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Abstract

Error-correcting codes (ECC) are used to
reduce multiclass classification tasks to
multiple binary classification subproblems.
In ECC, classes are represented by the rows of
a binary matrix, corresponding to codewords in
a codebook. Codebooks are commonly either
predefined or problem-dependent. Given prede-
fined codebooks, codeword-to-class assignments
are traditionally overlooked, and codewords
are implicitly assigned to classes arbitrarily.
Our paper shows that these assignments play
a major role in the performance of ECC.
Specifically, we examine similarity-preserving
assignments, where similar codewords are
assigned to similar classes. Addressing a
controversy in existing literature, our extensive
experiments confirm that similarity-preserving
assignments induce easier subproblems and are
superior to other assignment policies in terms of
their generalization performance. We find that
similarity-preserving assignments make prede-
fined codebooks become problem-dependent,
without altering other favorable codebook
properties. Finally, we show that our findings
can improve predefined codebooks dedicated to
extreme classification.

1 INTRODUCTION

Error-correcting codes (ECC) have been long used in ma-
chine learning as a reduction from multiclass classification
tasks to binary classification tasks (Dietterich and Bakiri,
1994). This scheme encodes classes using rows of a binary
matrix called a codebook. The codebook columns induce
binary partitions of classes, or subproblems, to be learned
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using any binary classification algorithm.

Recently, error-correcting codes have been used as out-
put embeddings of deep networks (Yang et al., 2015;
Rodrı́guez et al., 2018; Kusupati et al., 2021), on top of
features extracted by deep CNNs (Dorj et al., 2018), and
as a means to combine ensembles of several networks
(Zheng et al., 2018). Moreover, they were recently used for
their robustness in adversarial learning (Verma and Swami,
2019; Gupta and Amin, 2021; Song et al., 2021) and for
their redundancy in regression tasks (Shah et al., 2022) and
heterogeneous domain adaptation (Zhou et al., 2019b).

In extreme multiclass classification, where the number of
classes is extremely large, ECC can be particularly benefi-
cial. Several works (Jasinska and Karampatziakis, 2016;
Evron et al., 2018) employed ECC to shrink the output
space, decreasing the number of learned predictors, as well
as the prediction time, to logarithmic in the number of
classes. In comparison, both one-hot encoding and hier-
archical models train a linear number of predictors (even
though the latter enjoy a logarithmic prediction time).

The first step in employing ECC consists of selecting a
good codebook. Some codebook properties are universally
important for error correction, e.g., the minimum hamming
distance between rows. Other properties are only impor-
tant in some regimes, e.g., the decoding complexity which
is essential mainly in extreme classification.

Roughly, codebooks can be divided into two categories:
predefined codebooks and problem-dependent codebooks.
Predefined codebooks are independent of the problem at
hand, but offer simplicity (e.g., random codebooks), favor-
able error-correction properties (e.g., Hadamard codebooks
in Zhang et al., 2003 or optimized codebooks in Gupta and
Amin, 2022), or regime-specific advantages like fast de-
coding algorithms (Evron et al., 2018). On the other hand,
problem-dependent approaches attempt to induce binary
subproblems that are tailored for a given dataset, often by
balancing against other codebook properties.

Problem-dependent codebooks are commonly designed by
optimizing over codebooks while taking class-similarity
into account. However, there are two opposite intuitions in
the literature as to how to incorporate class-similarity in the
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design process. Some works follow an intuition that to in-
duce easy subproblems, similar classes should be encoded
by similar codewords (Zhang et al., 2009; Cissé et al.,
2012; Zhao and Xing, 2013; Zhou et al., 2016; Rodrı́guez
et al., 2018). In contrast, other works encode similar classes
by distant codewords to improve the error correction be-
tween hardly-separable classes (Pujol et al., 2008; Martin
et al., 2017; Youn et al., 2021; Gupta and Amin, 2021).
We examine this controversy in depth and provide evidence
from multiple regimes that generalization is superior when
encoding similar classes by similar codewords.

In predefined codebooks, the mapping between codewords
and classes, i.e., the codeword-to-class assignment, is usu-
ally set arbitrarily (e.g., using a random assignment). Diet-
terich and Bakiri (1994) showed that randomly-sampled as-
signments perform similarly, and since, these assignments
have been commonly overlooked.

Our paper shows that codeword-to-class assignments
do matter and cause a large variation in the performance
of many predefined codebooks (Section 4.1.1). We explain
this by showing that, given a codebook, some assignments
induce substantially easier binary subproblems than other
assignments do (Section 4.1.2). Moreover, we show that
the easiest subproblems are induced by assigning similar
codewords to similar classes (Section 4.1.3).

Finally, we employ our observations on extreme multi-
class classification datasets (having 1K to 104K classes).
By assigning similar codewords to similar classes, we sig-
nificantly improve predefined extreme classification code-
books that enjoy fast decoding algorithms (Section 4.2).

To the best of our knowledge, this is the first work to point
out the large performance variation explained solely by
codeword-to-class assignments, and to explicitly examine
these assignments as a means to control the difficulty of
the induced learning-subproblems in problem-independent
predefined codebooks. We conclude that choosing an
informed assignment improves predefined codebooks by
turning them problem-dependent and better suited for the
solved task. Importantly, other useful properties of these
codebooks are not harmed in this process.

2 ERROR-CORRECTING CODES (ECC)

Error-correcting codes are widely used for transmitting
messages over noisy channels in communication systems,
storage systems, and more. By adding redundant bits to
transmitted messages, the receiver can recover messages
despite errors caused by a disruptive channel (Roth, 2006).

Training. The seminal work of Dietterich and Bakiri
(1994) employed error-correcting codes to encode the K
classes of a classification dataset. They set a binary code-
book M ∈ {−1,+1}K×` with K ∈ N codewords (each

belonging to one class) and ` columns (where ` ≥ log2K).
Each column induces a binary subproblem, i.e., a binary
partition of classes. Each such subproblem is learned us-
ing a base learner A (i.e., a binary classification learning
algorithm), yielding ` predictors f1, ... , f` : X → R. More
formally, given a training set {(xi, yi)}mi=1, where xi ∈ X
and yi ∈ [K] , {1, ... ,K}, the jth predictor is the output
of A when trained using the induced binary labels Myi,j :

fj = A
(
{(xi,Myi,j)}

m
i=1

)
. (1)

Prediction. At prediction time, an example x ∈ X is
treated as a transmitted message encoding the unknown
class y ∈ [K]. The ` predictors’ scores for x constitute
the vector f(x) , [f1(x), ... , f`(x)]

>. These scores can be
prediction margins from a linear model, confidences from
a probabilistic model, outputs of a neural network, etc.

Finally, the prediction vector f(x) is decoded into a code-
word belonging to a class. The simplest approach is hard
decoding that consists of finding the nearest neighbor, that
is, the codeword closest (in Hamming distance) to the
thresholded prediction vector, sign(f(x)) ∈ {−1,+1}`.

Hard decoding ignores the score magnitudes which entail
valuable information for prediction. As a remedy, soft de-
coding, or loss-based decoding (Allwein et al., 2000), min-
imizes a decoding loss L : R→ R≥0:

ŷ (x) = argmin
y∈[K]

∑`

j=1
L (My,jfj (x)) . (2)

Two popular decoding losses are the hinge loss
L (z) = max {0, 1− z} and the exponential loss
L (z) = e−z . Notice that soft decoding generalizes
hard decoding with L (z) = 1−sign(z)

2 .

We illustrate the entire ECC scheme in App. A.

