-to-text as a text-to-text task (Kale and Rastogi,
2020), or by using a GNN-based planner for graph-to-text
tasks (Ribeiro et al., 2021; Zhao et al., 2020; Guo et al.,
2020a). Current works mainly consider single-source prob-
lems. Some works have considered leveraging multiple
sources, either by aggregating multiple structured datasets
into a single-format dataset (Chen et al., 2020a; Nan et al.,
2021), or by grounding user requests and structured data in
a common structured template (Xie et al., 2022).

Text-to-data (T2D). Converting unstructured text to struc-
tured data can be framed as a specific instance of (open)
information extraction tasks, such as Named Entity Recog-
nition (NER) (Nadeau and Sekine, 2007; Putthividhya and
Hu, 2011) or, more commonly, joint entity and relation ex-
traction. Generally, given a text, the T2D task requires
identifying the relevant entities and the relations between
them, with the result being encoded as a triplet (Entity1,
Relation, Entity2). Recent approaches consider the graph
as a sequence of triples and cast the problem as a text-to-
text task. They typically combine an encoder with an auto-
regressive decoder (Ye et al., 2021; Agarwal et al., 2020;
Paolini et al., 2021). There has been less work on convert-
ing text to tables, although some recent approaches aim to
generate tables from queries (Gupta and Berberich, 2019)
in the information retrieval domain.

Cycle training with back-translation for unsupervised
learning. Back-translation (Cheng et al., 2016; He et al.,
2016; Cotterell and Kreutzer, 2018) has been shown to be
very effective in unsupervised machine translation (Artetxe
et al., 2018; Lample et al., 2018). Given non-parallel sam-
ples (x, y) from a source and target language, this ap-
proach jointly learns two models (from one language to
another and vice-versa) by leveraging cycle-consistencies
x → ŷ → x and y → x̂ → y. Lample et al. (2018)
identified a fundamental principle for successful back-
translation, namely that each model must be trained on a
specific “language modeling objective to generate correct
sentences in its language”, i.e., each model must be able to
capture the specifics of its own source domain.

Because of the duality of D2T and T2D, some works have
framed both tasks as translation tasks between languages
by linearizing the structured data. Following Lample et al.
(2018), Schmitt et al. (2020) introduced a denoising objec-
tive for graph-to-text, and apply iterative back-translation
to train a single sequence-to-sequence model (LSTM with
attention and a copy mechanism) to perform both graph-
to-text and text-to-graph. Guo et al. (2020b) also leveraged
back-translation to perform unsupervised learning, but con-
sidered separate graph-to-text and text-to-graph compo-

nents. The former component is based on a pre-trained
language model and takes a linearized graph as input,
while the latter component uses an off-the-shelf entity ex-
traction model and simply learns a relation classification
model to obtain the graph. This breaks the symmetry of
the two tasks, and it seems that the denoising objectives
of Schmitt et al. (2020) are no longer needed for back-
translation to succeed. A few recent works have incorpo-
rated cycle-consistent approaches for the semi-supervised
setting. Domingo et al. (2022) propose training a single T5
model for both graph-to-text and text-to-graph tasks, while
Chang et al. (2021) proposes various data augmentation ap-
proaches and uses cycle consistency to ensure that the aug-
mented data samples can be correctly reconstructed after
having been formulated as text, and vice versa.

Variational framework for data-to-text. The variational
autoencoder (VAE) (Kingma and Welling, 2014; Rezende
et al., 2014) is a generative model capable of leveraging
latent variables. Bowman et al. (2016) was the first to train
a text VAE using an RNN encoder/decoder model, with KL
annealing used to mitigate posterior collapse.

In the D2T literature, variational models are used to in-
duce diversity or to enable more fine-grained control over
text generation from data. Guo et al. (2021) proposed a
latent variable model to represent the diversity in text, al-
lowing the model to learn a one-to-many mapping from the
graph to the text domain. This approach performs both
graph-to-text and text-to-graph tasks and uses the same
standard NER component as in Guo et al. (2020b). Ye
et al. (2020) proposed a variational model with disentan-
gled content and style latent variables to perform the graph-
to-text task. Their semi-supervised algorithm is also in-
spired by back-translation but still requires some parallel
data. For the table-to-text task, Wiseman et al. (2018) mod-
eled templates as a sequence of discrete latent variables and
learns them using hidden semi-Markov models. Pudup-
pully et al. (2022) proposed a variational approach to model
latent plans in order to perform content planning in D2T
generation. Chen et al. (2021b) introduced a VAE to model
the causality of logical table-to-text as a latent variable.

3 PROBLEM DEFINITION

Multi-source scenario. We consider the scenario where
we have multiple data sources at our disposal, and the data
from each source are collected independently. Each source
consists of a set of texts {xn}Nn=1 and a set of single-
format structured data {ym}Mm=1. The formats of the differ-
ent sources may be heterogeneous, e.g., tables of different
types, graphs, etc. We consider structured data formats that
can be represented or mapped to a set of relational triples
(subject, relation, object), as is the case for graphs, data
records, and tables (see Fig. 1).

D2T & T2D tasks. Our goal is to solve the D2T and T2D
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tasks. For the D2T task, we are given structured data from
a source, and we seek to generate fluent text that explains
the data. Conversely, for the T2D task, we are given a text
and a target format indicator, and we aim to generate the
corresponding structured data that summarize the text. We
make the assumption that for D2T, multiple sentences can
describe the same data, since there are many ways to ver-
balize a given piece of content. For T2D, given a target
format, we assume that the mapping is unique since the
content is uniquely encoded in the text.

Non-parallel setting. We study a general setting where
each source consists of non-parallel sets of text and data, re-
spectively: (XN , YM ) =

(
{xn}Nn=1, {ym}Mm=1

)
. In other

words, during training, we assume that the origin of the text
and data is known, but their alignment is unknown. Our
goal is to train a single system that can perform the conver-
sion in both directions for all sources. We denote psrc(x, y)
as the unknown joint distribution of the text and data from
a source. In a non-parallel setting, since we do not know
the correspondence, the samples in the dataset (XN , YM )
are assumed to come from the marginals, which are respec-
tively pT and pD for the text and the data:

pT (x) =

∫
y

psrc(x, y)dy, (1)

pD(y) =

∫
x

psrc(x, y)dx. (2)

We assume that text and data are not statistically indepen-
dent, i.e., psrc(x, y) ̸= pT (x)pD(y), so that it is possible
to learn mappings pT (x|y) and pD(y|x) between the text
and the data.

4 BACKGROUND: ITERATIVE
BACK-TRANSLATION

Before delving into our proposed model in Section 5, in
this section we formalize iterative back-translation, which
is a fundamental part of our model derivation, and formally
link our approach to the classical back-translation loss ob-
jective (Eq. 7). In the discussion that follows, we consider
for simplicity a single-source objective. This is not lim-
iting, since the multi-source problem amounts to solving
several single-source problems with a shared model.

