
A Bregman Divergence View on the Difference-of-Convex Algorithm

Oisı́n Faust Hamza Fawzi James Saunderson
University of Cambridge University of Cambridge Monash University

Abstract

The difference-of-convex (DC) algorithm is
a conceptually simple method for the mini-
mization of (non)convex functions that are ex-
pressed as the difference of two convex func-
tions. An attractive feature of the algorithm
is that it maintains a global overestimator on
the function and does not require a choice of
step size at each iteration. By adopting a Breg-
man divergence point of view, we simplify
and strengthen many existing non-asymptotic
convergence guarantees for the DC algorithm.
We further present several sufficient conditions
that ensure a linear convergence rate, namely
a new DC Polyak-Łojasiewicz condition, as
well as a relative strong convexity assump-
tion. Importantly, our conditions do not require
smoothness of the objective function. We il-
lustrate our results on a family of minimiza-
tion problems involving the quantum relative
entropy, with applications in quantum informa-
tion theory.

1 INTRODUCTION

Consider an optimization problem

min
x∈Rn

F (x) (1)

where the function F can be expressed as a difference of
two convex functions f1 and f2, namely

F (x) = f1(x)− f2(x). (2)

(Although the formulation (1) does not explicitly impose
constraints on the decision variable, it can model prob-
lems with convex constraints by allowing f1 to take the
value +∞ outside of a convex set dom f1 ⊆ Rn.)
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A popular algorithm for solving such a problem is the
DC algorithm, or DCA (Le Thi and Pham Dinh, 2018),
which replaces f2 by its linear approximation at each it-
eration, assuming f2 is differentiable:

xk+1 ∈ argmin
x∈int dom f2

f1(x)−[f2(xk)+〈∇f2(xk), x−xk〉].

(3)
This algorithm is sometimes also called the Convex-
Concave procedure, or CCCP (Yuille and Rangarajan,
2001). An attractive feature of the algorithm is that
it maintains a global overestimator on the function and
does not require a choice of step size at each iteration.

It is easy to see that the sequence of function values
(F (xk)) is monotonically nonincreasing. Furthermore,
assuming both f1 and f2 are differentiable, it has been
shown (Tao and An, 1997) that if (xk) is bounded, then
any of its limit points is a critical point for F , and the rate
of convergence of min

0≤k≤N
‖∇F (xk)‖2 is O(1/

√
N). A

linear rate of convergence under a Łojasiewicz gradient
inequality has also been obtained in Le Thi et al. (2018).

1.1 Contributions

In this paper we consider the DC algorithm from the
point of view of Bregman divergences. The main obser-
vation for this paper is that the DCA can be interpreted as
the Bregman proximal point algorithm (Bregman PPA),
with Bregman divergence associated to f2, namely

Df2(x|y) = f2(x)− (f2(y) + 〈∇f2(y), x− y〉).

This equivalence is reviewed in Section 2.3. This obser-
vation allows us to rederive and strengthen in a simpli-
fied way many existing convergence results for DCA. In
particular it points out that a natural metric to measure
convergence of the algorithm is the Bregman divergence
Df2 . All our convergence results involve this divergence,
and existing results in the literature which are phrased
in terms of the Euclidean metric follow by imposing a
smoothness or strong convexity assumption on f2.

In Section 3 we consider the case where the DC func-
tion F is convex. Surprisingly, we are not aware of
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any prior result on the convergence rate of the DCA in
the convex case. This is perhaps due to the existence
of algorithms, such as the subgradient method, specifi-
cally designed for minimising nonsmooth convex func-
tions. However, all global convergence guarantees for
the subgradient method require F to be Lipschitz, and
even then convergence can be no better than O(1/

√
k).

On the other hand, when a DC decomposition (2) exists
for which the DCA iterates can be computed, the DCA
can perform much better. We offer two results in this di-
rection. The first is an O(1/k) convergence rate taken
directly from the Bregman proximal point literature (and
which does not require F to be Lipschitz). The second
is a global linear convergence result which holds under a
strong relative convexity assumption. The corresponding
Bregman PPA result (Proposition 1) appears to be new.

In the nonconvex setting, we show in Section 4 how some
nonasymptotic convergence results from the DCA liter-
ature can be recovered very naturally from the Bregman
viewpoint. In some cases, we obtain improved results.
We also introduce the notion of DC PL inequalities, and
show that they imply linear convergence of the DCA.
These inequalities are related to work of Bauschke et al.
(2019) concerning the mirror descent algorithm.

In Section 5, we illustrate our results with the problem of
computing the conjugate function and proximal operator
of the quantum conditional entropy function which has
applications in quantum information theory and quantum
statistical mechanics.

2 PRELIMINARIES

After reviewing some terminology from convex analy-
sis and the main technical assumptions throughout the
paper, we present the equivalence between the DC algo-
rithm and the Bregman proximal point algorithm.

2.1 Convex analysis

Define R = R∪{+∞}. The domain of a convex function
f : Rn → R is dom f = {x ∈ Rn | f(x) < ∞}.
The function f is closed if each of its sublevel sets, {x |
f(x) ≤ t} for t ∈ R, is closed. The subdifferential of a
convex function f : Rn → R at x ∈ Rn is given by

∂f(x) = {v ∈ Rn | f(y) ≥ f(x)+〈v, y−x〉 ∀y ∈ Rn}.

Given a subset C ⊂ Rn, the indicator function of C is
the function Rn → R

ιC(x) =

{
0 x ∈ C
+∞ otherwise.

If f is a convex function whose domain has nonempty
interior, and which is differentiable in the interior of its
domain, the Bregman divergence associated to f is

Df (x|y) := f(x)− f(y)− 〈∇f(y), x− y〉.