Multiclass error upper bound. Allwein et al. (2000)
proved an insightful upper bound1 that will facilitate our
discussion throughout this paper. Let

ε , ε(M,L) = 1

m`

∑m

i=1

∑`

j=1
L (Myi,jfj (xi)) (3)

be the average binary loss of the binary predictors on a
given training set {(xi, yi)}mi=1 with respect to a codebook
M and a decoding loss L. Assume L satisfies mild con-
ditions (e.g., convexity is sufficient). Then, the multiclass
training error when decoding with L is upper bounded as:

1

m

∑m

i=1
I[yi 6= ŷ(xi)] ≤

`ε

ρL (0)
, (4)

where ρ , ρ(M) = mina 6=b
1
2 ‖Ma,:−Mb,:‖1 is the code-

book’s minimum inter-row Hamming distance (Ma,: being
the ath row of M) and L (0) is a scaling factor of L.

1Zhou et al. (2019a) derived a bound for more general N-ary
codes (where subproblems are also multiclass instead of binary),
but this remains out of our scope in this work.
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2.1 Properties of a Good Codebook

We now review favorable properties of error-correcting
codebooks. The first two properties are discussed more
often in the literature (e.g., Dietterich and Bakiri, 1994;
Zhang et al., 2003), while the latter two are seldom ad-
dressed despite their importance. In many cases improving
one property comes at the expense of another.

1. High minimum row distance ρ (between code-
words). With hard decoding (i.e., nearest neighbor),
the maximal number of prediction errors the scheme
can recover from is b(ρ− 1) /2c. Using soft decoding,
a high minimum distance is still vital for error correc-
tion, as seen from the error bound (4).

2. Low column correlation (between subproblems).
Intuitively, if two binary predictors often make errors
on the same inputs, their mistakes become twice as
hard to correct. Thus, uncorrelated columns (that yield
uncorrelated binary subproblems) are generally consid-
ered advantageous.

3. Efficient decoding algorithm. Traditionally ignored
in many ECC works, the complexity of decoding pre-
diction scores into codewords becomes essential in ex-
treme classification tasks with thousands of codewords
or more. Recently, Jasinska and Karampatziakis (2016)
and Evron et al. (2018) utilized codebooks with a spe-
cial structure to allow soft decoding using any decoding
loss in a time complexity that depends only on the code-
book width ` (which can be logarithmic in the number
of codewords K). In contrast, exact soft decoding of
arbitrary codebooks (e.g., random or optimized ones)
requires a time complexity at least linear in K.

4. Easy binary subproblems (low average loss ε). The
binary subproblems yield binary predictors with an av-
erage binary loss ε. The lower this loss is, the better the
multiclass accuracy of the scheme becomes (see (4)).
One way to lower ε is to use high-capacity base learn-
ers (e.g., kernel SVMs), but such rich models are often
prone to overfitting or require more computation.

A proper codebook design can lower ε, by making
the subproblems easier, even for low-capacity learners.
Following are design choices that can achieve this.

(a) Sparse or imbalanced codebooks. Allwein et al.
(2000) extended the ECC scheme to ternary codes
where M ∈ {−1, 0,+1}K×`. They showed that
sparse columns generalize the one-vs-one scheme
and that imbalanced columns generalize the
one-vs-all scheme. Both options can be seen as
ways to create easier subproblems at the expense
of the row distance or column correlation.
See Zhou et al. (2016) and Section 6 in Allwein
et al. (2000) for further discussion.

(b) Problem-dependent aspects. Many papers de-
sign codebooks that are specifically suitable for the
problem at hand while implicitly tuning the diffi-
culty of the binary subproblems.
Most of these works are guided by notions of class
similarity. Some try (implicitly or explicitly) to
create codebooks where similar classes have sim-
ilar codewords (e.g., Cissé et al., 2012) in order to
create easier subproblems. Others try the opposite
(e.g., Martin et al., 2017) in order to enhance error
correction between classes that are hard to sepa-
rate, at the expense of harder subproblems.
Notably, most methods balance preserving the
similarity against other codebook properties (e.g.,
the codeword distance between two very similar
classes is encouraged to be 1, whereas ρ is en-
couraged to be maximal). They create codebooks
from scratch or alter existing ones. On the other
hand, our observations next allow making pre-
defined codebooks more problem-dependent, by
simply assigning codewords to classes in an in-
formed manner, and without harming other code-
book properties which may be important.

3 CODEWORD-TO-CLASS
ASSIGNMENTS

The error-correcting scheme implicitly assigns codewords
to classes. Both during training and during decoding, we
arbitrarily assumed that the kth row in the codebook be-
longs to the kth class (see (1) and (2)). In an attempt
to show robustness to codeword-to-class assignments, Di-
etterich and Bakiri (1994) (Section 3.3.2 therein) experi-
mented on several random assignments and reported no sig-
nificant accuracy variation. However, they did not rule out
the possibility that some assignments are better than others.

We hypothesize that some assignments are significantly
better than others. We first notice that given a codebook,
different assignments induce different binary subproblems,
potentially changing their difficulty and consequently the
average binary loss ε. Next, we define a scoring function
that measures the extent to which close codewords are as-
signed to close classes. This score later helps us conclude
that similarity-preserving assignments (i.e., similar code-
words to similar classes) are preferable.

Class-codeword score. Consider a class metric in the
form of a distance matrix Dcls∈RK×K

≥0 . For instance, Dcls
can be (inversely proportional to) a symmetrized confusion
matrix, a matrix of distances between class embeddings, or
a matrix of distances between classes on a hierarchy tree.
Define the codeword distance matrix DM ∈ RK×K

≥0 where
(DM)a,b ,

1
2 ‖Ma,: −Mb,:‖1. To account for the differ-

ent scales of these matrices, we normalize them such that
‖Dcls‖F = ‖DM‖F = 1.
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Notice that an assignment corresponds to reordering, or
permuting, the rows of the codebook M using a K×K
permutation matrix P. Consequently, such an assignment
corresponds to permuting the rows and columns of the dis-
tance matrix DM.

Given a codebook M and a class metric Dcls. We assess an
assignment, or a permutation P of the rows in M, by defin-
ing the class-codeword score as the Frobenius distance be-
tween Dcls and the permuted DM:

scc (P) , ‖Dcls −DPM‖F =
∥∥Dcls −PDMP>

∥∥
F . (5)

Intuitively, an extreme case where scc (P) = 0 means that
Dcls and the permuted DM completely “agree”, i.e., similar
codewords are assigned to similar classes, and dissimilar
codewords are assigned to dissimilar classes (realistically,
given Dcls and DM, the minimum is often larger than zero).

Synthetic dataset. App. B illustrates some of the above
ideas using a synthetic dataset. For a specific code-
book, we show that only one assignment can perfectly
fit the data, while all other (K!− 1) assignments fail.
Moreover, the only successful assignment assigns similar
codewords to similar classes.

4 EXPERIMENTS

We test our hypothesis and demonstrate the validity of our
claims in two regimes. First, in Section 4.1 we run ex-
tensive experiments on small datasets and illustrate how
codeword-to-class assignments vary greatly in their accu-
racy. We show that this variation is mostly explained by
the average binary loss ε from (3) and the class-codeword
score from (5). We conclude that similarity-preserving
assignments are vital for inducing easy binary subprob-
lems. Then, in Section 4.2 we employ similarity-preserving
assignments on codebooks for extreme classification.
We show how the structure of specific predefined code-
books facilitates finding good assignments and improve
performance on datasets with up to 104K classes.

4.1 Exhaustive Experiments

Datasets. We start by testing our hypothesis on 3 small
datasets withK = 10 classes: MNIST (LeCun et al., 1998),
CIFAR-10 (Krizhevsky et al., 2009), and yeast (Dua
and Graff, 2017).