In the non-parallel setting, we do not have access to
ground-truth parallel pairs (x, y) ∼ psrc(x, y), which
makes the learning of pT (x|y) and pD(y|x) difficult since
we cannot directly maximize the conditional likelihoods.
We address this issue by introducing latent variables y

(t)
n

and x
(d)
m , corresponding respectively to the unobserved

ground-truth pair or missing pair for our observed text x(t)
n

and data y
(d)
m , as shown in Fig 2. Our goal is to learn the

densities pT (x|y) and pD(y|x), which we parameterize re-
spectively with θ(t) and θ(d). We denote by θ = [θ(t), θ(d)]

x
(t)
n y

(t)
n

θ(t)

N

x
(d)
m y

(d)
m

θ(d)

M

Figure 2: Graphical representation of the unsupervised set-
ting where aligned pairs are not available.

the set of parameters of our model. Given any arbitrary ob-
served text x(t)

n , we can express its log-likelihood using the
missing data distribution pθ(d)(y

(t)
n ) (see Appendix A.1) as

log pθ(x
(t)
n ) = E

p
θ(d)

(y
(t)
n )

[log pθ(t)(x(t)
n |y(t)n )]

+DKL(pθ(d)(y(t)n )∥pθ(d)(y(t)n |x(t)
n )). (3)

Likewise, the log-likelihood of any given data y
(d)
m can be

obtained the same way using pθ(t)(x
(d)
m ):

log pθ(y
(d)
m ) = E

p
θ(t)

(x
(d)
m )

[log pθ(d)(y(d)m |x(d)
m )]

+DKL(pθ(t)(x(d)
m )∥pθ(t)(x(d)

m |y(d)m )). (4)

Given each equation, we do not know the distribution
of the missing data pθ(d)(y

(t)
n ) nor of the missing text

pθ(t)(x
(d)
m ). An arbitrary choice of these distributions

would lead to an arbitrary estimation of the mapping func-
tions pθ(t)(x

(t)
n |y(t)n ) and pθ(d)(y

(d)
m |x(d)

m ). Instead, we
follow the iterative back-translation scheme proposed in
Hoang et al. (2018) and consider that

pθ(d)(y(t)n ) = pθ(d)(y(t)n |x(t)
n ), (5)

pθ(t)(x(d)
m ) = pθ(t)(x(d)

m |y(d)m ). (6)

From a probabilistic perspective, iterative back-translation
can be seen as successively updating the posterior of the
missing data (resp. text) using the conditional likelihood of
the observed data (resp. data) from the other model com-
ponent.

Note that under the iterative back-translation scheme, op-
timizing the log-likelihoods is equivalent to optimizing
the cycle objective for unsupervised learning (see Ap-
pendix A.2) from prior work (Hoang et al., 2018; Guo et al.,
2020b, 2021):

Lcycle(θ
(t), θ(d)) = E

pT (x)

[
E

p
θ(d)

(y|x)
[log pθ(t)(x|y)]

]
+ E

pD(y)

[
E

p
θ(t)

(x|y)
[log pθ(d)(y|x)]

]
. (7)
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(d)
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m c

(d)
m y
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m
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Figure 3: Graphical representation of our model. We aug-
ment the existing variables in Fig. 2 with additional latent
variables s

(t)
n and s

(d)
m to capture the diversity in the text,

and condition the generation of the structured data on the
data format.

5 AUGMENTED LATENT VARIABLE
MODEL FOR DATA-TO-TEXT AND
TEXT-TO-DATA

Our model, shown in Fig. 3 and described below, is a re-
fined version of the general scheme illustrated in Fig. 2.
Because of the non-alignment assumption, the correspond-
ing model leads to intractable expressions of the likeli-
hood. Therefore, we use a variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014) to make
learning and inference tractable.

5.1 Augmented Latent Variable Model

Probabilistic graphical model. In Section 3, we assumed
that the content from structured data can be expressed in
multiple ways, leading to different textual surface realiza-
tions. This is modeled by conditioning the text generation
on a latent variable denoted s for style. We make use of two
such variables, s(t)n and s

(d)
m , respectively, for conditioning

on observed text occurrences x
(t)
n and latent texts x

(d)
m , as

shown in Fig. 3. These style variables will be useful for
modeling the diversity of texts - thus potentially allowing
us to generate diverse texts from a single piece of data at
inference time, and for modeling the uncertainty of the as-
sociation between text and data during training. Similarly,
we introduce a parameter, denoted f , that specifies the tar-
geted conversion format for a text. Since the target format
is available at both test and training time, this is a fixed
parameter and not a latent one.

ELBO. We choose to leverage the VAE framework for our
model. We show that the cycle-training objective can be
deduced from the graphical model in a way that is similar
to an iteration of the Wake-Sleep algorithm (see Appendix
A.3) (Cotterell and Kreutzer, 2018). Therefore, we derive
the evidence lower bound (ELBO) equations for the text x

and the structured data y as:

Lx(θ
(t), ϕ) = E

p
θ(d)

(ŷ|x;f)

[
E

qϕ(s|x)

[
log pθ(t)(x|Encϕ(ŷ), s)

]]
−DKL(qϕ(s|x)∥p(s)), (8)

Ly(θ
(d), ϕ) = E

p(s)

[
E

p
θ(t)

(x̂|y,s)

[
log pθ(d)(y|Encϕ(x̂); f)

]]
,

(9)

where Encϕ is the sequence-to-sequence encoder used for
learning representations of both text and data (see Section
Content encoding).

Priors. We place a Gaussian prior over the style of the text,

p(s(t)n ) = p(s(d)m ) = N (0, I).

Since we want to incorporate information from observed
text and data into their corresponding latent variables, we
follow the iterative back-translation scheme described in
Section 4, Eqs. 5 and 6, and define the priors as

pθ(d)(x(d)
m ) = pθ(d)(x(d)

m |y(d)m ), (10)

pθ(t)(y(t)n ) = pθ(t)(y(t)n |x(t)
n ). (11)

Variational posteriors. For the variational posterior of
the style, we use different parameterizations for s

(t)
n and

s
(d)
m , since in the former case we have access to observed

text x(t)
n , while for the latter there is no style information

in the observed y
(d)
m . We parameterize qϕ(s

(t)
n |x(t)

n ) and
qϕ(s

(d)
m |y(d)m ) with a family of Gaussian distributions:

qϕ(s
(t)
n |x(t)

n ) = N (µϕ(x
(t)
n ); Σϕ(x

(t)
n )), (12)

qϕ(s
(d)
m |y(d)m ) = N (0, I). (13)

Content encoding. We initially considered encoding the
content stochastically using a family of Gaussian distribu-
tions as in Ye et al. (2020). However, we found in prelimi-
nary experiments that considering the content as stochastic
leads to a performance decrease, especially when regular-
izing with a Gaussian prior. Therefore, we follow a simpler
approach and choose to encode the content c(t)n and c

(t)
m de-

terministically by setting

c(t)n = Encϕ(y
(t)
n ); c(d)m = Encϕ(x

(d)
m ), (14)

where Encϕ is the encoder of the T5 model in our case.

Text-to-data inference. In order to infer data y from text
x, we first pass a one-hot encoded data format vector f
through a linear layer sf = Wff + bf , and then feed it
along with the encoded content c = Encϕ(x) to the de-
coder to generate y ∼ pθ(y|c, sf ).

