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Abstract

Influence diagnostics such as influence functions
and approximate maximum influence perturba-
tions are popular in machine learning and in AI
domain applications. Influence diagnostics are
powerful statistical tools to identify influential
datapoints or subsets of datapoints. We establish
finite-sample statistical bounds, as well as com-
putational complexity bounds, for influence func-
tions and approximate maximum influence per-
turbations using efficient inverse-Hessian-vector
product implementations. We illustrate our results
with generalized linear models and large attention
based models on synthetic and real data.

1 INTRODUCTION

Statistical machine learning models have been increasingly
used in fully or partially automatized data analysis processes
and artificial intelligence applications (Rudin, 2019). The
automatizing of decisions impacting the society inspire a
parallel effort to develop methods to identify the factors
impacting specific decisions. The heightened scrutiny on
the way statistical models now operate at a large scale and
at a fast pace has led to a renewed interest in statistical diag-
nostics such as the influence function (Cook and Weisberg,
1982; Koh and Liang, 2017; Schioppa et al., 2022; Louvet
et al., 2022).

The influence function or curve of a statistical estimator has
been proposed to measure the sensitivity of the estimator to
individual datapoints. Computing the influence of a particu-
lar datapoint boils down to computing an inverse-Hessian-
vector product. Due to a greater focus on least-squares-type
estimator with small samples, the computational aspects
have received relatively little attention until recently (Koh
and Liang, 2017; Schioppa et al., 2022), while the statisti-
cal aspects have mainly focused on large sample classical
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asymptotics (Rousseeuw et al., 2011; Avella-Medina, 2017).

The statistical analysis of influence functions for generalized
linear models presents several challenges. For non-squared
loss functions, the curvature captured by the Hessian varies
away from the true parameter θ⋆, a property that can be mod-
elled using self-concordance. Moreover, non-asymptotic
analyses for misspecified generalized linear models require
recently developed tools such as matrix concentration in-
equalities (Mackey et al., 2014). We present non-asymptotic
statistical bounds for influence functions of generalized lin-
ear models under pseudo self-concordance assumptions.
Thanks to a novel interpretation of Broderick et al. (2020)’s
maximum subset influence using superquantiles, we also
obtain non-asymptotic guarantees for this diagnostic tool as
well.

The computational analysis of influence is equally inter-
esting. The statistical and computational trade-offs have
not received attention to the best of our knowledge. We
review classical algorithms such as the conjugate gradient
method (Saad, 2003; Bai and Pan, 2021) and an approach
using the Arnoldi iteration (Schioppa et al., 2022), and we
develop approaches using variance reduced stochastic op-
timization algorithms (Bertsekas, 2015; Bach, 2021). Our
analysis reveals interesting trade-offs depending on the near
low-rank structure that is the eigendecay of the Hessian for
small to moderate sample sizes relative to the dimension, as
well as the potential benefits of using linearly convergent
stochastic algorithms.

Outline. In Section 2, we introduce influence diagnostics
and the computational challenges they present in high di-
mensional settings. In Section 3, we obtain finite-sample
bounds on empirical influence functions for generalized lin-
ear models. We also achieve computational accuracy bounds
on empirical influence functions computed using determinis-
tic Krylov-based methods and stochastic optimization based
methods. In Section 4, we provide similar guarantees for
maximum subset influence owing to a novel superquantile
interpretation. Lastly, in Section 5, we provide numerical
illustrations of our theoretical bounds on synthetic data and
real data, with generalized linear models and large attention
based models.
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2 INFLUENCE FUNCTIONS

We are interested in the parameter θ⋆ ∈ Θ = Rp defined as

θ⋆ := argmin
θ∈Θ

[
F (θ) := EZ∼P [ℓ(Z, θ)]

]
, (1)

where P is an unknown probability distribution over a data
space Z and ℓ : Z × Θ → R+ is a loss function that is
closed, convex, and thrice continuously differentiable in the
second argument. We assume this argmin is unique.

For instance, binary logistic regression corresponds to
Z = Rp × {±1} and a loss ℓ

(
(x, y), θ

)
= log

(
1 +

exp(−y⟨θ, x⟩)
)
. Here, problem (1) is equivalent to find-

ing parameters θ⋆ ∈ Θ that minimize the Kullback-Leiblier
divergence between the unknown data distribution P and the
parametric model Pθ(Y |X = x) = 1/

(
1+exp(−y⟨θ, x⟩)

)
.

Since the data distribution P is unknown, we estimate θ⋆
using an i.i.d. sample Z1:n := (Z1, · · · , Zn) ∼ Pn. This
leads to the M-estimation problem,

θn := argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Zi, θ) , (2)

where we assume the argmin to be unique. For the logistic
regression example, θn is also the maximum likelihood
estimator of θ⋆.

Influence Functions. We quantify the influence of a fixed
data point z on the estimator θn using the perturbation

θn,ε,z := argmin
θ∈Θ

{
1− ε

n

n∑
i=1

ℓ(Zi, θ) + ε ℓ(z, θ)

}

for some ε > 0. The difference (θn,ε,z−θn)/ε is a measure
of the local effect that the datapoint z has on the estimator
θn, as illustrated in Figure 1. Influence functions provide
a way to avoid recomputing this estimator for each z ∈ Z
of interest by using a linear approximation of the map ε 7→
θn,ε,z (Hampel, 1974). Concretely, we approximate

θn,ε,z − θn
ε

≈ dθn,ε,z
dε

∣∣∣
ε=0

=: In(z) . (3)

This quantity is well-defined when the Hessian Hn(θ) :=
(1/n)

∑n
i=1 ∇2ℓ(Zi, θ) is invertible at θ = θn. We bound

this approximation error in Theorem 2.

This idea of taking infinitesimal perturbations to approxi-
mate the effect of modifying data in statistics dates back to
the Ph.D. dissertation of Hampel (1968) and subsequently,
the infinitesimal jackknife (Jaeckel, 1972). A celebrated re-
sult of Cook and Weisberg (1982), obtained from invoking
the implicit function theorem to differentiate through the
first order optimality conditions of θn, gives the closed-form

In(z) = −Hn(θn)
−1∇ℓ(z, θn) . (4)

Since In(z) does not depend on θn,ε,z , there is no need to
re-solve the M-estimation problem for each z. Instead, we
solve a single linear system involving Hn(θn); we return to
the computational aspects later.

In this work, we are interested in the non-asymptotic sta-
tistical behavior of the influence function In(z). To define
the population limit, we denote the perturbed population
minimizer with an ε-fraction of the mass moved to z as,

θ⋆,ε,z := argmin
θ∈Θ

{
EZ∼(1−ε)P+εδz [ℓ(Z, θ)]

}
,

where δz denotes the point mass at z. The population influ-
ence function is defined similar to (3) as the derivative

I(z) :=
dθ⋆,ε,z
dε

∣∣∣
ε=0

= lim
ε→0

θ⋆,ε,z − θ⋆
ε

. (5)

If the Hessian H⋆ = ∇2F (θ⋆) of the population objective
(1) is strictly positive definite at θ⋆, we get a closed form
expression similar to (4) due to Cook and Weisberg (1982):

I(z) = −H−1
⋆ ∇ℓ(z, θ⋆) . (6)

As n → ∞, uniform convergence arguments would
give θn → θ⋆ in probability under appropriate as-
sumptions. From the continuous mapping theorem, we
would expect that the sample influence function In(z) =
−Hn(θn)

−1∇ℓ(z, θn) converges to the population influ-
ence I(z) = −H−1

⋆ ∇ℓ(z, θ⋆). We establish finite-sample
bounds in Section 3 to formalize this convergence.

Most Influential Subset. Similar to measuring the influence
of a fixed point z, we also consider the influence of subsets
of the sample Z1:n. Given a scalar α ∈ (0, 1), the most
influential subset method of Broderick et al. (2020) aims
to find the subset of the data of size at most αn that, when
removed, leads to the largest increase of a continuously
differentiable test function h : Rp → R. A typical example
of h is the loss h(θ) = ℓ(ztest, θ) of a fixed test point ztest.

This approach relies on perturbing the weights of a weighted
M-estimation problem around the nominal weights (Gior-
dano et al., 2019). Given weights w in the probability sim-
plex ∆n−1, define θn,w := argminθ∈Θ

∑n
i=1 wiℓ(Zi, θ),

so that θn = θn,1n/n. Finding the maximum influence of
any subset of data of size at most αn for a test function h
amounts to solving maxw∈Wα h

(
θn,w

)
where

Wα :=

{
w ∈ ∆n−1 :

at most αn elements of w are
zero and the rest are equal

}
.

The most influential subset corresponds to the zero entries
of the maximizing w. Unfortunately, this expression cannot
be computed tractably as |Wα| grows exponentially in n.
Instead, Broderick et al. (2020) use a linear approximation

h(θn,w) ≈ h(θn) +

〈
w − 1n

n
,∇wh(θn,w)

∣∣∣
w=1n/n

〉
.
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Finding the most influential subset according to this linear
approximation leads to the maximum subset influence

Iα,n(h) := max
w∈Wα

〈
w,∇wh(θn,w)

∣∣∣
w=1n/n

〉
. (7)

Similar to (4), the implicit function theorem together with
the chain rule gives the closed form

Iα,n(h) = max
w∈Wα

n∑
i=1

wivi, where

vi = −
〈
∇h(θn), Hn(θn)

−1∇ℓ(Zi, θn)
〉
.

(8)

While the maximization over Wα in (8) is an instance of the
NP-hard knapsack problem, its solution coincides with that
of its continuous relaxation over convWα when αn is an
integer and the vi’s are unique. This continuous knapsack
problem is solved by a greedy algorithm that zeros out the
smallest αn entries of vi’s (Dantzig, 1957).

In this work, we also study the non-asymptotic statistical
behavior of the subset influence Iα,n. The population limit
in this case is more subtle than for In of (4). Using similar
arguments, we would expect the vector v to be related to
the random variable ϕ(Z) where ϕ : Z → R maps z 7→
−⟨∇h(θ⋆), H−1

⋆ ∇ℓ(z, θ⋆)⟩, but the maximum over Wα is
tricky. In Section 4, we rigorously define this population
limit and establish convergence guarantees.

Computational Aspects. While linearization methods
based on the infinitesimal jackknife avoid recomputing the
M-estimator for each z, a naïve implementation of In(z)
(and similarly, Iα,n) requires materializing and inverting
the Hessian matrix Hn(θn) ∈ Rp×p in O(np2 + p3) time
withO(p2) storage. This approach does not scale to modern
applications in deep learning with dense Hessians and large
n, p. Instead, we rely on iterative algorithms to approxi-
mately minimize the convex quadratic

gn(u) :=
1

2
⟨u,Hn(θn)u⟩+ ⟨∇ℓ(z, θn), u⟩ . (9)

Indeed, the unique minimizer u⋆ of gn satisfies 0 =
∇gn(u⋆) = Hn(θn)u⋆ + ∇ℓ(z, θn) so that u⋆ = In(z)
in (4) as desired. Modern automatic differentiation software
supports the efficient computation of the Hessian-vector
product u 7→ ∇2ℓ(z, θ)u without materializing the Hessian.
We review some iterative algorithms that can achieve this.

The conjugate gradient method is a classical algorithm to
solve linear systems defined by a positive definite matrix. It
converges linearly, but each iteration requires a full batch
Hessian-vector product u 7→ Hn(θn)u. We postpone pre-
cise rates to Section 3.

Alternatively, one might optimize the quadratic gn(u) with
stochastic gradient descent (SGD). Here, each iteration re-
quires a Hessian-vector product at only one sample Zi, but
the convergence rate is sublinear. We can get a linear rate at

x

y

Figure 1: Illustration of the
influence of a point z on the
model parameters. The base
model (gray) line is drasti-
cally affected when the blue
point is included (blue dotted
line) but less affected when
the orange point is included
(orange dotted line).

the same O(1) per-iteration complexity through the use of
variance reduction with the stochastic variance reduced gra-
dient (SVRG; Johnson and Zhang, 2013) or its accelerated
counterpart (Lin et al., 2018).

The LiSSA algorithm (Agarwal et al., 2017) solves this
linear system by approximating the matrix inverse with its
Neumann series M−1 =

∑∞
k=0(I−M)k for positive def-

inite M with ∥M∥2 < 1. By using an unbiased stochastic
estimator ∇2ℓ(ZI , θn) to M = Hn(θn), where I is a ran-
dom index, this reduces exactly to the SGD baseline. See
Appendix B for details.

Schioppa et al. (2022) propose to solve the linear system
with a low-rank approximation of the Hessian. Concretely,
let Hn(θn) = QΛQ⊤ denote its eigenvalue decomposition
with Λ = Diag(λ1, . . . , λd) arranged in non-increasing
order. The rank-k approximation of v = Hn(θn)

−1u is
given by vk = QDiag(λ−1

1 , . . . , λ−1
k , 0, . . . , 0)Q⊤u. The

k-largest eigenvalues and their eigenvectors are approxi-
mated using the Lanczos/Arnoldi iterations (Lanczos, 1950;
Arnoldi, 1951). This algorithm requires computations of a
full batch Hessian-vector product.

For a full error characterization of the influence estimate
În(z) returned by an iterative algorithm, we must take into
account both the statistical error In(z)− I(z) and the com-
putational error În(z)− In(z). This will be our goal for the
next section.

3 ERROR ANALYSIS OF INFLUENCE
ESTIMATION

We start by establishing a bound on the statistical error of the
influence In(z) = −Hn(θn)

−1∇ℓ(z, θn) of a data point z
to the population limit I(z) = −H(θ⋆)

−1∇ℓ(z, θ∗).
We give an error bound ∥In(z)− I(z)∥H⋆

in the natu-
ral geometry implied by the population Hessian H⋆ :=
H(θ⋆) at the true parameter θ⋆; here we use the notation
∥u∥2A = ⟨u,Au⟩ for a positive definite matrix A. The
H⋆-norm captures the behavior of I(z) and In(z) in an
affine-invariant manner. That is, if we parameterize the
problem in terms of θ′ = Aθ for an invertible matrix
A so that the loss is ℓ′(z, θ′) = ℓ(z,A−1θ′), the influ-
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ence functions I ′ in this new parameterization satisfies
I ′(z) = AI(z) and similarly for its sample version. Let-
ting H ′

⋆ := EZ∼P [∇2ℓ′(z, θ′⋆)] be the (reparameterized)
Hessian at the minimizer θ′⋆ = Aθ⋆, we can verify that
∥I ′n(z)− I ′(z)∥H′

⋆
= ∥In(z)− I(z)∥H⋆

, i.e., the error cri-
terion is affine-invariant.

3.1 Statistical Error Bound

Our statistical error bound depends on a notion of effective
dimension of the statistical model. Define the covariance
matrix of the gradient as

G(θ) = CovZ∼P
(
∇ℓ(Z, θ)

)
, (10)

where Cov(ξ) = E[ξξ⊤]−E[ξ]E[ξ]⊤ is the covariance ma-
trix of a random vector ξ. We define the effective dimension
of this problem as

p⋆ = Tr
[
H

−1/2
⋆ G⋆H

−1/2
⋆

]
, (11)

where G⋆ := G(θ⋆) is the gradient covariance at θ⋆.

The covariance G⋆ has a special meaning for maximum
likelihood estimation. Concretely, if the loss ℓ(z, θ) =
− logPθ(z) is the negative log likelihood and the statistical
model Pθ⋆ is well-specified, then G⋆ is the information
matrix at θ⋆. In this case, we have G⋆ = H⋆ so that the
effective dimension p⋆ equals the ambient dimension p.

For misspecified models or for general M-estimation prob-
lems beyond maximum likelihood, G⋆ and H⋆ are distinct
in general. The effective dimension p⋆ captures the mis-
match between the two; it can be much smaller or much
larger than p. We can have p⋆ ≪ p when the eigenvalues
of G⋆ decay faster than those of H⋆. Conversely, we get
that p⋆ > p when the eigenvalues of G⋆ decay slower than
those of H⋆. We refer to Appendix C for precise calcula-
tions. Note that regardless of whether p⋆ > p or p⋆ < p,
a dependence on p⋆ is unavoidable since p⋆/n is a lower
bound on the estimation error (Fortunati et al., 2016).

Assumptions. We make the following assumptions.

(a) For any z ∈ Z , the loss function ℓ(z, ·) is pseudo
self-concordant for some R ≥ 1:

|D3
θℓ(z, θ)[u, u, v]| ≤ R∥u∥2∇2ℓ(z,θ) ∥v∥2 ,

where D3
xf(x)[u, u, v] :=

d
dt ⟨u,∇2f(x + tv)u⟩|t=0

for f thrice continuously differentiable and where ∥·∥2
denotes the spectral norm for matrices.

(b) There exists a constant K1 ≥ 1 such that the normal-
ized gradient H−1/2

⋆ ∇ℓ(Z, θ⋆) at θ⋆ is sub-Gaussian
with parameter K1.

(c) There exists K2 ≥ 1 such that the standardized Hes-
sian H−1/2

⋆ ∇2ℓ(Z, θ⋆)H
−1/2
⋆ − Ip at θ⋆ satisfies a

Bernstein condition with parameter K2 (Definition 30
in Appendix I). Moreover,

σ2
H :=

∥∥∥V(H(θ⋆)
−1/2 ∇2ℓ(Z, θ⋆)H(θ⋆)

−1/2
)∥∥∥

2

is finite, where we denote V(H) = E[HH⊤] −
E[H]E[H]⊤ for a random matrix H .

Self-concordance was introduced by Nesterov and Ne-
mirovskii (1994) to give an affine-invariant analysis of New-
ton’s method and was adapted by Bach (2010) to apply
to logistic regression; we use the latter assumption. This
assumption prevents ∇2ℓ(z, θ) from changing too quickly
with θ. The most useful consequence of this assumption
is a spectral approximation of the Hessian (1/2)H(θ′) ⪯
H(θ) ⪯ 2H(θ′) for θ and θ′ close enough in terms of the
Euclidean distance.

We make the last two assumptions to argue about the con-
centration of ∇ℓ(Z, θ⋆) and ∇2ℓ(Z, θ⋆) respectively to their
expected values for Z ∼ P . We make appropriate normal-
izations so that the assumptions are affine invariant, similar
to the error criterion. Since E[∇ℓ(Z, θ⋆)] = 0, Assumption
(b) gives a high-probability bound on ∥∇ℓ(Z, θ⋆)∥H−1

⋆
in

the natural H−1
⋆ norm of the gradient. Assumption (c) gives

the spectral concentration (1/2)H(θ) ⪯ Hn(θ) ⪯ 2H(θ)
for a fixed θ with high probability for n large enough.

Example. The assumptions outlined above hold for all
generalized linear models under some regularity conditions.
We give one concrete examples here (more can be found in
Appendix I.4).

Logistic Regression: Let Z ⊂ Bp,M ×{±1} for someM >
0. Consider the loss ℓ(z, θ) = log

(
1+exp(−y⟨θ, x⟩)

)
and

let σ(z) = 1
1+e−z . Assume that H(θ⋆) ≻ 0.

(a) Pseudo self-concordance. Note that ∇2
θℓ(z, θ) =

σ(θ⊤x)[1 − σ(θ⊤x)]xx⊤ and D3
θℓ(z, θ)[u, u, v] =

σ(θ⊤x)[1 − σ(θ⊤x)][1 − 2σ(θ⊤x)](u⊤x)2(v⊤x). It
follows that |D3

θℓ(z, θ)[u, u, v]| ≤M∥v∥2∥u∥
2
∇2ℓ(z,θ)

and thus ℓ is pseudo self-concordant with R ≥M .
(b) Sub-Gaussian gradient. Note that ∥∇θℓ(Z, θ⋆)∥2 =

∥[1− σ(Y θ⊤⋆ X)]Y X∥2 ≤M . Therefore, the normal-
ized gradientH(θ⋆)

−1/2∇ℓ(Z, θ⋆) is sub-Gaussian (cf.
Lemma 36 from Appendix I).

(c) Bernstein Hessian. Note that ∥∇2
θℓ(Z, θ⋆)∥2 ≤

∥XX⊤∥2/4 ≤ M2/4. It follows that the standard-
ized Hessian H(θ⋆)

−1/2∇2
θℓ(Z, θ⋆)H(θ⋆)

−1/2 − Ip
satisfies the matrix Bernstein condition (cf. Lemma 39
from Appendix I).

Statistical Error Bound. Below and throughout, we omit
absolute constants.

Theorem 1. Suppose the assumptions above hold and

n ≥ CK1,K2,σH

(
R2p⋆
µ⋆

log
1

δ
+ log

p

δ

)
,
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where µ⋆ = λmin(H⋆) and CK1,K2,σH
is a constant de-

pending on K1,K2, and σH . Then, with probability at least
1− δ, we have 1

4H⋆ ⪯ Hn(θn) ⪯ 3H⋆ and

∥In(z)− I(z)∥2H⋆
≤ CK1,K2,σH

R2p2⋆
µ⋆n

log3
(p
δ

)
.

Remark. In this result, we view z as a random ele-
ment following the data distribution P . The quantities
∥∇ℓ(z, θ⋆)∥H−1

⋆
and ∥H−1/2

⋆ H(z, θ⋆)H
−1/2
⋆ ∥2 are con-

trolled using the sub-Gaussian gradient and matrix Bernstein
assumptions. A similar result holds if we treat z as a fixed
datapoint, since these quantities are now fixed as well.

