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Abstract

We consider the problem of active learning for sin-
gle neuron models, also sometimes called “ridge
functions”, in the agnostic setting (under adversar-
ial label noise). Such models have been shown to
be broadly effective in modeling physical phenom-
ena, and for constructing surrogate data-driven
models for partial differential equations.

Surprisingly, we show that for a single neuron
model with any Lipschitz non-linearity (such as
the ReLU, sigmoid, absolute value, low-degree
polynomial, among others), strong provable ap-
proximation guarantees can be obtained using a
well-known active learning strategy for fitting lin-
ear functions in the agnostic setting. Namely,
we can collect samples via statistical leverage
score sampling, which has been shown to be near-
optimal in other active learning scenarios. We
support our theoretical results with empirical sim-
ulations showing that our proposed active learning
strategy based on leverage score sampling outper-
forms (ordinary) uniform sampling when fitting
single neuron models.

1 INTRODUCTION

This paper considers active learning methods for functions
of the form g(x) = f(⟨w,x⟩), where w is a weight vector
and f is a non-linearity. For a given distribution D on
Rd ×R, a random vector (x, y) sampled from D, and scalar
function f : R → R, our goal is to find w which minimizes
the expected squared error:

Ex,y∼D (f(⟨w,x⟩)− y)
2
.

Functions of the form f(⟨w,x⟩) find applications in a vari-
ety of settings under various names: they are called “single
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neuron” or “single index” models, “ridge functions”, and
“plane waves” in different communities [Pinkus, 1997, 2015,
Yehudai and Shamir, 2020, Rao et al., 2017, Candès, 2003].
Single neuron models are studied in machine learning theory
as tractable examples of simple neural networks [Diakoniko-
las et al., 2020a, Goel et al., 2017]. Moreover, these models
are known to be adept at modeling a variety of physical
phenomena [Constantine et al., 2016] and for that reason are
effective e.g., in building surrogate models for efficiently
solving parametric partial differential equations (PDEs) and
for approximating quantity of interest (QoI) surfaces for
uncertainty quantification, model-driven design, and data
assimilation [O’Leary-Roseberry et al., 2022, Constantine
et al., 2017, Cohen et al., 2012, Le Maı̂tre and Knio, 2010,
Lassila and Rozza, 2010, Binev et al., 2017].

In these applications, single neuron models are used to fit
complex functions over Rd based on queries from those
functions. Often, the cost of obtaining a query (x, y) from
the target function dominates the computational cost of fit-
ting the model: each training point collected requires numer-
ically solving the PDE under consideration with parameters
given by x [Adcock et al., 2022a, Cohen and DeVore, 2015].
At the same time, we often have the freedom in exactly
how the query is obtained; we are not restricted to simply
sampling from D, but rather can specify a target location
x and sample y ∼ D | x (or compute y deterministically,
since in most applications it is a deterministic function of
x). Given these considerations, the focus of our work is
on developing efficient active learning and experimental
design methods1 for fitting single neuron models using as
few carefully chosen (x, y) observations as possible.

We study this active learning problem in the challenging
agnostic learning or adversarial noise setting. Again, this is
motivated by applications of single neuron models in com-
putational science. Typically, while it can be approximated
by a single neuron model, the QoI or surrogate function
under consideration is not itself of the form f(⟨w,x⟩). For
this reason, the agnostic setting has become the standard

1We use “experimental design” to refer to methods that collect
samples in a non-adaptive way. In other words, a set of points
x1, . . . ,xs are specified upfront and the corresponding y values
are observed all at once. In contrast, in standard active learning
methods, the choice of xj can depend on the response values of
all prior points x1, . . . ,xj−1.
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in work on PDE models involving other common function
families, like structured polynomials [Chkifa et al., 2018,
Cohen and DeVore, 2015, Adcock et al., 2022b, Hampton
and Doostan, 2015b]. In the agnostic setting, for a constant
C (or more stringently, C = 1 + ε), our goal is always to
return with high probability some w̃ such that:

Ex,y∼D (f(⟨w̃,x⟩)− y)
2

≤ C ·min
w

Ex,y∼D (f(⟨w,x⟩)− y)
2
.

1.1 Our Contributions

For ease of exposition, we consider the case when D is a
uniform distribution over n points in Rd. This is without
loss of generality, since any continuous distribution can be
approximated by the uniform distribution over a sufficient
large, but finite, subset of points in Rd.2. In this case, we
have the following problem statement.

Problem 1 (Single Neuron Regression). Given a matrix
X ∈ Rn×d and query access to a target vector y ∈ Rn,
for a given function f : R → R, find w ∈ Rd to minimize
∥f(Xw)− y∥22 using as few queries from y as possible.

When f is an identity function, Problem 1 reduces to active
least squares regression, which has received a lot of recent
attention in computer science and machine learning. In the
agnostic setting, state-of-the-art results can be obtained via
“leverage score” sampling, also known as “coherence moti-
vated” or “effective resistance” sampling [Avron et al., 2019,
Cohen and Migliorati, 2017, Rauhut and Ward, 2012, Hamp-
ton and Doostan, 2015a]. The idea behind leverage scores
sampling methods is to collect samples from y randomly but
non-uniformly, using an importance sampling distribution
based on the rows of X. More “unique” rows are selected
with higher probability. Formally, rows are selected with
probability proportional to their statistical leverage scores:

Definition 1 (Statistical Leverage Score). The leverage
score, τi(X) of the ith row, xi of a matrix, X ∈ Rn×d

is equal to:

τi(X) = xT
i (X

TX)−1xi = max
w∈Rd

[Xw]2i

∥Xw∥22
.