Data-to-text inference. Here we clarify how to infer text
from data, i.e., pθ(x|y). During training, the text style la-
tent code is encoded from the text distribution, which we
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Figure 4: Given an observed data y, we generate a syn-
thetic text x̂ (black path). We use the synthetic text to
retrieve the corresponding style posterior q(s|x̂). We can
now sample multiple style latent codes s(i) ∼ q(s(i)|x̂)
and feed them into the decoder, along with the encoded
content c = Enc(y), to generate texts with multiple styles
x(i) = Dec(c, s(i)) (red path).

do not have at inference time. The usual way to infer text
from data in this scenario is to sample from the prior, as the
divergence term in the ELBO pushes the variational pos-
terior to its respective prior. Empirically, we found that
this sampling method is acceptable when the dimension-
ality of the latent code is low. However, in the case of a
high-dimensional latent space, the model fails to learn. We
suspect that this is due to the inherent discrete nature of
text; the latent space of the VAE for text exhibits regions
of low density and can contain multiple holes (Xu et al.,
2020; Li et al., 2021), leading to the generation of incoher-
ent text when naively decoding a latent code sampled from
the prior. This effect is stronger in our case, since we need
to perform inference starting at the very beginning of train-
ing. This results in noisy and uninformative samples, and
leads to the failure of iterative back-translation.

In order to stabilize the inference process, when optimizing
for structured data y, instead of sampling from the prior,
we choose to fix the style latent code during training to
s = [0, ..., 0] (the mean of the Gaussian prior) in order to in-
fer synthetic text via x̂ ∼ pθ(x|c, s), where c = Encϕ(y).
At inference time, to mitigate the train-test discrepancy,
we infer pθ(x|y) by first generating x̂ ∼ pθ(x|c, s) with
s = [0, ..., 0] and c = Encϕ(y), and then use this synthetic
sample to generate the style latent code s ∼ qϕ(s|x̂). We
can then infer x ∼ pθ(x|c, s) (see Fig. 4).

Disentanglement. As we encode the style of the text and
the content using the same encoder, it is likely that both
variables are entangled. We introduce a way to control
their degree of entanglement, since this may influence the
performance of the model. One way to assess the level of
disentanglement between two random variables X and Y
is by computing their Mutual Information (MI), and dis-
entangling X from Y is achieved by minimizing their MI.
While some works have explicitly sought to minimize this
quantity or an estimate of it (Sanchez et al., 2019; Cheng
et al., 2020a,b; Colombo et al., 2021), other works (Wang
et al., 2018; Chang et al., 2022) have simply chosen to in-
troduce a bottleneck on the capacity of the style encoder,
constraining the dimensionality of one of the two variables

in order to limit the information flow from one variable to
the other, also known as the content leakage phenomenon
(Hu et al., 2020). We follow the latter approach and show
(see Appendix. A.4) that we can upper-bound the MI be-
tween the content and the style variables with a bound that
scales with the dimension of the style of the text and the
structured data format variables.

5.2 Training

Algorithm 1: Cycle-training via back-translation

Input: X(t), Y(d), format f , Decoder θ, Encoder ϕ
while not converged do

(x, y) ∼
(
X(t),Y(d)

)
// Denoising objectives
∇(θ, ϕ)← ∇(θ,ϕ)Ldenoising(θ, ϕ) (Eq. 15)
// T2D (y → x̂→ y)
s ∼ N (0, I) (or s← [0, ..., 0])
x̂ ∼ pθ(x | y, s) /* no gradient */
c← Encϕ(x̂)
∇(θ, ϕ)← ∇(θ, ϕ) +∇(θ,ϕ)Ly(θ, ϕ) (Eq. 9)
// D2T (x→ ŷ → x)
ŷ ∼ pθ(y | x, f) /* no gradient */
c← Encϕ(ŷ)
∇(θ, ϕ)← ∇(θ, ϕ) +∇(θ,ϕ)Lx(θ, ϕ) (Eq. 8)
// Update
(θ, ϕ)← (θ, ϕ) +∇(θ, ϕ)

end

One potential danger that can arise when only optimizing
the cycle objective is a collapse onto the trivial identity
mapping, which may happen when the source and target
domains are the same. We encounter this phenomenon due
to our linearization of the structured data, where we im-
plicitly frame the D2T and T2D tasks as translation tasks.
Learning the trivial identity mapping for both tasks is one
way to locally maximize the objective. To remedy this is-
sue, Lample et al. (2018) and Schmitt et al. (2020) intro-
duce denoising objectives, which make the model robust
to noise. We follow the same methodology as Schmitt
et al. (2020) and adapt their noise functions (swap, drop,
blank, repeat, rule) for all structured data formats (see Ap-
pendix A.5 for examples).

In addition to the ELBO, we also optimize the following
denoising objective:

Ldenoising(θ) = E
x∼pT (x),x̃∼Noise(x)

[log pθ(x|x̃)]

+ E
y∼pD(y),ỹ∼Noise(y)

[log pθ(y|ỹ)]. (15)

Iterative back-translation leverages the use of synthetic
samples. When optimizing for a text x, we sample syn-
thetic data y ∼ pθ(d)(y|x), with θ(d) being fixed, and we do
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the same with θ(t) when optimizing for a structured data y.
Since we are jointly optimizing Eq. 8 and Eq. 9 using the
same model θ = (θt, θd), we accumulate gradients for text
and data before updating the parameters of the model. Our
method is described in Algorithm 1.

6 EXPERIMENTS

6.1 Datasets

We simulate a heterogeneous multi-source setting by con-
sidering a collection of D2T datasets. Each dataset uses
a specific structured encoding. Since they are originally
designed for a supervised setting, they are all aligned.
We simply remove this alignment information and con-
sider each source as a set of text and structured data.
All the datasets are available from the GEM Benchmark
(Gehrmann et al., 2021). Due to the heterogeneous sizes of
these datasets, we use a temperature mixing of T = 2, as in
Raffel et al. (2020), to train our models in the multi-source
setting.

WebNLG 2020 (English) (Castro Ferreira et al., 2020) is a
dataset composed of 35,426 pairs of knowledge graphs and
text crawled from 15 categories of DBpedia. This is follow-
up work from the WebNLG 2017 challenge (Gardent et al.,
2017b).

Cleaned E2E (Dušek et al., 2019) results from cleaning
the original E2E NLG dataset (Novikova et al., 2017), an
English benchmark dataset for data-to-text models that ver-
balizes a set of 2–9 key-value attribute pairs in the restau-
rant domain. The cleaned version has filtered out examples
with hallucinations and outputs that do not fully cover all
input attributes.

DART (Nan et al., 2021) is an English dataset composed
of 62,659 parallel text-data pairs, which aggregates multi-
ple data-to-text datasets, including E2E and WebNLG, into
a common format called data records. These data records
consist of sets of triples and can be seen as a flat represen-
tation of the graph structure.

ToTTo (Parikh et al., 2020) is a high-quality English table-
to-text dataset with more than 120,000 examples, where
each example is composed of a table from Wikipedia with
highlighted cells that is paired with a sentence that de-
scribes these cells. All examples in this dataset were post-
edited in multiple steps to ensure that the targets are fully
faithful to the input information.

6.2 Baselines

We consider the following baselines for our experiments
(MS holds for multi-source, SS for single-source):

MS-Sup: This pre-trained T5 model is fine-tuned on all
datasets in a multi-source, supervised setting. We train a

separate model for D2T and T2D. For T2D, we consider
one prefix for each format and train in a multi-task fashion.

SS-Sup: This pre-trained T5 model is fine-tuned on each
dataset independently and is supervised. We train a sepa-
rate model for D2T and T2D.

MS-UnSupVAE: Our approach.

SS-UnSupVAE: This model is a single pre-trained T5
model fine-tuned on each dataset separately for both D2T
and T2D. This approach is close to the one in Guo et al.
(2021), but they use separate models for D2T and T2D and
additional preprocessing for T2D.