Theorem 1 has several merits. First, it is adapted to the
eigenspectrum ofG⋆ andH⋆ via the effective dimension p⋆;
the bound only has a logarithmic dependence on the ambient
dimension p. The effective dimension p⋆ is also affine-
invariant, similar to the error criterion. The only geometry-
dependent (i.e., not affine-invariant) term in Theorem 1 is
the minimal eigenvalue µ⋆ of the Hessian H⋆. Third, we get
a fast 1/n rate, faster than the 1/

√
n rate typical of uniform

convergence arguments.

We now sketch the key aspects of its proof. The full proof
is given in Appendix D.

Proof Sketch of Theorem 1. We use the triangle inequality
to bound ∥In(z)− I(z)∥H⋆

by∥∥(Hn(θn)
−1 −H−1

⋆

)(
∇ℓ(z, θn)−∇ℓ(z, θ⋆)

)∥∥
H⋆

+
∥∥(Hn(θn)

−1 −H−1
⋆

)
∇ℓ(z, θ⋆)

∥∥
H⋆

+
∥∥H−1

⋆

(
∇ℓ(z, θn)−∇ℓ(z, θ⋆)

)∥∥
H⋆
.

The proof follows from arguing that θn → θ⋆, ∇ℓ(z, θn) →
∇ℓ(z, θ⋆), and Hn(θn) → H⋆ in the appropriate sense.
The first comes from a localization result of Ostrovskii
and Bach (2021) that states that θn lies in a Dikin ellip-
soid of radius

√
p⋆/n around θ⋆ for n large enough, i.e.,

∥θn − θ⋆∥2H⋆
≲ p⋆/n. The second comes from arguing

using pseudo self-concordance that the gradient ∇ℓ(z, ·) is
Lipschitz w.r.t. ∥·∥H⋆

in the Dikin Ellipsoid around θ⋆. For
the last one, we argue that Hn(θn) ≈ Hn(θ⋆) from pseudo
self-concordance, and formalize Hn(θ⋆) → H⋆ by matrix
concentration.

In addition to the statistical error bound in Theorem 1, we
also provide a bound for the approximation error in (3).
Here, we treat z as a fixed data point and make the following
boundedness assumptions in addition to the assumptions
above.

(d) The normalized gradient is bounded in a neighborhood
of θ⋆, i.e., there exist M1 ≥ 1, ρ ∈ (0, R−1] such that
∥∇ℓ(z, θ)∥H−1

⋆
≤M1 for all ∥θ − θ⋆∥H⋆

≤ ρ.

(e) The normalized Hessian is bounded in a neighborhood
of θ⋆, i.e., there exist M2 ≥ 1, ρ ∈ (0, R−1] such that
∥H(z, θ)∥H−1

⋆
≤M2 for all ∥θ − θ⋆∥H⋆

≤ ρ.

Theorem 2. Suppose that the assumptions above hold, ε ≤
Cmin{ρ/M1, 1/M2,

√
µ⋆/RM1}, and

n ≥ CK1,K2,σH

[(
R2

µ⋆
+

1

ρ

)
p⋆ log

1

δ
+ log

p

δ

]
.

Then, with probability at least 1− δ,∥∥∥∥θn,ε,z − θn
ε

− In(z)

∥∥∥∥2
Hn(θn)

≤ CM1,M2
×

[
exp

(
CK1,M1

R√
µ⋆

(√
p⋆
n

log
1

δ
+ ε

))
− 1

]2
+ ε2

 .

A full proof can be found in Appendix E.

3.2 Computational and Total Error Bounds

We consider iterative first-order algorithms to compute the
influence function In(z) = argminu gn(u) by minimizing
the convex quadratic gn(u) defined in (9).

We aim to find an ε-approximate minimizer u that satisfies
E[∥u− In(z)∥2Hn(θn)

|Z1:n] ≤ ε. This error criterion is not
only affine-invariant, but is also equivalent to E[gn(u) −
min gn|Z1:n] ≤ 2ε. Throughout this section, we assume
for all z ∈ Z that ℓ(z, ·) is L-smooth, i.e., ∥∇2ℓ(z, θ)∥2 ≤
L for all θ. The complexity of minimizing gn with first
order algorithms depends on the condition number κn :=
L/λmin

(
Hn(θn)

)
. The corresponding condition number of

the population Hessian H⋆ is κ⋆ := L/λmin(H⋆) = L/µ⋆.

Any ε-approximate minimizer În(z) of gn satisfies the fol-
lowing total error bound.

Proposition 3. Consider the setting of Theorem 1, and
let G denote the event under which its conclusions
hold. Let În(θ) be an estimate of In(θ) that satisfies

E
[
∥În(z)− In(z)∥2Hn(θn)

|Z1:n

]
≤ ε. Then,

E
[
∥În(z)− I(z)∥2H⋆

∣∣∣G] ≤ 8ε+ C
R2p2⋆
µ⋆n

log3
p

δ
,

where C = CK1,K2,σH
is as in Theorem 1.

This bound is obtained by translating the approximation
error in the Hn(θn)-norm to the H⋆-norm using the spectral
Hessian approximation under G and the triangle inequality.

The conjugate gradient method is known to require
Tn(ε) :=

√
κn log

(
∥In(z)∥2Hn(θn)

/ε
)

iterations (ignor-
ing constants) to return an ε-approximate minimizer (e.g.
Saad, 2003; Chen, 2005; Bai and Pan, 2021). Since
each iteration requires n Hessian-vector products, the to-
tal computational complexity to obtain an ε-approximate
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Table 1: The number of calls to a Hessian-vector product oracle u 7→ ∇2ℓ(z, θ)u so that (a) the computational error is at
most ε, and (b) the total error is at most ε in the sense of Proposition 3. We show the dependence of the former on the
condition number κn = L/λmin(Hn(θn)), the optimal magnitude ∆n = ∥In(z)∥2Hn(θn)

, and the SGD noise σ2
n, defined

in Appendix F.3. The total error bound depends on the corresponding population quantities κ⋆ = L/λmin(H⋆), ∆⋆ =
∥I(z)∥2H⋆

, and σ2
⋆, as well the effective dimension p⋆. We omit the dependence on problem constants R,L,K1,K2, σ

2
H ,

as well as logarithmic terms in p, p⋆, δ. For the low-rank approximation, we assume that the total complexity to obtain a
rank-k approximation is O(k) full batch Hessian-vector products. We present computational error bounds assuming the
eigenvalues λi(Hn(θn)) of Hn(θn) decay polynomially as i−β (β > 1) or exponentially as e−νi (ν > 0). The same decay
is assumed for H⋆ for the total error bound. The full proofs of these bounds are given in Appendix F.

Method Computational Error Total Error Reference

Conjugate Gradient n
√
κn log

∆n

ε
κ3/2
⋆ p2⋆
ε log ∆⋆

ε Corollary 16

SGD σ2
n

ε + κn log
κn∆n

ε
σ2
⋆

ε + κ⋆ log
κ⋆∆⋆

ε Corollary 20

SVRG (n+ κn) log
κn∆n

ε κ⋆

(
1 +

p2⋆
ε

)
log κ⋆∆⋆

ε Corollary 23

Accelerated SVRG (n+
√
nκn) log

κn∆n

ε κ⋆

(√
p2⋆
ε +

p2⋆
ε

)
log κ⋆∆⋆

ε Corollary 23

Low-Rank Approx. (λi ∝ i−β) n
(
κn∆n

ε

) 1
β−1

(
κ⋆

ε

) β
β−1 p2⋆∆

1
β−1
⋆ Corollary 25

Low-Rank Approx. (λi ∝ e−νi) n
ν log κn∆n

ε
κ⋆p

2
⋆

νε log κ⋆∆⋆

ε Corollary 25

minimizer is O
(
nTn(ε)

)
. To make the statistical error

∥In(z)− I(z)∥2H⋆
to be smaller than ε, we must choose

n ≥ n(ε) = Õ
(
R2p2⋆/(µ⋆ε)

)
(ignoring constants and log-

arithmic factors). Proposition 3 now says that the overall
computational complexity to reduce the total error under
O(ε) is O

(
n(ε)T (ε)

)
.

Table 1 presents this bound with sample-dependent quanti-
ties such as κn and ∥In(z)∥Hn(θn)

translated to their popu-
lation versions. Table 1 also lists the corresponding bounds
for the other algorithms we consider. We discuss the impli-
cations of the total error bounds. We use Õ(·) to suppress
logarithmic terms in 1/ε below.

Marginal Benefits of Variance Reduction. For a fixed
n, the computational error bounds agree with the conven-
tional wisdom that SVRG is significantly faster than SGD,
especially for small ε. Indeed, the error Õ(n + κn) of
SVRG only depends logarithmically on 1/ε, while the SGD
error Õ(σ2

n/ε + κn) is polynomial. However, the statis-
tical error bounds suggest that the sample size must be
n = Õ(R2p2⋆/µ⋆ε), so the total error of SVRG scales as
1/ε. This matches SGD up to constants. SVRG has better
constants only if the SGD noise σ2

⋆ > p2⋆/µ⋆ is large.

Marginal Benefits of Acceleration. For fixed n, acceler-
ated SVRG’s rate of Õ(n+

√
nκn) is faster than SVRG for

ill-conditioned problems where κn > n, but is no worse
for well-conditioned problems where κn ≤ n. To have a
small total error, we need n = Õ(1/ε), while the condition
numbers satisfy κn ≤ 4κ⋆ for κn a constant (under Theo-
rem 1). Thus, for ε small, the problem is well-conditioned

and acceleration offers marginal benefits.

Stochastic Methods Outperform Full Batch Methods.
The total error of the conjugate gradient method is
Õ(κ

3/2
⋆ p2⋆/ε) while SVRG is Õ(κ⋆p

2
⋆/ε). Thus, SVRG

always has better constants than the conjugate gradient
method. This is also true of accelerated SVRG.

Low-rank Approximations Work for Faster Eigende-
cay. For a slow polynomial decay λi(H⋆) ∝ i−β of the
eigenvalues of H⋆ for β > 1, the total error scales as
ε−β/(β−1), which is worse than the 1/ε rate for all other
methods considered. However, for a faster exponential
decay λi(H⋆) ∝ e−νi for ν > 0, its 1/ε rate matches
SVRG exactly up to a factor of ν, despite being a full batch
method.

4 MOST INFLUENTIAL DATA SUBSETS

We now turn to the subset influence defined in Section 2. We
start by formalizing the population limit and then establish
statistical error bounds. Let h : Θ → R be a continuously
differentiable test function and α ∈ (0, 1) be fixed through-
out. We only consider n where αn is an integer.

Population Limit. In order to derive the population limit
of the subset influence Iα,n(h) from (8), we interpret the
weights w ∈Wα ⊂ ∆n−1 as a probability distribution over
the n datapoints. This gives

Iα,n(h) = max
w∈Wα

Ei∼w[ϕn(Zi)],

where ϕn(z) = −⟨∇h(θn), Hn(θn)
−1∇ℓ(z, θn)⟩.
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This suggests that the population limit should be
supQ∈Q EZ∼Q[ϕ(Z)] over an appropriate set of distribu-
tions Q, where ϕ(z) = −⟨∇h(θ⋆), H−1

⋆ ∇ℓ(z, θ⋆)⟩.
Since the maximum of a linear program occurs at a corner,
we can pass from the max over Wα to its convex hull

convWα = {w ∈ ∆n−1 : wi(1− α)n ≤ 1 ∀ i } .
Compared to the uniform distribution 1n/n over Z1:n, w ∈
convWα allows for weights that are a factor of (1− α)−1

larger. If P is a continuous distribution with density fP ,
then a natural choice for Q is the set of distributions with
density fQ(z) ≤ fP (z)/(1− α).

We can formalize this discussion through the notion of a tail
statistic known as the superquantile or the conditional value
at risk (Rockafellar and Uryasev, 2000). The superquantile
of a random variable Z ∼ P at level α is defined as

Sα(Z) := sup

{
EZ∼Q[Z] :

dQ

dP
≤ 1

1− α

}
,

where dQ/dP denotes the Radon-Nikodym derivative of
Q w.r.t. P . This constraint subsumes both the density ratio
constraint in the continuous case and the weight ratio con-
straint in the discrete case. The superquantile has a long and
storied history in economics and quantitative finance, with
recent applications in machine learning; we refer to (Laguel
et al., 2021) for a survey. We overload notation to denote
the superquantile of the empirical measure over v1, . . . , vn
as Sα(v1, . . . , vn).

We formalize the connection between the maximum subset
influence In,α and the superquantile.
Proposition 4. If αn is an integer, then
In,α(h) = Sα(v1, . . . , vn) where vi =
−
〈
∇h(θn), Hn(θn)

−1∇ℓ(Zi, θn)
〉
.

Proposition 4 motivates us to define the population subset
influence as

Iα(h) = Sα

[
−∇h(θ⋆)⊤H(θ∗)

−1∇ℓ(Z, θ⋆)
]
. (12)

Assumptions. We need to use the strengthen assumptions
made in Theorem 2 for technical reasons. We also add the
following

(f) The test function h is bounded as ∥∇h(θ)∥H−1
⋆

≤
M ′

1 and ∥H−1/2
⋆ ∇2h(θ)H

−1/2
⋆ ∥2 ≤ M ′

2 for all
∥θ − θ⋆∥H⋆

≤ ρ.

Assumption (f) asserts the boundedness of the test function
h. We make this assumption in a neighborhood around θ⋆.

Statistical Bound. We now state our main bound.
Theorem 5. Suppose the assumptions above hold and the
sample size n satisfies the condition in Theorem 1. Then,
with probability at least 1− δ, we have(
Iα,n(h)− Iα(h)

)2 ≤
CM1,M2,M ′

1,M
′
2

(1− α)2
R2p⋆
µ⋆n

log
n ∨ p
δ

.

Theorem 5 has the same merits as Theorem 1: it uses
the effective dimension p⋆ and exhibits only a logarith-
mic dependence on the ambient dimension p. We square
the left side so that it scales for α → 0 as the squared
norm ∥(1/n)∑n

i=1 In(Zi)− EZ∼P [I(Z)]∥2H⋆
, compara-

ble to Theorem 1. We get a fast log n/n rate rather than a
slow 1/

√
n rate.

The proof relies on the equivalent expression

Sα(Z) = inf
η∈R

{
Φ(Z, η) := η +

1

1− α
E(Z − η)+

}

of the superquantile where (·)+ = max{·, 0}. We analyze
the convergence of Φ

(
ϕn(Z1:n), η

)
to Φ(ϕ(Z), η) for fixed

η using the same techniques as Theorem 1. Then, we con-
struct an ε-net so the bound holds for all η, including the
minimizer. The full proof is given in Appendix G.

Related Work. Influence functions or curves have orig-
inally been proposed by Hampel (1974), and partly moti-
vated by Jaeckel (1972)’s “infinitesimal jackknife”. Cook
and Weisberg (1982) showed that the influence function
can be computed using inverse Hessian gradient products.
Recent works on influence functions include (Cook, 1986;
Hadi et al., 1995; Zhu and Zhang, 2004; Ma et al., 2014;
Zhao et al., 2019). The theoretical statistical analysis has
mostly focused on large-sample asymptotics hence in small
dimensions, and we refer to the recent work (Avella-Medina,
2017) for a comprehensive survey.

Efficiently computing influence functions, or related inverse-
Hessian-vector products, has received attention recently
in the context of the training of deep neural networks us-
ing natural gradient or Newton-like algorithms (Henriques
et al., 2019). Specifically, on influence functions, stochas-
tic convex optimization algorithms (Agarwal et al., 2017),
conjugate gradient methods (Saad, 2003), and low-rank vari-
ants (Schioppa et al., 2022) have been applied. The recent
discovery of linear convergence for variance-reduced opti-
mization algorithms makes them potentially competitive for
the efficient computation of influence functions.

5 EXPERIMENTS

We explore the convergence of the empirical influence func-
tion to its population counterpart for classical linear mod-
els. We also report the findings from large attention based
models, for which little statistical theory is known, yet
maximum influential subsets can still be computed as for
any black-box model. Appendix H contains the full de-
tails of this section. The code as well as the scripts to
reproduce the experiments are made publicly available on-
line https://github.com/jfisher52/influence_theory.
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Figure 2: Convergence of the empirical influence function to the population (solid line) compared to the bound of Theorem 1
(dotted line) with linear regression and classification models for simulated (left two) and real data (right two). We plot the
mean over 100 repetitions, and the shaded area denotes the 95% standard error.

5.1 Linear Models

We consider synthetic ridge regression and binary logistic
regression in R9. The input x ∼ N (0, I) is normal, and the
outputs are generated with a linear or logistic model from
i.i.d. noise based on a fixed θ⋆. We also consider two real
datasets: (1) Oregon Medicaid (Finkelstein et al., 2012),
where the goal is to estimate the overall health (classifica-
tion) and the number of good health days in the last month
(regression) of an individual, and (2) Cash Transfer (An-
gelucci and De Giorgi, 2009), where the goal is to estimate
the total consumption of an individual (regression). Both
datasets use some economic and demographic features and
treatments as inputs to the model; they contain 20K and 50K
points respectively.

We plot the statistical convergence of the exact empirical
influence In(z) to the population influence I(z) for fixed
z using various sample sizes n as well as the bound of
Theorem 1. For the real data, we use the full dataset as the
population. We measure the influence of points z that are
outliers added to the training set for the simulations and a
random sample for the real data.

Results: Tightness of Theorem 1. The results are given in
Figure 2. We see for the simulated datasets (left two plots)
that the empirical observations for a straight line in log-log
scale whose slope matches that of the bound. This indicates
that the 1/n rate of our bounds is also observed empirically.1

This is also approximately true for the regression line in the
Oregon Medicaid dataset. We note that its classification line
and the Cash Transfer dataset have slopes that differ from
the bound. This phenomenon could be due to the error in
the population influence used for the plots: we approximate
it from a larger data sample because we do not have access
to the population distribution. Note that we do not see such
a behavior in the simulated classification task, where we can
more accurately approximate the population. In all of these
cases, Theorem 1 is still an upper bound on the empirical
error.

1A log-log plot of y = cxa is a straight line with slope a.

5.2 Large Transformer Language Models

Setup. We consider (a) a question-answering task where
the goal is to respond to a natural language question with
a factually correct answer, and (b) a text continuation task
where the goal is to generate ten tokens following a given
context. We use a BART-base model (Lewis et al., 2020)
on the zsRE dataset (Levy et al., 2017) and a DistilGPT-2
model (Sanh et al., 2019) on the WikiText-103 dataset (Mer-
ity et al., 2017) respectively. We subsample the training set
size for various n and finetune a pretrained model to get θn.
We take the largest value of n as the population version: this
value was 5K and 2K respectively. We estimate the popula-
tion influence with 100 epochs of SVRG, while we use 50
passes through the data for the approximate methods. We
compute the influence In(z) for 5 points z1, · · · , z5. The
quadratic gn from (9) is nonconvex and unbounded below
if the Hessian Hn(θn) is not positive semidefinite; we find
this to be the case for our experiments with the deep nets.
To overcome this, we consider

In,λ(z) = −
(
Hn(θn) + λI

)−1∇ℓ(z, θn) .

We choose the smallest λ so that the quadratic objective
gn(ut) from (9) is bounded below for iterates ut obtained
from SGD, ensuring that H + λI is positive semidefinite.

Error Criterion. The norm ∥În(z)− I(z)∥ bound may be
vacuous for failing to capture the permutation symmetries
of the parameters of a deep network. Instead, we measure
the effect of a point z on a test function h(θ) = ℓ(ztest, θ) as

Gn(z) = ⟨∇h(θn), In,λ(z)⟩ , (13)

and compare it against its population counterpart G(z).
From the chain rule, it follows that G(z) is the linearization
d
dεh(θn,ε,z)|ε=0 similar to (3). In our experiments, h(θ) is
the loss on the test set. The results are given in Figure 3.

Results: Total Error Versus n. For the question-answering
task, the error reduces by a factor of 10 as n increases from
40 to 300 (slope ≈ −1.5) indicating an empirical n−1.5

rate. For the text continuation task, we find that the error in
influence estimation does not vary significantly with n and
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Figure 3: Left two: Convergence of the approximate empirical influence to the population for text generation tasks measured
in terms of predictions as in (13). The solid line denotes the mean of |Gn(zi)−G(zi)| for i = 1, · · · , 4 and the shaded area
denotes its standard deviation. Right two: Convergence of the influence value Iα,n(hi) found by the most influential subset
method to its population version Iα(hi) on the question-answering task for different test functions hi = ℓ(ztest,i, θ).

has a high variance. Indeed, the open-ended nature of the
text continuation task suggests that no one point z should
have a large influence on the predictions of a test point ztest,
leading to noisy influence estimates.

Comparing Computational Approximations. We observe
that SGD ≈ SVRG in Figure 3. This corroborates the total
error bounds of Table 1 which show that variance-reduced
SVRG has the same total error as SGD despite being signifi-
cantly faster in optimization. At a large computation budget,
we find that the conjugate gradient method also exhibits
an error comparable to SGD and SVRG. The benefits of
stochastic algorithms such as SGD become evident for large
datasets where SGD gives a reasonable estimate without
even making a full pass (its error is independent of n, cf. Ta-
ble 1). For the question-answering dataset, we find that the
low-rank approximation provided by the Arnoldi method
(Schioppa et al., 2022) has the smallest error for n ≤ 200,
while it is identical to the others for large n.