Bregman divergences are nonnegative on dom f ×
int dom f and are convex in the first variable. When f is
not differentiable, we can extend the notion of Bregman
divergence by replacing∇f(y) by any v ∈ ∂f(y),

Dv
f (x|y) = f(x)− f(y)− 〈v, x− y〉. (4)

Recall that for f : Rn → R, its convex conjugate is
f∗ : Rn → R and defined by

f∗(v) = sup
x
〈v, x〉 − f(x). (5)

A function f is L-smooth w.r.t. ‖ · ‖ if ‖∇f(x) −
∇f(y)‖∗ ≤ L‖x − y‖ holds for all x, y ∈ int dom f ,
and where ‖ · ‖∗ is the dual norm. Also, f is µ-strongly
convex w.r.t. ‖ · ‖ if Dv

f (x|y) ≥ (µ/2)‖x − y‖2 for all
x, y and v ∈ ∂f(y). If f is µ-strongly convex w.r.t. ‖ · ‖
then the conjugate f∗ is 1/µ-smooth w.r.t. the dual norm
‖ · ‖∗, see e.g. (Beck, 2017, Chapter 5).

Finally we recall the notions of relative smoothness and
relative strong convexity as introduced in Bauschke et al.
(2017); Lu et al. (2018). Given a convex function g, we
say that f is L-smooth with respect to g if Lg − f is
convex. Furthermore, we say that f is µ-strongly convex
relative to g if f −µg is convex. The standard Euclidean
notions of smoothness and strong convexity are obtained
in the special case g(x) = ‖x‖22/2.

2.2 Running Assumptions

Consider a DC function F = f1 − f2 where f1, f2 :
Rn → R. Throughout, we make the following technical
assumptions on f1 and f2. These ensure that the min-
imization problem for F is well-defined and that DCA
iterates exist for all k:

1. ∅ 6= dom f1 ⊆ dom f2,

2. F is bounded below on Rn, and F (x) = +∞ for
x /∈ dom f2,

3. dom f1 ∩ int dom f2 6= ∅,

4. f2 is differentiable on int dom f2,

5. {∇f2(x) | x ∈ int dom f2} ⊆
⋃

x∈int dom f2

∂f1(x).

Note that the final assumption ensures that iterates xk

satisfying (3) exist for all k ∈ N, given x0 ∈ int dom f2.
Indeed, (3) is equivalent to xk+1 ∈ int dom f2 and

∂f1(xk+1) 3 ∇f2(xk). (6)
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2.3 DCA Is the Bregman Proximal Point Algorithm

Consider the problem of minimizing F over Rn. Let g be
a convex function which is differentiable in the interior of
its domain, assumed nonempty. The Bregman proximal
point algorithm (Bregman PPA) with respect to g is the
iterative scheme:

xk+1 ∈ arg min
x∈int dom g

{
F (x) + t−1k Dg(x|xk)

}
, (7)

where tk > 0 for each k, given an initial x0 ∈ int dom g.

Assuming F = f1− f2, if we choose g = f2 and tk = 1
for all k then the update is

xk+1 ∈ arg min
x
f1(x)− f2(x) +Df2(x|xk)

= arg min
x
f1(x)− [f2(xk) + 〈∇f2(xk), x− xk〉]

which is exactly the DC algorithm (3).
Remark 1. When f1 (in addition to f2) is differentiable,
it can be shown that the DCA is also equivalent to mirror
descent with Bregman divergence generated by f1. Mir-
ror descent replaces (7) by

xk+1 ∈ arg min
x
{〈∇F (xk), x〉+ t−1k Dg(x|xk)}. (8)

We recover DCA by setting tk ≡ 1 and g = f1. (Recall:
to recover DCA from the Bregman PPA, we set g = f2.)
The DC decomposition F = f1 − f2 guarantees that F
is 1-smooth relative to f1, i.e. f1 − F is convex. Mir-
ror descent has been studied in the context of relative
smoothness by Bauschke et al. (2017); Lu et al. (2018).
We stress that the Bregman PPA view is more general,
since it does not require f1 to be differentiable.

3 DCA GUARANTEES FOR CONVEX
DC FUNCTIONS

In this section we assume that the function F is closed
and convex. It is known that the iterates (7) of the Breg-
man proximal point algorithm for a convex function F ,
with respect to the divergence Dg satisfy (see, e.g., Cen-
sor and Zenios (1992); Chen and Teboulle (1993)){

F (xk+1)− F (x∗) ≤ 1∑k
i=0 ti

Dg(x
∗|x0)

Dg(x
∗|xk+1) ≤ Dg(x

∗|xk).

for any k ≥ 0, and any x∗ a minimizer of F . Applied to
the DC setting, we immediately obtain
Corollary 1. Suppose F = f1−f2 is closed and convex,
and let x∗ be a minimizer of F . The DCA iterates (3) for
F satisfy

F (xk)− F (x∗) ≤ 1
kDf2(x∗|x0)

Df2(x∗|xk+1) ≤ Df2(x∗|xk).

The following proposition shows that if F is relatively
strongly convex with respect to f2, then the DCA iter-
ates enjoy a linear rate of convergence. As far as we are
aware, this result has not appeared before in the literature
on the Bregman proximal point algorithm.

Since it is not clear what (F − µf2)(x) means for points
x /∈ dom f2 (and hence also x /∈ domF ), we define rela-
tive strong convexity as the existence of a decomposition
F = h+ µf2, where h : Rn → R is convex.

Proposition 1. Suppose that F is µ-relatively strongly
convex with respect to f2, i.e., F = f1 − f2 = h + µf2,
for some µ ≥ 0 and convex function h. Let x∗ be a
minimizer of F . Then the iterates of the DCA satisfy

Df2(x∗|xk+1) ≤ (1 + µ)−1Df2(x∗|xk).