MS-UnSup: This pre-trained T5 model is fine-tuned on all
datasets in a multi-source, unsupervised setting. We con-
sider a prefix for each format and train a single model for
both D2T and T2D in a multitask fashion.

SS-UnSup: This model uses a pre-trained T5 model on
each dataset separately for both D2T and T2D. This is com-
parable to Schmitt et al. (2020), which uses a BiLSTM-
LSTM architecture as the encoder-decoder instead of a T5
model in our case.

Note that because of limited resources, we conducted all
of our experiments using the T5-small model. However,
we will see that for some experiments we reach the perfor-
mance of state-of-the-art T5-large models.

6.3 Evaluation metrics

D2T metrics. We assess traditional metrics in our ex-
periments, including BLEU (Papineni et al., 2002; Post,
2018), ROUGE-L (Lin, 2004), and METEOR (Banerjee
and Lavie, 2005; Denkowski and Lavie, 2014).

T2D metrics. Little has been established in the literature
for the evaluation of generated structured data. We follow
the same approach as prior works on text-to-graph (Guo
et al., 2020b, 2021; Schmitt et al., 2020) and report the pre-
cision, recall, and f1 score of predicted entities and rela-
tions for all formats. In addition to these metrics, we also
compute the SemBLEU score (Song and Gildea, 2019) by
converting all formats into a graph structure. This score,
which is adapted to the structure of graphs, provides more
information on higher-order n-grams than previous entity
and relation scores.

Diversity metrics. Since our model has the ability to gen-
erate diverse texts from the same data, it is important to
assess the effectiveness of this mechanism. We evaluate
the diversity of the generated texts in our experiments us-
ing the Self-BLEU metric (Zhu et al., 2018), which treats
one generated sentence as the hypothesis and the others as
the reference, and calculates the BLEU score for every set
of generated sentences. The score is then averaged over
the test set. We also report Distinct-1 and Distinct-2 (Li
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Table 1: Evaluation results for D2T and T2D

DART WEBNLG E2E TOTTO

BLEU METEOR BLEU METEOR BLEU METEOR BLEU METEOR

MS-Sup 52.613 38.29 52.037 35.85 40.679 35.3 44.196 37.32
SS-Sup 45.163 35.91 50.502 35.58 40.95 35.43 43.74 37.08

MS-UnSupVAE (ours) 51.074 37.47 49.575 34.3 39.33 34.94 36.793 36.11
SS-UnSupVAE 39.23 33.35 43.73 32.5 39.31 35.02 32.85 33.83
MS-UnSup 48.435 36.2 45.172 31.72 39.529 34.95 35.129 34.92
SS-Unsup 39.27 33.19 44.72 32.59 39.36 34.79 33.40 34.21

DART WEBNLG E2E TOTTO

ENT F1 REL F1 SemBLEU ENT F1 REL F1 SemBLEU ENT F1 REL F1 SemBLEU ENT F1 REL F1 SemBLEU

MS-Sup 92.01 81.36 69.1 73.59 47.5 47.55 97.87 97.64 99.21 49.82 15.04 11.9
SS-Sup 84.78 71.49 54.5 70.84 45.46 39.87 96.97 96.61 98.85 49.62 14.03 12.82

MS-UnSupVAE (ours) 84.64 72.65 67.73 65.38 39.22 35.62 88.16 88 95.32 47.02 13.76 15.14
SS-UnSupVAE 72.56 56.03 39.71 57.22 25.37 16.09 85.57 85.18 93.04 43.36 10.21 5.72
MS-UnSup 80.74 67.69 56.6 60.45 33.73 26.97 86.44 86.13 95.08 44.95 11.92 10.19
SS-Unsup 71.29 55.12 42.96 57.3 25.47 13.62 78.96 78.59 80.56 44.26 10.52 8.06

et al., 2016), which corresponds to the number of distinct
unigrams and bigrams in generated texts. This metric is
then scaled by the total number of generated tokens, which
penalizes long sentences.

6.4 Results

We present some of our results in Table 1. A more complete
list of results can be found in Table 2 (Appendix).

D2T. (i) Supervised vs Unsupervised. The supervised
model MS-Sup, which is effectively an upper bound on
model performance, performs the best as expected. (ii)
Single source vs multi-source. Except for E2E, multi-
source models always outperform their single-source coun-
terparts. Learning from multiple sources improves perfor-
mance across datasets. Since the E2E dataset is a very spe-
cific, small, and closed domain (restaurant) dataset, train-
ing on multiple domains may introduce interference. (iii)
VAE vs non VAE. For the multi-source setting, the VAE
version MS-UnSupVAE always outperforms its non-VAE
counterpart MS-UnSup by a significant margin. This result
highlights the importance of uncertainty modeling when
the conversion problem becomes more challenging, as is
the case for multi-source vs single-source scenarios. (iv)
Unsupervised models. Except on E2E, where all models
have similar performance, our model outperforms all other
unsupervised approaches across all metrics, and closes the
performance gap with the supervised baselines. Note that
MS-UnSupVAE is particularly effective on DART, outper-
forming even the single-source supervised baselines and
current state-of-the-art obtained with larger models (see
Appendix 2). We attribute this performance to the multi-
source nature of DART. By flattening knowledge graphs
into sets of triples, the data records in DART have lost in-
formation that was present in the original data. Overall, it
appears that training on heterogeneous formats that origi-
nate from the same content improves model performance.

Figure 5: Evolution of average BLEU, Distinct-1, Distinct-
2 (higher is better), and self-BLEU (lower is better) metrics
over all datasets as the dimensionality of the style increases.

T2D. First, we notice that using a text-to-text model for
T2D results in some format errors, although they are not
frequent (less than 5% for all datasets). Training on mul-
tiple sources is challenging for the T2D task, as it also
increases format errors due to the consideration of sev-
eral formats, such as for the MS-Sup model on the E2E
dataset. Compared to their supervised counterparts, all un-
supervised approaches underperform on entity and relation
extraction. Nevertheless, our model remains competitive
with the other supervised baselines.

Diversity Results. We jointly evaluate the diversity and
quality of the text generated by our model as the dimension
of the style latent variable varies. Due to the stochasticity
of text generation, we report the mean and 95% confidence
intervals for the diversity metrics and the BLEU metrics
(quality) for 10 different random seeds. We average the
metrics over all datasets. We observe that increasing the di-
mensionality of the style vector increases the Distinct-(1,2)
scores, i.e., the number of unigrams and bigrams increases.



Duong, Lumbreras, Gartrell, Gallinari

The generated sentences are also more diverse, since Self-
BLEU decreases. It appears that there is little variation in
the generation when the style dimensionality is fairly low
(less than 16). As the dimensionality increases, however,
the model tends to hallucinate, as the BLEU metrics gener-
ally decrease (see more examples in Appendix A.7).

7 ASSUMPTIONS AND LIMITATIONS

One limitation of our work is that we have considered
sources with structured data formats that can be mapped
to sets of relational triples. The treatment of more diverse
structured formats and tasks remains an open problem. A
second limitation concerns the diversity in the text domain
and in the relation types considered in different corpora.
Although our model behaves well on sources with differ-
ent text domains and relations, the types of relations remain
relatively simple, typical of the benchmarks in this domain,
and extension to more complex situations is challenging. A
potentially limiting assumption concerns our non-parallel
framework for D2T and T2D. Although we remove align-
ment from the data by breaking aligned pairs, the domains
of the two modalities remain aligned, which differs from
the non-parallel framework considered in machine transla-
tion (Lample et al., 2018), where no alignment is assumed.
This is due to the lack of large open-domain D2T datasets.