Most Influential Subsets. We repeat the question-
answering experiment to find the most influential subset
of data for different n with test function hi(θ) = ℓ(ztest,i, θ)
for four chosen test points. We use the low-rank (Arnoldi)
method to approximate the inverse Hessian-vector product
because this method has the best error properties in Figure 3
(left two). For different values of α, we observe that the
estimation error tends to decrease with n. We note that a few
outliers are to be expected with large-scale deep nets with
real data where theoretical assumptions are not precisely
met.

The type of influential examples recovered varied from
surface-level attributes to deeper features, such as topics,
as n increased; see Figure 4 for examples. In some cases,
the most influential examples were semantically related
questions with different answers. For instance, for the test
question "Was Goldmoon male or female" (female), a highly
negatively influential questions was "What is the gender of
Jacques Rivard?" (male). However, for others the relations
seemed more structural. For example, the test question "The
nationality of Jean-Louis Laya was what?" (French), we

Q: Where is Venera 9 found? 
A: Venus

ztest

Q: Which place 
does Indian 
Killer exist in?  
A: Seattle 

Q: Which place 
does Pokemon 
Gold and Silver 
exist in?  
A: Kanto

+1.85 

- 2.62

ztrain,i Influence

Compute 
Influence of 

 on ztrain,i ztest

Most 
Influential 

Points

ztrain,i Influence
Q: The 
astronomical 
body that Ulysses 
Fossae is on is 
what?  
A: Mars 

Q: The star NGC 
6167 is a part of 
the constellation 
named what?  
A: Norma 

+8.00 

- 3.40

Ztrain = {z1, . . . , z750}

Theme

Ztrain = {z1, . . . , z5000}

Question Type (Location)                              Question Topic (Space) n

Figure 4: As the sample size n increases, we see a shift
in the quality of the most influential questions. Lower n
results in surface-level attributes, such as question type,
while larger n results in deeper features, such as the topic.

recovered as highly negatively influential, "The nationality
of Yitzhak Rabin is?" (Hebrew).

6 CONCLUSION

As statistical learning models and deep nets are being in-
creasingly used, influence diagnostics are precious tools
to study the influence of datapoints on predictions, deci-
sions, and outcomes. In this paper, we presented statistical
and computational guarantees for influence functions for
generalized linear models. We established the statistical con-
sistency of most influential subsets method (Broderick et al.,
2020) together with nonasymptotic bounds. We illustrated
our results on simulated and real datasets. Extending our
results to sparse regularized models as well as deep neural
network models are interesting venues for future work.
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A Notation Review

Setup. We review notation from the paper, which will be used throughout the appendix. We define the parameter of interest
θ⋆ ∈ Θ = Rp as

θ⋆ := argmin
θ∈Θ

[
F (θ) := EZ∼P [ℓ(Z, θ)]

]
,

where P is an unknown probability distribution over a data space Z and ℓ : Z ×Θ → R+ is a loss function. We define the
estimate of θ⋆ using an i.i.d. sample Z1:n := (Z1, · · · , Zn) ∼ Pn as

θn := argmin
θ∈Θ

1

n

n∑
i=1

ℓ(Zi, θ).

We define the gradient of the loss function as S(z, θ) = ∇θℓ(Z, θ) and the empirical gradient of the loss function as
Sn(θ) :=

1
n

∑n
i=1 ∇θℓ(Zi, θ).

We define the population Hessian H⋆ = ∇2
θ⋆
ℓ(z, θ⋆) of the population objective and the estimate of the Hessian as

Hn(θ) :=
1
n

∑n
i=1 ∇2

θℓ(Zi, θ).

Influence Function. We define G⋆ = CovZ∼P (∇θ⋆ℓ(Z, θ⋆)) the gradient covariance at θ⋆ and the effective dimension
p⋆ = Tr(H

−1/2
⋆ G⋆H

−1/2
⋆ ). We define the population influence function as I(z) := H−1

⋆ ∇θ⋆ℓ(z, θ⋆). We quantify the
influence of a fixed data point z on the estimator θn as In(z) defined as

In(z) = −Hn(θn)
−1∇ℓ(z, θn) .

Most Influential Subset. Let α ∈ (0, 1) and h : Rp → R be a continuously differentiable test function. Then we define the
weights w in the probability simplex ∆n−1θn,w := argminθ∈Θ

∑n
i=1 wiℓ(Zi, θ) and use them to define Wα as

Wα :=

{
w ∈ ∆n−1 :

at most αn elements of w are
zero and the rest are equal

}
.

The maximum influence of any subset of data of size at most αn for a test function h is expressed by

Iα,n(h) = max
w∈Wα

{
−

n∑
i=1

wi
〈
∇h(θn), Hn(θn)

−1∇ℓ(Zi, θn)
〉}

.

The population subset influence is defined as,

Iα(h) = Sα

[
−∇h(θ⋆)⊤H(θ∗)

−1∇ℓ(Z, θ⋆)
]
, (14)

where Sα is the superquantile at level α. We refer to Appendix I.6.

Miscellaneous. An unqualified norm ∥·∥ refers to the Euclidean norm ∥v∥2 for a vector v and the spectral norm ∥M∥2 for a
matrix M . We define a vector norm ∥x∥A = ⟨x,Ax⟩ and matrix norm ∥B∥A = ∥A1/2BA1/2∥2 for a positive definite A.
We define the convex hull as conv T for a set T ⊂ Rn.

We define V(M) = E[MM⊤] − E[M ]E[M ]⊤ for a random matrix M . We also denote dQ/dP as the Radon-Nikodym
derivative of Q w.r.t. P . When P and Q have respective densities p, q, we have dQ/dP (z) = q(z)/p(z) as simply the
density ratio or likelihood ratio.

Lastly, we define the condition number of a positive definite matrix A with spectral norm ∥A∥2 ≤ L and minimum
eigenvalue λmin(A) as κ = L/λmin(A).

B Review of Computational Approaches

We present the pseudocode of the various computational approaches we consider in this work:

• Algorithm 1: Conjugate gradient method,
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• Algorithm 2: Stochastic gradient descent,

• Algorithm 3: LiSSA,

• Algorithm 4: Stochastic variance-reduced gradient (SVRG) method,

• Algorithm 5: Low-rank approximation via the Arnoldi/Lanczos iterations.

Algorithm 1 Conjugate Gradient Method to Compute the Influence Function

Input: vector v, batch Hessian vector product oracle HVPn(u) = Hn(θn)u, number of iterations T
1: u0 = 0, r0 = −v − HVPn(u0), d0 = r0
2: for t = 0, ..., T − 1 do
3: αt =

d⊤t rt
d⊤t HVPn(dt)

4: ut+1 = ut + αtdt
5: rt+1 = −v − HVPn(ut+1)

6: βt =
r⊤t+1rt+1

r⊤t rt

7: dt+1 = rt+1 + βtdt

8: return uT

Algorithm 2 Stochastic Gradient Descent Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2ℓ(zi, θn)u, number of iterations T , learning rate γ
1: u0 = 0
2: for t = 0, ..., T − 1 do
3: Sample it ∼ Unif([n])
4: ut+1 = ut − γ(HVP(it, ut) + v)

5: return uT

Algorithm 3 The LiSSA Method to Compute the Influence Function (Agarwal et al., 2017)

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2ℓ(zi, θn)u, number of approximations S, number of
iterations T , scaling factor γ

1: for s = 1, ..., S do
2: u

(s)
0 = −v

3: for t = 0, ..., T − 1 do
4: Sample it ∼ Unif([n])
5: u

(s)
t+1 = −γv + u

(s)
t − γ HVP(it, u

(s)
t )

6: uT = 1
S

(∑S
s=1 u

(s)
T

)
7: return uT

Connection between SGD and LiSSA. Observe that the updates of LiSSA for a fixed s are identical to that of SGD:

u
(s)
t+1 = −γv + u

(s)
t − γHVP(it, u

(s)
t ) = u

(s)
t − γ(HVP(it, u

(s)
t ) + v) .

Formally, we show that the sequence u1, ..., ut produced by stochastic gradient descent with initial guess u0 = −v (instead
of u0 = 0 as required by Algorithm 2) and u′1, ..., u

′
t produced by LiSSA with number of repetitions S = 1 are identical.

Note that u0 = u′0 = −v. We show by induction that the two sequences (ut) and (u′t) are identical provided the same
samples i0, · · · , iT−1 are drawn. Suppose ut = u′t for some t ≥ 0. We have,

u′t+1 = −γv + u′t − γHVP(it, u′t) = u′t − γ(HVP(it, u′t) + v) = ut − γ(HVP(it, ut) + v) = ut+1,

showing that the sequences are identical.
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Algorithm 4 Stochastic Variance Reduced Gradient Method to Compute the Influence Function

Input: vector v, Hessian vector product oracle HVP(i, u) = ∇2ℓ(zi, θn)u, number of epochs S, number of iterations per
epoch T , learning rate γ

1: u(0)T = 0
2: for s = 1, 2, ..., S do
3: u

(s)
0 = u

(s−1)
T

4: ũ
(s)
0 = 1

n

∑n
i=1 HVP(u(s)0 )− v

5: for t = 0, ..., T − 1 do
6: Sample it ∼ Unif([n])
7: u

(s)
t+1 = u

(s)
t − γ(HVP(it, u

(s)
t )− HVP(it, u

(s)
0 ) + ũ

(s)
0 )

8: return u(S)T

Algorithm 5 Arnoldi Method to Compute the Influence Function (Schioppa et al., 2022)

Input: vector v, test function h, initial guess u0, batch Hessian vector product oracle HVPn(u) = Hn(θn)u, number of top
eigenvalues k, number of iterations T

Output: An estimate of ⟨∇h(θ), Hn(θn)
−1v⟩

1: Obtain Λ, G = ARNOLDI(u0, T, k) ▷ Cache the results for future calls
2: return ⟨G∇h(θ),Λ−1Gv⟩

3: procedure ARNOLDI(u0, T , k)
4: w0 = 1 = u0/∥u0∥2
5: A = 0T+1×T
6: for t = 1, ..., T do
7: Set ut = HVPn(wt)−

∑t
j=1⟨ut, wj⟩wj

8: Set Aj,t = ⟨ut, wj⟩ for j = 1, . . . , t and At+1,t = ∥ut∥2
9: Update wt+1 = ut/∥ut∥

10: Set Ã = A[1 : T, :] ∈ RT×T (discard the last row)
11: Compute an eigenvalue decomposition Ã =

∑T
j=1 λjeje

⊤
j with λj’s in descending order

12: Define G : Rp → Rk as the operator Gu =
(
⟨u,W⊤e1⟩, · · · , ⟨u,W⊤ek⟩

)
, where W = (w⊤

1 ; · · · ;w⊤
T ) ∈ RT×p

13: return diagonal matrix Λ = Diag(λ1, · · · , λk) and the operator G

C Effective Dimensions and Eigenspectra of the Hessian and Gradient Covariance

Recall the following definitions, the population Hessian H⋆ = ∇2F (θ⋆) of the population objective and G⋆ =
CovZ∼P (∇ℓ(Z, θ⋆)) the gradient covariance at θ⋆. We are interested in how the effective dimension p⋆ =

Tr(H−1/2
⋆ G⋆H

−1/2
⋆ ) differs from the parameter dimension p due to the eigendecay of H⋆. First, we assume that H⋆

and G⋆ share the same eigenvectors. Then, using the eigenvalue decomposition of a matrix, we can say that for Q containing
the eigenvectors as its columns,

H⋆ = QΛHQ
⊤,

G⋆ = QΛGQ
⊤

where ΛA = Diag{λa,i} contains the eigenvalues of A in non-increasing order. Therefore, we get

H
−1/2
⋆ = QΛ

−1/2
H Q⊤ .

Using these definitions we now show the following,

H
−1/2
⋆ G⋆H

−1/2
⋆ = (QΛ

−1/2
H Q⊤)(QΛGQ

⊤)(QΛ
−1/2
H Q⊤)

= QΛ
−1/2
H ΛGΛ

−1/2
H Q⊤

= QDiag
{
λg,1
λh,1

...
λg,p
λh,p

}
Q⊤.
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Therefore, due to the cyclic property of traces we define,

Tr(H
−1/2
⋆ G⋆H

−1/2
⋆ ) =

p∑
i=1

λg,i
λh,i

.

Here we have shown that the dimension dependency of p⋆ is dependent on the eigendecay of G⋆ and H⋆. To illustrate this
point, we show four examples of how these calculations continue. All examples are outlined in Table 2.

Polynomial - Polynomial Eigendecay. We assume that both G⋆ and H⋆ have polynomial eigendecay, that is, λg,i ≲ i−α

and λh,i ≲ i−β . Then we can write,

p⋆ ≲
p∑
i=1

iβ−α ≲
∫ p

1

xβ−αdx ≲ pβ−α+1.

Polynomial - Exponential Eigendecay. We assume thatG⋆ has polynomial eigendecay andH⋆ have exponential eigendecay,
that is λg,i ≲ i−α and λh,i ≲ e−νi. Then we can write,

p⋆ ≲
p∑
i=1

eνii−α ≲ p1−αeνp,

where the last inequality holds because eνxx−α is increasing when x is large enough.

Exponential - Polynomial Eigendecay. We assume thatG⋆ has exponential eigendecay andH⋆ have polynomial eigendecay,
that is λg,i ≲ e−µi and λh,i ≲ i−β . Then we can write,

p⋆ ≲
p∑
i=1

e−µiiβ ≲ 1,

where the last inequality holds because e−µxxβ is decreasing when x is large enough.

Exponential - Exponential Eigendecay. We assume that G⋆ has exponential eigendecay and H⋆ have exponential
eigendecay, that is λg,i ≲ e−iµ and λh,i ≲ e−iν . Then we can write,

p⋆ ≲
p∑
i=1

e(ν−µ)i.

If µ > ν, then

p∑
i=1

e(ν−µ)i ≲ 1.

If µ < ν, then

p∑
i=1

e(ν−µ)i ≲
∫ p

1

e(ν−µ)i =
1

ν − µ

(
e(ν−µ)p − e(ν−µ)

)
≲ e(ν−µ)p.

And if µ = ν, then

p∑
i=1

e0 = p.

D Statistical Error Bounds for Influence Estimation

The main purpose of this section is to prove the statistical error bound Theorem 1. We use C to denote an absolute constant
which may change from line to line. We use subscripts to emphasize the dependency on problem-specific constants, e.g.,
CK1

is a constant that only depends on K1.
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Table 2: Comparison between the effective dimension p⋆ and the parameter dimension p in different regimes of eigendecays
of G⋆ and H⋆ assuming they share the same eigenvectors.

Eigendecay Dimension Dependency Ratio
G⋆ H⋆ p⋆ p p⋆/p

Poly-Poly i−α i−β p(β−α+1)∨0 p p(β−α)∨(−1)

Poly-Exp i−α e−νi p1−αeνp p p−αeνp

Exp-Poly e−µi i−β 1 p p−1

Exp-Exp e−µi e−νi
p if µ = ν

1 if µ > ν

e(ν−µ)p if µ < ν

p

1 if µ = ν

p−1 if µ > ν

p−1e(ν−µ)p if µ < ν

Notation. Let z be a fixed data point not related to the sample Z1, · · · , Zn ∼ P . Recall that the influence of upweighting an
observation z on the model parameter θ is given by

In(z) = −Hn(θn)
−1S(z, θn), (15)

where Hn(θ) :=
1
n

∑n
i=1 ∇2

θℓ(Zi, θ) is the empirical Hessian and S(z, θ) := ∇θℓ(z, θ) is the gradient at z. Let θ⋆ be the
minimizer (assumed to exist) of the population risk E[ℓ(z, θ)] and H(θ) := E[∇2

θℓ(z, θ)]. We write H⋆ := H(θ⋆) for short.
We are interested in bounding the difference

E := ∥Hn(θn)
−1S(z, θn)−H−1

⋆ S(z, θ⋆)∥H⋆
,

where ∥u∥A :=
√
u⊤Au for a vector u and a positive semidefinite matrix A.

D.1 Assumptions

We state the full assumptions under which the statistical bound holds.
Assumption 1. For any z ∈ Z , the loss function ℓ(z, ·) is pseudo self-concordant for some R ≥ 1:

|D3
θℓ(z, θ)[u, u, v]| ≤ R∥u∥2∇2ℓ(z,θ) ∥v∥2 ,

where D3
xf(x)[u, v, w] :=

d
dt ⟨u,∇2f(x+ tw) v⟩|t=0 for f thrice continuously differentiable.

The most useful consequence of this assumption is a spectral approximation of the Hessian (1/2)H(θ′) ⪯ H(θ) ⪯ 2H(θ′)
for θ and θ′ close enough in terms of the L2 distance.
Assumption 2. (Sub-Gaussian Gradient). There exists a constant K1 ≥ 1 such that the normalized gradient
H(θ⋆)

−1/2∇ℓ(Z, θ⋆) at θ⋆ is sub-Gaussian with parameter K1 (see Appendix I.1 for a precise definition).
Assumption 3. (Matrix Bernstein of Hessian). The standardized Hessian H(θ⋆)

−1/2 ∇2ℓ(Z, θ⋆)H(θ⋆)
−1/2 − Ip at θ⋆

satisfies a Bernstein condition with parameter K2 ≥ 1 (see Appendix I.1 for a definition). Moreover,

σ2
H :=

∥∥∥V(H(θ⋆)
−1/2 ∇2ℓ(Z, θ⋆)H(θ⋆)

−1/2
)∥∥∥

2

is finite, where we denote V(M) = E[MM⊤]− E[M ]E[M ]⊤ for a random matrix M .

D.2 Proof of the Statistical Bound of Theorem 1

We now state and prove the full version of Theorem 1. Note that this bound is stated in terms of the H⋆ norm, but without
the square.
Theorem 1. Under Assumptions 1,2, and 3, we have, with probability at least 1− δ,

E ≤ CK1,K2,σH
log

(
2p

δ

)√
log
(e
δ

)(
1 +R

√
p⋆
µ⋆

)√
p⋆
n

whenever n ≥ CK1,K2,σH

(
p⋆
µ⋆
R2 log

(
e
δ

)
+ log

(
2p
δ

))
, where p⋆ := Tr{H−1/2

⋆ G⋆H
−1/2
⋆ } and µ⋆ = λmin(H⋆).
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Proof. Define

rn :=

√
CK2

1 log (2e/δ)
p⋆
n

tn :=
2σ2

H

−K2 +
√
K2

2 + 2σ2
Hn/ log (4p/δ)

.

(16)

Note that they both decay as O(n−1/2). The proof consists of several key steps.

Step 1. Upper bound E by basic terms involving the standardized gradient and the standardized Hessian. By the
triangle inequality, it holds that

E ≤ ∥(Hn(θn)
−1 −H−1

⋆ )S(z, θn)∥H⋆
+ ∥H−1

⋆ (S(z, θn)− S(z, θ⋆))∥H⋆
. (17)

The first term in (17) can be upper bounded by

∥[Hn(θn)
−1 −H−1

⋆ ][S(z, θn)− S(z, θ⋆)]∥H⋆
+ ∥[Hn(θn)

−1 −H−1
⋆ ]S(z, θ⋆)∥H⋆

. (18)

By the triangle inequality again, it can be shown that, for any v ∈ Rp,

∥[Hn(θn)
−1 −H−1

⋆ ]v∥H⋆
= ∥[H1/2

⋆ H−1
n (θn)H

1/2
⋆ −H

−1/2
⋆ H

1/2
⋆ ]H

−1/2
⋆ v∥2

≤ ∥H1/2
⋆ H−1

n (θn)H
1/2
⋆ − Ip∥2∥H

−1/2
⋆ v∥2.

As a result, (18) can be further upper bounded by

∥H1/2
⋆ Hn(θn)

−1H
1/2
⋆ − Ip∥2︸ ︷︷ ︸

A3

{
∥H−1/2

⋆ [S(z, θn)− S(z, θ⋆)]∥2︸ ︷︷ ︸
A2

+ ∥H−1/2
⋆ S(z, θ⋆)∥2︸ ︷︷ ︸

A1

}
.

Similarly, the second term in (17) can be upper bounded by

∥H−1/2
⋆ [S(z, θn)− S(z, θ⋆)]∥2 = A2.

Hence, it suffices to bound the three terms A1, A2, and A3. For that purpose, we define the following events

G1 :=
{
∥H−1/2

⋆ S(z, θ⋆)∥22 ≤ CK2
1 log (e/δ)p⋆

}
G2 :=

{
∥θn − θ⋆∥2H⋆

≤ CK2
1 log(e/δ)

p⋆
n

}
G3 :=

{
∥H−1/2

⋆ H(z, θ⋆)H
−1/2
⋆ − Ip∥2 ≤ t1

}
G4 :=

{
∥H1/2

⋆ Hn(θn)
−1H

1/2
⋆ − Ip∥2 ≤ Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

}
.