Proof. We begin by lower bounding the progress of the
iterates towards x∗ as

Df2(x∗|xk)−Df2(x∗|xk+1)

= f2(xk+1)− f2(xk) + 〈∇f2(xk+1), x∗ − xk+1〉
− 〈∇f2(xk), x∗ − xk〉

= Df2(xk+1|xk) + 〈x∗ − xk+1,∇f2(xk+1)−∇f2(xk)〉
≥ 〈xk+1 − x∗,∇f2(xk)−∇f2(xk+1)〉

where the last inequality holds because f2 is convex.

Note that, since F = h + µf2, necessarily domF ⊆
domh. Therefore int dom f2 ∩ domh 6= ∅, so by the
Moreau-Rockafellar theorem (Mordukhovich and Nam,
2013, Corollary 2.45), ∂F (x) = ∂h(x)+µ∇f2(x) holds
for any x ∈ int dom f2. Let vk+1 ∈ ∂F (xk+1) be any
element of the subgradient of F at xk+1. Then

〈xk+1 − x∗, vk+1〉 ≥ µ〈xk+1 − x∗,∇f2(xk+1)〉
+ (F − µf2)(xk+1)− (F − µf2)(x∗)

= µDf2(x∗|xk+1) + F (xk+1)− F (x∗)

≥ µDf2(x∗|xk+1).

The first inequality holds because vk+1−µ∇f2(xk+1) ∈
∂h(xk+1). The second inequality holds because x∗ is a
minimizer of F . The iterates of the DCA satisfy

∇f2(xk) ∈ ∂(F+f2)(xk+1) = ∂F (xk+1)+∇f2(xk+1),

where the equality holds because ∅ 6= domF ∩
int dom f2. Putting these observations together gives

Df2(x∗|xk)−Df2(x∗|xk+1)

≥ 〈xk+1 − x∗,∇f2(xk)−∇f2(xk+1)〉
≥ µDf2(x∗|xk+1)

from which the result follows.
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Iterating this result and combining with the fact that

F (xk+1) +Df2(xk+1|xk) ≤ F (x∗) +Df2(x∗|xk),

we obtain the following corollary.
Corollary 2. Suppose that F = f1 − f2 is µ-strongly
convex relative to f2. Let x∗ be a minimizer of F . Then
the DCA iterates for (1) satisfy

F (xk+1)−F (x∗) ≤ Df2(x∗|xk) ≤ (1+µ)−kDf2(x∗|x0).

Remark 2. It is known (Lu et al., 2018, Theorem 3.1)
that relative strong convexity (i.e., F − mg is convex)
and relative smoothness (i.e., Lg − F is convex) condi-
tions for L ≥ m > 0 are enough to guarantee a global
linear convergence rate of 1 − m

L for mirror descent (8)
w.r.t. Df1(x∗|xk). Interpreting the DCA as mirror de-
scent, as in Remark 1, this implies that if F − mf1 is
convex, then the DCA has a linear rate of convergence of
1 −m (recall that F is 1-relatively smooth with respect
to f1). Since F = f1 − f2, the condition that F −mf1
is convex is the same as F − µf2 being convex with
(1 + µ)−1 = 1−m. This is precisely the rate of conver-
gence in Proposition 1. However, Proposition 1 guaran-
tees linear convergence w.r.t. Df2 , not Df1 , which may
be advantageous if Df2(x∗|x0)� Df1(x∗|x0). Another
advantage of Proposition 1 is that it does not require dif-
ferentiability of f1.

3.1 Linear Convergence Via Local Relative Strong
Convexity

In many practical examples, linear convergence in Breg-
man divergence Df2(x∗|xk) is observed even when the
function F−εf2 is nonconvex for every ε > 0. As stated,
Proposition 1 is insufficient to explain this behaviour. To
rectify the situation, we propose the following general-
ization of Proposition 1.
Proposition 2. Let S be a convex set containing the sub-
level set {x | F (x) ≤ F (x0)}. Suppose that F is µ-
strongly convex relative to f2 on S, in the sense that
F + ιS ≡ h+ µf2 for some convex function h and some
µ ≥ 0. Let x∗ be a minimizer of F . Then F (xk+1) −
F (x∗) ≤ Df2(x∗|xk) ≤ (1 + µ)−1Df2(x∗|x0).

Proof. See Appendix A.1.

4 DCA GUARANTEES FOR
NONCONVEX DC FUNCTIONS

This section begins with a collection of existing conver-
gence rate results for the DCA in the nonconvex setting.
We then prove Theorem 5, which can be used to recover
(and sometimes improve) these existing results. Finally,
we present some theory concerning linear convergence
in the nonconvex setting.

4.1 Existing Guarantees on DCA

Throughout this subsection, let

F∗ := inf
x∈Rn

F (x).

We outline below some of the existing convergence re-
sults for the DCA. The first guarantee on the convergence
of DCA appears in (Tao and An, 1997, Proposition 2).

Theorem 1 ((Tao and An, 1997, Proposition 2)). Con-
sider DCA applied to F (x) = f1(x) − f2(x), where
f1, f2 are convex. Let µ1, µ2 ≥ 0 such that fi −
(µi/2)‖·‖22 are convex, and assume that µ1 + µ2 > 0.
Then after N iterations of DCA, we have

min
0≤k≤N−1

‖xk+1 − xk‖22 ≤
2(F (x0)− F∗)

(µ1 + µ2)N
. (9)

When f1 and f2 are smooth, a guarantee on the mag-
nitude of the gradient is given in Corollary 3.1 of Ab-
baszadehpeivasti et al. (2021):

Theorem 2 ((Abbaszadehpeivasti et al., 2021, Corol-
lary 3.1)). Consider the DCA applied to F (x) =
f1(x) − f2(x), where f1, f2 are convex and differen-
tiable. Assume that ∇f1 and ∇f2 are respectively
L1, L2-Lipschitz. Then

min
0≤k≤N

‖∇F (xk)‖22 ≤
2L1L2(F (x0)− F∗)

(L1 + L2)N + max(L1, L2)
.