8 CONCLUSION

We have proposed a model capable of learning D2T and
T2D mappings in a non-parallel setting, where text and data
come from multiple sources. Our experiments show that
the model is able to leverage this diversity to provide im-
proved performance compared to unsupervised baselines.
Our results suggest that mixing multiple formats can poten-
tially improve model performance in both the parallel and
non-parallel setting. The advantage of our method lies in
its applicability to more realistic problems, where the data
is heterogeneous, or where a strict match between text and
data cannot be found. A promising avenue for future work
would be to consider the adaptation to scenarios where new
sources with scarce data are made available, requiring few-
shot learning capability.
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A APPENDIX

A.1 Log-likelihood of the Latent Variable Model

Given any arbitrary observed text x(t)
n , we can express its log-likelihood using the missing data distribution pθ(d)(y

(t)
n ) as

log pθ(x
(t)
n ) = E

p
θ(d)

(y
(t)
n )

[log pθ(x
(t)
n )]

= E
p
θ(d)

(y
(t)
n )

[
log

pθ(t)(x
(t)
n |y(t)n )pθ(d)(y

(t)
n )

pθ(d)(y
(t)
n |x(t)

n )

]
= E

p
θ(d)

(y
(t)
n )

[log pθ(t)(x(t)
n |y(t)n )] +DKL(pθ(d)(y(t)n )∥pθ(d)(y(t)n |x(t)

n )). (16)

Likewise, given any observed data y
(d)
m , for any arbitrary density pθ(t)(x

(d)
m ) we have

log pθ(y
(d)
m ) = E

p
θ(t)

(x
(d)
m )

[log pθ(d)(y(d)m |x(d)
m )] +DKL(pθ(t)(x(d)

m )∥pθ(t)(x(d)
m |y(d)m )). (17)

A.2 Connection between the Cycle Objective and the Log-likelihood

We use the following notation: X(t) = {x(t)
1 , ..., x

(t)
N } and Y(d) = {y(d)1 , ..., y

(d)
M } are the sets of observed texts and

structured data, respectively. X(d) = {x(d)
1 , ..., x

(d)
N } and Y(t) = {y(t)1 , ..., y

(t)
M } are the sets of missing texts and structured

data, respectively. We denote by θ = (θ(t), θ(d)) the set of parameters of the generative model. Considering the probablistic
graphical model (PGM) in Fig. 2, we have

log pθ(X
(t),Y(d)) =

∑
N

log pθ(t)(x(t)
n ) +

∑
M

log pθ(d)(y(d)m )

≈ N E
x
(t)
n ∼pT (x)

[log pθ(t)(x(t)
n )] +M E

y
(d)
m ∼pD(y)

[log pθ(d)(y(d)m )] (18)

= N E
x
(t)
n ∼pT (x)

[
E

p
θ(d)

(y
(t)
n )

[log pθ(t)(x(t)
n |y(t)n )] +DKL(pθ(d)(y(t)n )∥pθ(d)(y(t)n |x(t)

n ))

]
+M E

y
(d)
m ∼pT (y)

[
E

p
θ(t)

(x
(d)
m )

[log pθ(t)(y(d)m |x(d)
m )] +DKL(pθ(t)(x(d)

m )∥pθ(t)(x(d)
m |y(d)m ))]

]
(19)

Iterative back-translation gives us the following:

pθ(d)(y(t)n ) = pθ(d)(y(t)n |x(t)
n ), (20)

pθ(t)(x(d)
m ) = pθ(t)(x(d)

m |y(d)m ). (21)

Under these assumptions, the KL terms DKL(pθ(t)(x
(d)
m )∥pθ(t)(x

(d)
m |y(d)m )) and DKL(pθ(d)(y

(t)
n )∥pθ(d)(y

(t)
n |x(t)

n ))) vanish.
In addition, if N = M , then

argmax
θ

log pθ(X
(t),Y(d)) ≈ argmax

(θ(t),θ(d))

E
x
(t)
n ∼pT (x)

[
E

p
θ(d)
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(t)
n |x(t)

n )

[log pθ(t)(x(t)
n |y(t)n )]

]
+ E

y
(d)
m ∼pT (y)

[
E

p
θ(t)

(x
(d)
m |y(d)

m )

[log pθ(t)(y(d)m |x(d)
m )]

]
= argmax

(θ(t),θ(d))

Lcycle(θ
(t), θ(d)) (22)

Thus, optimizing the cycle objective amounts to optimizing the log-likelihood.
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A.3 Derivation of the ELBO

We use the following notation: X(t) = {x(t)
1 , ..., x

(t)
N } and Y(d) = {y(d)1 , ..., y

(d)
M } are the sets of observed texts and

structured data, respectively. X(d) = {x(d)
1 , ..., x

(d)
N } and Y(t) = {y(t)1 , ..., y

(t)
M } are the sets of missing texts and structured

data, respectively. C(t) = {c(t)1 , ..., c
(t)
N } and C(d) = {c(d)1 , ..., c

(d)
M } are the set of variables that encode the content from

the missing text and structured data dataset, respectively. S(t) = {s(t)1 , ..., s
(t)
N } and S(d) = {s(d)1 , ..., s

(d)
M } are the set of

latent variables that encode the styles of the text in X(t) and X(d), respectively. f is the structured data format common
to all Y(d). We denote by θ = (θ(t), θ(d)) the set of parameters of the generative model and by ϕ the parameters of the
variational posterior qϕ.

The joint likelihood of the model can be expressed as

pθ(X
(t),Y(d),X(d),Y(t),S(t),S(d); f) =

N∏
n=1

p(s(t)n )pθ(t)(x(t)
n |s(t)n , c(t)n )pθ(d)(y(t)n ; f)

M∏
m=1

p(s(d)m )pθ(t)(x(d)
m |s(d)m )pθ(d)(y(d)m |c(d)m ; f). (23)

Our goal is to maximize the marginal likelihood (evidence) pθ(X(t),Y(d); f) of the observed datasets. We can derive the
Evidence Lower Bound (ELBO) as

log pθ(X
(t),Y(d); f) = log

∫
pθ(X

(t),Y(d),X(d),Y(t),S(t),S(d); f)dX(d)dY(t)dS(t)dS(d)

= logEqϕ(X(d),Y(t),S(t),S(d)|X(t),Y(d);f)

[
pθ(X

(t),Y(d),X(d),Y(t),S(t),S(d); f)

qϕ(X
(d),Y(t),S(t),S(d)|X(t),Y(d); f)

]
≥ Eqϕ(X(d),Y(t),S(t),S(d)|X(t),Y(d);f)

[
log pθ(X

(t),Y(d)|X(d),Y(t),S(t),S(d); f)
]

−DKL

(
qϕ(X

(d),Y(t),S(t),S(d)|X(t),Y(d); f)∥pθ(X(d),Y(t),S(t),S(d); f
)

via Jensen’s inequality (24)
= L(X(t),Y(d))(θ, ϕ). (25)

Let us now factorize the different terms. Given the PGM in Fig. 3, the likelihood can be factorized as

pθ(X
(t),Y(d)|X(d),Y(t),S(t),S(d); f) =

∏
N

pθ(t)(x(t)
n |s(t)n ,Encϕ(y

(t)
n ))