Moreover, we assume n ≥ max{4(K2+2σ2
H) log(16p/δ), CK2

1 log(e/δ)p⋆R
2/µ⋆} throughout the proof. In the following,

we bound A1, A2, A3 on the event G1G2G3G4, and control the probability of this event.

Step 2. Control A1. On the event G1, we know

A1 ≤
√
CK2

1 log (e/δ)p⋆.

Step 3. Control A2. According to Taylor’s theorem, it holds that

S(z, θn)− S(z, θ⋆) = H(z, θ̄)(θn − θ⋆),

where θ̄ ∈ Conv{θn, θ⋆}. Therefore, we can rewrite A2 as

A2 = ∥H−1/2
⋆ H(z, θ̄)(θn − θ⋆)∥2

= ∥H−1/2
⋆ H(z, θ̄)H

−1/2
⋆ H

1/2
⋆ (θn − θ⋆)∥2.
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Consequently,

A2 ≤ ∥H−1/2
⋆ H(z, θ̄)H

−1/2
⋆ ∥2∥H

1/2
⋆ (θn − θ⋆)∥2.

According to Proposition 32, we have

e−R∥θ̄−θ⋆∥2H(z, θ⋆) ⪯ H(z, θ̄) ⪯ eR∥θ̄−θ⋆∥2H(z, θ⋆).

Note that R∥θ̄ − θ⋆∥2 ≤ R∥θn − θ⋆∥2 ≤ Rµ
−1/2
⋆ ∥θn − θ⋆∥H⋆

. It follows from the event G2 that

1

2
H(z, θ⋆) ⪯ H(z, θ̄) ⪯ 2H(z, θ⋆). (19)

As a result, we have

∥H−1/2
⋆ H(z, θ̄)H

−1/2
⋆ ∥2 ≤ 2∥H−1/2

⋆ H(z, θ⋆)H
−1/2
⋆ ∥2.

On the event G3, we know

∥H−1/2
⋆ H(z, θ⋆)H

−1/2
⋆ ∥2 ≤ 1 + t1. (20)

Therefore, by the event G2 and (20), A2 is upper bounded by

A2 ≤ C(1 + t1)rn.

Step 4. Control A3. On the event G4, we have

A3 ≤ Rrn/
√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

.

Step 5. Control the probability of the event G1G2G3G4.

Event G1. Since θ⋆ is a minimizer of the population risk, then, by the first order optimality condition, we have E[S(z, θ⋆)] =
0. Moreover, we have

Cov(G−1/2
⋆ S(z, θ⋆)) = E[G

−1/2
⋆ S(z, θ⋆)S(z, θ⋆)

⊤G
−1/2
⋆ ]

= G
−1/2
⋆ E[S(z, θ⋆)S(z, θ⋆)

⊤]G
−1/2
⋆

= G
−1/2
⋆ G⋆G

−1/2
⋆ = Ip.

It follows that G−1/2
⋆ S(z, θ⋆) is an isotropic random vector. Let J := G

1/2
⋆ H−1

⋆ G
1/2
⋆ . It can be checked that

∥H−1/2
⋆ S(z, θ⋆)∥22 = ∥G−1/2

⋆ S(z, θ⋆)∥2J ,
where we denote ∥A∥B = ∥B1/2AB1/2∥2 for positive semidefinite B. Now it follows from Theorem 38 that, with
probability at least 1− δ/4,

∥H−1/2
⋆ S(z, θ⋆)∥22 ≤ C

[
Tr(J) +K2

1

(
∥J∥2

√
log(e/δ) + ∥J∥∞ log(1/δ)

)]
≤ CK2

1 log (e/δ)p⋆,

since ∥J∥∞ ≤ ∥J∥2 ≤ Tr(J) = p⋆. Therefore, P(G1) ≥ 1− δ/4.

Event G2. By Proposition 10, we have P(G2) ≥ 1− δ/4.

Event G3. By Assumption 3, we know that

H
−1/2
⋆ H(z, θ⋆)H

−1/2
⋆ − Ip

satisfies a Bernstein condition with parameter K2. It follows from Theorem 40 that P(G3) ≥ 1− δ/4.

Event G4. It follows directly from Proposition 11 that P(G4) ≥ 1− δ/4.

Now, by a union bound, we obtain P(G1G2G3G4) ≥ 1− δ.

Step 6. Conclusion. Putting all the above results together, we have shown that, with probability at least 1− δ,

E ≤ C
Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

[√
K2

1 log (e/δ)p⋆ + (1 + t1)rn

]
+ (1 + t1)rn.



Influence Diagnostics under Self-concordance

D.3 Intermediate Results

The proof of Theorem 1 relies on two key results: 1) the estimator θn belongs to a neighborhood of θ⋆ stated in Proposition 10,
and 2) the inverse empirical Hessian Hn(θn)

−1 is close to it population counterpart H−1
⋆ stated in Proposition 11. Before

we prove them, we give several useful lemmas.

Lemma 6. Under Assumption 1, the empirical risk Fn is pseudo self-concordant with parameter R.

Proof. By Assumption 1, the loss ℓ(Zi, ·) is pseudo self-concordant with parameter R for every i ∈ {1, . . . , n}. Since
Fn(θ) =

1
n

∑n
i=1 ℓ(Zi, θ), we have

|D3
θFn(θ)[u, u, v]| =

∣∣∣∣∣ 1n
n∑
i=1

D3
θℓ(Zi, θ)[u, u, v]

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|D3
θℓ(Zi, θ)[u, u, v]|

≤ 1

n

n∑
i=1

R∥v∥2u⊤∇2
θℓ(Zi, θ)u = R∥v∥2u⊤∇2

θFn(θ)u.

This completes the proof.

The next lemma provides a sufficient condition for the estimator θn to be close to θ⋆.

Lemma 7. Under Assumption 1, whenever

∥Sn(θ⋆)∥H−1
n (θ⋆)

≤
√
λmin(Hn(θ⋆))/(2R),

the estimator θn uniquely exists and satisfies

∥θn − θ⋆∥Hn(θ⋆)
≤ 4∥Sn(θ⋆)∥H−1

n (θ⋆)
.

Proof. By Lemma 6, we have Fn is pseudo self-concordant with parameter R. Since θn is the empirical risk minimizer, the
claim follows from Proposition 34 with f = Fn and x = θ⋆.

Lemma 8. Under Assumption 2, it holds that, with probability at least 1− δ,

∥Sn(θ⋆)∥2H−1
⋆

≤ 1

n
CK2

1 log (e/δ)p⋆.

Proof. Define W :=
√
nG

−1/2
⋆ Sn(θ⋆). It can be verified that E[W ] =

√
nG

−1/2
⋆ S(θ⋆) = 0 and

E[WW⊤] =
1

n
G

−1/2
⋆ E

( n∑
i=1

S(Zi, θ⋆)

)(
n∑
i=1

S(Zi, θ⋆)

)⊤
2

G
−1/2
⋆

= G
−1/2
⋆

1

n

n∑
i=1

E[S(Zi, θ⋆)S(Zi, θ⋆)⊤]G−1/2
⋆ = Ip.

Moreover, by Lemma 37 and Assumption 2, we get that W is sub-Gaussian with ∥W∥ψ2
≤ CK1. Define J :=

G
1/2
⋆ H−1

⋆ G
1/2
⋆ /n. It is clear that ∥Sn(θ⋆)∥2H−1

⋆
= ∥W∥2J . By Theorem 38, we have, with probability at least 1− δ,

∥Sn(θ⋆)∥2H−1
⋆

≤ CK2
1 log (e/δ)p⋆.

Here we have used ∥J∥∞ ≤ ∥J∥2 ≤ Tr(J) = p⋆, log (1/δ) ≤ log (e/δ), and
√

log (e/δ) ≤ log (e/δ).

Lemma 9. Under Assumption 3, it holds that, with probability at least 1− δ,

1

2
H⋆ ⪯ Hn(θ⋆) ⪯

3

2
H⋆,

whenever n ≥ 4(K2 + 2σ2
H) log (2p/δ).
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Proof. By Assumption 3 and Theorem 40, it holds that, for any t > 0,

P
(
∥H−1/2

⋆ Hn(θ⋆)H
−1/2
⋆ − Ip∥2 ≥ t

)
≤ 2p exp

{
− nt2

2(σ2
H +K2t)

}
.

The claim then follows by setting t = 1/2.

Now we are ready to prove the localization result.
Proposition 10. Under Assumptions 1,2, and 3, we have, with probability at least 1− δ, the estimator θn uniquely exists
and satisfies

∥θn − θ⋆∥2H⋆
≤ CK2

1

p⋆
n

log
(e
δ

)
(21)

whenever n ≥ max{4(K2 + 2σ2
H) log(4p/δ),

CK2
1p⋆R

2

µ⋆
log(e/δ)}.

Proof. We define two events,

G1 :=

{
∥Sn(θ⋆)∥2H−1

⋆
≤ 1

n
CK2

1 log(e/δ)p⋆

}
G2 :=

{
1

2
H⋆ ⪯ Hn(θ⋆) ⪯

3

2
H⋆

}
.

It suffices to prove the bound (21) on G1G2 and show P(G1G2) ≥ 1− δ.

Step 1. Prove the bound. By the events G2, we have
√
λmin(Hn(θ⋆))/(2R) ≥ √

µ⋆/(2
√
2R). Note that n ≥

CK2
1 log(e/δ)p⋆R

2/µ⋆. It follows from the event G1 that ∥Sn(θ⋆)∥H−1
⋆

≤
√
λmin(Hn(θ⋆))/(2

√
2R). By the event

G2, we have

∥Sn(θ⋆)∥H−1
n (θ⋆)

≤
√
2∥Sn(θ⋆)∥H−1

⋆
≤
√
λmin(Hn(θ⋆))

2R
.

According to Lemma 7, θn uniquely exists and satisfies

∥θn − θ⋆∥2H⋆
≤ 16∥Sn(θ⋆)∥2H−1

n (θ⋆)
.

Now the bound (21) follows from the event G1.

Step 2. Control the probability. According to Lemma 8 and Lemma 9, we know P(G1) ≥ 1− δ/2 and P(G2) ≥ 1− δ/2,
respectively. Consequently,

P(G1G2) = 1− P(Gc1Gc2) ≥ 1− P(Gc1)− P(Gc2) ≥ 1− δ,

which completes the proof.

We then bound the difference between the inverse empirical Hessian and the inverse population Hessian. Recall that we use
the notation ∥A∥B := ∥B1/2AB1/2∥2 for B positive semidefinite.
Proposition 11. Under Assumptions 1, 2, and 3, we have, with probability at least 1− δ,

∥Hn(θn)
−1 −H−1

⋆ ∥H⋆
≤ CK1,K2,σH

(√
log

(
2p

δ

)
+R

√
p⋆
µ⋆

log
(e
δ

)) 1√
n

whenever n ≥ CK1,K2,σH

(
log
(
2p
δ

)
+ p⋆

µ⋆
R2 log

(
e
δ

))
.

Proof. Define

rn :=

√
CK2

1 log (2e/δ)
p⋆
n

tn :=
2σ2

H

−K2 +
√
K2

2 + 2σ2
Hn/ log (4p/δ)

.
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Model Data Loss Function Self-Concordance Parameter R

Linear Regression x ∈ Rp, y ∈ R ℓ(θ, z) := 1
2 (y − θ⊤x)2 0

Binary Logistic Regression x ∈ Rp, y ∈ {0, 1} ℓ(θ, z) := − log(σ(y · θ⊤x)) ∥x∥2
Poisson Regression x ∈ Rp, y ∈ N ℓ(θ, z) := −y(θ⊤x) + exp(θ⊤x) + log(y!) ∥x∥2
Multiclass Logistic Regression x ∈ Rp, y ∈ {1, ...,K} ℓ(θ, z) := log(1 +

∑K
i=1 e

wT
i x)−∑K

i=2 yi(w
⊤
i X) 2∥x∥2

Table 3: Examples of M-estimation for various generalized linear models and the corresponding values of the pseudo
self-concordance parameter R. Each regression estimates a set of parameters θ based on input values x and output values y.

Note that they both decays as O(n−1/2). In the following of the proof, we assume that n ≥ max{4(K2 +
3σ2

H) log(4p/δ), CK2
1 log(2e/δ)p⋆R

2/µ⋆}. According to Lemma 35, it suffices to bound ∥Hn(θn)−H⋆∥H−1
⋆

. By the
triangle inequality, we have

∥Hn(θn)−H⋆∥H−1
⋆

≤ ∥Hn(θn)−Hn(θ⋆)∥H−1
⋆︸ ︷︷ ︸

A

+ ∥Hn(θ⋆)−H⋆∥H−1
⋆︸ ︷︷ ︸

B

. (22)

We will control these two terms separately. The strategy is similar to the proof of Proposition 10: we prove the bound on
some events and control the probability of these events. Define

G1 :=

{
∥Sn(θ⋆)∥2H−1

⋆
≤ 1

n
CK2

1 log(2e/δ)p⋆

}
G2 := {(1− tn)H⋆ ⪯ Hn(θ⋆) ⪯ (1 + tn)H⋆} .

When n ≥ 4(K2 + 2σ2
H) log(4p/δ), we have tn ≤ 1/3. It then follows from the proof of Proposition 10 that

∥θn − θ⋆∥2H⋆
≤ 1

n
CK2

1 log (2e/δ)p⋆ (23)

on the event G1G2 and P(G1) ≥ 1− δ/2.

Step 1. Control A and B. By (23), it holds that ∥θn − θ⋆∥H⋆
≤ rn. By Lemma 6 and Lemma 33, we have

A = ∥Hn(θn)−Hn(θ⋆)∥H−1
⋆

≤ ReR∥θn−θ⋆∥2∥Hn(θ⋆)∥H−1
⋆

∥θn − θ⋆∥2.

Since ∥θn − θ⋆∥2 ≤ µ
−1/2
⋆ rn and n ≥ CK2

1 log(2e/δ)p⋆R
2/µ⋆, we have ∥θn − θ⋆∥2 ≤ 1/R. As a result,

A ≤ Re∥Hn(θ⋆)∥H−1
⋆
rn/

√
µ⋆ ≤ 3Rern/(2

√
µ⋆),

where the last inequality follows from the event G2 and tn ≤ 1/2. As for B, it follows from the event G2 that B ≤ tn.
Therefore, absorbing 3e/2 into the constant C in rn, we obtain

∥Hn(θn)−H⋆∥H−1
⋆

≤ Rrn/
√
µ⋆ + tn.

And it follows from Lemma 35 that

∥Hn(θn)
−1 −H−1

⋆ ∥H⋆
≤ Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

.

Step 2. Control the probability of G1G2. By the matrix Bernstein inequality Theorem 40, we have P(G2) ≥ 1− δ/2. This
implies that P(G1G2) ≥ 1− δ since P(G1) ≥ 1− δ/2.

E Linearization Error Bound

We control in this section the linearization error in Theorem 2.
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E.1 Setup

Recall that

θn := argmin
θ∈Θ

[
Fn(θ) :=

1

n

n∑
i=1

ℓ(Zi, θ)

]
and

θn,ε,z := argmin
θ∈Θ

[(1− ε)Fn(θ) + εℓ(z, θ)] .

Since z is a fixed data point, we make the following boundedness assumptions at z in addition to Assumptions 1 to 3.
Assumption 4 (Bounded Gradient at z). The normalized gradient at z is bounded in a neighborhood of θ⋆, i.e., there exist
M1 ≥ 1, ρ ∈ (0, R−1] such that ∥∇ℓ(z, θ)∥H−1

⋆
≤M1 for all ∥θ − θ⋆∥H⋆

≤ ρ.
Assumption 5 (Bounded Hessian at z). The normalized Hessian at z is bounded in a neighborhood of θ⋆, i.e., there exist
M2 ≥ 1, ρ ∈ (0, R−1] such that ∥H(z, θ)∥H−1

⋆
≤M2 for all ∥θ − θ⋆∥H⋆

≤ ρ.

Remark. When the Hessian H(z, θ) is well-defined, we know ∇ℓ(z, ·) is continuous and thus Assumption 4 is satisfied
automatically.

E.2 Proof of the Linearization Error Bound

Theorem 2’. Under Assumptions 1 to 5, it holds that, with probability at least 1− δ,∥∥∥∥θn,ε,z − θn
ε

− In(z)

∥∥∥∥
Hn(θn)

≤
√
2M1

(
(1− ε)(eRCn − 1) + ε(2M2 + 1)

)
1− (1− ε)(eRCn − 1)− ε(2M2 + 1)

,

where Cn := Cµ
−1/2
⋆

[
K1

√
p⋆ log

e
δ/n+ εM1/(1− ε)

]
, whenever ε ≤ min{ρ/(CM1 + ρ), C/M2,

√
µ⋆/(

√
µ⋆ +

8RM1)} and

n ≥ max

{
8(K2 + 4σ2

H) log
4p

δ
,

CK2
1p⋆R

2

min{µ⋆, ρ2R2} log
e

δ

}
.

Proof. The proof is inspired by Giordano et al. (2019). By the optimality of θn,ε,z , it holds that

(1− ε)∇Fn(θn,ε,z) + ε∇ℓ(z, θn,ε,z) = 0.

Define H̄n(θ) :=
∫ 1

0
Hn(θn + t(θ − θn))dt and H̄(z, θ) :=

∫ 1

0
H(z, θn + t(θ − θn))dt, where H(z, θ) := ∇2ℓ(z, θ). It

follows from the Integral form of the Remainder of Taylor’s theorem (defined in Appendix I) that

(1− ε)H̄n(θn,ε,z)(θn,ε,z − θn) + ε∇ℓ(z, θn) + εH̄(z, θn,ε,z)(θn,ε,z − θn) = 0,

where we have used ∇Fn(θn) = 0. This implies that

θn,ε,z − θn = −
[
(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)

]−1
ε∇ℓ(z, θn),

and thus ∥∥∥∥θn,ε,z − θn
ε

− In(z)

∥∥∥∥
Hn(θn)

=
∥∥∥{[(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)

]−1 −Hn(θn)
−1
}
∇ℓ(z, θn)

∥∥∥
Hn(θn)

=
∥∥∥{Hn(θn)

1/2
[
(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)

]−1
Hn(θn)

1/2 − Ip

}
Hn(θn)

−1/2∇ℓ(z, θn)
∥∥∥
2

≤
∥∥∥Hn(θn)

1/2
[
(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)

]−1
Hn(θn)

1/2 − Ip

∥∥∥
2

∥∥∥Hn(θn)
−1/2∇ℓ(z, θn)

∥∥∥
2

=
∥∥∥[(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)

]−1 −Hn(θn)
−1
∥∥∥
Hn(θn)︸ ︷︷ ︸

A1

∥∥Hn(θn)
−1∇ℓ(z, θn)

∥∥
Hn(θn)︸ ︷︷ ︸

A2

.



Influence Diagnostics under Self-concordance

Recall rn and tn from (16). To proceed, we define the following events

G1 :=

{
∥Sn(θ⋆)∥2H−1

⋆
≤ 1

n
CK2

1 log (e/δ)p⋆

}
G2 :=

{
1

2
H⋆ ⪯ Hn(θ⋆) ⪯

3

2
H⋆

}
G3 :=

{
∥H1/2

⋆ Hn(θn)
−1H

1/2
⋆ − Ip∥2 ≤ Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

}
.

Moreover, we assume ε ≤ min{ρ/(CM1 + ρ), C/M2,
√
µ⋆/(

√
µ⋆ + 8RM1)} and

n ≥ max

{
8(K2 + 4σ2

H) log
4p

δ
,

CK2
1p⋆R

2

min{µ⋆, ρ2R2} log
e

δ

}
.

throughout the proof. Note that Rrn/
√
µ⋆ + tn ≤ 1/2 under this requirement of n. Recall from the proof of Proposition 10,

Proposition 11, and Proposition 12 that P(G1G2G3) ≥ 1− δ and

∥θn − θ⋆∥2H⋆
≤ CK2

1

p⋆
n

log
e

δ

∥θn,ε,z − θ⋆∥2H⋆
≤ CK2

1

p⋆
n

log
e

δ
+

128ε2

(1− ε)2
M2

1 .
(24)

Therefore, it suffices to bound A1 and A2 on the event G1G2G3.

Step 1. Bound A1. We will use Lemma 35 to bound A1. We define

B :=
∥∥(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)−Hn(θn)

∥∥
Hn(θn)−1

≤ (1− ε)
∥∥H̄n(θn,ε,z)−Hn(θn)

∥∥
Hn(θn)−1︸ ︷︷ ︸

B1

+ε
∥∥H̄(z, θn,ε,z)−Hn(θn)

∥∥
Hn(θn)−1︸ ︷︷ ︸

B2

.

We first bound B1. By Jensen’s inequality, we get

B1 ≤
∫ 1

0

∥Hn(θn + t(θn,ε,z − θn))−Hn(θn)∥Hn(θn)−1 dt

=

∫ 1

0

∥Hn(θn + t(θn,ε,z − θn))∥Hn(θn)−1 dt+ 1.

By Lemma 6 and Proposition 32, it holds that

e−Rt∥θn,ε,z−θn∥2Hn(θn) ⪯ Hn(θn + t(θn,ε,z − θn)) ⪯ eRt∥θn,ε,z−θn∥2Hn(θn).