Table 1: Exhaustive Experiments’ Datasets

Dataset Area Feat. Train Test Model

MNIST Vision 784 60K 10K Linear
CIFAR-10 Vision 3,072 50K 10K Linear
yeast Life 8 1,284 200 DT

Codebooks. We experiment on 3 predefined codebooks:
Two random dense codebooks (generated like in Allwein
et al., 2000) of widths ` = 8, 15 having row distances of
ρ = 3, 5 (respectively) and a truncated Hadamard matrix
(see Hoffer et al., 2018) with ` = 15 and ρ = 8.

Experimental setup. Working with onlyK = 10 classes
allows us to extensively validate our claims on all possi-
ble K! ≈ 3.6M assignments of each combination of a
dataset and a predefined codebook. Notice that given such
a combination, we need not train K! assignments from
scratch. Instead, we train only 2K−1 = 512 binary pre-
dictors and construct every possible assignment from them.
This technique saves time and decreases the variance of the
evaluated test accuracy (details in App. C.1).

To demonstrate the flexibility of our observations, we use
two different base learners. For MNIST and CIFAR-10,
we train ` linear predictors using the (soft-margin) SVM
algorithm. For yeast, each binary predictor is a decision
tree (built by the Gini splitting criterion and a minimum of
3 samples to split a node). Hyperparameters were tuned
using cross-validation (details in App. C.2).

In the decoding step (2), we use the hinge loss, correspond-
ing also to the loss minimized by the SVM used for training
the linear base learners.

4.1.1 Variation in performance of assignments

Figure 1 illustrates the large variation in performance for
different assignments of given codebooks. For instance, in
MNIST we observe that using the random dense codebook
of width ` = 8, the worst assignment achieves ≈ 77% test
accuracy, while the best assignment achieves ≈ 88.5%.
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Figure 1: Variation of test accuracy across all 10! ≈ 3.6M
assignments of 3 codebooks on 3 datasets. Dashed lines
indicate quartiles (except where the plot is too narrow).
There is a large variation in performance across different
assignments of the same codebooks.

In all 3 datasets, the narrow (` < K) codebook exhibits
higher variation in performance. This can be explained by
the low minimum distance (ρ = 3) which does not allow
for meaningful error correction, making the average binary
loss ε a more dominant factor in performance.
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(a) Correlation between average binary (train) loss and test accuracy. Assignments that induce easier subproblems perform better.
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(b) Correlation between class-codeword score (created by confusion matrices). Similarity-preserving assignments perform better.

Figure 2: The empirical distributions of all the 3.6M assignments of the random 10 × 8 codebook on the 3 datasets.
Top: Test accuracy vs. average binary (train) loss from (3). Bottom: Test accuracy vs. the class-codeword score from (5).
Each level set contains ≈ 10% of the assignments. The 10−3 least probable assignments are scattered as individual points.
Regressors computed on all assignments are plotted in orange. Also written are the coefficients of determination (r2).

Equidistant codebooks. The low variation in the
Hadamard codebook (especially in MNIST) probably stems
from it being an equidistant codebook (every two code-
words are in the same distance from each other). In such
codebooks, the class-codeword score (5) remains constant
across all assignments (since ∀P : DM = PDMP>). This
also supports the following findings (Section 4.1.3) that the
class-codeword score is a lead factor in the observed per-
formance variation.

4.1.2 Some assignments induce easier subproblems

Figure 2a shows the correlation between the average binary
train loss ε and the test accuracy. We plot the empirical
distribution (using kernel density estimation) of all 3.6M
assignments ran on the 3 datasets using the 10×8 random
dense codebook.

For MNIST (top left), the correlation between the test ac-
curacy and ε is the highest (r2 = 0.78). The other two
datasets exhibit lower correlations, but large performance
gaps are still explained by ε which roughly quantifies the
difficulty of subproblems induced by each assignment.

We observe a similar behavior in another 10×8 codebook
and a wider 10×15 codebook as well (App. D).

The observed correlation between performance and the av-
erage binary loss ε is itself not surprising and can be ex-
pected from the error bound in (4). However, our results
stress that different assignments of the same codebook in-
duce binary subproblems of different difficulty.

4.1.3 Similarity-preserving assignments are better

We now test the effect of class similarity on an assign-
ment’s performance. We use the class-codeword score (5)
to assess how close are codewords of similar classes.

Sources of class similarity. Our class-codeword score
requires a matrix Dcls corresponding to a class metric.
Here, we use two different class metrics to strengthen our
findings. First, we use the (training) confusion matrices
of one-vs-all predictors, assuming that confusable classes
are semantically similar (a common assumption; see Zhou
et al., 2016). Then, in App. D, we use Euclidean dis-
tances between the means of raw features of each class.
App. C.3 explains how we turn a confusion matrix (a simi-
larity matrix) into a distance matrix.

Results. Figure 2b shows the correlation between our
class-codeword score and test accuracy. We use the same
random dense 10×8 codebook as before, and compute the
class-codeword score from confusion matrices (see above).

For example, the plot on the bottom-middle shows the
distribution of all 3.6M assignments ran on CIFAR-10.
On average, assigning similar codewords to similar classes
(thus minimizing the class-codeword score) improves the
test accuracy from≈29% to≈32.5%. Moreover, assigning
similar codewords to dissimilar classes evidently worsens
the performance significantly (to ≈25.5%)

We observe a similar behavior in another 10×8 codebook
and a wider 10×15 codebook as well (App. D).
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4.1.4 Summary

Some assignments of the same codebook induce much eas-
ier binary subproblems than others do. Our class-codeword
score largely explains the performance of an assignment.

Computing the class-codeword score of one assignment is
cheap and mainly requires calculating the distance between
two K × K matrices. Thus, when K = 10, exhaustively
iterating all 3.6M assignments to find the one minimizing
that score, takes only a few minutes on a single CPU. Over-
all, a similarity-preserving assignment found exhaustively
before training should yield a much better test accuracy
than a random assignment.

In App. E we show that the class-codeword score also
controls performance in a larger dataset (CIFAR-100),
where any exhaustive experiment becomes intractable. We
demonstrate that similarity-preserving assignments, origi-
nating from the distances between fastText embeddings
of class names, significantly improve performance.

4.2 Extreme Multiclass Classification (XMC)

We now utilize our understanding that similar codewords
should be assigned to similar classes on four XMC bench-
marks trained using XMC-dedicated codebooks. We show
that in the extreme regime as well — similarity-preserving
assignments are significantly better than random ones.

Datasets. We experiment on four XMC preprocessed
benchmarks – LSHTC1, LSHTC2 (Partalas et al., 2015),
aloi.bin (Rocha and Goldenstein, 2013; Yen et al.,
2016), and ODP (Bennett and Nguyen, 2009). The datasets
are described briefly below and in detail in App. F.

Table 2: Extreme Benchmarks. Further details in App. F.

Dataset Area Classes Features Similarity

aloi Vision 1K 637K Clustering
LSHTC1 Text 12K 1.2M Given
LSHTC2 Text 27K 575K Given
ODP Text 104K 423K Clustering

Sources of class similarity. For all datasets, our algo-
rithm below uses class taxonomies given in a form of a tree.
These taxonomies are either known in advance (in LSHTC1
and LSHTC2) or computed by a simple hierarchical clus-
tering algorithm on class means (in aloi.bin and ODP).
Again, using multiple sources of class similarities corrobo-
rates the soundness of our findings below.

Experimental setup. We use the code from the publicly
available repository of Evron et al. (2018) to learn using
their WLTLS codebooks. To use our similarity-preserving
codeword-to-class assignments, we edit their scripts to

allow for fixed assignments (rather than random ones).2

We also use the same learning setup — as a base learner,
we use AROW (Crammer et al., 2009), which is an online al-
gorithm for learning linear classifiers, and we also use the
exponential loss for the soft decoding step in (2). We run all
experiments sequentially on a single i7 CPU. In practice,
each binary predictor can be trained on a separate CPU.