(10)

The following guarantee is from Corollary 3.2 of Yurt-
sever and Sra (2022), where it was proved by reducing
DCA to the Frank-Wolfe algorithm. Note that it requires
neither smoothness nor strong convexity of F .

Theorem 3. Consider DCA applied to F (x) = f1(x)−
f2(x) where f1, f2 are convex and f2 is differentiable.
Let xk be the sequence of iterates. Then for any N ≥ 1
there exists 0 ≤ k < N such that

f1(xk)− f1(x)− 〈∇f2(xk), xk − x〉 ≤ F (x0)− F∗
N

for all x.

Remark 3. The quantity appearing on the left-hand side
is reminiscent of a Bregman divergence. In fact, it is a
Bregman divergence if ∇f2(xk) ∈ ∂f1(x). Later, we
will prove Theorem 5, a result which is stated naturally
in terms of Bregman divergences and which is stronger
than Theorem 3. This is evidence that the Bregman PPA
view of the DCA is both natural and powerful.

Abbaszadehpeivasti et al. (2021) show, in Theorem 5.1
of their paper, that a Polyak-Łojasiewicz type inequality
implies linear convergence. For ease of exposition we
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state the result when both f1 and f2 are smooth, although
their result requires only one of them to be smooth. See
also Le Thi et al. (2018) for a similar result, but which
also assumes strong convexity.
Theorem 4. Suppose that f1, f2 are L1, L2 smooth on
Rn. Suppose also that for some µ > 0, the PL inequality

1
2‖∇F (x)‖22 ≥ µ (F (x)− F∗)

holds on {x | F (x) ≤ F (x0)}. Then for all k ≥ 0

F (xk+1)− F∗ ≤
(

1− µ/L1

1 + µ/L2

)(
F (xk)− F∗

)
.

4.2 Main Theorem and Recovering Existing Results

The following main theorem gives a guarantee on the it-
erates of the DC algorithm in terms of the Bregman di-
vergencesDf1 andDf2 . As we show below, this theorem
subsumes all the sublinear rates from Theorems 1 to 3.
Theorem 5. The sequence of iterates of the DC algo-
rithm satisfies, for N ≥ 1,1

min
0≤k≤N−1

{
D
∇f2(xk)
f1

(xk|xk+1) +Df2(xk+1|xk)
}

≤ F (x0)− F (xN )

N
.

If f1 is differentiable, then for each 0 ≤ k < N , the term
inside the minimization equals

Dxk

f∗
1

(∇f2(xk)|∇f1(xk))+Dxk+1

f∗
2

(∇f1(xk+1)|∇f2(xk+1)).

Proof. The iterates of the DC algorithm satisfy:

D
∇f2(xk)
f1

(xk|xk+1)+Df2(xk+1|xk) = F (xk)−F (xk+1).

Summing, and lower bounding the average by the mini-
mum, we get the inequality in the theorem above.

If f1 is differentiable, then ∇f1(xk+1) = ∇f2(xk). So,
using the fact that f∗2 (∇f2(x)) = 〈x,∇f2(x)〉 − f2(x),

Df2(xk+1|xk) = Dxk+1

f∗
2

(∇f2(xk)|∇f2(xk+1))

= Dxk+1

f∗
2

(∇f1(xk+1)|∇f2(xk+1)).

Similarly, since f1 is now assumed differentiable,

D
∇f2(xk)
f1

(xk|xk+1) = Df1(xk|xk+1)

= Dxk

f∗
1

(∇f1(xk+1)|∇f1(xk))

= Dxk

f∗
1

(∇f2(xk)|∇f1(xk)).

1Note that by definition of the DC iterates, we have
∇f2(x

k) ∈ ∂f1(x
k+1), which justifies the validity of the term

D
∇f2(x

k)
f1

(xk|xk+1).

By putting further assumptions on f1, f2 (L-smoothness,
etc.) we can recover the previous results from Theorems
1 to 3, as we show next.

Recovering Theorem 1 If f1 is µ1-strongly convex
and f2 is µ2-strongly convex then we have Dv

fi
(a|b) ≥

µi

2 ‖a− b‖
2
2 for v ∈ ∂fi(b), i = 1, 2. Therefore

min
0≤k≤N−1

µ1 + µ2

2
‖xk − xk+1‖22

≤ min
0≤k≤N−1

{
D
∇f2(xk)
f1

(xk|xk+1) +Df2(xk+1|xk)
}

≤ F (x0)− F (xN )

N
,

which implies Theorem 1 because F (x0) − F∗ is larger
than F (x0)− F (xN ).

Recovering Theorem 2 If f1 is L1-smooth and f2 is
L2-smooth, then f∗1 (respectively f∗2 ) is L−11 -strongly
(respectively L−12 -strongly) convex. Thus

1

2L1
‖∇F (xk)‖22 +

1

2L2
‖∇F (xk+1)‖22

≤ Dxk

f∗
1

(∇f2(xk)|∇f1(xk))

+Dxk+1

f∗
2

(∇f1(xk+1)|∇f2(xk+1)).

For any 0 ≤ k < N left hand side is at least

1
2 (L−11 + L−12 ) min0≤i≤N{‖∇F (xi)‖22}.

Therefore, taking the minimum of the right-hand side
over k and applying Theorem 5, we get the bound

min
0≤k≤N

‖∇F (xk)‖22 ≤
2L1L2

(L1 + L2)N
(F (x0)− F (xN )).

Note that if only one function is smooth this bound still
makes sense.

Recovering Theorem 3 Note that, by definition of
xk+1, we have that for any x

f1(xk)−f1(x)−〈∇f2(xk), xk−x〉 ≤ D∇f2(x
k)

f1
(xk|xk+1).