∏
M

pθ(d)(y(d)m |Encϕ(x(d)
m ); f). (26)

The prior can be factorized as

pθ(X
(d),Y(t),S(t),S(d); f) =

∏
N

p(s(t)n )pθ(d)(y(t)n ; f)
∏
M

p(s(d)m )pθ(t)(x(d)
m |s(d)m ). (27)

And the variational posterior as

qϕ(X
(d),Y(t),S(t),S(d)|X(t),Y(d); f) =

∏
N

qϕ(s
(t)
n |x(t)

n )qϕ(y
(t)
n |x(t)

n ; f)
∏
M

qϕ(s
(d)
m |y(d)m )qϕ(x

(d)
m |s(d)m ; y(d)m ). (28)

Note that Eq. 24 holds for any arbitrary qϕ; different factorizations of the variational posteriors are possible, for instance
qϕ(X

(d),S(d)|X(t),Y(d)) = qϕ(X
(d)|Y(d))qϕ(S

(d)|X(d)), which would result in encoding the style with the synthetic
text. We ran experiments with this variant and found that the model performs the best with Eq. 28.

Following Eqs. 26, 27, and 28, The ELBO can be factorized as

L(X(t),Y(d))(θ, ϕ) =
∑
N

L
x
(t)
n
(θ(t), ϕ) +

∑
M

L
y
(d)
m

(θ(d), ϕ), (29)
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where each term can be written as

L
x
(t)
n
(θ(t), ϕ) = E

qϕ(y
(t)
n |x(t)

n ;f)

[
E

qϕ(s
(t)
n |x(t)

n )

[log pθ(t)(x(t)
n |s(t)n ; Encϕ(y

(t)
n ))]

]
−DKL(qϕ(y

(t)
n |x(t)

n ; f)∥pθ(d)(y(t)n ; f))−DKL(qϕ(s
(t)
n |x(t)

n )∥p(s(t)n )), (30)

L
y
(d)
m

(θ(d), ϕ) = E
qϕ(s

(d)
m |y(d)

m )

[
E

qϕ(x
(d)
m |s(d)m ;y

(d)
m )

[log pθ(d)(y(d)m |Encϕ(x(d)
m ); f)]−DKL(qϕ(x

(d)
m |y(d)m )∥pθ(t)(x(d)

m |s(d)m ))

]
−DKL(qϕ(s

(d)
m |y(d)m )∥p(s(d)m )). (31)

Given our choices of parametrization and prior, we have qϕ(s
(d)
m |y(d)m ) = p(s

(d)
m ) = N (0, I). As a consequence, the KL

term DKL(qϕ(s
(d)
m |y(d)m )∥p(s(d)m )) vanishes.

We follow the iterative back-translation scheme in Hoang et al. (2018) and consider the prior for the missing text (resp.
data) distribution to be the conditional likelihood of the observed text (resp. data), i.e.,

pθ(d)(y(t)n ; f) = pθ(d)(y(t)n |Encϕ(x(t)
n ); f),

pθ(t)(x(d)
m |s(d)m ) = pθ(t)(x(d)

m |s(d)m ,Encϕ(y
(d)
m )). (32)

However, there is still one major obstacle that prevents us from directly optimizing these lower bounds. Indeed, the
operations y(t)n ∼ qϕ(y

(t)
n |f ;x(t)

n ) and x
(d)
m ∼ qϕ(x

(d)
m |s(d)m ; y

(d)
m ) which correspond to the generation of synthetic training

data for back-translation, is a sequence of discrete latent variables, and as a consequence cannot be easily reparametrized.
To derive a tractable objective, we will assume that while we optimize for the text likelihood, the variational posterior is a
good approximation of the conditional likelihood on the observed data, and vice-versa:

qϕ(y
(t)
n |x(t)

n ; f) ≈ pθ(d)(y(t)n |Encϕ(x(t)
n ); f), (33)

qϕ(x
(d)
m |s(d)m , y(d)m ) ≈ pθ(t)(x(d)

m |s(d)m ,Encϕ(y
(d)
m )). (34)

This resonates with Cotterell and Kreutzer (2018), who interpreted iterative back-translation as iterations of the Wake-
Sleep algorithm, where one alternatively learns a forward model pθ(y|x) and a variational approximation qϕ(y|x). The
only difference here is that we only consider the wake phase and choose to skip the sleep phase by assuming that Eqs. 33
and 34 hold. This assumption may be rather strong, but can be justified in the iterative back-translation framework,
since both models pθ(t)(x|y) and pθ(d)(y|x) are optimized to approximate the true conditional distributions pT (x|y)
and pD((y|x), in alternate steps. Under these assumptions, the KL terms DKL(qϕ(y

(t)
n |x(t)

n ; f)∥pθ(d)(y
(t)
n ; f)) and

DKL(qϕ(x
(d)
m |y(d)m )∥pθ(t)(x

(d)
m )) vanish. This results in these tractable bounds:

L
x
(t)
n
(θ(t), ϕ) ≈ E

p
θ(d)

(y
(t)
n |Encϕ(x

(t)
n );f)

[
E

qϕ(s
(t)
n |x(t)

n )

[log pθ(t)(x(t)
n |s(t)n ; Encϕ(y

(t)
n ))]

]
−DKL(qϕ(s

(t)
n |x(t)

n )∥p(s(t)n )), (35)

L
y
(d)
m

(θ(d), ϕ) ≈ E
p(s

(d)
m )

[
E

p
θ(t)

(x
(d)
m |s(d)m ,Encϕ(y

(d)
m ))

[log pθ(d)(y(d)m |Encϕ(x(d)
m ); f)]

]
. (36)

Note that synthetic samples y
(t)
n ∼ pθ(d)(y

(t)
n |Encϕ(x(t)

n ); f) and x
(d)
m ∼ pθ(t)(x

(d)
m |s(d)m ,Encϕ(y

(d)
m )) used for back-

translation are computed without gradients. When optimizing for θ(t), the parameters θ(d) resulting from the computation
of x(d)

m are not updated, and vice-versa.

A.4 Disentanglement through constraining the amount of information in style variables

Some works have defined a measure of disentanglement between two random variables X and Y as the Mutual Information
(MI) between the two:

I(X;Y ) = Ep(X,Y )

[
log

p(X,Y )

p(X)p(Y )

]
= H(X)−H(X|Y ) = H(Y )−H(Y |X)

From a MI perspective, disentangling X from Y is achieved by minimizing their MI. While some works have explicitly
sought to minimize this quantity or an estimate of it (Sanchez et al., 2019; Cheng et al., 2020a,b; Colombo et al., 2021),
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other works (Wang et al., 2018; Chang et al., 2022) have simply chosen to introduce a bottleneck on the capacity of the
style encoder, constraining the dimensionality of one of the two variables in order to limit the information flow from one
variable to the other. For completeness, we show here that by constraining the dimensionality of s, we can upper-bound
the mutual information between the content c and the style variables with a function that scales with the dimensionality.

• For the style of the text, from the definition of MI, as the entropy is always positive, we can upper-bound it by:

I(s; c) ≤ H(s)

= H(N (0, I))

=
d

2
(1 + log(2π)) +

1

2
log |I| = d

2
(1 + log(2π)), (37)

where d denotes the dimension of the multivariate Gaussian. Hence, by limiting the dimension of s, we prevent
information flowing from the content variable c to s.