For each dataset, we train several WLTLS codebooks of var-
ious widths `. Each codebook is learned 5 times using ran-
dom assignments and 5 times using similarity-preserving
assignments, found as described below (here, randomness
stems from shuffling the training set).

For comparison, we also train one-vs-all (OVA) models us-
ing the same base learner – AROW. Our OVA results are
better than the ones reported in Evron et al. (2018), since
we apply oversampling (Ling and Li, 1998) to overcome
the high imbalance in each OVA subproblem.

Finding similarity-preserving assignments. We exploit
the graph structure of WLTLS codebooks which embed K
codewords on source-to-target paths of a directed acyclic
graph (DAG) with exactly K such paths. Since the class
taxonomies are also DAGs, a quick-and-simple algorithm
arises for assigning similar codewords to similar classes.

Algorithm Sketch: Naive assignment for WLTLS

Input:
1. The dataset’s class taxonomy (given or learned)

2. A WLTLS coding DAG suitable for K classes

Algorithm:
1. Traverse the class tree with DFS to obtain an ordering

(a1, ... , aK) of leaves (i.e., classes);

2. Recursively iterate all K paths in the coding DAG, to ob-
tain an ordering (b1, ... , bK) of paths (i.e., codewords);

3. Assign class ai to codeword bi.

The proposed algorithm preserves similarities by assign-
ing similar classes to similar codewords. Intuitively, in
most cases classes ai and ai+1 are close on the taxonomy
and paths bi and bi+1 are similar on the codebook’s DAG.
We illustrate this algorithm in App. F.2.

Despite its simplicity, the algorithm finds assignments with
exceptionally low class-codeword scores (5) compared to
the scores of random assignments. For example, for the
smallest codebook of LSHTC1 (` = 56), random assign-
ments exhibit an average score of ŝcc≈ 0.061 with an em-
pirical standard deviation of 1.33 · 10−5; while the assign-
ment our algorithm finds has a score of scc≈0.049. That is,
compared to random assignments, our algorithm decreases
the score by more than 900 standard deviations (!).

2The updated GitHub repository is available on
https://github.com/ievron/wltls

https://github.com/ievron/wltls
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26 28 210 212 214 216

Number of binary predictors ℓ

3
5
7
9

11
13

OVA
Random assign.
Similarity assign.

Figure 3: Results on extreme datasets. We run WLTLS codebooks using different predictor numbers `. Errorbars indicate ±2 empirical
standard deviations of 5 runs). Results are available in a tabular form in App. F.3. Due to computational infeasibility, we do not report
the performance of one-vs-all (OVA) on the largest dataset (LSHTC2), but just mark its number of binary predictors instead (where
`=K). In all datasets, assigning similar codewords to similar classes significantly improves performance.

Results. Figure 3 demonstrates the advantage of
similarity-preserving codeword-to-class assignments. For
each dataset, we compare the test accuracy of random
assignments to that of similarity-preserving assignments
across various codebook widths `.

We plot the test accuracy averages of the 5 runs of
each combination of a codebook width and an assign-
ment method, accompanied by 2 empirical standard
deviations (full result tables are given in App. F.3).
In almost all cases, similarity-preserving assignments
lead to a statistically-significant improvement over ran-
dom assignments. Moreover, in 16 out of 18 cases,
similarity-preserving assignments exhibit a lower variance.
In LSHTC1 and LSHTC2, similarity-preserving assign-
ments make the codebooks competitive with OVA while
training up to 32 times fewer predictors.

In the two larger codebooks of aloi.bin, our assign-
ments do not improve much over random ones. This proba-
bly happens because when ` approaches K, the underlying
WLTLS codebooks become almost equidistant.

Summary. Similarity-preserving assignments signifi-
cantly improve codebooks dedicated to extreme classifica-
tion. By exploiting class semantics, such assignments turn
predefined codebooks with regime-specific advantages
(e.g., fast decoding algorithms) into problem-dependent
codebooks, without losing those advantages.

5 RELATED WORK

Our work is of a retrospective nature and calls for an elab-
orate discussion of its connections with decades of existing
research on error-correcting codes.

Codebooks with easy subproblems are obviously prefer-
able. Bai et al. (2016) design a codebook by selecting a
subset of the easiest columns out of all possible columns.
They exhaustively train on all these columns and select a
column subset based on the trained predictors’ accuracy.
This works well but does not scale gracefully (e.g., for
merely K = 10 classes, it requires training 2K−1 = 512
predictors). Instead, many works (including ours) exploit
extra knowledge on classes to create easy subproblems.

Codebook design methods. While we point out that
similarity-preserving assignments improve a predefined
codebook by making it problem dependent, most works try
to design the entire codebook. Given a dataset, designing
optimal codebooks is a hard problem due to their discrete
nature (Crammer and Singer, 2002). As a remedy, some
papers take greedy approaches, e.g., sequentially adding
optimized columns (Pujol et al., 2008) or solving integer
programming formulations (Gupta and Amin, 2021, 2022);
while others take approximate approaches, like solving re-
laxed continuous optimization problems (e.g., Zhang et al.,
2009; Rodrı́guez et al., 2018).

The class-similarity controversy. Many papers incor-
porate different notions of class similarity into their de-
sign process. Interestingly, some encode similar classes
with similar codewords (Zhang et al., 2009; Cissé et al.,
2012; Zhao and Xing, 2013; Zhou et al., 2016; Rodrı́guez
et al., 2018; McVay, 2020), whereas others encode simi-
lar classes with dissimilar codewords (Pujol et al., 2008;
Martin et al., 2017; Jaiswal et al., 2020; Gupta and Amin,
2021; Wan et al., 2022). For instance, Martin et al. (2017)
look for a codebook M∈{−1,+1}K×` that minimizes∥∥Dcls −MM>

∥∥2
F, while balancing against other codebook

properties. In fact, they maximize our score (5) instead of
minimizing it, since MM> = `1K×K −DM.

Existing literature on adversarial robustness has thus
far considered assigning dissimilar codewords to similar
classes (e.g., Gupta and Amin (2021); Wan et al. (2022)).
in order to improve the error-correcting capabilities be-
tween easily-confusable classes, especially in the presence
of an adversary. On the other hand, our study shows that
similarity-preserving assignments improve the separabil-
ity and classification performance in traditional settings.
An interesting future direction should be to perform ad-
equate ablation studies in the adversarial learning regime
and examine the tradeoff between separability (maxi-
mized by similarity-preserving assignments) and robust-
ness (maximized by similarity-breaking ones).

Class similarity in extreme classification (XMC).
In Section 4.2 we use a class taxonomy to improve a code-
book that requires training very few predictors compared
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to one-vs-all or hierarchical models. A closely related
work (Cissé et al., 2012) designs XMC-codebooks using a
learned class-similarity. However, their codebooks do not
allow fast decoding like the ones we use. Other related
approaches learn hierarchical models using a given (or
learned) class taxonomy, to either benefit from aO (logK)
prediction time (Bengio et al., 2010), or to alleviate the
computation of the softmax while training a deep network
(Morin and Bengio, 2005). Another approach directly
builds a codebook from a class taxonomy (Pujol et al.,
2006). However, these approaches train O (K) predictors,
implying longer training and linear space requirements.
Recently, Mittal et al. (2021) incorporated label metadata
in the training of deep extreme classification models (much
larger than the linear WLTLS models we use). Finally, Rah-
man et al. (2018) use class semantics to improve zero-shot
performance, which may be relevant to XMC tasks which
often suffer from a long tail of classes (Babbar et al., 2014),
some having few to no training examples.