Applying Theorem 5, we in fact obtain the stronger re-
sult that for some 0 ≤ k < N ,

f1(xk)−f1(x)−〈∇f2(xk), xk−x〉+Df2(xk+1|xk)

≤ F (x0)− F∗
N

.
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4.3 DC PL Inequalities

In optimization, an important class of differentiable func-
tions are those obeying a Polyak-Łojasiewicz (PL) in-
equality. We say that F satisfies a PL inequality on X
with respect to F∗ ∈ R if there exists µ > 0 such that

1

2
‖∇F (x)‖22 ≥ µ (F (x)− F∗) , (11)

for every x ∈ X . PL inequalities are useful in the con-
vergence analysis of, for example, (proximal) gradient
descent (Karimi et al., 2016).

We now introduce a DC-specific modification of the PL
inequality which (a) is adapted to the specific DC de-
composition of F and (b) measures the size of∇F (x) in
Bregman divergence rather than via the Euclidean norm.

Definition 1. Let f1 and f2 be differentiable. We say that
F satisfies the DC PL inequality on X with respect to F∗
if there exist η1 ≥ 0 and η2 ≥ 0 with η1 + η2 > 0 such
that for all x ∈ X ,2{

η1(F (x)− F∗) ≤ Dx
f∗
1
(∇f2(x)|∇f1(x))

η2(F (x)− F∗) ≤ Dx
f∗
2
(∇f1(x)|∇f2(x)).

(12)

The DC PL inequality above allows us to prove a linear
convergence rate on the function value.

Lemma 1. Suppose that F satisfies a DC PL inequality
on the sublevel set {x : F (x) ≤ F (x0)}, with respect
to F∗ = infx F (x). Then for any k ≥ 0

F (xk+1)− F∗ ≤
1− η1
1 + η2

(
F (xk)− F∗

)
.

Proof. See Appendix A.2.

Remark 4. Bauschke et al. (2019) introduced an in-
equality (which they call GD2) which is identical to the
first inequality in (12). They considered the problem of
minimizing F via mirror descent (8) with Bregman di-
vergence generated by f1. Recall from Remark 1 that
this algorithm is identical to the DCA when f1 and f2
are both differentiable. Our work provides an improve-
ment in two ways. First, we show that linear convergence
follows from GD2 alone, without any extra assumptions
concerning the symmetry of the divergenceDf1(·|·)—see
Remark 4.1(a) in (Bauschke et al., 2019). Next, the sec-
ond inequality in (12), which involves Df∗

2
(·|·) and also

implies linear convergence, is new.

Recovering Theorem 4 Suppose that f1 is L1-smooth
and f2 is L2-smooth and that the regular PL inequal-
ity (11) holds for all x ∈ X = {x : F (x) ≤

2Note that x ∈ ∂f∗i (∇fi(x)) which justifies the Bregman
divergences in (12)

F (x0)}. Then, the DC PL inequality (12) holds with
η1 = µ/L1 and η2 = µ/L2. Indeed, from the Li-
smoothness of fi it follows that f∗i is L−1i -strongly con-

vex. Thus Dx
f∗
1
(∇f2(x)|∇f1(x)) ≥ L−1

1

2 ‖∇F (x)‖22 and

Df∗
2
(x|y) ≥ L−1

2

2 ‖∇F (x)‖22. Therefore

F (x)− F∗ ≤ (µ/L1)−1Df∗
1
(∇f2(x)|∇f1(x)) and

F (x)− F∗ ≤ (µ/L2)−1Df∗
2
(∇f1(x)|∇f2(x))

for all x ∈ X . Lemma 1 then tells us that

F (xk+1)− F∗
F (xk)− F∗

≤ 1− η/L1

1 + η/L2
,

for all k ≥ 0, which recovers Theorem 4.

Sufficient conditions for the DC PL condition We
now outline a few sufficient conditions that guarantee the
DC PL condition (12).

• Strong convexity and smoothness with respect to a
norm: If F is µ-strongly convex w.r.t. a norm ‖ · ‖
and the fi’s are Li-smooth w.r.t. ‖ · ‖, then the DC
PL inequality (12) automatically holds with con-
stant ηi = µ/Li. Indeed, if F is strongly convex
w.r.t. ‖ · ‖, then we have, for any x, F (x) − F∗ ≤
1/(2µ)‖∇F (x)‖2∗. Furthermore, if fi is Li-smooth
with respect to ‖·‖ thenDx

f∗
i
(v|∇fi(x)) ≥ 1

2Li
‖v−

∇fi(x)‖2∗ for all x, v. It follows that (with j 6= i)

Dx
f∗
i
(∇fj(x)|∇fi(x)) ≥ 1

2Li
‖∇fi(x)−∇fj(x)‖2∗.

Then, for j 6= i, we obtain the desired inequalities
µ
Li

(F (x)− F∗) ≤ Dx
f∗
i
(∇fj(x)|∇fi(x)).

• Self-Concordance and Strong Geodesic Convexity
Suppose that dom f2 is open, and that f2 is twice
differentiable and strictly convex. Then ∇2f2(x)
defines a Riemann metric ‖v‖x =

√
v>∇2f2(x)v

for x ∈ dom f2. WriteM for the Riemannian man-
ifold (dom f2,∇2f2). Recall that f is geodesically
µ-strongly convex on M if f ◦ γ : [0, 1] → R
is µL(γ)2-strongly convex (in the usual sense) for
every geodesic γ : [0, 1] → M of length L(γ)
(Boumal, 2023, Definition 11.5). Then one can
prove the following:

Proposition 3. Suppose that F is geodesically µ-
strongly convex onM, and that f2 is strongly non-
degenerate self-concordant (Renegar, 2001, §2.5).
Then a DC PL inequality with η2 = µ

2 holds
on {x | ‖∇F (x)‖x,∗ < 1}, where ‖·‖x,∗ :=√
·>∇2f2(x)−1· is the norm dual to ‖·‖x.