It then follows from Proposition 12 and t ∈ [0, 1] that

e−RCnHn(θn) ⪯ Hn(θn + t(θn,ε,z − θn)) ⪯ eRCnHn(θn),

where Cn := Cµ
−1/2
⋆

[
K1

√
p⋆ log

e
δ/n+ εM1/(1− ε)

]
. Since 1− e−x ≤ ex − 1 for all x ≥ 0, we get

B1 ≤ eRCn − 1.

We then bound B2. We start the same as before using Jensen’s inequality, we get

B2 ≤
∫ 1

0

∥H(z, θn + t(θn,ε,z − θn))−Hn(θn)∥Hn(θn)−1 dt.

Using the triangle inequality we can write

B2 ≤
∫ 1

0

[
∥H(z, θn + t(θn,ε,z − θn))∥Hn(θn)−1 + ∥Hn(θn)∥Hn(θn)−1

]
dt

=

∫ 1

0

∥H(z, θn + t(θn,ε,z − θn))∥Hn(θn)−1 dt+ 1.
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Then it follows from the event G3 and the requirement of n that

B2 ≤ 1

1−Rrn/
√
µ⋆ − tn

∫ 1

0

∥H(z, θn + t(θn,ε,z − θn))∥H−1
⋆

dt+ 1

≤ 2

∫ 1

0

∥H(z, θn + t(θn,ε,z − θn))∥H−1
⋆

dt+ 1

Since ∥θn + t(θn,ε,z − θn)− θ⋆∥H⋆
≤ max{∥θn − θ⋆∥H⋆

, ∥θn,ε,z − θ⋆∥H⋆
} for t ∈ [0, 1], it follows from Proposition 12

that

∥θn + t(θn,ε,z − θn)− θ⋆∥H⋆
≤ C

[
K1

√
p⋆
n

log
e

δ
+

ε

1− ε
M1

]
< ρ

by the requirement of n and ε. As a result, we have

∥H(z, θn + t(θn,ε,z − θn))∥H−1
⋆

≤M2

by Assumption 5. Combining the above results we obtain

B2 ≤ 2M2 + 1,

which implies

B ≤ (1− ε)(eRCn − 1) + ε(2M2 + 1) ≤ λmin(Ip) = 1,

where the last inequality holds by the requirements of n and ε.

Hence, applying Lemma 35 to Hn(θn)
−1/2[(1− ε)H̄n(θn,ε,z) + εH̄(z, θn,ε,z)]Hn(θn)

−1/2 and Ip yields

A1 ≤ (1− ε)(eRCn − 1) + ε(2M2 + 1)

1− (1− ε)(eRCn − 1)− ε(2M2 + 1)
.

Step 2. Bound A2. By the event G3 and the requirement of n, we have (similar to the bound of B2)

A2 = ∥∇ℓ(z, θn)∥Hn(θn)−1 ≤
√
2∥∇ℓ(z, θn)∥H−1

⋆
.

By (24) and the requirement of n, it holds that ∥θn − θ⋆∥H⋆
< ρ and thus, by Assumption 4,

A2 ≤
√
2M1.

Step 3. Combine the bounds of A1 and A2. Combining the bounds for A1 and A2 we arrive at the final result,∥∥∥∥θn,ε,z − θn
ε

− In(z)

∥∥∥∥
Hn(θn)

≤
√
2M1

(
(1− ε)(eRCn − 1) + ε(2M2 + 1)

)
1− (1− ε)(eRCn − 1)− ε(2M2 + 1)

.

E.3 Intermediate Results

The proof of Theorem 2 relies on a key result: the perturbed estimator θn,ε,z is close to θn stated in Proposition 12.

Proposition 12. Under Assumptions 1 to 5, it holds that

∥θn,ε,z − θn∥2H⋆
≤ CK2

1

p⋆
n

log
e

δ
+

128ε2

(1− ε)2
M2

1 ,

whenever ε ≤ √
µ⋆/(

√
µ⋆ + 8RM1) and

n ≥ max

{
4(K2 + 2σ2

H) log
4p

δ
,
CK2

1p⋆R
2

µ⋆
log

e

δ

}
.
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Proof. By the triangle inequality, we have

∥θn,ε,z − θn∥H⋆
≤ ∥θn,ε,z − θ⋆∥H⋆

+ ∥θn − θ⋆∥H⋆
.

It remains to control ∥θn,ε,z − θ⋆∥H⋆
and ∥θn − θ⋆∥H⋆

. The second term is controlled by Proposition 10. We will control
the first term with a similar argument.

We define two events

G1 :=

{
∥Sn(θ⋆)∥2H−1

⋆
≤ 1

n
CK2

1 log (e/δ)p⋆

}
G2 :=

{
1

2
H⋆ ⪯ Hn(θ⋆) ⪯

3

2
H⋆

}
,

and assume that ε ≤ √
µ⋆/(

√
µ⋆ + 8RM1) and

n ≥ max

{
4(K2 + 2σ2

H) log
4p

δ
,
CK2

1p⋆R
2

µ⋆
log

e

δ

}
.

It follows from Proposition 10 that P(G1G2) ≥ 1− δ and

∥θn − θ⋆∥2H⋆
≤ CK2

1

p⋆
n

log
e

δ
.

We then control ∥θn,ε,z − θ⋆∥H⋆
on the event G1G2. Following the proof of Lemma 6, we know that (1− ε)Fn(·) + εℓ(z, ·)

is pseudo self-concordant with parameter R. Let

Sn,ε,z(θ) := (1− ε)Sn(θ) + εS(z, θ) and Hn,ε,z(θ) := (1− ε)Hn(θ) + εH(z, θ).

Since we assume ℓ(z, θ) is convex then H(z, θ) ⪰ 0. Then, by the event G2, we have

Hn,ε,z(θ⋆) ⪰
(
1− ε

2

)
H⋆.

As a result, it holds that

∥Sn,ε,z(θ⋆)∥Hn,ε,z(θ⋆)−1 ≤
√

2

1− ε
∥Sn,ε,z(θ⋆)∥H−1

⋆

≤
√

2

1− ε

[
(1− ε)∥Sn(θ⋆)∥H−1

⋆
+ ε∥S(z, θ⋆)∥H−1

⋆

]
.

By Assumption 4, we obtain

∥Sn,ε,z(θ⋆)∥Hn,ε,z(θ⋆)−1 ≤
√

2

1− ε

[
(1− ε)∥Sn(θ⋆)∥H−1

⋆
+ εM1

]
Since

√
λmin(Hn,ε,z(θ⋆)) ≥

√
(1− ε)µ⋆/2, it follows from the event G1 and the requirement of n that

∥Sn,ε,z(θ⋆)∥Hn,ε,z(θ⋆)−1 ≤
√
λmin(Hn,ε,z(θ⋆))

2R
.

According to Proposition 34, θn,ε,z uniquely exists and satisfies

∥θn,ε,z − θ⋆∥2Hn,ε,z(θ⋆)
≤ 16∥Sn,ε,z(θ⋆)∥2Hn,ε,z(θ⋆)−1 ≤ 64

1− ε

[
(1− ε)2CK2

1

p⋆
n

log
e

δ
+ ε2M2

1

]
,

which implies

∥θn,ε,z − θ⋆∥2H⋆
≤ CK2

1

p⋆
n

log
e

δ
+

128ε2

(1− ε)2
M2

1 . (25)
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F Computational Error Bounds

We analyze the computation error of the algorithms discussed in Section 2 used to compute the empirical influence function.
Throughout, we assume that the target precision satisfies ε ≤ ∥I(z)∥2H⋆

. If not, taking În(z) = 0 satisfies the desired
precision and there is nothing to do.

Condition Numbers. Throughout, we assume that the loss function ℓ(·, z) is L-smooth for each Z and that Hn(θn) is
invertible. Let µn = λmin(Hn(θn)) denote the minimal eigenvalue. The computational bounds depend on the condition
number

κn :=
L

µn
.

The corresponding population condition number is

κ⋆ =
L

µ⋆
,

where µ⋆ = λmin(H⋆). They are related as follows.

K-Condition Numbers. Another useful notion to obtain the convergence rate of the conjugate gradient method is the
K-condition number defined as

Kn :=
[TrHn(θn)/p]

p

detHn(θn)
.

Its population counterpart is defined as

K⋆ :=
[TrH⋆/p]

p

detH⋆
.

Proposition 13. Consider the setting of Theorem 1, and let G denote the event under which its conclusions hold. Under this
event G, we have,

(a) κn ≤ 4κ⋆, and

(b) if ∥In(z)− I(z)∥2H⋆
= ε, then ∥In(z)∥2Hn(θn)

≤ 6∥I(z)∥2H⋆
+ 6ε.

Proof. We have under G that (1/4)H⋆ ⪯ Hn(θn) ⪯ 3H⋆. This implies that µn ≥ µ⋆/4, TrHn(θn) ≤ 3TrH⋆, and
detHn(θn) ≥ detH⋆/4

p. For the second part, we get from the triangle inequality,

∥In(z)∥2Hn(θn)
≤ 3∥In(z)∥2H⋆

≤ 6∥I(z)∥2H⋆
+ 6∥In(z)− I(z)∥2H⋆

.

F.1 Total Error

We combine the computational error with the statistical error to get the total error bound. This is a restatement of Proposition 3
of the main paper.

Proposition 14. Consider the setting of Theorem 1, and let G denote the event under which its conclusions hold. Let În(θ)

be an estimate of In(θ) that satisfies E
[
∥În(z)− In(z)∥2Hn(θn)

∣∣∣Z1:n

]
≤ ε. Then, we have,

E
[
∥În(z)− I(z)∥2H⋆

∣∣∣G] ≤ 8ε+ CK1,K2,σH

R2p2⋆
µ⋆n

poly log
p

δ
,

whenever n ≥ CK1,K2,σH

(
p⋆
µ⋆
R2 log

(
e
δ

)
+ log

(
2p
δ

))
.

Proof. Following the proof of Theorem 1, we have under G that

1

4
H⋆ ⪯ Hn(θn) ⪯ 3H⋆ .

Therefore, ∥u∥2H⋆
≤ 4∥u∥2Hn(θn)

. Combining this with the triangle inequality completes the proof.
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F.2 The Conjugate Gradient Method

We start by recalling the convergence analysis of the conjugate gradient method, providing a full proof for completeness.

Proposition 15. Consider the sequence (ut) produced by the conjugate gradient method for solving u⋆ =
Hn(θn)

−1S(z, θn). It holds that

∥ut − u⋆∥2Hn(θn)
≤ 4

(√
κn − 1√
κn + 1

)2t

∥u0 − u⋆∥2Hn(θn)
.

In other words, we get ∥ut − u⋆∥2Hn(θn)
≤ ε after tcg iterations, where

tcg ≤
√
κn
2

log

(
4∥u0 − u⋆∥2Hn(θn)

ε

)
.

Proof. We follow the proof template of Chen (2005, Chapter 3.4). Throughout, we use the shorthand A = Hn(θn). By
construction, we have uk ∈ Span{p0, . . . , pk−1}. It then follows from pk = rk + βk−1pk−1 that Span{p0, . . . , pk−1} =
Span{r0, . . . , rk−1}. Moreover, since rk = b−Auk = rk−1 − αk−1Apk−1, we get

Span{r0, . . . , rk−1} = Span{r0, Ar0, . . . , Ak−1r0} =: Kk(A, r0),

where Kk(A, r0) is known as the Krylov subspace of order k for the matrix A and the generating vector r0. Since u0 = 0, it
holds that r0 = b = Au⋆ and thus

Kk(A, r0) = Span{b, Ab, . . . , Ak−1b}.

We will write Kk for short.

For an arbitrary x ∈ Kk, there exists {αi}k−1
i=0 such that x =

∑k−1
i=0 αiA

ib. Let f(t) :=
∑k−1
i=0 αit

i. It follows that

∥u− u⋆∥2A = (f(A)Au⋆ − u⋆)
⊤A(f(A)Au⋆ − u⋆) = u⊤⋆ g(A)Ag(A)u⋆,

where g(t) := 1−f(t)t andA = A⊤ has been used. SinceA is positive semi-definite, it admits an eigenvalue decomposition
A = QΛQ⊤. It then follows from Ak = QΛkQ that

u⊤⋆ g(A)Ag(A)u⋆ = u⊤⋆ Qg(Λ)Λg(Λ)Q
⊤u⋆.

Denote y := Q⊤u⋆ and Λ = Diag{λj}. Then we get

u⊤⋆ Qg(Λ)Λg(Λ)Q
⊤u⋆ =

p∑
j=1

λjg(λj)
2y2j .

Note that

∥u− u⋆∥2A = u⊤Au− 2u⊤Au⋆ + u⊤⋆ Au⋆ = u⊤Au− 2u⊤b+ u⊤⋆ Au⋆

According to Chen (2005, Equation 3.31),

∥uk − u⋆∥2A = min
x∈Span{p0,...,pk−1}

∥x− u⋆∥2A = min
g∈Gk

p∑
j=1

λjg(λj)
2y2j ,

where Gk is the collection of polynomials of degree k that take value 1 at 0. Define

C(Λ) := min
g∈Gk

max
j∈[p]

|g(λj)|.

Using properties of Chebyshev polynomials, we obtain (e.g., Chen, 2005, Equation 3.46)

C(Λ) ≤ 2

(√
κ− 1√
κ+ 1

)k
,
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where κ := λmax(A)/λmin(A). As a result,

∥uk − u⋆∥2A ≤ min
g∈Gk

p∑
j=1

λj max
j′∈[p]

g(λj′)
2y2j = C(Λ)2

p∑
j=1

λjy
2
j = C(Λ)2y⊤Λy = C(Λ)2u⊤⋆ Au⋆

≤ 4

(√
κ− 1√
κ+ 1

)2k

∥u0 − u⋆∥2A.

We use the bound κ ≤ κn to complete the proof.

Corollary 16 (Total Computational Cost; Conjugate Gradient Method). Fix ε > 0. Consider the setting of Theorem 1, and
let G denote the high probability event under which its conclusions hold. Choose a sample size n such that

n = CK1,K2,σH

R2p2⋆
µ⋆ε

poly log
p

δ
.

Then, under G, the number Ncg of gradient and Hessian-vector oracle calls required to obtain a point În(z) using the
conjugate gradient method initialized at u0 = 0 such that ∥În(z)− I(z)∥2H⋆

≤ ε is bounded by

Ncg ≤ CK1,K2,σH

R2p2⋆κ
3/2
⋆

Lε
log

(
∥I(z)∥2H⋆

ε
+ 1

)
poly log

p

δ
.

Proof. We combine the total error bound of Proposition 14 with the computational bound of Proposition 15. Under G, note
that the choice of the sample size n implies that the statistical error is bounded from Theorem 1 by

∥In(z)− I(z)∥2H⋆
≤ ε

2
.

Let tcg be the number of conjugate gradient iterations t such that the ∥În(z)− In(z)∥2Hn(θn)
≤ ε/16 as given in Proposi-

tion 15. By Proposition 14, the total error is then ε and the total number of gradient and Hessian-vector product oracle calls in
N = tcgn, since each iteration requires a full pass over the data. To complete the proof, we invoke Proposition 13 to bound
the initial gap ∥u0 − u⋆∥2Hn(θn)

= ∥In(z)∥Hn(θn)
and the condition number κn in terms of their respective population

quantities.

Remark 17. When the spectrum of H⋆ decays as O(i−β) for β ∈ [0, 1), we can obtain a more refined analysis using the
K-condition number. In the following, we assume that p > 1 and

n ≥ CK1,K2,σH
(p2 + ε−1)R2 p⋆

µ⋆
poly log

p

δ
.

Following the proof of Proposition 15, it holds that

∥ut − u⋆∥2A ≤ C2(Λ)∥u0 − u⋆∥2A.

According to Axelsson and Kaporin (2000, Theorem 4.3), we have

C(Λ) ≤
(
3 logKn

t

)t/2
.

Using the event G4 from the proof of Theorem 1, we know that (1− p−1)H⋆ ⪯ Hn(θn) ⪯ (1 + p−1)H⋆. As a result, we
have Kn ≤ (1 + p−1)p(1− p−1)−pK⋆ ≤ CK⋆. Moreover, it follows from Theorem 1 that the statistical error is controlled
by ε/2.

We then control the computational error. Since λi ∼ i−β , we have TrH⋆ ∼ p1−β/(1 − β) and detH⋆ ∼ (p!)−β .
Consequently, it follows from Stirling’s approximation that K⋆ ∼ (2πp)β/2e−βp(1− β)−p. If t > 6 log (CK⋆) > 6 logKn,

then we only need t > C log

(
1 +

∥I(z)∥2
H⋆

ε

)
to achieve ε/2 computation error. Therefore, we have

tcg ≳ 6 log
[
C(2πp)β/2e−βp(1− β)−p

]
+ C log

(
1 +

∥I(z)∥2H⋆

ε

)
,
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and thus

Ncg ∼ CK1,K2,σH
(p2 + ε−1)R2 p⋆

µ⋆

{
6 log

[
C(2πp)β/2e−βp(1− β)−p

]
+ C log

(
1 +

∥I(z)∥2H⋆

ε

)}
poly log

p

δ
.

F.3 Stochastic Gradient Descent

We consider using SGD to solve the linear system Hn(θn)u+∇ℓ(z, θn) = 0. We do so by minimizing the quadratic gn
from (9):

gn(u) =
1

2
⟨u,Hn(θn)u⟩+ ⟨∇ℓ(z, θn), u⟩ .

We run SGD by sampling an index it uniformly at random to update

ut+1 = ut − γ
(
H(Zit , θn)ut + ℓ(z, θn)

)
.

The bounds depend on the following quantities:

(a) Let µn = λmin(Hn(θn)) be the minimal eigenvalue of Hn(θn).
(b) Define the matrix Wn =

(
Hn(θn)

−1/2H(Zi, θn)Hn(θn)
−1/2 − Ip

)
and

Σn =
1

n

n∑
i=1

WnHn(θn)
1/2In(z)In(z)

⊤Hn(θn)
1/2Wn .

(c) Define the noise term
σ2
n := TrΣn + p∥Σn∥2 .

We have the following convergence bound for SGD (Jain et al., 2017b,a); cf. Appendix I.5 for details.

Lemma 18. The sequence (ūt) produced by tail-averaged SGD on the function gn(u) from (9) with a learning rate of
γ = (2L)−1 satisfies

E∥ūt − u⋆∥2Hn(θn)
≤ C

(
κn ∥u0 − u⋆∥2Hn(θn)

exp

(
− t

4κn

)
+
σ2
n

t

)
.

Therefore, it returns a point ūt satisfying E∥ūt − u⋆∥2Hn(θn))
≤ ε after t ≥ tsgd steps where

tsgd ≤ C

(
σ2
n

ε
+ κn log

(
κn∥u0 − u⋆∥2Hn(θn)

ε

))
,

where κn = L/µn is the condition number.

Total Error Bound. We give a total error bound under a stronger assumption on the normalized Hessian. We strengthen the
matrix Bernstein condition on the normalized Hessian into a spectral norm bound in a neighborhood around θ⋆ as formalized
below.

Assumption 3’ (Bounded Hessian). The normalized Hessian is bounded in a neighborhood of θ⋆, i.e., there exist M2 > 1
and ρ > 0 such that ∥H(z, θ)∥H−1

⋆
≤M2 for all z ∈ Z and ∥θ − θ⋆∥H⋆

≤ ρ.

This gives the following total error bound.

Proposition 19 (Total Error bound for SGD). Fix ε > 0. Consider the setting of Theorem 1 and let G denote the event under
which its conclusions hold. Suppose also that Assumption 3’ is true. With probability at least 1− δ, the total error of În(z)
obtained from t iterations of tail-averaged SGD is bounded as

E
[
∥În(z)− I(z)∥2H⋆

∣∣∣G] ≤ CK1,M2,σH
(A1 +A2 +A3) poly log

p

δ
,
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where

A1 =
R2p2⋆
nµ⋆

(
1 + κ⋆ exp

(
− t

16κ⋆

))
A2 = κ⋆∥I(z)∥2H⋆

exp

(
− t

16κ⋆

)
A3 =

p⋆p
2

nt
+
R2p⋆p

2

µ⋆nt
+
p⋆
t
∥I(z)∥2H⋆

whenever

n ≥ CK1,M2,σH
p⋆

(
R2

µ⋆
+

1

ρ

)
log

p

δ
.

Before proving Proposition 19, we state the final total error bound in terms of the number of calls to a Hessian-vector
product oracle. To this end, define the coefficient σ2

⋆ as

σ2
⋆ := p2⋆

(
R2

µ⋆
+ 1

)
+ p2∥I(z)∥2H⋆

. (26)

Corollary 20 (Total Oracle Complexity for SGD). Consider the setting of Proposition 19. If we choose

n ≥ max

{
1,
R2

µ⋆

}
p2⋆
ε

poly log
p

δ
and t ≥

(
p2∥I(z)∥2H⋆

ε
+ κ⋆ log

(
κ⋆∥I(z)∥2H⋆

ε

))
poly log

p

δ
,

we have E
[
∥În(z)− I(z)∥2H⋆

∣∣∣G] ≤ ε. Then, the minimal total number of calls to a Hessian-vector product oracle is

Nsgd ≤
(
σ2
⋆

ε
+ κ⋆ log

(
κ⋆∥I(z)∥2H⋆

ε

))
poly log

p

δ
.