Ordinal classification and regression tasks can also be
tackled with ECC. Interestingly, successful assignments
used implicitly in these areas often follow a similar rule-of-
thumb like we do – they encode target labels that are similar
(i.e., close on the real line) using similar codewords. For in-
stance, see the Unary and HEXJ codebooks in Shah et al.
(2022) (the first codebook is equivalent to the underlying
codebook in Li and Lin, 2006) or the random ordered-splits
in Huhn and Hüllermeier (2008). However, similarities in
these areas (i.e., distances on the real line) are much sim-
pler than the inter-class relations examined in our paper.

Nested dichotomies (ND) offer another reduction from
multiclass tasks to binary ones. Basically, ND models split
classes recursively in a binary hierarchical structure, where
each tree node corresponds to a binary classification sub-
problem. One could either use a single tree (Fox, 1997)
or an ensemble of trees (Frank and Kramer, 2004). The
resulting models can be seen as a special case of ECC.

Melnikov and Hüllermeier (2018) conduct an experi-
ment that is closely related to our variation demonstra-
tion in Section 4.1.1. They show that the assignment of
classes to leaves of a single ND tree greatly affects the
model’s performance, and report a high variation in the
performance of randomly-sampled NDs (the tree struc-
ture was also shown to be important in Mnih and Hin-
ton, 2008). However, their tree corresponds to a code-
book with a minimum Hamming distance of ρ = 1
(i.e., a prediction mistake in one inner node necessar-
ily results in a multiclass error). Thus, it is not im-
mediate that their findings generalize to codebooks with
higher error-correcting capabilities (like the ones we use).
Importantly, we do not only point out the performance vari-
ation of codeword-to-class assignments, but also clearly
show it is explained by class-similarity (Section 4.1.3).

Model capacity. Codeword-to-class assignments con-
trol the difficulty of the binary subproblems, which is
naturally more crucial when the base learners are weaker
(see the ε/ρ factor in (4)). Related phenomena have been
exhibited in ordinal classification (Huhn and Hüllermeier,
2008) and nested dichotomies (Melnikov and Hüllermeier,
2018) as well. In this paper, we demonstrated our find-
ings using relatively weak linear models and decision trees
over raw features (Section 4.1) and preprocessed ones (Sec-
tion 4.2; App. E).

Even high-capacity models like neural networks are likely
to favor similarity-preserving assignments. Zhai and Wu
(2019) show that a deep classification network implicitly
performs metric learning — training embeds the classes’
weight vectors in the last linear layer (preceding the soft-
max) in a way that reflects underlying class semantics (see
also Kusupati et al. (2021)). Similarity-preserving code-
books can be seen as fixing the last layer using a matrix
that already reflects such semantics at initialization (see
also Sec. 3.3 in Hoffer et al., 2018).

Notably, complex models can attain a very low aver-
age training binary loss ε such that the training error
bound (4) becomes< 1/m, implying no training mistakes.
However, this does not make assignments unimportant.
If, for example, we train and decode using an exponential
loss, then complex learners can obtain an extremely low
loss ε, but never 0. In such cases, similarity-preserving
assignments should still yield a lower ε. In turn, a lower
training loss, even when the error is already 0, is linked
to better generalization, both theoretically and practically
(e.g., Soudry et al. (2018)).

Limitations of design methods. Similarity-preserving
assignments can enhance almost any predefined codebook,
while design methods are often restricted to codebooks
with certain properties. For instance, the spectral method
(Zhang et al., 2009) creates only narrow codebooks (where
`≤K) and does not explicitly take the minimum row dis-
tance ρ into account, which may not be best suited for
small datasets (e.g., on CIFAR-10with `=8, their method
yielded two identical rows). Other methods scale poorly
with the number of classes (Bai et al., 2016; Escalera et al.,
2008). Some are more suitable for creating balanced dense
columns (Zhang et al., 2009; Rodrı́guez et al., 2018) while
others focus on sparse columns (Pujol et al., 2006).

Limitations of finding informed assignments. Design-
ing problem-dependent codebooks from scratch is natu-
rally more flexible than only assigning classes to predefined
ones. Objective scores can be optimized more freely when
the codebook itself is not fixed like in predefined code-
books. However, predefined codebooks can have favorable
properties like fast decoding algorithms, hence it is impor-
tant to be able to find informed assignments for them.
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We use our class-codeword score
∥∥Dcls−PDMP>

∥∥
F

mainly to demonstrate the superiority of similarity-
preserving assignments (Section 4.1.3). One could also
employ this score as a surrogate to control the difficulty
of subproblems, and directly minimize it on a given code-
book to find an optimal similarity-preserving assignment.
However, finding this optimum corresponds to solving a
weighted graph-matching problem, which does not have a
known efficient algorithm (Umeyama, 1988). Instead, one
could settle for assignments with a low (but possibly sub-
optimal) score. We exemplify this using a local search on
a CIFAR-100 codebook (App. E). An exception where
our score is constant and assignments are less impactful, is
in equidistant codebooks (e.g., Hadamard, OVA, OVO; see
Section 4.1.1). This suggests that equidistant codebooks
are perhaps more suitable when no class semantics are
available. They can also be expected to yield smaller varia-
tion (see Figure 1). See also James and Hastie (1998) who
linked such codebooks to Bayes optimality. As a downside,
these codebooks must be wide (` ≥ K), which is unaccept-
able in many cases such as extreme classification.

Greedy assignment policies. After submitting our pa-
per, we became aware of two recent works closely
related to ours that also improve the performance of
a given codebook using codeword-to-class assignments.
McVay (2020) exploits a sparse class-similarity matrix
to greedily assign similar codewords to similar classes.
Wan et al. (2022) employ ECC for adversarial learning,
by altering a Hadamrd codebook (to break its equidistance
property) and using a confusion matrix to greedily assign
dissimilar codewords to similar classes (in contrast to our
policy; see the discussion on this controversy above).

Both these works focus on specific greedy assignment poli-
cies for specific codebooks. We on the other hand exten-
sively test our hypotheses on many codebooks and demon-
strate the superiority of similarity-preserving assignments
over similarity-breaking ones in traditional classification
settings. We exhaustively evaluate all possible assignments
in several codebooks on three small datasets (see Figure 2
and App. D); and also evaluate different greedy assignment
policies on larger datasets (see 4.2 and App. E).

6 CONCLUSION

Codeword-to-class assignments matter because they vary
greatly in the difficulty of subproblems they induce, even
for a predefined codebook. In classification tasks (of both
small and large scales), similarity-preserving assignments
lead to easier subproblems and better generalization perfor-
mance. Predefined codebooks can be advantageous when
certain properties are crucial, e.g., specific minimum dis-
tance ρ and number of predictors `, a given sparsity level, or
an efficient decoding algorithm. Choosing an informed as-
signment according to class semantics, allows for improv-

ing predefined codebooks by making them more problem-
dependent.

Further research might discover that different usages re-
quire different assignment policies. For instance, per-
haps similarity-preserving assignments benefit generaliza-
tion, while similarity-breaking assignments benefit robust-
ness (see the discussion in Section 5).
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The Role of Codeword-to-Class Assignments in Error-Correcting Codes:
Supplementary Materials

A Error Correcting Codes: Illustration

To make our paper more approachable for readers who are less familiar with the Error-Correcting Codes scheme (Sec-
tion 2), we now present a brief illustration of the entire scheme. For further explanations, we recommend Section 3
in Allwein et al. (2000).

In this section and the next, we use a synthetic dataset with K=6 classes and m = 600 training samples (100 per class).
The dataset is illustrated in Figure 4a.