Proof. See Appendix A.3.
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DC PL Inequality Implies Local Strong Relative Con-
vexity Under certain regularity conditions, a DC PL in-
equality implies local strong relative convexity. We state
the result here, and prove it in Appendix A.

Proposition 4. Suppose f1 and f2 are C2 and strictly
convex on an open set X . Let x∗ be a local minimum of
F such that ∇2F (x∗) � 0. Suppose a DC PL inequality
holds with constants η1, η2 on X w.r.t. F (x∗). Then

∇2F (x∗) � max{ η1
1− η1

, η2}∇2f2(x∗).

Proof. See Appendix A.4.

5 Application to the Conjugate and
Proximal Operators of the Quantum
Conditional Entropy Function

The state of a quantum system is represented by a d× d
density matrix X , a Hermitian positive semidefinite ma-
trix with unit trace. The von Neumann entropy of X is
defined by

S(X) = −tr(X logX)

and is a concave function of X . If the quantum sys-
tem represented by X is composed of two parts A and
B of local dimensions dA and dB respectively, then
d = dAdB . One can define the conditional entropy of
A given B by the difference of concave expression:

S(A|B)X = S(X)− S(trAX)

where trA is a linear map which corresponds to marginal-
izing out the A subsystem. Remarkably, the condi-
tional entropy is itself concave because we can write
S(A|B)X = −D(X‖IA ⊗ trAX) where

D(X‖W ) := Tr[X(logX − logW )] (13)

is the quantum relative entropy, which is jointly convex
in (X,W ) (Lieb and Ruskai, 1973).

The quantum conditional entropy function plays a funda-
mental role in quantum information, and many quantities
can be expressed as optimization problems involving this
function, such as capacities of quantum channels (Wilde,
2013), or in quantum statistical mechanics for the esti-
mation of quantum partition functions (Poulin and Hast-
ings, 2011; Bravyi et al., 2021). To solve these problems
for large matrix sizes d = dAdB , first-order proximal
methods are very natural candidate algorithms, provided
the proximal operator of the conditional entropy function
can be computed efficiently.

In this section we show that the DCA indeed allows us to
compute the conjugate function, as well as the proximal

operator very accurately in a small number of iterations,
for large problem sizes.

It is tempting to compare the performance of the DCA
with that of (accelerated) projected gradient descent.
However, because the conditional entropy function does
not have a Lipschitz gradient, there are no guarantees
for projected gradient descent. Moreover, these methods
tend to produce iterates that lie on the boundary of the
feasible set, where the gradient of the function in ques-
tion is not defined. Instead, we compare the DCA with
the open-source interior-point solver Hypatia (Coey
et al., 2021) which is the only interior point solver we
are aware of which can optimise directly over the quan-
tum relative entropy cone.

5.1 Conjugate of the Quantum Conditional
Entropy

The convex conjugate of the negative conditional entropy
function evaluated at some d× d Hermitian matrix H is

min
X�0,trX=1

{tr(HX)− S(A|B)X} . (14)

This is a difference-of-convex optimization problem,
with f1(X) := tr(HX) − S(X) + ι{tr(X)=1} and
f2(X) = −S(trAX). Moreover F := f1 − f2 is itself
convex. The DCA iterates take the form

Xk+1 =
1

Z
exp(−H + IA ⊗ log trAXk) (15)

where Z = tr exp(−H + IA ⊗ log trAXk).

Corollary 1 holds for this problem, giving the guarantee

F (Xk)− F∗ ≤ 1
kD(trAX∗‖trAX0)

≤ 1
k log(dB)

(16)

when X0 = I/d is the scaled identity matrix.

Figure 1 shows the running time of DCA for a ran-
domly chosen H normalized to have unit operator norm,
as a function of the problem dimension, where we fix
dA = 2, and take dB a growing power of 2. We used the
condition 2‖∇F (Xk)‖σ ≤ 10−7 as our stopping crite-
rion (where ‖ · ‖σ is the operator norm), which guaran-
tees that F (Xk)− F ∗ ≤ 10−7 since ‖X − Y ‖1 ≤ 2 for
any two density matrices X,Y . The DCA is at least 2
orders of magnitude faster than the interior-point solver
Hypatia. On the machine we used for this experiment,
Hypatia failed to solve problems with dB ≥ 64 due
to the machine having insufficient RAM. We note that
complexity of each IPM iteration scales at least as Ω(d5)
(Coey et al., 2022, Table 1), whereas the per-iteration
complexity of the DCA is O(d3), dominated by the ma-
trix exponential and matrix logarithm operations. Of
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Figure 1: Time Taken By DCA vs IPM To Solve (14)
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Figure 2: Convergence of the DCA (15) for dB = 64
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course, the IPM usually requires fewer iterations than the
DCA to achive the same accuracy, which is why we use
seconds rather than iteration count to compare the per-
formance of the two algorithms.

Figure 2 illustrates the convergence of the DCA for a par-
ticular random H with dB = 64. Although the conver-
gence is much faster than the bound (16) suggests, we
cannot prove a global rate of linear convergence, as F is
not globally strongly convex relative to f2.