• For the format f , as it is a parameter, the entropy is 0:

I(f ; c) ≤ H(f) = 0. (38)

Note that although these bounds are not tight, this motivates the use of a lower dimensional space to encode the style.

A.5 Examples from the ”Rule” Noise Functions

T2D

Roadside Attractions distributed Super Capers which was also distributed by
the public company Lionsgate.

KG: [HEAD] Attractions [TYPE] distributed [TAIL] Super [HEAD] also [TYPE]
distributed [TAIL] public [HEAD] company [TYPE] has_attribute [TAIL] public

TRIPLESET: Attractions : distributed : Super |
also : distributed : public | company : has_attribute : public

MR: name[Attractions], distributed[Super], name[also],
distributed[public], name[company], has_attribute[public]

Totto: <page_title> </page_title> <section_title> </section_title>
<table> <col_header> Entities </col_header> <col_header> Attractions
</col_header>
<col_header> also </col_header> <col_header> company </col_header>
<cell> Super <col_header> distributed </col_header>
<row_header> Attractions </row_header> </cell>
<cell> public <col_header> distributed </col_header>
<row_header> also </row_header> </cell>
<cell> public <col_header> has_attribute </col_header>
<row_header> company </row_header> </cell> </table>

D2T

[HEAD] Nord (Year of No Light album) [TYPE] artist [TAIL] Year of No Light
[HEAD] Nord (Year of No Light album) [TYPE] genre [TAIL] Post-metal
[HEAD] Nord (Year of No Light album) [TYPE] record label [TAIL] Crucial Blast
--> Nord (Year of No Light album) artist Year of No Light and
Nord (Year of No Light album) record label Crucial Blast and
Nord (Year of No Light album) genre Post-metal
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ARA Veinticinco de Mayo (V-2) : length : 192000.0 (millimetres) |
ARA Veinticinco de Mayo (V-2) : country : Argentina
--> ARA Veinticinco de Mayo (V-2) length 192000.0 (millimetres) and
ARA Veinticinco de Mayo (V-2) country Argentina

name[The Phoenix], eatType[pub], food[French], priceRange[more than £30],
customer rating[5 out of 5], area[riverside], familyFriendly[no],
near[Crowne Plaza Hotel]
--> The Phoenix eatType pub and The Phoenix priceRange more than £30 and
The Phoenix area riverside and The Phoenix near Crowne Plaza Hotel and
The Phoenix name The Phoenix and The Phoenix customer rating 5 out of 5 and
The Phoenix food French and The Phoenix familyFriendly no

<page_title> Gennady Golovkin vs. Daniel Jacobs </page_title>
<section_title> CompuBox stats </section_title>
<table> <cell> Golovkin <col_header> Fighter </col_header> </cell>
<cell> 231/615 <col_header> Total punches </col_header> </cell>
<cell> Jacobs <col_header> Fighter </col_header> </cell>
<cell> 175/541 <col_header> Total punches </col_header> </cell> </table>
--> Gennady Golovkin vs. Daniel Jacobs and CompuBox stats and Golovkin Fighter
and
231/615 Total punches and Jacobs Fighter and 175/541 Total punches

A.6 Implementation details

Adapting T5. We build our model around T5 (Raffel et al., 2020), which has an architecture that is close to the original
Transformer architecture (Vaswani et al., 2017).

We fine-tune the pre-trained t5-small model to generate both text and data. We specify the target format by either adding
the prefix ”Generate text:” (for θ(t)) or ”Generate data:” (for θ(d)) to the input sequence given to the encoder.

Encoder-Decoder architectures. For the text style encoder qϕ(s|x), we add a special token ”[STYLE]” to the text se-
quence that is passed to the encoder. We take the latent representation from the encoder output h(x), and add a linear layer
to obtain the parameters of our variational distribution:{

µ(x) = Wµh(x) + bµ

Σ(x) = WΣh(x) + bΣ

where qϕ(s|x) = N (s;µ(x),Σ(x)).

For the structured data format f , we simply encode it using a linear layer via sf = Wff + bf , before feeding it along with
the encoded content c = Encϕ(x) to the decoder.

KL Vanishing Issue. This issue, also known as KL collapse, is a typical problem encountered when training VAE models.
Fitting the variational posterior to the prior ∀x, qϕ(z|x) = pθ(z)) to get a zero KL divergence term at the beginning
of training is a simple way to minimize the ELBO loss. This results in a local minimum where the decoder is capable
of performing effectively without the latent variable, which is typically the case with large language models and auto-
regressive decoding (Fu et al., 2019). Many works have suggested fixes for this problem; we found the MMD-VAE
approach (Zhao et al., 2017) particularly effective.

In practice, the MMD-VAE approach replaces the KL divergence term DKL(qϕ(z|x)∥pθ(z)) with a sample estimate of the
Maximum-Mean Discrepancy (MMD) measure between the aggregated posterior qϕ(z) = E

x∼pT (x)
[qϕ(z|x)] and the prior

pθ(z). We also experimented with the β-VAE and the cyclical schedule proposed in Fu et al. (2019) and used in Li et al.
(2020), but preliminary experiments were not as successful.

Hyperparameters All models have been trained with the AdamW (Loshchilov and Hutter, 2019) optimizer with a learning
rate of 10−4 for 10 epochs. Following Lample et al. (2018) and Schmitt et al. (2020), we set pblank = prepeat = 0.2,
pdrop = 0.1, and use all 5 noise functions swap, drop, blank, repeat, and rule. For inference, we use beam search decoding
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Table 2: D2T & T2D Evaluation

D2T T2D
ENTITY RELATION

BLEU METEOR ROUGE-L Precision Recall F1 Precision Recall F1 SemBLEU Error (%)
DART
T5-Large 50.66 40.00 - - - - - - - - -
BART-large 48.56 39.00 - - - - - - - - -
MS-Sup 52.613 38.29 45.48 92.87 91.16 92.01 82.33 80.41 81.36 69.1 0.2747
SS-Sup 45.163 35.91 43.23 85.66 83.91 84.78 72.46 70.54 71.49 54.5 0.2354

MS-UnSupVAE 51.074 37.47 44.77 85.17 84.11 84.64 73.18 72.12 72.65 67.73 0.2354
SS-UnSupVAE 39.23 33.35 40.72 73.89 71.29 72.56 57.24 54.86 56.03 39.71 1.02
MS-UnSup 48.435 36.2 43.71 82.98 78.63 80.74 70.12 65.43 67.69 56.6 0.4905
SS-Unsup 39.27 33.19 40.51 73.79 68.96 71.29 57.65 52.8 55.12 42.96 0.706

WEBNLG
MS-Sup 52.037 35.85 39.53 73.71 73.48 73.59 48.16 46.85 47.5 47.55 1.18
SS-Sup 50.502 35.58 39.31 71.12 70.57 70.84 46.24 44.71 45.46 39.87 0.5

MS-UnSupVAE 49.575 34.3 38.46 65.94 64.84 65.38 39.9 38.57 39.22 35.62 4.834
SS-UnSupVAE 43.73 32.5 37.14 60.19 54.53 57.22 27.59 23.48 25.37 16.09 5.06
MS-UnSup 45.172 31.72 36.81 62.35 58.66 60.45 35.52 32.12 33.73 26.97 1.237
SS-Unsup 44.72 32.59 36.25 60.5 54.42 57.3 27.94 23.39 25.47 13.62 3.766