For simplicity, in Figure 4b we present a small codebook with ` = 3 columns and no redundancy. Each column of the
codebook M induces a binary subproblem. One such subproblem, corresponding to the leftmost column, is depicted in
Figure 4c and requires separating classes 1, 2, 6 from 3, 4, 5. Each binary subproblem is learned by a model of choice, e.g.,
SVM or a decision tree, yielding ` binary predictors f1, . . . , f`.
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(c) Subproblem #1

Figure 4: Given the synthetic dataset (left) and a given codebook (center), assignments vary greatly in their
accuracy (right). The best assignments achieve 100% accuracy, while the worst achieve 37.17%.

At test time, given an input x, the binary predictors output a prediction vector f(x) , [f1(x), ... , f`(x)]
>. In turn,

the final prediction is made either by thresholding f(x) and looking for the nearest neighbor (row) of the codebook
M, or by a more sophisticated decoding scheme that takes into account the prediction magnitudes as well (see (2)).
For instance, if f(x) = [0.1,−3, 2.4]>, then a hard decoding scheme, which is equivalent to nearest-neighbor decoding,
will compute sign (f(x)) = [1,−1, 1]>, and the prediction would be ŷ(x) = 4 (see the fourth row in Figure 4b).
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B Synthetic dataset

Here we illustrate the importance of codeword-to-class assignments using the synthetic dataset from the previous section
(K=6 classes,m = 600 training samples). For simplicity, we use a small codebook with `=3 columns and no redundancy.

For this codebook, only 12 out of 720 assignments can fit the data perfectly with a linear predictor. These assignments all
correspond to the same codebook (since the column order does not matter in ECC schemes and since complementary
binary partitions are equivalent). These assignments also beat one-vs-all (OVA) trained with a (tuned) linear SVM that
achieves only 89.83% (setting the Soft-SVM’s C as 0.89). Finally, the best assignments apparently preserve similarity (see
Figure 6 and compare the codewords of the neighboring classes #1 and #2 to those of #4 and #6).
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Figure 5: Given the synthetic dataset (left) and a given codebook (center), assignments vary greatly in their
accuracy (right). The best assignments achieve 100% accuracy, while the worst achieve 37.17%.

Now we illustrate why the subproblems induced by the best assignment are inherently easier than the ones induced by the
worst assignment (using the same codebook).

class 𝐌:,1 𝐌:,2 𝐌:,3

#1 -1 -1 -1

#2 -1 -1 1

#3 1 1 1

#4 1 -1 1

#5 1 1 -1

#6 -1 1 -1

(a) Assigned codebook (b) Subproblem #1 (c) Subproblem #2 (d) Subproblem #3

Figure 6: Subproblems induced by the best assignment (acc. = 100%) are linearly separable.

class 𝐌:,1 𝐌:,2 𝐌:,3

#1 -1 -1 -1

#2 -1 -1 1

#6 1 1 1

#3 1 -1 1

#4 1 1 -1

#5 -1 1 -1

(a) Assigned codebook (b) Subproblem #1 (c) Subproblem #2 (d) Subproblem #3

Figure 7: Subproblems induced by the worst assignment (acc. = 37.17%) are linearly inseparable.
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C Training details for the exhaustive experiments in Section 4.1

C.1 Evaluating all possible assignments

The exhaustive experiments require obtaining the test accuracy of every possible codeword-to-class assignment of given
codebooks. Following are the training details of our experimental setup. This exhaustive setup resembles of the setup in
Bai et al. (2016), but we use it as a means for simply showing that similar codewords should be assigned to similar classes,
while they propose it as a practical approach for small datasets (with very few classes).

The datasets used in the exhaustive experiments have K = 10 classes each. This means that each dataset has K! ≈ 3.6M
assignments. Instead of training every assignment from scratch, we notice that there are at most 2K = 1, 024 possible
binary columns with K = 10 rows. We further notice that a column M:,j and its complementary column−M:,j create the
same binary classification task (with opposite labels), thus reducing the number of possible binary partitions to 2K−1 =
512. Finally, columns consisting of only +1 (or−1) induce meaningless partitions. Hence, the number of binary partitions
we actually need to train on is 2K−1 − 1 = 511.

The aforementioned 511 columns constitute every possible codebook with K = 10 codewords. Specifically, given a
codebook, all possible assignments correspond to all possible row permutations of the codebook. Thus, instead of training
3.6M codebooks, we train only 511 columns, construct every possible assignment (permuted codebook) from the pretrained
columns, and finally, merely check the test accuracy of the resulting codebook.

Clearly, the trick above reduces the time required for our experiments (since training is much more expensive than infer-
ence). Moreover, it reduces the variation in the test accuracies stemming from the training itself, since a binary partition that
appears in multiple assignments is only trained once. This makes the observed variation in Section 4.1.1 more significant.

C.2 Hyperparameter tuning

We now explain how we train the 511 binary partitions of each dataset.

C.2.1 MNIST and CIFAR-10

For these two datasets, we use the (soft-margin) SVM algorithm (Cortes and Vapnik, 1995) as the base learner. The SVM
problem is

min
www,b

1

2
‖www‖2 + C

m∑
i=1

max{0, 1− yi(www>xxxi + b)} ,

where C > 0 is a regularization parameter that requires tuning.

To tune C, we perform 3-fold cross-validation on the training sets (only), evaluating the performance of
C ∈ {10−3, 10−2, . . . , 102, 103}. Consequently, we choose C = 10 for MNIST and C = 1 for CIFAR-10.

C.2.2 yeast

For this dataset, the base learners are decision trees with the Gini splitting criterion. Nodes are split until they are pure or
until they contain less than 3 examples. The minimum sample-number for splitting (i.e., 3) was chosen from {1, 3, 5, 7}
after we found it yielded the best validation performance.
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C.3 Building class metrics

The class-codeword score (5) described in Section 3 requires a class metric in the form of a distance matrix Dcls ∈ RK×K
≥0 .

In Section 4.1.3 we construct the aforementioned class distance matrix in two ways: (a) using a confusion matrix, and (b)
using class means (of raw features). Later in App. E, we also use word embeddings of class names. Details follow.

C.3.1 Using a confusion matrix

We use confusion matrices as a similarity measure on classes, assuming confusable classes are semantically similar. For
each dataset, we train a one-vs-all (OVA) classifier and compute its confusion matrix. For MNIST and CIFAR-10, we
compute the confusion matrix on the training set itself (since there are sufficient errors for the matrix to be informative).
For yeast, there are very few training samples and the models have a high capacity (decision trees), resulting in very few
training errors and a sparse confusion matrix. Thus, we split the training set of yeast into 8 folds. We train on one fold
and compute the confusion matrix on the other 7 folds. Finally, we sum the 8 resulting confusion matrices.

Each confusion matrix Ccls is an asymmetric similarity matrix (where the sum of all entries is 1), while we require Dcls to
be a symmetric distance matrix. At first, we considered using

A , 111K×K −
1

2

(
Ccls +C>cls

)
, (6)

which is a symmetric dissimilarity measure as required. However, since the entries of Ccls are often very close to 0, the
above transformation yields a matrix that is very close to a rank-one matrix which is substantially different from DM (the
eigenvalue analysis in (Umeyama, 1988) shows why this is problematic).

To induce reasonable spectra, we used the following matrix (simpler matrices yield mostly similar results in our experi-
ments):

∀i : Di,i = 0,

∀i 6= j : Di,j = log (Ai,j)− 1.1 min
i′ 6=j′

log (Ai′,j′) ,
(7)

which yields a symmetric dissimilarity matrix, with a vast spectrum of eigenvalues, as depicted below. In practice, the
Dcls matrices stemming from the above approach are very informative and create valuable class-codeword scores which
are highly correlated with the test accuracy (see Section 4.1.3).