5.2 Bregman Proximal Operator of the Negative
Quantum Conditional Entropy

Next, we consider the proximal operator of the negative
conditional entropy function with respect to the quantum
relative entropy function D(·‖·) in (13). Computing this
operator corresponds to solving problems of the form:

min
X�0,trX=1

{tr(HX)− S(A|B)X + γD(X‖X0)}
(17)

where γ > 0 and X0 is a positive definite density
matrix. This is again a DC problem, with f1(X) :=
tr(HX)−S(X)+D(X‖X0)+ ι{tr(X)=1} and f2(X) =
−S(trAX). The DCA iteration is

Xk+1 =
1

Z
exp

(
t[IA ⊗ logXk

B −H] + (1− t)X0

)
(18)

Figure 3: Time Taken By DCA vs IPM To Solve (17)
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Figure 4: Convergence of the DCA (18) for dB = 512
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where t = 1
1+γ , Xk

B = trAXk and Z is chosen so
that tr(Xk+1) = 1. Since D(X‖X0) + S(trAX) =
D(X‖IA ⊗ trAX) + tr[X(logX0)] is convex, f1 −
(1 + γ)f2 is convex for this problem. Therefore Corol-
lary 2 applies, giving a global linear convergence rate of
(1 + γ)−1, indeed with X0 = I/d:

F (Xk+1)− F∗ ≤ (1 + γ)−kD(trAX∗‖trAX0)

≤ (1 + γ)−k log(dB).
(19)

Results are displayed in Figure 3 and Figure 4 for γ = 1
and X0 = I/d. Note that, whereas the interior point
method Hypatia fails to solve problems with dB ≥
64, the DCA easily solves problems with dB = 512, i.e.
problems involving density matrices of size 1024×1024.

5.3 Standard Proximal Operator of the Negative
Quantum Conditional Entropy

The DCA can be used to compute the Euclidean prox-
imal operator of the negative conditional entropy func-
tion, namely:

min
X�0,
trX=1

{
tr(HX)− S(A|B)X +

γ

2
‖X −X0‖2F

}
. (20)
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Compared with (17), the regularization term D(X‖X0)
is replaced by γ

2 ‖X −X0‖2F . Here, the DCA iteration is

Xk+1 =
1

γ
W

[
1

Z
exp

(
IA ⊗ logXk

B −H + γX0

)]
(21)

where W is the matrix Lambert W function, i.e. the
inverse of X 7→ X exp(X), and Z is a scalar which
must be chosen so that tr(Xk+1) = 1. We note that,
since efficient implementations of the scalar Lambert
W function exist, this update can be efficiently com-
puted by means of an eigendecomposition of the matrix
−H + IA ⊗ log trAXk + γX0, combined with a scalar
root-finding subroutine to determine Z.

In Appendix B, we illustrate the behaviour of this iter-
ation with some numerical experiments, and we notice
once again that the DCA is orders of magnitude faster
than the IPM. We note however that unlike in Section 5.2,
linear convergence is not guaranteed since S(trAX) is
not strongly concave.

6 CONCLUSION AND FURTHER
COMMENTS

In this paper, we revisited the difference-of-convex algo-
rithm through the lens of Bregman divergences.

For DC functions which are convex, sublinear conver-
gence results from the Bregman proximal point algo-
rithm literature immediately translate to the DCA setting.
When the DC decomposition of the (convex) objective
function satisfies a strong relative convexity condition,
we proved a linear convergence result, which we believe
is a new result for the Bregman PPA.

For DC functions which may not be convex, we showed
how existing sublinear convergence results can be un-
derstood, proved, and sometimes strengthened, by using
Bregman divergences. We remark that some of the previ-
ously known guarantees on the DCA had rather technical
proofs – for example Abbaszadehpeivasti et al. (2021)
where the proofs are computer-assisted. We introduced
a DC-specific version of the Polyak-Łojasiewicz inequal-
ity, and established sufficient conditions for these DC-PL
inequalities to hold.

To illustrate some of the convergence results presented
earlier in the paper, we considered a class of optimiza-
tion problems over the set of positive semidefinite matri-
ces which arise in quantum information theory. Specifi-
cally, the convex conjugate and the proximal operator of
the negative quantum conditional entropy function have
a natural DC structure. We observed that the DCA com-
pares favourably with an implementation of an interior
point algorithm capable of solving linear programs over

the quantum relative entropy cone.

Another application where this framework is natural is
maximum likelihood estimation of multivariate Gaus-
sians subject to convex constraints on the covariance. In
covariance parameterization, the negative log likelihood
function is DC. When the domain is restricted to matrices
sufficiently close (in an appropriate spectral sense) to the
sample covariance, the objective function becomes con-
vex Zwiernik et al. (2017), and even relatively strongly
convex with respect to f2 in the DC decomposition. A
further example is computing the Brascamp-Lieb con-
stant, which has a DC formulation which also happens to
be geodesically convex Sra et al. (2018).
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A PROOFS

A.1 Proof of Proposition 2

Proof of Proposition 2. We claim that the sequence (xk) is a valid sequence of iterates for the DCA applied to the
function F + ιS with DC decomposition (f1 + ιS) − f2. First, note that ∅ 6= dom(f1 + ιS) ⊆ dom f2, since we
already had ∅ 6= dom f1 ⊆ dom f2 by assumption x∗ ∈ S ∩ dom f1.

Next, we need to show that for each xk+1,

∂(f1 + ιS)(xk+1) ⊇ ∂f1(xk+1).

This is certainly true whenever xk+1 ∈ S. Note that since DCA is a descent method, all iterates xk+1 remain in
{x | F (x) ≤ F (x0)} and hence in S.

We can now apply Corollary 2 to F + ιS , which completes the proof.

A.2 Proof of Lemma 1

Proof of Lemma 1. It suffices to prove the claim for k = 0. From the DC Bregman PL inequality with x = x1 ∈ X
(because the DC algorithm is a descent method) we have that

η2(F (x1)− F∗) ≤ Dx1

f∗
2
(∇f1(x1)|∇f2(x1))

= Dx1

f∗
2
(∇f2(x0)|∇f2(x1))

= f∗2 (∇f2(x0))− f∗2 (∇f2(x1))− 〈x1,∇f2(x0)−∇f2(x1)〉
= 〈∇f2(x0), x0〉 − f2(x0)− 〈∇f2(x1), x1〉+ f2(x1)− 〈x1,∇f2(x0)−∇f2(x1)〉
= Df2(x1|x0)

= (F (x0)− F (x1)−Df1(x0|x1)).