Proof. We use the shorthand ∆⋆ := ∥I(z)∥2H⋆
. We have that the total error is bounded as E

[
∥În(z)− I(z)∥2H⋆

∣∣∣G] ≤ 6ε if
each of the terms of Proposition 19 is bounded by ε. These conditions are (ignoring constants and the poly log(p/δ) term):

(a) R2p2⋆/(nµ⋆) ≤ ε holds, or the stronger condition n ≥ max{1, R2/µ⋆}p2⋆/ε holds.

(b) R2p2⋆κ⋆/(nµ) exp(−t/(16κ⋆)) ≤ ε holds.

(c) ∆⋆κ⋆ exp(−t/(16κ⋆)) ≤ ε or t ≥ 16κ⋆ log(∆⋆κ⋆/ε) holds.

(d) p2p⋆/(nt) ≤ ε or that nt ≥ p2p⋆/ε.

(e) R2p⋆p
2/(µ⋆nt) ≤ ε or that nt ≥ R2p⋆p

2

µ⋆ε
.

(f) p2∆⋆/t ≤ ε or that t ≥ p2∆⋆/ε.

Under the assumption that ε < ∆⋆ (or else there is nothing to estimate), the conditions (a) and (f) together imply that the
conditions (d) and (e) hold. Similarly, the conditions (a) and (c) together imply that condition (b) holds. Therefore, it suffices
to have conditions (a), (c), and (f), which is the first claim. For the second one, note that the total number of Hessian-vector
product calls is max{n, t} ≤ n+ t.

We now prove Proposition 19.

Proof of Proposition 19. We denote ∆⋆ := ∥I(z)∥2H⋆
and ∆n := ∥In(z)∥2Hn(θn)

in this proof. Under the event G, we have

∥In(z)− I(z)∥2H⋆
≤ R2p2⋆

nµ⋆
poly log

p

δ
=: En . (27)
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The computational bound Lemma 18 implies that

E
[
∥În(z)− In(z)∥2Hn(θn)

∣∣∣Z1:n

]
≤ κn∆n exp

(
− t

4κn

)
+
σ2
n

t
.

Invoking Proposition 13 and Lemma 21 (which requires n large enough as assumed), we can write

E
[
∥În(z)− In(z)∥2H⋆

∣∣∣G] ≤ Cκ⋆∆⋆ exp

(
− t

16κ⋆

)
+ CK1,M2

p2

t

(
p⋆
n

+
∆⋆R

2p⋆
µ⋆n

+∆⋆

)
log

p

δ
. (28)

We invoke the triangle inequality to complete the proof.

The total error bounds rely on the following upper bound of the noise term σ2
n in terms of the population quantities. Recall

that, for A, J ∈ Rp×p with J being p.s.d., the weighted spectral norm ∥A∥J :=
∥∥J1/2AJ1/2

∥∥
2
.

Lemma 21. Under Assumptions 1, 2, 3’, we have, with probability at least 1− δ,

σ2
n ≤ CK1,M2

· p2
[
p⋆
n

log
e

δ
+

∥I(z)∥2H⋆

n

[
R2p⋆
µ⋆

log
e

δ
+ log

2p

δ

]
+ ∥I(z)∥2H⋆

]

whenever n ≥ CK1,M2

(
p⋆(R

2/µ⋆ + 1/ρ) log (e/δ) + log (2p/δ)
)
.

Proof. Let Hn(Z) := Hn(θn)
−1/2H(Z, θn)Hn(θn)

−1/2. Then

Tr(Σn) = Tr

{
1

n

n∑
i=1

[Hn(Zi)− Ip]Hn(θn)
1/2In(z)In(z)

⊤Hn(θn)
1/2[Hn(Zi)− Ip]

}

= Tr

{
1

n

n∑
i=1

[Hn(Zi)− Ip]
2Hn(θn)

1/2In(z)In(z)
⊤Hn(θn)

1/2

}

= In(z)
⊤Hn(θn)

1/2

{
1

n

n∑
i=1

[Hn(Zi)− Ip]
2

}
Hn(θn)

1/2In(z).

Note that n−1
∑n
i=1 Hn(Zi) = Ip. It follows that

Tr(Σn) = In(z)
⊤Hn(θn)

1/2

[
1

n

n∑
i=1

Hn(Zi)
2

]
Hn(θn)

1/2In(z)− ∥In(z)∥2Hn(θn)

= In(z)
⊤Hn(θn)

1/2

[
1

n

n∑
i=1

H(Zi, θn)Hn(θn)
−1H(Zi, θn)

]
Hn(θn)

1/2In(z)− ∥In(z)∥2Hn(θn)

= In(z)
⊤Hn(θn)

1/2Hn(θn)
−1/2H

1/2
⋆ AnH

1/2
⋆ Hn(θn)

−1/2Hn(θn)
1/2In(z)− ∥In(z)∥2Hn(θn)

≤
[
∥An∥2

∥∥∥Hn(θn)
−1/2H⋆Hn(θn)

−1/2
∥∥∥
2
− 1
]
∥In(z)∥2Hn(θn)

, (29)

where

An :=
1

n

n∑
i=1

H
−1/2
⋆ H(Zi, θn)H

−1/2
⋆ H

1/2
⋆ Hn(θn)

−1H
1/2
⋆ H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆ .

The term
∥∥Hn(θn)

−1/2H⋆Hn(θn)
−1/2

∥∥
2

has been controlled in Proposition 11. Since

∥In(z)∥2Hn(θn)
≤ 2 ∥In(z)− I(z)∥2Hn(θn)

+ 2 ∥I(z)∥2Hn(θn)
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it can be controlled using Theorem 1. It remains to control ∥An∥2. Note that

∥An∥2 ≤ Tr(An) = Tr

{[
1

n

n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2]
H

1/2
⋆ Hn(θn)

−1H
1/2
⋆

}

≤ p

∥∥∥∥∥
[
1

n

n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2]
H

1/2
⋆ Hn(θn)

−1H
1/2
⋆

∥∥∥∥∥
2

≤ p

∥∥∥∥∥ 1n
n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2∥∥∥∥∥
2

∥∥∥H1/2
⋆ Hn(θn)

−1H
1/2
⋆

∥∥∥
2
. (30)

Again, the term
∥∥∥H1/2

⋆ Hn(θn)
−1H

1/2
⋆

∥∥∥
2

can be controlled via Proposition 11. As for the term∥∥∥∥∥ 1n
n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2∥∥∥∥∥
2

, (31)

it can be bounded by 1) using the Lipschitzness of the Hessian to replace θn by θ⋆, and 2) using the Matrix Bernstein
inequality.

Let us prove the result rigorously. Define

rn :=

√
CK2

1 log (8e/δ)
p⋆
n

and tn :=
CM2

−1 +
√
1 + Cn/ log (16p/δ)

.

Define the following events

G1 :=
{
∥θn − θ⋆∥2H⋆

≤ r2n

}
G2 :=

{
∥H1/2

⋆ Hn(θn)
−1H

1/2
⋆ − Ip∥2 ≤ Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

}
G3 :=

{
∥In(z)− I(z)∥2H⋆

≤
[
M2rn + (∥S(z, θ⋆)∥H−1

⋆
+M2rn)

Rrn/
√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

]2}

G4 :=

{∥∥∥∥∥ 1n
n∑
i=1

[H
−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆ ]2 − E

{
[H

−1/2
⋆ H(Z, θ⋆)H

−1/2
⋆ ]2

}∥∥∥∥∥
2

≤ 1

2

}
.

Let Q := [H
−1/2
⋆ H(z, θ⋆)H

−1/2
⋆ ]2 − E

{
[H

−1/2
⋆ H(Z, θ⋆)H

−1/2
⋆ ]2

}
. Under Assumption 3’, it holds that∥∥∥[H−1/2

⋆ H(Z, θ⋆)H
−1/2
⋆ ]2

∥∥∥
2
≤
∥∥∥H−1/2

⋆ H(Z, θ⋆)H
−1/2
⋆

∥∥∥2
2
≤M2

2 .

As a result, it holds that ∥Q∥2 ≤ 2M2
2 . Moreover, we have∥∥E[QQ⊤]

∥∥
2
≤ E

∥∥QQ⊤∥∥
2
≤ E ∥Q∥22 ≤ 4M4

2

and, similarly,
∥∥E[Q]E[Q⊤]

∥∥
2
≤ 4M4

2 . Consequently, ∥V(Q)∥2 ≤ 8M4
2 . This, together with Lemma 39 implies that Q

satisfies a matrix Bernstein condition with K2 = 2M2
2 and σ2

H = 8M4
2 . Analogously, Assumption 3 holds true with K2 =

2M2 and σ2
H = 4M2

2 . In the following of the proof, we assume n ≥ Cmax{M4
2 log(2p/δ),K2

1 log(e/δ)p⋆(R
2/µ⋆+1/ρ)}.

This implies that ∥θn − θ⋆∥H⋆
< ρ on the event G1. Furthermore, we have Rrn/

√
µ⋆ ≤ 1/6 and tn ≤ 1/6, and thus

Rrn/
√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

≤ 1/2. (32)

Step 1. Prove the bound on the event G1G2G3G4. By the event G2 and (32), it holds that

∥H1/2
⋆ Hn(θn)

−1H
1/2
⋆ ∥2, ∥Hn(θn)

−1/2H⋆Hn(θn)
−1/2∥2 ≤ 3

2
, (33)
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and Hn(θn) ⪯ 2H⋆. It follows that

∥In(z)− I(z)∥2Hn(θn)
≤ 2∥In(z)− I(z)∥2H⋆

and ∥I(z)∥2Hn(θn)
≤ 2∥I(z)∥2H⋆

.

As a result,

∥In(z)∥2Hn(θn)
≤ 2 ∥In(z)− I(z)∥2Hn(θn)

+ 2 ∥I(z)∥2Hn(θn)
≤ 4∥In(z)− I(z)∥2H⋆

+ 4∥I(z)∥2H⋆
. (34)

By the event G3 and (32), it holds that

∥In(z)− I(z)∥2H⋆
≤ 9

2
M2

2 r
2
n + 2∥S(z, θ⋆)∥2H−1

⋆

(
Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

)2

. (35)

On the event G4, we get∥∥∥∥∥ 1n
n∑
i=1

(
H

−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆

)2∥∥∥∥∥
2

≤ 1

2
+
∥∥∥E{[H−1/2

⋆ H(Z, θ⋆)H
−1/2
⋆ ]2

}∥∥∥
2
≤ 1

2
+M2

2 .

Furthermore, by Lemma 33, it holds that

∥H(Zi, θn)−H(Zi, θ⋆)∥H−1
⋆

≤ ReR∥θn−θ⋆∥2∥H(Zi, θ⋆)∥H−1
⋆

∥θn − θ⋆∥2.
Note that ∥H(z, θ⋆)∥H−1

⋆
≤M2 and R∥θn − θ⋆∥2 ≤ R∥θn − θ⋆∥H⋆

/
√
µ⋆ ≤ 1/2 by the event G1. It follows that∥∥∥H−1/2

⋆ H(Zi, θn)H
−1/2
⋆ −H

−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆

∥∥∥
2
= ∥H(Zi, θn)−H(Zi, θ⋆)∥H−1

⋆
≤M2.

Since ∥A2 −B2∥2 ≤ ∥A(A−B)∥2 − ∥(A−B)B∥2 ≤ (∥A∥2 + ∥B∥2)∥A−B∥2, we get∥∥∥(H−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2 − (H−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆

)2∥∥∥
2
≤ 2M2

2 ,

and thus ∥∥∥∥∥ 1n
n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2∥∥∥∥∥
2

≤
∥∥∥∥∥ 1n

n∑
i=1

(
H

−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆

)2∥∥∥∥∥
2

+∥∥∥∥∥ 1n
n∑
i=1

(
H

−1/2
⋆ H(Zi, θn)H

−1/2
⋆

)2 − 1

n

n∑
i=1

(
H

−1/2
⋆ H(Zi, θ⋆)H

−1/2
⋆

)2∥∥∥∥∥
2

≤ 4M2
2 . (36)

Putting (29), (30), (33), (34), (35), and (36) together, we obtain

Tr(Σn) ≤ (CpM2
2 − 1)

[
18M2

2 r
2
n + 8∥S(z, θ⋆)∥2H−1

⋆

(
Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

)2

+ 4∥I(z)∥2H⋆

]
.

Now the claim follows from ∥Σn∥2 ≤ Tr(Σn) and I(z) = H−1
⋆ S(z, θ⋆).

Step 2. Control the probability of G1G2G3G4. According to Propositions 10 and 11, we have P(G1) ≥ 1 − δ/4 and
P(G2) ≥ 1− δ/4. Following a similar proof as Theorem 1 and noticing that ∥H(z, θ)∥H−1

⋆
≤M2 for all ∥θ − θ⋆∥H⋆

≤ ρ,
we obtain P(G3) ≥ 1− δ/4. Finally, invoking the matrix Bernstein inequality yields P(G4) ≥ 1− δ/4. Hence, we have
P(G1G2G3G4) ≥ 1− δ.

F.4 Variance Reduction: SVRG and Accelerated SVRG

We minimize the quadratic gn from (9) with SVRG (Johnson and Zhang, 2013) or its accelerated variant (Lin et al., 2018;
Allen-Zhu, 2017). Let u⋆ = argminu f(u) denote the minimizer of fn(u). A Taylor expansion gives us the expression

f(u)− f(u⋆) =
1

2
∥u− u⋆∥2Hn(θn)

.

Combining this fact with standard convergence bounds of SVRG and accelerated SVRG (cf. Appendix I.5 for a review) give
us the following computational bound.
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Theorem 22. Suppose that the loss function ℓ is convex and L-smooth, i.e., 0 ⪯ ∇2ℓ(·, z) ⪯ LId for all z ∈ Z . Further,
assume that fn is µn strongly convex, i.e., Hn(θn) ⪰ µnId. Then, SVRG starting at u0 ∈ Rd returns an iterate ut satisfying

E
[
∥ut − u⋆∥2Hn(θn)

∣∣∣Z1:n

]
≤ ε after tsvrg steps where

tsvrg ≤ C(n+ κn) log

(
κn∥u0 − u⋆∥2Hn(θn)

ε

)
,

where κn = L/µn and C is an absolute constant. Accelerated SVRG satisfies the same condition after tasvrg steps where
steps where

tasvrg ≤ C (n+
√
nκn) log

(
κn∥u0 − u⋆∥2Hn(θn)

ε

)
.

This gives us the following full error bound.

Corollary 23 (Total Computational Cost; Variance Reduction). Fix ε > 0. Consider the setting of Theorem 1, and let G
denote the high probability event under which its conclusions hold. Choose a sample size n such that

n = CK1,K2,σH

R2p2⋆
µ⋆ε

poly log
p

δ
.

Then, the number Nsvrg of gradient and Hessian-vector oracle calls required to obtain a point În(z) using SVRG initialized

at u0 = 0 such that E
[
∥În(z)− I(z)∥2H⋆

|G
]
≤ ε is bounded by

Nsvrg ≤ CK1,K2,σH
κ⋆

(
1 +

R2p2⋆
Lε

)
log

(
κ⋆∥I(z)∥2H⋆

ε
+ κ⋆

)
poly log

p

δ
.

The corresponding number Nasvrg for accelerated SVRG is

Nasvrg ≤ CK1,K2,σH
κ⋆

(√
R2p2⋆
Lε

+
R2p2⋆
Lε

)
log

(
κ⋆∥I(z)∥2H⋆

ε
+ κ⋆

)
poly log

p

δ
.

Proof. The proof is identical to that of Corollary 16 with Theorem 22 invoked instead of Proposition 15.

F.5 Low Rank Approximation

Consider the eigenvalue decomposition Hn(θn) = QΛQ⊤, where Λ = (λ1, · · · , λp) contains the eigenvalues of Hn(θn) in
non-increasing order. Recall that this method relies on approximating Hn(θn) with its low-rank approximation QΛkQ

⊤

where Λk = Diag(λ1, · · · , λk, 0, · · · , 0) to approximate the product with a vector v as Hn(θn)
−1v = QΛ−1Q⊤v ≈

QΛ+
k Q

⊤v , where Λ+
k = Diag(λ−1

1 , · · · , λ−1
k , 0, · · · , 0) is the pseudoinverse of Λ. The rank-k approximation of v =

Hn(θn)
−1u is given by vk = QDiag(λ−1

1 , · · · , λ−1
k , 0 · · · , 0)Q⊤u.

Consequently, this section gives bounds for the method of Schioppa et al. (2022), who compute the low-rank approximation
of the Hessian using the Lanczos/Arnoldi iterations (Lanczos, 1950; Arnoldi, 1951).

The computational bound we obtain depends on the low rank k.

Proposition 24. Let λ1 ≥ · · · ≥ λd denote the eigenvalues of Hn(θn). Then, the low-rank estimate În,k(z) of In(z)
satisfies ∥∥∥În,k(z)− In(z)

∥∥∥2
Hn(θn)

≤ ∥In(z)∥22
p∑

i=k+1

λi .

We have the following two regimes depending on the decay of eigenvalues λi(Hn(θn)):

• If λi(Hn(θn)) ≤ L i−β for some β > 1, we have

∥∥∥În,k(z)− In(z)
∥∥∥2
Hn(θn)

≤ Cβ
κn∥In(z)∥2Hn(θn)

kβ−1
.
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• If λi(Hn(θn)) ≤ L exp(−ν(k − 1)) for some ν > 0, we have∥∥∥În,k(z)− In(z)
∥∥∥2
Hn(θn)

≤ Cνκn exp(−νk)∥In(z)∥2Hn(θn)
.

Proof. Denote v = ∇ℓ(θn, z) and u⋆ = −Hn(θn)
−1v. Let q1, · · · , qp denote the columns of Q. Using Q⊤Q = Ip, we get∥∥∥În,k(z)− In(z)

∥∥∥2
Hn(θn)

= v⊤Q(Λ−1 − Λ+
k )Λ(Λ

−1 − Λ+
k )Q

⊤v

= u⊤⋆ QΛ(Λ−1 − Λ+
k )Λ(Λ

−1 − Λ+
k )Qu⋆

=

p∑
i=k+1

λi⟨qi, u⟩22 ≤
p∑

i=k+1

λi∥u⋆∥22 ,

where the last inequality follows from the Cauchy-Schwarz inequality and ∥qi∥2 = 1. For the second part of the proof, we
use the bound ∥u∥22 ≤ ∥u∥2A/λmin(A) together with

p∑
i=k+1

i−β ≤
∫ ∞

k

x−βdx =
k−(β−1)

β − 1
, and

p∑
i=k+1

exp(−ν(i− 1)) ≤ exp(−νk)
1− exp(−ν) .

Corollary 25 (Total Computational Cost; Low-Rank Approximation). Fix ε > 0. Consider the setting of Theorem 1, and let
G denote the high probability event under its conclusions hold. Choose a sample size

n ≥ CK1,K2,σH ,R
p2⋆
µ⋆ε

poly log
p

δ
.

Then, under G, the rank-k approximation În,k(z) satisfies ∥În,k(z)− I(z)∥2H⋆
≤ ε for all k no smaller than

k⋆ = min

{
k :

p∑
i=k+1

λi(H⋆) ∥In(z)∥22 ≤ ε/32

}
.

We have the following two regimes depending on the decay of eigenvalues λi(H⋆):

• If λi(H⋆) ≤ L i−β for some β > 1, we have

k⋆ ≤ Cβ

(
κ⋆∥I(z)∥2H⋆

ε
+ κ⋆

) 1
β−1

.

• If λi(H⋆) ≤ L exp(−ν(k − 1)) for some ν > 0, we have

k⋆ ≤
1

ν
log

(
κ⋆∥I(z)∥2H⋆

ε
+ κ⋆

)
.

Proof. The proof follows from combining Proposition 24 with Proposition 14.

G Most Influential Subset: Statistical Error Bound

Our goal in this section is to prove Theorem 5.
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G.1 Setup

Throughout, we assume that the Hessian ∇2
θF (θ) of the population is invertible for all θ ∈ Θ. For a continuously

differentiable test function h such as the loss of a test example h(θ) = ℓ(ztest, θ), recall that we define the population
influence as

Iα(h) = sup
Q≪P

{
−∇θh(θ⋆)

⊤ ∇2
θH

−1
⋆ EZ∼Q[∇θℓ(Z, θ⋆)] :

dQ

dP
≤ 1

1− α

}
. (37)

We characterize the convergence of In,α(h) towards Iα(h) via finite sample bounds. Recall that, for A, J ∈ Rp×p with J
being p.s.d., the weighted spectral norm ∥A∥J :=

∥∥J1/2AJ1/2
∥∥
2
.

We retain Assumption 1 but strengthen the other assumptions.

Assumption 2’ (Bounded Gradient). The normalized gradient is bounded in a neighborhood of θ⋆, i.e., there exist
M1 ≥ 1, ρ ∈ (0, 1] such that ∥∇ℓ(z, θ)∥H−1

⋆
≤M1 for all z ∈ Z and ∥θ − θ⋆∥H⋆

≤ ρ.

If the normalized gradient H−1/2
⋆ ∇ℓ(z, θ⋆) is bounded, then it is also sub-Gaussian, as required by Assumption 2. In

addition, we make this assumption in a neighborhood of θ⋆. For the next assumption, we strengthen the Bernstein condition
on the normalized Hessian into a spectral norm bound in a neighborhood around θ⋆.