Figure 8: The class metric matrix Dcls
of MNIST, constructed from the confusion
matrix as described above. Notice how
this matrix quantifies visual class seman-
tics (similarities). For instance, see how 4
has a small distance from 9 and how 3 is
close to 2, 5, 8, etc.
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C.3.2 Using class means of raw features

For each dataset, we embed each class in a high-dimensional Euclidean space by computing the means of the raw features
of all training samples of that class. Then, we set Dcls as the matrix of Euclidean distances between these embeddings.
The resulting matrices are symmetric and the class-codeword scores stemming from them are informative, as seen from
the apparent correlations to the test accuracy (see App. D).

Importantly, these embeddings do not require actually training other models (unlike confusion matrices). Moreover, since
we use simple base learner (e.g., linear models), one should expect that similarity-preserving assignments according to
the proposed Dcls will “concentrate” the samples of each binary class in each of the induced binary subproblems in the
Euclidean space, thus creating easier subproblems.

Figure 9: The class metric matrix Dcls
of MNIST, constructed from the class raw
feature means as described above. Notice
how this matrix quantifies visual class se-
mantics (similarities) as well, and how it
resembles the metric created from the con-
fusion matrix (Figure 8).
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D All correlation graphs for the exhaustive experiments in Section 4.1

Now we show similar results and correlations to the ones shown in Section 4.1 for additional two codebooks —
Random dense 10× 15 and Spectral 10× 8 (built using the method from Zhang et al., 2009). Moreover, we also re-
port results using class-codeword scores stemming from the means of the raw features of each class rather than confusion
matrices (see App. C.3.2).

Our observations and findings evidently apply to many codebooks and class metrics (see App. E for an additional metric).

How to understand the plots? Each level set contains≈10% of all possible 3.6M assignments. The 10−3 least probable
assignments are scattered as individual points. Regressors computed on all assignments are plotted in orange. Also written
are the coefficients of determination (r2).

D.1 MNIST

In MNIST, the average binary loss ε is highly correlated with the test accuracy for the three tested codebooks. Our method
for constructing Dcls from confusion matrices (described in App. C.3.1) yields class-codeword scores that are correlated
to the test accuracy (but less than the average binary loss). Finally, the class-codeword scores stemming from the means of
the raw features (see App. C.3.2) are the least correlated to the test accuracy, but are still informative.

Figure 10: Test accuracy vs. Average binary loss in MNIST.

Figure 11: Test accuracy vs. Class-codeword scores in MNIST, using the confusion matrix to construct Dcls.

Figure 12: Test accuracy vs. Class-codeword scores in MNIST, using class (feature) means to construct Dcls.
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D.2 CIFAR-10

In CIFAR-10, the test accuracy is less correlated to the average binary loss compared to the correlation in MNIST.
However, the class-codeword scores computed using the confusion matrices are very informative (sometimes even compa-
rable with the average binary loss). The class means are again slightly less informative than the confusion matrices.

Figure 13: Test accuracy vs. Average binary loss in CIFAR-10.

Figure 14: Test accuracy vs. Class-codeword scores in CIFAR-10, using the confusion matrix to construct Dcls.

Figure 15: Test accuracy vs. Class-codeword scores in CIFAR-10, using class (feature) means to construct Dcls.
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D.3 yeast

yeast exhibits the worst correlations among the three datasets, but the assignments still evidently vary, and their accuracy
is mildly controlled by the class-codeword scores. One should also notice that this dataset is much smaller than the other
two (in both the number of training examples and number of features, see Table 1), which might explain the larger variation
and lower correlations it exhibits.

Figure 16: Test accuracy vs. Average binary loss in yeast.

Figure 17: Test accuracy vs. Class-codeword scores in yeast, using the confusion matrix to construct Dcls.
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E Intermediate scale: CIFAR-100

In this section, we use CIFAR-100 (Krizhevsky et al., 2009) that have K = 100 classes to demonstrate that the class-
codeword score is correlated with the test accuracy in a larger dataset than the ones we use in Section 4.1. Moreover,
we show that as we discuss in Section 5, the class-codeword score (5) can also be used to efficiently find a similarity-
preserving assignment in practice. So far in our other experiments in Section 4, we did not explicitly use the score to
find good assignments. In the small-scale experiments in Section 4.1, we exhaustively computed the test accuracy of all
K! possible assignments to empirically prove the correlation to the class-codeword score. In the extreme experiments in
Section 4.2, we employed a special structure of the WLTLS codebooks and the class taxonomy of the extreme datasets we
used (but the class-codeword score was not explicitly minimized). Here on the other hand, given a codebook and a general
class metric (not in a tree structure), we explicitly minimize the class-codeword score using a local search algorithm to
obtain a similarity-preserving assignment.

Figure 18: Results on a Dense 10 × 20 codebook for CIFAR-100. On top is the empirical
marginal distribution of class-codeword scores of random assignments. The class-codeword score
is clearly correlated with the test accuracy. The local search algorithm finds similarity-preserving
assignments that significantly improve on random assignments. Further discussion below.

Codebook. For this experiment, we use a 100 × 20 random dense codebook. Like Allwein et al. (2000), we choose
the random codebook by randomizing 104 dense codebooks and taking the codebook with the largest minimal Hamming
distance ρ.

Feature extraction. We use a simple publicly available pretrained convolutional neural network3 for feature extraction.
This allows us to train, like before, simple linear predictors on top of the extracted features.

Class metric. As a metric between classes, we use the Euclidean distances between word embeddings of class names.
Specifically, we use a publicly available fastText (Bojanowski et al., 2016) model, pretrained on Common Crawl
and Wikipedia. These embeddings serve as a cheap heuristic of a semantic metric between classes, which can possibly
approximate the visual class similarity. Class names’ embeddings were previously used for computer vision tasks (e.g., for
few-shot learning; Xing et al., 2019). We use this semantic metric since it can very easily be acquired in many real-world
scenarios where classes have known names. Note that any other metric between classes should work here since this is
already the third class-(dis)similarity measure we explore in the paper (together with confusion matrices and class means;
see App. C.3).

3https://github.com/aaron-xichen/pytorch-playground/

https://github.com/aaron-xichen/pytorch-playground/
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Optimizing the class-codeword score (Steepest descent hill-“climbing” local search). Given a codebook and a dataset,
finding a class assignment (out of 100! ≈ 9.33 · 10157 assignments) with a low class-codeword score is a hard task (see
discussion in Section 5). However, we are able to find assignments with a low class-codeword score by performing a simple
(discrete) steepest descent algorithm.4 This allows us to quickly find many assignments that are more than 10 standard
deviations (!) farther from the mean class-codeword score.

Comparing different assignments. We train the scheme on the following codeword-to-class assignments:

1. 10 random assignments;

2. 10 similarity-preserving assignments (i.e., having a low class-codeword score), found by using 10 random restarts of
steepest descent;

3. 10 similarity-breaking assignments (i.e., having a high class-codeword score), found similarly using steepest ascent.

All 30 assignments are learned separately, and their test accuracy is plotted in the above Figure 18 against their class-
codeword score.

Discussing Figure 18. The figure demonstrates how similarity-preserving assignments significantly improve the perfor-
mance of a predefined codebook on intermediate scales of K as well. The distribution on top of the plot is the empirical
marginal distribution of class-codeword scores of random assignments. Note that the assignments found by the local search
algorithms could not have been found by simply sampling assignments.

We obviously cannot run an exhaustive search on the entire 100! possible assignments in order to test the correlation, but
these 30 assignments agree with our empirical findings from Section 4.1.3 that a lower class-codeword score implies better
multiclass performance.

4Start from a random assignment. Search all
(
K
2

)
= 4, 950 assignments obtained by swapping the codewords of two classes only.

Pick the assignment with the lowest class-codeword score and repeat until convergence.
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F Supplementary material for the extreme classification (XMC) experiments in Section 4.2

F.1 Extended dataset descriptions

The dataset properties are brought in the table below.