We now apply the DC Bregman PL inequality with x = x0 to obtain

(F (x0)− F (x1)−Df1(x0|x1)) = ((F (x0)− F∗)− (F (x1)− F∗)−Dx0

f∗
1
(∇f1(x1)|∇f1(x0)))

= ((F (x0)− F∗)− (F (x1)− F∗)−Dx0

f∗
1
(∇f2(x0)|∇f1(x0)))

≤ ((F (x0)− F∗)− (F (x1)− F∗)− η1(F (x0)− F∗)).

Overall, then,
(η2 + 1)(F (x1)− F∗) ≤ (1− η1)(F (x0)− F∗)

which implies that
F (x1)− F∗
F (x0)− F∗

≤ 1− η1
1 + η2

.

A.3 Proof of Proposition 3

Proof of Proposition 3. It is known (Boumal, 2023, Lemma 11.28) that geodesic strong convexity of F implies

‖gradF (x)‖2x ≥ 2µ(F (x)− F∗). (22)

Here gradF (x) = ∇2f∗2 (x)∇F (x) = ∇2f2(x)−1∇F (x) is the Riemannian gradient of F .

On the other hand,

Df∗
2
(∇f1(x)|∇f2(x)) = ∇F (x)>

∫ 1

0

∫ t

0

∇2f∗2 (∇f2(x) + s∇F (x))ds dt∇F (x).
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Recall that f2 is strongly nondegenerate self-concordant if, for every x ∈ dom f2 and every y satisfying ‖y−x‖x < 1,
we have y ∈ dom f2 and

(1− ‖y − x‖)2∇2f2(x) � ∇2f2(y) � 1

(1− ‖y − x‖)2
∇2f2(x) (23)

in the positive semidefinite order (Renegar, 2001, §2.5). From now on we follow Renegar in suppressing the words
strongly nondegenerate. Recall also that a function is self-concordant if and only if its convex conjugate is (Nesterov
and Nemirovskii, 1994, Theorem 2.4.1). Since f∗2 is self-concordant, we have that whenever 1 > ‖∇F (x)‖x,∗ =
‖gradF (x)‖x, then

Df∗
2
(∇f1(x)|∇f2(x)) ≥ ∇F (x)>

∫ 1

0

∫ t

0

(1− s‖gradF (x)‖x)2∇2f∗2 (x)ds dt ∇F (x)

≥ 7− 4‖gradF (x)‖x
12

‖gradF (x)‖2x

≥ 1

4
‖gradF (x)‖2x

≥ µ

2
(F (x)− F∗).

Remark 5. The only place where we used strong geodesic convexity was to obtain the Riemannian PL inequality (22).
This is in general weaker than strong geodesic convexity.

A.4 Proof of Proposition 4

The following lemma will be used to prove Proposition 4.

Lemma 2. Suppose that f1 and f2 are C2 and strictly convex on an open convex set S ⊆ Rn. Let F := f1 − f2, and
let x∗ ∈ S be such that ∇F (x∗) = 0. Then for i = 1, 2

Df∗
i
(∇fj(x)|∇fi(x)) =

1

2
(x− x∗)>∇2F (x∗)∇2fi(x

∗)−1∇2F (x∗)(x− x∗) + o(‖x− x∗‖2),

where j := 3− i.

Proof. Since fi isC2 and strictly convex,∇2f∗i (∇fi(x∗)) exists and is equal to∇2fi(x
∗)−1. Writing v1 = ∇f1(x)−

∇f1(x∗) and v2 = ∇f2(x)−∇f2(x∗), we have by Taylor’s theorem

Df∗
i
(∇fj(x)|∇fi(x)) = f∗i (∇fj(x))− f∗i (∇fi(x))− 〈x,∇fj(x)−∇fi(x)〉

= 〈x∗, vj − vi〉+
1

2
v>j ∇2f∗i (∇fi(x∗))vj −

1

2
v>i ∇2f∗i (∇fj(x∗))vi − 〈x, vj − vi〉

+ o(‖vi‖2, ‖vj‖2)

=
1

2
v>j ∇2fi(x

∗)−1vj −
1

2
v>i ∇2fi(x

∗)−1vi + 〈x− x∗, vj − vi〉+ o(‖vi‖2, ‖vj‖2).

We have v1 = ∇2f1(x∗)(x− x∗) + o(‖x− x∗‖) and v2 = ∇2f2(x∗)(x− x∗) + o(‖x− x∗‖). Therefore

Df∗
i
(∇fj(x)|∇fi(x)) =

1

2
(x− x∗)>∇2F (x∗)∇2fi(x

∗)−1∇2F (x∗)(x− x∗) + o(‖x− x∗‖2).

Proof of Proposition 4. We have F (x)− F (x∗) = 1
2 (x− x∗)>∇2F (x∗)(x− x∗) + o(‖x− x∗‖2). By Lemma 2

Df∗
i
(∇fj(x)|∇fi(x)) =

1

2
(x− x∗)>∇2F (x∗)∇2fi(x

∗)−1∇2F (x∗)(x− x∗) + o(‖x− x∗‖2),
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for i = 1, 2 where j := 3− i. It follows that the DC PL inequality implies

ηi∇2F (x∗) � ∇2F (x∗)∇2fi(x
∗)−1∇2F (x∗).

Since∇2F (x∗) is positive definite, this is equivalent to

ηi∇2fi(x
∗) � ∇2F (x∗) = ∇2f1(x∗)−∇2f2(x∗),

which completes the proof.

B ADDITIONAL NUMERICAL EXPERIMENTS

Here we present the results of numerical experiments which we could not place in Section 5.3 due to space constraints.
We consider the problem (20) and the DCA iteration (21) for solving it. Results are displayed in Figure 5 and Figure 6
for γ = 1 and X0 = I/d.

Figure 5: Time Taken By DCA vs IPM To Solve (20)
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Figure 6: Convergence of the DCA for (20) with dB = 256
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