Assumption 3’ (Bounded Hessian). The normalized Hessian is bounded in a neighborhood of θ⋆, i.e., there exist M2 ≥
1, ρ ∈ (0, 1] such that ∥H(z, θ)∥H−1

⋆
≤M2 for all z ∈ Z and ∥θ − θ⋆∥H⋆

≤ ρ.

Finally, we also require that the gradient and Hessian of the test function h are bounded.

Assumption 4 (Bounded Test Function). There exist M ′
1,M

′
2, ρ > 0 such that ∥∇h(θ)∥H−1

⋆
≤M ′

1 and
∥∥∇2h(θ)

∥∥
H−1

⋆
≤

M ′
2 for all ∥θ − θ⋆∥H⋆

≤ ρ.

G.2 Proof of the Statistical Bound of Theorem 5

Recall that the maximum subset influence is defined as

Iα,n(h) = max
w∈Wα

n∑
i=1

wivi, where vi = −
〈
∇h(θn), Hn(θn)

−1∇ℓ(Zi, θn)
〉
.

Here Hn(θn)
−1∇ℓ(Zi, θn) = −In(Zi). Hence, the maximum subset influence can be equivalently defined as

Iα,n(h) = max
w∈Wα

n∑
i=1

wi⟨∇h(θn), In(Zi)⟩.

We state and prove the precise version of Theorem 5 below. Note that we give a bound in terms of |Iα,n(h)− Iα(h)| while
the main paper gave a bound in terms of the square.

Theorem 5. Under Assumptions 1, 2’, 3’, and 4, it holds that, with probability at least 1− δ,

|Iα,n(h)− Iα(h)| ≤
CM1,M2,M ′

1,M
′
2

(1− α)
√
n

(
R

√
p⋆
µ⋆

log
(e
δ

)
+

√
log

(
2p

δ

)
+

√
log
(n
δ

))
.

whenever n ≥ CM1,M2

((
R2

µ⋆
+ 1

ρ

)
p⋆ log

(
e
δ

)
+ log

(
2p
δ

))
.

The proof centrally relies on the following duality property of the superquantile.

Lemma 26 (Rockafellar and Uryasev (2000)). For any integrable random variable Z ∼ P and any α ∈ (0, 1), the
superquantile satisfies the equivalent expressions

Sα(Z) = inf
η∈R

{
η +

1

1− α
E(Z − η)+

}
= sup
Q≪P

{
EZ∼Q[Z] :

dQ

dP
≤ 1

1− α

}
.

We now prove Theorem 5.
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Proof of Theorem 5. Define the shorthand for the per-point influence as

ψn(z, θ) := ∇h(θ)⊤Hn(θ)
−1∇ℓ(z, θ) and ψ(z, θ) := ∇h(θ)⊤H(θ)−1∇ℓ(z, θ).

Motivated by the alternate expression for the superquantile in Lemma 26, we will define

φn,n(θ, η) := η +
1

(1− α)n

n∑
i=1

(−ψn(Zi, θ)− η)+ ,

φn(θ, η) := η +
1

(1− α)n

n∑
i=1

(−ψ(Zi, θ)− η)+ ,

φ(θ, η) := η +
1

1− α
EZ∼P (−ψ(Z, θ)− η)+ .

According to Lemma 26, it holds that

|Iα,n(h)− Iα(h)| =
∣∣∣∣ infη∈R

φn,n(θn, η)− inf
η∈R

φ(θ⋆, η)

∣∣∣∣ ,
By the triangle inequality,∣∣∣∣ infη∈R

φn,n(θn, η)− inf
η∈R

φ(θ⋆, η)

∣∣∣∣ ≤ ∣∣∣∣ infη∈R
φn,n(θn, η)− inf

η∈R
φn(θn, η)

∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣ infη∈R
φn(θn, η)− inf

η∈R
φ(θ⋆, η)

∣∣∣∣︸ ︷︷ ︸
B

. (38)

As before, we prove the bound on some events and control the probability of these events. Before we start, we make two
observations. First, according to Lemma 36 and Assumption 2’, the sub-Gaussian gradient assumption, Assumption 2,
holds true with K1 = CM1. Second, let Q := H

−1/2
⋆ H(Z, θ⋆)H

−1/2
⋆ − Ip. Under Assumption 3’, it holds that

∥Q∥2 = ∥H(Z, θ⋆)−H⋆∥H−1
⋆

≤ 1 +M2 ≤ CM2. Moreover, we have∥∥E[QQ⊤]
∥∥
2
≤ E

∥∥QQ⊤∥∥
2
≤ E ∥Q∥22 ≤ C2M2

2

and, similarly,
∥∥E[Q]E[Q⊤]

∥∥
2
≤ C2M2

2 . Consequently, ∥V(Q)∥2 ≤ 2C2M2
2 . This, together with Lemma 39, implies that

Assumption 3 holds true with K2 =M2 and σ2
H = 2C2M2

2 .

Fix ε > 0 and denote M := eM1M
′
1. Let Rε be an ε-net of [−M,M ]. It is clear that |Rε| ≤ M

ε + 1. Denote

rn :=

√
CM2

1

p⋆
n

log (2e/δ) and tn :=
CM2

−1 +
√

1 + Cn/ log (4p/δ)
.

Define the following events

G1 :=

{
∥∇ℓn(θ⋆)∥2H−1

⋆
≤ 1

n
CM2

1 p⋆ log(3e/δ)

}
G2 := {(1− tn)H⋆ ⪯ Hn(θ⋆) ⪯ (1 + tn)H⋆}

G3 :=

{
|φn(θ⋆, η)− φ(θ⋆, η)| ≤

M

1− α

√
2 log (6 |Rε| /δ)

n
for all η ∈ Rε

}
.

In what follows, we assume that

n ≥ max

{
CM2

2 log(6p/δ), CM2
1 p⋆

(
R2

µ⋆
+

1

ρ

)
log(3e/δ)

}
. (39)

From the proof of Proposition 11, we know that tn ≤ 1/3,

∥θn − θ⋆∥2H⋆
≤ r2n =

1

n
CM2

1 p⋆ log (2e/δ) on the event G1G2, (40)
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and P(Gk) ≥ 1− δ/3 for k ∈ {1, 2}.

Step 1. Control A. Since (·)+ is 1-Lipschitz, we get

|φn,n(θn, η)− φn(θn, η)| ≤
1

(1− α)n

n∑
i=1

|ψn(Zi, θn)− ψ(Zi, θn)|

≤ 1

(1− α)n

n∑
i=1

∥∇h(θn)∥H−1
⋆

∥∥Hn(θn)
−1 −H(θn)

−1
∥∥
H⋆

∥∇ℓ(Zi, θn)∥H−1
⋆
, (41)

where the last inequality follows from the definition of matrix spectral norm. By (39) and (40), we have the ∥θn − θ⋆∥H⋆
≤ 1.

It then follows from Assumptions 2’ and 4 that ∥∇ℓ(Zi, θn)∥H−1
⋆

≤M1 and ∥∇h(θn)∥H−1
⋆

≤M ′
1. It remains to control∥∥Hn(θn)

−1 −H(θn)
−1
∥∥
H⋆

. By the triangle inequality, we have∥∥Hn(θn)
−1 −H(θn)

−1
∥∥
H⋆

≤
∥∥Hn(θn)

−1 −H−1
⋆

∥∥
H⋆

+
∥∥H(θn)

−1 −H−1
⋆

∥∥
H⋆
.

The first term above has been taken care of in Proposition 11:∥∥Hn(θn)
−1 −H−1

⋆

∥∥
H⋆

≤ Rrn/
√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

.

The second term can be controlled similarly:∥∥H(θn)
−1 −H−1

⋆

∥∥
H⋆

≤ Rrn/
√
µ⋆

1−Rrn/
√
µ⋆
.

Putting all together, we obtain

A ≤ sup
η∈R

|φn,n(θn, η)− φn(θn, η)| ≤
M1M

′
1

(1− α)

(
Rrn/

√
µ⋆ + tn

1−Rrn/
√
µ⋆ − tn

+
Rrn/

√
µ⋆

1−Rrn/
√
µ⋆

)
. (42)

Step 2. Control B. On a high level, we first apply a covering number argument to restrict η to a finite number of values. We
then control the absolute difference |φn(θn, η)− φ(θ⋆, η)| on this finite subset.

Step 2.1. Restrict η to a compact subset. According to Assumptions 2’ and 4, it holds that, for any ∥θ − θ⋆∥H⋆
≤ 1,

|ψ(z, θ)| ≤M1M
′
1

∥∥H(θ)−1
∥∥
H⋆

≤M1M
′
1e
R∥θ−θ⋆∥2 ,

where the last inequality follows from Proposition 32. Recall that we have shown ∥θn − θ⋆∥H⋆
≤ 1 and ∥θn − θ⋆∥2 ≤ 1/R.

It then follows that |ψ(z, θ)| ≤ eM1M
′
1 =M . Consequently, we have

φn(θn, η) =

{
η ≥ φn(θn,M) if η ≥M

η + 1
(1−α)n

∑n
i=1[ψ(Zi, θ)− η] ≥ φn(θn,−M) if η ≤ −M.

Therefore, it holds that infη∈R φn(θn, η) = inf |η|≤M φn(θn, η). Similarly, it can be shown that infη∈R φ(θ⋆, η) =
inf |η|≤M φ(θ⋆, η).

Step 2.2. Restrict η to a finite subset. By the triangle inequality, we have

|φn(θn, η)− φn(θn, η
′)| ≤ 1

(1− α)n

n∑
i=1

|(−ψ(Zi, θn)− η)+ − (−ψ(Zi, θn)− η′)+|+ |η − η′|

≤ 1

1− α
|η − η′|+ |η − η′| , (·)+ is 1-Lipschitz

=
2− α

1− α
|η − η′| .

For any η ∈ [−M,M ], we define π(η) to be the projection of η onto Rε, i.e., |η − π(η)| ≤ ε. As a result,

φn(θn, π(η)) ≤ φn(θn, η) +
2− α

1− α
ε,
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which implies

inf
η∈[−M,M ]

φn(θn, η) ≤ inf
η∈Rε

φn(θn, η) ≤ inf
η∈[−M,M ]

φn(θn, η) +
2− α

1− α
ε.

Similarly,

inf
η∈[−M,M ]

φ(θ⋆, η) ≤ inf
η∈Rε

φ(θ⋆, η) ≤ inf
η∈[−M,M ]

φ(θ⋆, η) +
2− α

1− α
ε.

From these results we can further conclude that∣∣∣∣ inf
η∈[−M,M ]

φn(θn, η)− inf
η∈[−M,M ]

φ(θ⋆, η)

∣∣∣∣ ≤ ∣∣∣∣ infη∈Rε

φn(θn, η)− inf
η∈Rε

φ(θ⋆, η)

∣∣∣∣+ 2− α

1− α
ε

≤ sup
η∈Rε

|φn(θn, η)− φ(θ⋆, η)|+
2− α

1− α
ε.

Therefore, using the results from Step 2.1, we obtain

B =

∣∣∣∣ inf
η∈[−M,M ]

φn(θn, η)− inf
η∈[−M,M ]

φ(θ⋆, η)

∣∣∣∣
≤ sup
η∈Rε

|φn(θn, η)− φn(θ⋆, η)|︸ ︷︷ ︸
B1

+ sup
η∈Rε

|φn(θ⋆, η)− φ(θ⋆, η)|︸ ︷︷ ︸
B2

+
2− α

1− α
ε. (43)

Step 2.3. Control B1. By the 1-Lipschitzness of (·)+, we have

|φn(θn, η)− φn(θ⋆, η)| ≤
1

(1− α)n

n∑
i=1

|ψ(Zi, θn)− ψ(Zi, θ⋆)| .

It follows from the triangle inequality that

|ψ(Zi, θn)− ψ(Zi, θ⋆)| ≤ D1 +D2 +D3,

where

D1 :=
∣∣∇h(θn)⊤[H(θn)

−1 −H−1
⋆ ]∇ℓ(Zi, θn)

∣∣
D2 :=

∣∣∇h(θn)⊤H−1
⋆ [∇ℓ(Zi, θn)−∇ℓ(Zi, θ⋆)]

∣∣
D3 :=

∣∣[∇h(θn)−∇h(θ⋆)]⊤H−1
⋆ ∇ℓ(Zi, θ⋆)

∣∣ .
Following the derivation of Step 1, it holds that

D1 ≤M1M
′
1

Rrn/
√
µ⋆

1−Rrn/
√
µ⋆
.

To control D2, we use the mean value theorem to write ∇ℓ(Zi, θn) − ∇ℓ(Zi, θ⋆) = ∇2ℓ(Zi, θ̄)(θn − θ⋆) for some
θ̄ ∈ conv{θn, θ⋆}. As a result,

D2 ≤ ∥∇h(θn)∥H−1
⋆

∥∥∇2ℓ(Zi, θ̄)
∥∥
H−1

⋆
∥θn − θ⋆∥H⋆

≤M2M
′
1rn,

where the last inequality follows from (40) and Assumptions 2’ and 4. Similarly, we can show that D3 ≤ M1M
′
2rn.

Therefore,

B1 ≤ 1

1− α

[
M1M

′
1

Rrn/
√
µ⋆

1−Rrn/
√
µ⋆

+M1M
′
2rn +M2M

′
1rn

]
. (44)

Step 2.4. Control B2. By the event G3, it holds that

B2 ≤ M

1− α

√
2 log (6 |Rε| /δ)

n
≤ M

1− α

√
2 log (12M/(δε))

n
(45)
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since |Rε| ≤ M/ε + 1 ≤ 2M/ε. Setting ε = 1/
√
n and combining (38), (42), (43), (44), and (45) lead to, after

simplification,∣∣∣∣ infη∈R
φn,n(θn, η)− inf

η∈R
φ(θ⋆, η)

∣∣∣∣ ≤ CM1,M2,M ′
1,M

′
2

(1− α)
√
n

(
R

√
p⋆
µ⋆

log
(e
δ

)
+

√
log

(
2p

δ

)
+

√
log
(n
δ

))

Step 2.5. Control P(G1G2G3). Recall from Step 2.1 that |ψ(z, θ⋆)| ≤M for all z ∈ Z . This yields, for all η ∈ Rε,

0 ≤ (−ψ(z, θ⋆)− η)+ ≤M − η ≤ 2M.

Consequently, it follows from Hoeffding’s inequality that P(G3) ≥ 1 − δ/3. Since P(Gk) ≥ 1 − δ/3 for k ∈ {1, 2}
(Proposition 11), we obtain P(G1G2G3) ≥ 1− δ, which completes the proof.

H Experimental Details

We conduct our experimentation on six datasets (two simulated, two small datasets from economics, and two natural
language datasets). Here, we provide full details of the experimentation used in this paper. We start with the dataset and
model details in Appendix H.1, hyperparameter choices in Appendix H.2, and evaluation methodology in Appendix H.3.

H.1 Data and Models

H.1.1 Linear Regression Simulation

We simulate a linear model with orthogonal design, which we solve using penalized ridge regression to illustrate the
theoretical influence function bound results in Theorem 1. Following (Avella-Medina, 2017), we simulate a model
yi = xTi θ + µi for varying sample sizes n ∈ [15, 10000]. Each xi is i.i.d. standard normal variables and θ ∈ R9

is fixed ahead of time. We introduce contamination into the dataset with µi = (1 − bi)N (0, 1) + biN (0, 10) where
bi ∼ Bernoulli(.1). All experimental results are the average of 100 simulations.

H.1.2 Logistic Regression Simulation

We simulate a simple logistic regression model to illustrate the theoretical influence function bound results in Theorem 1. We
simulate a model yi ∼ Binomial(pi), where pi =

(
1+exp(−(x⊤i θ+µi))

)−1
for varying sample sizes n ∈ [15, 1000]. Each

xi is i.i.d. standard normal variables and θ ∈ R9 is fixed ahead of time. Similar to the linear regression case, we introduce
contamination into the dataset with µi = (1− bi)N (0, 1) + biN (0, 10) where bi ∼ Bernoulli(.1). All experimental results
are the average of 100 simulations.

H.1.3 Oregon Medicaid Dataset

The dataset’s covariates contains economic and demographic factors, as well as whether treatment was given. The goal is to
predict various attributes of the health of a person.

Data. This dataset comes from the Oregon Medicaid study (Finkelstein et al., 2012). In 2008, Oregon instituted a lottery
system for choosing low-income adult resident to enroll in the Medicaid program. Due to the nature of the lottery, it
simulates a randomized controlled design study. A year later, a comprehensive survey was conducted on both the treatment
group (those who had won the lottery) and the control group (those who did not win the lottery). We analyzed the effects of
the treatment (L) on two different health outcomes: overall health indicated by a binary self-reported measure of positive
(not fair, good, very good, or excellent) or negative (poor), and the number of days with good physical or mental health
in the past 30 days. After removing all datapoints without entries for each response variable, we used n = 22517 for the
overall health indicator model and n = 20902 for the number of days of good health model.

Models. We use ordinary least squares to solve a linear system where outcomes per individual i in a household h is denoted
by yih. Since all individuals in a household chosen by the lottery can apply for Medicaid, the variable Lh is equal to one if
the household h won the Medicaid lottery and zero otherwise. Lastly, we use a set of demographic and economic covariates
xi (shown in the Table 4). Using these, we estimate the following model for each response variable yih using the model:

yih = θ0 + θ1Lh + θ2xi + εih .
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Variable Name Description
hhsize Household size including adults and children
wave_survey Weights used for each draw of the survey (out of 8 draws)
employ_hrs Average hours worked per week
edu Highest level of education completed
dia_dx* Diagnosed by a health professional with diabetes/sugar diabetes
ast_dx* Diagnosed by a health professional with asthma
hbp_dx* Diagnosed by a health professional with high blood pressure
emp_dx* Diagnosed by a health professional with COPD
dep_dx* Diagnosed by a health professional with depression or anxiety
ins_any Currently have any type of insurance
ins_ohp* Currently have OHP insurance
ins_private* Currently have private insurance
ins_other* Currently have other insurance
ins_months Number of months (in last 6 months) have had insurance

Table 4: Explanatory variables used in the Oregon Medicaid experimentation. The "Variable Name" corresponds to the
name used in the original analysis (Finkelstein et al., 2012), and then a brief description is given. Variables with a (*) are
binary.

Therefore, the covariates for each person are xih = (1, xi, Lh), where εih is assumed to be zero mean Gaussian noise.

We ran each model with increasing sample size; for the overall health indicator model (binary classification task)
we used n = 49, 169, 575, 1954, 6634, and for the number of days of good health model (regression) we used
n = 49, 167, 559, 1869, 6251. The model that ran using all the training data for each model was considered the pop-
ulation results. All experimental results are the average of 5 repetitions.

H.1.4 Cash Transfer

Data. The cash transfer dataset comes from a study of the impact of Progresa, a social program in Mexico that gives cash
gifts to low income households (Angelucci and De Giorgi, 2009). Although, the effects on the population receiving the
cash transfers is important, Angelucci and De Giorgi (2009) argue that we must also analyze the impact on the remaining
members of the village that are not eligible in order to understand the full impact of the program. However, due to concerns
that the non-poor households might have a large influence, the authors decided to limit the range of consumption outcomes
for these households (less than 10,000). This results in robustness in the analysis for the poor household, but sensitive results
for the non-poor households. For our analysis, we will only use data from time period 8. After removing all entries with no
response variable (household consumption), we used the remaining n = 19180 datapoints.

Model. Following the analysis in Table 1 from (Angelucci and De Giorgi, 2009), we use total household consumption Ci
for an individual i as the response variable, and a set of demographic and variables Xi as covariates (shown in Table 5).
Lastly, we use Poori and Nonpoori, which are interaction terms between the treatment (getting cash transfer) and being a
poor (non-poor) household, as our dependent variables of interest. The model is as below,

Ci = θ0 + θ1Poori + θ2Nonpoori + θ3Xi (46)

The model was run with increasing sample size n = 49, 164, 540, 1775, 5835. The model ran using all the training data for
each model was considered the population results. All experimental results are the average of 5 repetition.

H.1.5 Question-Answering with zsRE

Data. This is a question-answering task, in which the inputs xi are factual questions and the targets yi are the answers. We
used the Zero-Shot Relation Extraction (zsRE) dataset (Levy et al., 2017), with custom test/train split provided by (De Cao
et al., 2021). An example of this data can be found in Table 6. We use a subsample of size 4499 for our experiments. We
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Variable Name Description
hhhsex* Sex of head of household
hectareas Land size (hecta-acres)
vhhnum Number of household in the village
hhhage_cl Age of head of household
hhhspouse_cl* Head of household is married

Table 5: Explanatory variables used in the Cash Transfer experimentation. The "Variable Name" corresponds to the
name used in the original analysis (Angelucci and De Giorgi, 2009), and then a brief description is given. Variables with a
(*) are binary.