E2E
MS-Sup 40.679 35.3 41.39 97.7 98.04 97.87 97.47 97.81 97.64 99.21 0.1083
SS-Sup 40.95 35.43 41.48 96.64 97.29 96.97 96.27 96.95 96.61 98.85 0.000

MS-UnSupVAE 39.33 34.94 41 86.84 89.51 88.16 86.68 89.36 88 95.32 0.000
SS-UnSupVAE 39.31 35.02 41.05 86.56 84.6 85.57 86.15 84.22 85.18 93.04 0.000
MS-UnSup 39.529 34.95 41.28 86.2 86.67 86.44 85.88 86.37 86.13 95.08 0.000
SS-Unsup 39.36 34.79 41.01 85.38 73.44 78.96 84.97 73.10 78.59 80.56 0.000

TOTTO
MS-Sup 44.196 37.32 36.65 57.53 43.94 49.82 18.03 12.9 15.04 11.9 1.312
SS-Sup 43.74 37.08 36.48 59.46 42.57 49.62 17.76 11.59 14.03 12.82 0.2727

MS-UnSupVAE 36.793 36.11 35.92 54.57 41.3 47.02 16.56 11.77 13.76 15.14 1.325
SS-UnSupVAE 32.85 33.83 34.37 55.28 35.67 43.36 14.02 8.028 10.21 5.72 0.5065
MS-UnSup 35.129 34.92 35.09 54.34 38.33 44.95 15.13 9.827 11.92 10.19 0.8961
SS-Unsup 33.40 34.21 34.61 55.41 36.84 44.26 14.10 8.38 10.52 8.06 0.5714

for D2T and T2D with 5 and 8 beams, respectively. We use the coefficient λ = 10 for the MMD regularization term and
use the traditional Gaussian kernel.

A.7 More examples of generated D2T

Input:

[TABLECONTEXT] : title : American Playhouse | American Playhouse : role : Jed
Jenkins | [TABLECONTEXT] : [title] : Jeff Daniels | American Playhouse : year :
1982

Expected Ouput:

In 1982, Jed Jenkins in American Playhouse was played by Jeff Daniels.

Generated Texts:

Jed Jenkins was a American Playhouse, serving from 1982 to 1982.
The American Playhouse is a play from Jed Jenkins to be cast in 1982.
Jed Jenkins was the American Playhouse, which will be part of American Playhouse
and starring Jeff Daniels.
Jed Jenkins was a member of American Playhouse, served as Jed Jenkins from 1982
to 1982.
Jed Jenkins was the American Playhouse, a place to play again in 1982 and
nominated Jeff Daniels
Jed Jenkins was a play from American Playhouse, serving as Jeff Daniels
Jed Jenkins is a playback that was chosen to be part of American Playhouse in
1982.
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Jed Jenkins is an American Playhouse, which will be part of the United States
House of Representatives.
Jed Jenkins was a playback from American Playhouse, serving another role in 1982.
Jed Jenkins is a Playhouse which was part of American Playhouse, originally cast
as Jeff Daniels.

Input:

[HEAD] It’s Great to Be Young (1956 film) [TYPE] starring [TAIL] Cecil Parker
[HEAD] Cecil Parker [TYPE] birth year [TAIL] 1897

Expected Outputs:

Cecil Parker, born in 1897, stars in the 1956 film It’s Great to be Young.
Cecil Parker, who was born in 1897, starred in the 1956 movie It’s Great to Be
Young.
It’s Great to Be Young starred Cecil Parker, who was born in 1897.

Generated Texts:

It’s Great to Be Young starred Cecil Parker in both films,
It’s Great to Be Young starred as Cecil Parker, who was born in 1897
It’s Great to Be Young starred Cecil Parker, in 1897
It’s Great to Be Young are Cecil Parker’s films, starting in 1897
It’s Great to Be Young starred as Cecil Parker, born in 1897
It’s Great to Be Young starred Cecil Parker, both in 1897

Input

<page_title> List of ambassadors of the United States to Trinidad and Tobago
</page_title> <section_title> List of ambassadors </section_title> <table> <cell>
John L. Estrada <col_header> Name </col_header> </cell> </table>

Expected Output

John Learie Estrada is the United States Ambassador to Trinidad and Tobago.
John L. Estrada is the United States Ambassador to Trinidad and Tobago.
John Learie Estrada is the United States Ambassador to Trinidad and Tobago.

Generated texts:

John L. Estrada was an Ambassador from Trinidad and Tobago, which would be part
of the United States to Trinidad and Tobago.
John L. Estrada was an ambassador of the United States to Trinidad and Tobago,
serving as Trinidad and Tobago.
John L. Estrada was an Ambassador to Trinidad and Tobago, which was chosen to be
part of the United States ambassador to Trinidad and Tobago
John L. Estrada was an American Ambassador to Trinidad and Tobago, coming from
another country in Trinidad and Tobago.
John L. Estrada was an Ambassador to Trinidad and Tobago, part of the United
States delegation to Trinidad and Tobago.
John L. Estrada was an Ambassador to Trinidad and Tobago, which also served as
United States Ambassador to Trinidad and Tobago.
John L. Estrada was the United States Ambassador to Trinidad and Tobago, which
was served as part of the United States ambassador to Trinidad and Tobago.
John L. Estrada is an American Ambassador to Trinidad and Tobago, which won its
place nationwide.
John L. Estrada was an American Ambassador to Trinidad and Tobago, who served as
the United States ambassador to Trinidad and Tobago.
John L. Estrada was an Ambassador to Trinidad and Tobago, who served as the
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United States ambassador to Trinidad and Tobago.

Input:

name[Blue Spice], eatType[coffee shop], customer rating[5 out of 5], near[Crowne
Plaza Hotel]

Expected Outputs:

The coffee shop Blue Spice is based near Crowne Plaza Hotel and has a high
customer rating of 5 out of 5.
The Blue Spice coffee shop, near Crowne Plaza Hotel, has a customer rating of 5
out of 5.
If you want a coffee shop rated 5 out of 5 pick Blue Spice. It is located near
Crowne Plaza Hotel.

Generated Texts:

Blue Spice is a 5 star coffee shop located near Crowne Plaza Hotel that also
serves fast food, not family-friendly.
Blue Spice is a 5-star coffee shop located near Crowne Plaza Hotel that also
offers food in moderate prices.
Blue Spice is a coffee shop located near Crowne Plaza Hotel that offers great
food, at reasonable prices.
Blue Spice is a coffee shop located near Crowne Plaza Hotel that offers cheap
food, but only has a 5 out of 5 rating.
Blue Spice is a 5 star coffee shop located near Crowne Plaza Hotel that also
serves food in cheap prices.
Blue Spice is a coffee shop near Crowne Plaza Hotel that also offers great food,
prices are rated 5 out of 5.
Blue Spice is a 5-star coffee shop located near Crowne Plaza Hotel, that sells
sushi for more than £30.
Blue Spice is a coffee shop located near Crowne Plaza Hotel that sells cheap
food, and rated 5 out of 5.
Blue Spice is a 5-star coffee shop located near Crowne Plaza Hotel that serves
Italian food, and has a price range of more than 30.
Blue Spice is a coffee shop located near Crowne Plaza Hotel that also serves
Japanese food, and has a 5 out of 5 rating.