Table 3: Extreme Benchmarks’ Extended Properties.

Split Details WLTLS Arguments

Dataset Area Classes Features Train Val. Test Epochs Early Stop. Similarity

aloi Vision 1K 637K 90K 10K 8K 8 Yes Clustering
LSHTC1 Text 12K 1.2M 83.8K 5K 5K 5 Yes Given
LSHTC2 Text 27K 575K 330K 15K 39.2K 3 Yes Given
ODP Text 104K 423K 867K - 493K 5 No Clustering

Now we elaborate on these benchmarks for the sake of completeness and reproducibility.

aloi.bin (Rocha and Goldenstein, 2013). Downloaded from the PD-Sparse (Yen et al., 2016) repository.5 The dataset
was created by applying Random Binning Features (Rahimi and Recht, 2007) on the images of the original aloi dataset.
See Yen et al. (2016) for more details.

LSHTC1 (Partalas et al., 2015). Also called LSHTC2010 or Dmoz2010. Downloaded from the PD-Sparse repository.5

LSHTC2 (Partalas et al., 2015). Also called LSHTC2011 or Dmoz2011. Originally this is not a multi-class dataset but
a multi-label dataset. However, only 11,121 out of 394,756 training samples have more than one label. We thus remove
these samples and randomly split the remaining 384K samples into train, validation, and test sets. A similar process was
used to create the more common XMC dataset Dmoz (used for example in Yen et al., 2016; Evron et al., 2018). However,
the leaves of LSHTC2 were merged to create Dmoz, and so it has only 12K labels instead of 27K like in the dataset we use.

ODP (Bennett and Nguyen, 2009). Downloaded from the Vowpal Wabbit repository.6 Only 867K out of 1.08M training
samples and 394K out of 493K test samples are non-empty. We remove the empty training samples but keep the empty test
samples.

5https://github.com/a061105/ExtremeMulticlass
6https://github.com/VowpalWabbit/vowpal_wabbit/tree/master/demo/recall_tree

https://github.com/a061105/ExtremeMulticlass
https://github.com/VowpalWabbit/vowpal_wabbit/tree/master/demo/recall_tree


The Role of Codeword-to-Class Assignments in Error Correcting Codes: An Empirical Study

F.2 Additional algorithmic details for the naive assignment algorithm

We will now illustrate more thoroughly the assignment algorithm described in Section 4.2 and how it yields similarity-
preserving assignments.

Understanding the coding graphs of WLTLS. On the left side of the figure, we illustrate the coding graph used in
WLTLS (Evron et al., 2018) for K=8 classes. The graph induces an error-correcting codebook as follows:

1. Each source-sink path in the graph corresponds to one class (notice that there are 8 such paths).

2. Each edge in the graph corresponds to one column (i.e., bit) in the codebook. That is, each edge induces one binary
subproblem, separating the paths (classes) that use this edge from the ones that do not.

Overall, we see in the center of the figure that each path corresponds to a codeword whose +1 bits correspond to the edges
used in the path.

Edge idx 1 2 3 4 5 6 7 8 9 10

Path 𝑏1 1 1 1

Path 𝑏2 1 1 1

Path 𝑏3 1 1 1

Path 𝑏4 1 1 1

Path 𝑏5 1 1 1

Path 𝑏6 1 1 1

Path 𝑏8 1 1 1

Path 𝑏7 1 1 1

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

𝑎8

Class taxonomyCorresponding codewordsCoding paths

Understanding the assignment algorithm. We explain the algorithm according to its original steps:

1. Given some class taxonomy (either known-in-advance or computed by hierarchical clustering for instance), the algo-
rithm traverses the taxonomy to obtain an ordering (a1, ... , aK) of leaves (classes). Notice that in most cases, classes
ai and ai+1 should be close on the taxonomy (i.e.,, these classes should be similar). See the right side of the figure.

2. Then, the algorithm recursively traverses the coding path (starting from the source; each node is visited many times)
to obtain an ordering (b1, ... , bK) of paths. Due to the recursion, in most cases, paths bi and bi+1 should be similar in
edges (i.e.,, their codewords should be close). See the left and center sides of the figure.

3. Finally, since classes ai and ai+1 should be similar and so should codewords bi and bi+1, then by assigning class ai to
codeword bi, we create a similarity-preserving assignment.

Like we explain in Section 4.2, despite its simplicity, the illustrated algorithm succeeds in creating similarity-preserving
assignments. For instance, in LSHTC1 with ` = 56 edges, the algorithm found an assignment whose class-codeword score
improves over the average score of random assignments by more than 900 standard deviations. Importantly, in all datasets,
the multiclass accuracy significantly improves by using assignments found by the algorithm.
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F.3 Tabular results

Here we summarize the extreme classification experiments of Section 4.2. For both datasets, similarity-preserving assign-
ments consistently and significantly beat the random assignments. For all datasets, the accuracies are averaged over 5 runs.
Two empirical standard deviations (of the runs, not their means) are reported as well.

F.3.1 aloi.bin results of Figure 3a

Assignment method ` = 42 (b = 2) ` = 55 (b = 3) ` = 74 (b = 4) ` = 89 (b = 5) ` = 221 (b = 10)

Random 84.86± 0.41 89.14± 0.39 91.77± 0.32 92.54± 0.17 94.89± 0.16

Similarity preserving 87.35± 0.35 90.40± 0.09 92.66± 0.17 92.73± 0.12 95.26± 0.09

Table 4: Test accuracy (%) for different codebook widths ` (or WLTLS graph widths b) on aloi.bin (K = 12, 294).
One-vs-all achieves 95.9% with ` = K = 1, 000 binary predictors.
Similarity-preserving assignments significantly improve the test performance compared to random assignments.

F.3.2 LSHTC1 results of Figure 3b

Assignment method ` = 56 (b = 2) ` = 79 (b = 3) ` = 138 (b = 5) ` = 338 (b = 10) ` = 879 (b = 20)

Random 10.17± 0.71 13.33± 0.71 16.75± 0.69 20.50± 0.73 21.95± 0.55

Similarity preserving 13.19± 0.15 16.62± 0.25 19.22± 0.08 22.64± 0.16 23.82± 0.19

Table 5: Test accuracy (%) for different codebook widths ` (or WLTLS graph widths b) on LSHTC1 (K = 12, 294).
One-vs-all achieves 23.3% with ` = K = 12, 294 binary predictors.
Similarity-preserving assignments beat OVA with only 879 binary predictors (×14 less).

F.3.3 LSHTC2 results of Figure 3c

Assignment method ` = 62 (b = 2) ` = 86 (b = 3) ` = 151 (b = 5) ` = 351 (b = 10) ` = 904 (b = 20)

Random 11.34± 0.33 14.18± 0.11 17.39± 0.44 21.97± 0.46 26.06± 0.23

Similarity preserving 13.77± 0.12 17.24± 0.28 20.54± 0.45 24.84± 0.31 28.31± 0.09

Table 6: Test accuracy (%) for different codebook widths ` (or WLTLS graph widths b) on LSHTC2 (K = 27, 840).
One-vs-all achieves 27.88% with ` = K = 27, 840 binary predictors.
Similarity-preserving assignments beat OVA with only 904 binary predictors (×30.8 less).

F.3.4 ODP results of Figure 3d

Assignment method ` = 72 (b = 2) ` = 299 (b = 8) ` = 752 (b = 15)

Random 2.71± 0.09 9.05± 0.03 11.71± 0.47

Similarity preserving 4.27± 0.02 10.45± 0.08 12.69± 0.04

Table 7: Test accuracy (%) for different codebook widths ` (or WLTLS graph widths b) on ODP (K = 104, 136).
Training a one-vs-all model for 104K classes on 423K features is too costly, hence we do not report its performance
for this dataset.
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