Task Input (xi) Output (yi)
zsRE What country did The Laughing Cow originate? France
WikiText The interchange is considered by Popular Mechanics to be

one of "The World’s 18 Strangest Roadways" because of
its height (as high as a 12-story building), its 43 permanent
bridges and other unusual...

design and construction features. In 2006,
the American Public Works Association
named the High Five Interchange

Table 6: Examples of the zsRE and WikiTextdataset. The zsRE data consists of an input question xi, and target answer yi.
The WikiText data has a paragraph as the input xi and the next 10 token continuation as the output yi.

take the full dataset of n = 4499 as the population and experiment with subsamples of size 49, 122, 182, 302, and 743. The
test dataset has size ntest = 200. All experimental results are the average of 5 repetitions.

Model. For these experiments, we use a BART-base model, which was fine-tuned on the zsRE dataset by De Cao et al.
(2021). BART-base models have 12-layers, 768-hidden units, 16 heads, and 139M parameters (Lewis et al., 2020). Each
model was fine-tuned on a subset of the full data of size n ∈ {49, 122, 182, 302, 743, 4499}. Fine-tuning was done using
stochastic gradient descent using the Adam optimizer with a learning rate of γ = 10−6 for 20 iterations.

H.1.6 Wikitext

Data. The next task is an open-ended text continuation task. The prompt xi is a natural language text sequence, while the
generation yi is a 10 token continuation of the prompt. The dataset consists of random passages from WikiText-103. We
use a subsample of size 1903 for our experiments. We take the full dataset of n = 1903 as the population and experiment
with subsamples of size 40, 105, 275, 724, and 1903. The test dataset has size ntest = 200. All experimental results are the
average of 5 repetitions. An example of this data can be found in Table 6.

Model. We use a DistilGPT-2 model for this experiment, which was finetuned on the WikiText-103 dataset (Merity et al.,
2017). DistilGPT2 models have 6-layers, 768-hidden units, 12 heads, and 82M parameters (Ma, 2021). Each model was
fine-tuned on a subset of the full data of size n ∈ {40, 105, 275, 724}. Fine-tuning was done using stochastic gradient
descent using Adam optimizer with a learning rate of γ = 10−6 for 20 iterations.

H.2 Hyperparameters

The hyperparameters for each experimentation are detailed below.

Linear Regression Simulation. The linear simulation was run with a penalization hyperparameter for the Ridge regression,
α = 10−3.

Oregon Medicaid Dataet. This was run with a regularization parameter of 0.01.

Cash Transfer Dataset. This was run with a regularization parameter of 0.01.

zsRE. Each of the methods requires a different set of hyperparameters, we list these in Table 7. We note that we use the
same regularization parameter for each method λ1 = 100. We used twice as many SGD epochs as SVRG epochs, because
one iteration in SVRG takes twice as many Hessian-vector product class as SGD. We ran the Arnoldi method for 30 iteration,
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Approx. Method Hyperparameter zsRE WikiText
Max. Iterations 100 100

Conjugate Gradient Early stopping 0.01 0.01

Number of epochs 50 50

SGD Learning rate 5× 10−4 1× 10−2

Number of epochs 25 25

SVRG Learning rate 5× 10−4 1× 10−3

Number of iterations 30 30

Arnoldi Top_k eigen. 10 10

Number of iterations 30 50

Table 7: Hyperparameters for the language model experiements; zsRE and WikiTExt.

which is less than SGD, this was due to lack of memory to run the Arnoldi method for more iterations (discussed in our
limitations for this method).

WikiText. Similar to zsRE, each method requires a different set of hyperparameters, refer to Table 7. We note that we use
the same regularization parameter for each method λ1 = 1.

H.3 Evaluation Methodology and Other Details

Here, we specify the quantities that appear on the x and y axes of the plots in this paper. We also give some extra details of
the experimentation.

x Axis. We are interested in how the empirical influence function differs from the population influences functions as sample
size increases. Therefore, on the x axis we place the size of the subset (sample size) of the original population that was used
to calculate the empirical influence.

y Axis. In each of our experimentation’s we demonstrate how certain quantities change as the sample size increases. For
both of the simulations and the small economic datasets, we calculate the normalized Hessian difference between the
empirical influence and population’s influence, ||In(z) − I(z)||2H⋆

.Lastly, for the y axis for both of the language model
experiments (zsRE and WikiText), we compute the difference in the influence on the test set between the empirical and
population influence, Gn(z)−G(z).

Software. We used Python 3.7.11, Pytorch 1.10.2 and HuggingFace Transformers 4.16.2.

Hardware. All experiments were run on 4 NIVIDIA Titan V GPU with 12GB memory.

I Technical Definitions, Tools, and Results

I.1 Definitions

Theorem 27 (Integral (Cauchy) form of remainder). Let f(x) be a differentiable function on interval I around a real
number a and Tn,a(b) be the nth Taylor polynomial of a real number b around a. For n ≥ 0 and b ̸= a in the interval I

f(b) = Tn,a(b) +

∫ b

a

f (n+1)(t)

n!
(b− t)ndt.

Moreover, if n = 0 then

f(b) = f(a) +

∫ b

a

f ′(t)dt.

Definition 28 (Sub-Gaussian variable). Let S ∈ R be a mean-zero random variable. We say S is sub-Gaussian with
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variance parameter σ2, if for any λ ∈ R

E[exp(λS)] ≤ exp

(
σ2λ2

2

)
.

Moreover, we define the sub-Gaussian norm of S as

∥S∥ψ2
:= inf

{
t > 0 : E

[
exp

(
S2

t2

)]
≤ 2

}
.

Definition 29 (Sub-Gaussian vector). Let S ∈ Rp be a mean-zero random vector. We say S is sub-Gaussian if ⟨S, s⟩ is
sub-Gaussian for every s ∈ Rp. Moreover, we define the sub-Gaussian norm of S as

∥S∥ψ2
:= sup

∥s∥2=1

∥⟨S, s⟩∥ψ2
.

Note that ∥.∥ψ2
is a norm and satisfies, e.g., the triangle inequality.

Definition 30 (Matrix Bernstein condition). Let H ∈ Rp×p be a zero-mean symmetric random matrix. We say H satisfies a
Bernstein condition with parameter b > 0 if, for all j ≥ 3,

E[Hj ] ⪯ 1

2
j!bj−2V(H).

Definition 31 (Pseudo self-concordance). Let X ⊂ Rp be open and f : X → R be a closed convex function. For a constant
R > 0, we say f is pseudo self-concordant on X if

|D3
xf(x)[u, u, v]| ≤ R∥u∥2∇2f(x)∥v∥2

I.2 Implications of Pseudo Self-Concordance

We give in this section useful properties of pseudo self-concordant functions. We denote by f : Rp → R a pseudo
self-concordant function with parameter R throughout this section.

The next result shows that the Hessian of a pseudo self-concordant function cannot vary too fast.
Proposition 32 (Bach (2010), Prop. 1). For any x, y ∈ Rp, we have

e−R∥y−x∥2∇2f(x) ⪯ ∇2f(y) ⪯ eR∥y−x∥2∇2f(x).

We prove below a Lipschitz-type property for the normalized Hessian of a pseudo self-concordant function. LetA, J ∈ Rp×p
where J is p.s.d. We denote ∥A∥J := ∥J1/2AJ1/2∥.
Lemma 33. Let J ∈ Rp×p be p.s.d. For any x1, x2, x⋆ ∈ Rp, we have

∥∇2f(x2)−∇2f(x1)∥J ≤ ReR∥x1−x⋆∥2∨∥x2−x⋆∥2∥∇2f(x⋆)∥J∥x2 − x1∥2.

Proof. Take an arbitrary v ∈ Rp with ∥v∥2 = 1, and denote v̄ := J1/2v. It holds that

|v̄⊤∇2f(x2)v̄ − v̄⊤∇2f(x1)v̄| = |D2f(x2)[v̄, v̄]−D2f(x1)[v̄, v̄]| = |D3f(x̄)[v̄, v̄, x2 − x1]|
for some x̄ ∈ Conv{x1, x2} by the mean value theorem. By the pseudo self-concordance of f , we obtain

|D3f(x̄)[v̄, v̄, x2 − x1]| ≤ R∥v̄∥2∇2f(x̄)∥x2 − x1∥2.

According to Proposition 32, we know ∇2f(x̄) ⪯ eR∥x̄−x⋆∥2∇2f(x⋆). As a result,

R∥v̄∥2∇2f(x̄)∥x2 − x1∥2 ≤ ReR∥x1−x⋆∥2∨∥x2−x⋆∥2 v̄⊤∇2f(x⋆)v̄∥x2 − x1∥2.
Therefore,

∥∇2f(x2)−∇2f(x1)∥J = sup
∥v∥=1

|v̄⊤∇2f(x2)v̄ − v̄⊤∇2f(x1)v̄|

≤ sup
∥v∥=1

ReR∥x1−x⋆∥2∨∥x2−x⋆∥2 v̄⊤∇2f(x⋆)v̄∥x2 − x1∥2

≤ ReR∥x1−x⋆∥2∨∥x2−x⋆∥2∥∇2f(x⋆)∥J∥x2 − x1∥2.
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The next result shows that the local distance between the minimizer of f and an arbitrary point x only depends on the local
information at x. Its original version was given by Bach (2010, Proposition 2) and we state here a variant of it.
Proposition 34. Let x ∈ Rp be such that ∇2f(x) ≻ 0. Whenever ∥∇f(x)∥∇2f(x)−1 ≤

√
λmin(∇2f(x))/(2R), the

function f has a unique minimizer x⋆ and

∥x⋆ − x∥∇2f(x) ≤ 4∥∇f(x)∥∇2f(x)−1 .

The lemma below is an inequality for the spectral norm used in the proof of Proposition 11. Even though we prove it for
general matrices A and B, we will only use it for B = Id.
Lemma 35. Let A and B be two p.d. matrices of size p× p. Assume that ∥A−B∥ ≤ s < λmin(B). Then we have

∥A−1 −B−1∥ ≤ s

λmin(B)
(
λmin(B)− s

) .
In particular, if B = Ip and ∥I −A∥ ≤ 1, we have

∥A−1 − I∥ ≤ ∥I −A∥
1− ∥I −A∥ .

Proof. Since ∥A−B∥ ≤ s, it holds that

B − sIp ⪯ A ⪯ B + sIp.

It then follows from λmin(B)Ip ⪯ B that

[1− s/λmin(B)]B ⪯ A ⪯ [1 + s/λmin(B)]B.

As a result, we obtain

1

1 + s/λmin(B)
B−1 ⪯ A−1 ⪯ 1

1− s/λmin(B)
B−1.

Hence,

∥A−1 −B−1∥ ≤ s/λmin(B)

1− s/λmin(B)
∥B−1∥ ≤ s

λmin(B)[λmin(B)− s]
.

I.3 Concentration of Random Vectors and Matrices

It follows from Vershynin (2018, Eq. (2.17)) that a bounded random vector is sub-Gaussian.

Lemma 36. Let S be a random vector such that ∥S∥2
a.s.
≤ M for some constant M > 0. Then S is sub-Gaussian with

∥S∥ψ2
≤M/

√
log 2.

As a direct consequence of Vershynin (2018, Prop. 2.6.1), the sum of i.i.d. sub-Gaussian random vectors is also sub-Gaussian.
Lemma 37. Let S1, . . . , Sn be i.i.d. sub-Gaussian random vectors, then we have ∥∑n

i=1 Si∥
2
ψ2

≤ C
∑n
i=1∥Si∥

2
ψ2

.

We call a random vector S ∈ Rd isotropic if E[S] = 0 and E[SS⊤] = Id. The following theorem is a tail bound for
quadratic forms of isotropic sub-Gaussian random vectors.
Theorem 38 (Ostrovskii and Bach (2021), Theorem A.1). Let S ∈ Rd be an isotropic random vector with ∥S∥ψ2

≤ K, and
let J ∈ Rd×d be positive semi-definite. Then,

P(∥S∥2J −Tr(J) ≥ t) ≤ exp

(
−cmin

{
t2

K2∥J∥22
,

t

K∥J∥∞

})
.

In other words, with probability at least 1− δ, it holds that

∥S∥2J −Tr(J) ≤ CK2
(
∥J∥2

√
log (e/δ) + ∥J∥∞ log (1/δ)

)
, (47)

where C is an absolute constant.
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The next lemma, which follows from Wainwright (2019, Eq. (6.30)), shows that a matrix with bounded spectral norm
satisfies the matrix Bernstein condition.

Lemma 39. Let H be a zero-mean random matrix such that ∥H∥2
a.s.
≤ M for some constant M > 0. Then H satisfies the

matrix Bernstein condition with b =M and σ2
H = ∥V(H)∥2. Moreover, σ2

H ≤ 2M2.

The next theorem is the Bernstein bound for random matrices.

Theorem 40 (Wainwright (2019), Theorem 6.17). Let {Hi}ni=1 be a sequence of zero-mean independent symmetric random
matrices that satisfies the Bernstein condition with parameter b > 0. Then, for all t > 0, it holds that

P

(∥∥∥∥∥ 1n
n∑
i=1

Hi

∥∥∥∥∥ ≥ t

)
≤ 2Rank

(
n∑
i=1

V(Hi)

)
exp

{
− nt2

2(σ2 + bt)

}
, (48)

where σ2 := 1
n∥
∑n
i=1 V(Hi)∥2.

I.4 Generalized Linear Models Satisfy Theorem 1 Assumptions

The assumptions used to prove Theorem 1 hold for generalized linear models under some regularity conditions. We give
two concrete examples here.

1. Least Squares: Let Z ⊂ Bp,M × B1,M , where Bp,M := {x ∈ Rp : ∥x∥2 ≤ M} for some M > 0. Consider the loss
ℓ(z, θ) := 1

2 (y − θ⊤x)2 where z = (x, y) denotes an input-output pair. Assume that H(θ⋆) = E[XX⊤] ≻ 0.

(a) Pseudo self-concordance. Since ∇2
θℓ(z, θ) = xx⊤ ⪰ 0 and ∇3

θℓ(z, θ) = 0, the loss ℓ is pseudo self-concordant for all
R ≥ 0.

(b) Sub-Gaussian gradient. Note that ∥∇θℓ(Z, θ⋆)∥2 = ∥XX⊤θ⋆ −XY ∥2 ≤M2(∥θ⋆∥2 + 1) and H(θ⋆) = E[XX⊤] ≻
0. This is sufficient to guarantee that the normalized gradient H(θ⋆)

−1/2∇ℓ(Z, θ⋆) is sub-Gaussian (cf. Lemma 36).
(c) Bernstein Hessian. Note that ∥∇2

θℓ(Z, θ⋆)∥2 = ∥XX⊤∥2 ≤M2, the standardized Hessian
H(θ⋆)

−1/2∇2
θℓ(Z, θ⋆)H(θ⋆)

−1/2 − Ip satisfies the matrix Bernstein condition (cf. Lemma 39).

2. Logistic Regression: Let Z ⊂ Bp,M × {±1} for some M > 0. Consider the loss ℓ(z, θ) = log
(
1 + exp(−y⟨θ, x⟩)

)
and

let σ(z) = 1
1+e−z . Assume that H(θ⋆) ≻ 0.

(a) Pseudo self-concordance. Note that ∇2
θℓ(z, θ) = σ(θ⊤x)[1 − σ(θ⊤x)]xx⊤ and D3

θℓ(z, θ)[u, u, v] = σ(θ⊤x)[1 −
σ(θ⊤x)][1 − 2σ(θ⊤x)](u⊤x)2(v⊤x). It follows that |D3

θℓ(z, θ)[u, u, v]| ≤ M∥v∥2∥u∥
2
∇2ℓ(z,θ) and thus ℓ is pseudo

self-concordant with R ≥M .
(b) Sub-Gaussian gradient. Note that ∥∇θℓ(Z, θ⋆)∥2 = ∥[1− σ(Y θ⊤⋆ X)]Y X∥2 ≤M . Therefore, the normalized gradient

H(θ⋆)
−1/2∇ℓ(Z, θ⋆) is sub-Gaussian (cf. Lemma 36).

(c) Bernstein Hessian. Note that ∥∇2
θℓ(Z, θ⋆)∥2 ≤ ∥XX⊤∥2/4 ≤ M2/4. It follows that the standardized Hessian

H(θ⋆)
−1/2∇2

θℓ(Z, θ⋆)H(θ⋆)
−1/2 − Ip satisfies the matrix Bernstein condition (cf. Lemma 39).

I.5 Convergence Bounds of Optimization Algorithms

We recall here the convergence bounds of various linear system solvers.

Stochastic Gradient Descent. We give here the convergence bounds of tail-averaged stochastic gradient descent (SGD) for
general strongly convex quadratics from (Jain et al., 2017b,a).

Suppose we wish to minimize the function

f(u) =
1

2
⟨u,Au⟩+ ⟨b, u⟩ , (49)

where A ∈ Rd×d is strictly positive definite and b ∈ Rd is given. Denote u⋆ = argminu f(u) = −A−1b.

Starting from some u0 ∈ Rd, consider the SGD iterations

ut+1 = ut − γ(Âtut + b) , (50)

where Ât is a stochastic estimator of the Hessian A. We make the following assumptions:
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(a) The Hessian estimator Â of A is unbiased, i.e., E[Â] = A. Further, we have the second moment bound E[Â2] ⪯ B2A
for some B2 > 0. If Â ⪯ LI almost surely, then B2 ≤ L is always true.

(b) The minimal eigenvalue of the Hessian A is bounded λmin(A) ≥ µ for some µ > 0.

The bounds depend on the covariance matrix of the stochastic gradients at u = u⋆:

Σ := E
[
(Âu⋆ + b)(Âu⋆ + b)⊤

]
= E

[
ÂA−1bb⊤A−1Â

]
− bb⊤ .

The noise contribution is characterized by the trace of the sandwich matrix

σ2 := Tr(A−1/2ΣA−1/2) = E
[
u⊤⋆ A

1/2(A−1/2ÂA−1/2 − I)2A1/2u⋆

]
.

The degree of misspecification is captured by the scalar

ρ =
d ∥A−1/2ΣA−1/2∥2
Tr(A−1/2ΣA−1/2)

.

Theorem 41 ((Jain et al., 2017b,a)). Consider the sequence (ut)
∞
t=0 produced by stochastic gradient descent (50) on

function (49) with a step size γ = 1/(2B2). The tail-averaged iterate ūt = (2/t) =
∑t
τ=t/2 uτ satisfies

E∥ūτ − u⋆∥2A ≤ 2κ exp

(
− t

4κ

)
∥u0 − u⋆∥2A + 8(1 + ρ)

σ2

t
,

where κ = B2/µ is a condition number.

Stochastic Variance Reduced Gradient (SVRG) and its Acceleration.

Consider the optimization problem

min
u∈Rd

[
f(u) =

1

n

n∑
i=1

fi(u)

]
,

where each fi is L-smooth and convex, and f is µ-strongly convex. If each fi is the quadratic

fi(u) =
1

2
⟨u,Aiu⟩+ b ,

then the smoothness is equivalent to 0 ⪯ Ai ⪯ LId for each i and the strong convexity to A := (1/n)
∑n
i=1Ai ⪰ µId. Let

u⋆ = argmin f(u). For the quadratic example above, we have u⋆ = A−1b

The following is the convergence bound for SVRG (Johnson and Zhang, 2013).

Theorem 42 ((Hofmann et al., 2015)). The sequence (ut) produced by SVRG satisfies

E[f(ut)− f(u⋆)] ≤ C1κ exp

(
− t

C2(n+ κ)

)
(f(u0)− f(u⋆)) ,

for κ = L/µ and some absolute constants C1 and C2.

Accelerated SVRG (Lin et al., 2018; Allen-Zhu, 2017) satisfies the following bound.

Theorem 43. The sequence (ut) produced by accelerated SVRG satisfies

E[f(ut)− f(u⋆)] ≤ C1κ exp

(
− t

C2(n+
√
nκ)

)
(f(u0)− f(u⋆)) ,

where κ = L/µ is the condition number and C1 and C2 are absolute constants.
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E[Z]

qZ(α)

Sα(Z) = E[Z |Z > qZ(α)]

area = 1− α

Figure 5: Expectation, quantile, and superquantile of a continuous random variable Z at level α ∈ (0, 1).

I.6 Superquantile Review

We review the various equivalent expressions of the superquantile. Consider a real-valued random variableZ with distribution
P , cumulative distribution function FZ and quantile function qZ(α) = F−1

Z (α).

The following are equivalent expressions for the superquantile:

Sα(Z) = sup

{
EQ[Z] :

dQ

dP
≤ 1

1− α

}
= inf
η∈R

{
η +

1

1− α
EP (Z − η)+

}
=

1

1− α

∫ 1

α

qZ(β) dβ .

(51)

When Z is a continuous random variable, the third expression is equivalent to (see Figure 5)

Sα(Z) = E[Z |Z > qZ(α)] .

When Z is discrete and takes equiprobable values z1, . . . , zn, the three expressions above reduce to the following

Sα(Z) = max

{
n∑
i=1

wizi : 0 ≤ wi ≤
1

(1− α)n
for all i ∈ [n] ,

n∑
i=1

wi = 1

}

= min
η∈R

{
η +

1

(1− α)n

n∑
i=1

(zi − η)+

}

=
1

(1− α)n

∑
i∈I

zi +
δα

1− α
qZ(α) ,

(52)

where I = {i : zi > qZ(α)} and δα = FZ(qZ(α))− α. Note that δα = 0 when αn is an integer.
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