Here, [Xw]i denotes the ith entry of the vector Xw.

We always have that 0 ≤ τi(X) ≤ 1, and a well-
known property of the statistical leverage scores is that∑n

i=1 τi(X) = rank(X) ≤ d. The leverage score of a
row is large (close to 1) if that row has large inner product

2For other function families (e.g. polynomials, or sparse
Fourier functions) there has been recent work on active learning
algorithms based on leverage score sampling that skip the discrete
approximation step by developing algorithms directly tailored
to common continuous distributions, like uniform or Gaussian
Erdélyi et al. [2020]. We believe our techniques should be directly
extendable to give comparable results for single neuron models.

with some vector in Rd, as compared to that vector’s inner
product with all other rows in the matrix X. This means
that the particular row enjoys significance in forming the
row space of X. For linear regression, it can be shown that
when X has d columns, leverage score sampling yields a
sample complexity of O(d log d+ d/ε) to find ŵ satisfying
∥Xŵ − y∥22 ≤ (1 + ε)minw ∥Xw − y∥22; moreover, this
is optimal up to the log factor [Chen and Price, 2019].

Our main contribution is to establish that, surprisingly, when
combined with a novel regularization strategy, leverage
score sampling also yields theoretical guarantees for the
more general case (Problem 1) for a broad class of non-
linearities f . In fact, we only require that f is L-Lipschitz
for constant L, a property that holds for most non-linearities
used in practice (ReLU, sigmoid, absolute value, low-degree
polynomials, etc.). We prove the following main result,
which shows that Õ(d2/ε4) samples, collected via leverage
score sampling, suffice for provably learning a single neuron
model with Lipschitz non-linearity.

Theorem 1 (Main Result). Let X ∈ Rn×d be a data matrix
and y ∈ Rn be a target vector. Let f be an L-Lipschitz non-
linearity with f(0) = 0 and let OPT = minw ∥f(Xw)−
y∥22. There is an algorithm (Algorithm 1) that, based on

the leverage scores of X, observes m = O
(

d2 log(1/ε)
ε4

)
random entries from y and returns with probability > 9/10
a vector ŵ satisfying:

∥f(Xŵ)− y∥22 ≤ C ·
(
OPT + εL2∥Xw∗∥22

)
.

The assumption f(0) = 0 in Theorem 1 is without loss
of generality. If f(0) is non-zero, we can simply solve a
transformed problem with y′ = y − f(0) and f ′(x) =
f(x) − f(0). The theorem mirrors previous results in the
linear setting, and in contrast to prior work on agnostically
learning single neuron models, does not require any assump-
tions on X [Diakonikolas et al., 2022b, Tyagi and Cevher,
2012]. In addition to multiplicative error C, the theorem
has an additive error term of CεL2∥Xw∗∥22. An additive
error term is necessary; as we will show in Section 5, it is
provably impossible to achieve purely relative error with a
number of samples polynomial in d. Similar additive error
terms arise in related work on leverage score sampling for
problems like logistic regression [Munteanu et al., 2018,
Mai et al., 2021]. On the other hand, we believe the d2

dependence in our bound is not necessary, and should be
improvable to linear in d. The dependence on ε is also likely
improvable.

In Section 4 we support our main theoretical result with
an empirical evaluation on both synthetic data and several
test problems that require approximating PDE quantity of
interest surfaces. In all settings, leverage score sampling
outperforms ordinary uniform sampling, often improving
on the error obtained using a fixed number of samples by an
order of magnitude or more.
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1.2 Related Work

Single neuron models have been widely studied in a num-
ber of communities, including machine learning, compu-
tational science, and approximation theory. These mod-
els can be generalized to the “multi-index” case, where
g(x) = f1(⟨x,w1)+ . . .+fq(⟨x,w1) [Klusowski and Bar-
ron, 2018, Tyagi and Cevher, 2012, Candès, 2003] or to the
case when f is not known in advance (but might be from
a parameterized function family, such as low-degree poly-
nomials) [Cohen et al., 2012, Hokanson and Constantine,
2018, Constantine et al., 2017]. While we do not address
these generalizations in this paper, we hope that our work
can provide a foundation for further work in this direction.

Beyond sample complexity, there has also been a lot of
interest in understanding the computational complexity of
fitting single neuron models, including in the agnostic set-
ting [Yehudai and Shamir, 2020]. There are both known
hardness results for general data distributions [Diakonikolas
et al., 2020b, Goel et al., 2019, Diakonikolas et al., 2022a],
as well as positive results on efficient algorithms under ad-
ditional assumptions [Goel et al., 2017, Diakonikolas et al.,
2022b, 2020a]. Our work differs from this setting in two
ways: 1) we focus on sample complexity; 2) we make no
assumptions on the data distribution D (i.e., no assumptions
on the data matrix X); 3) we allow for active sampling
strategies. Obtaining results under i.i.d. sampling, even for
well behaved distributions, inherently requires additional as-
sumptions, like w∗ = minw ∥f(Xw)−y∥2 being bounded
in norm or X having bounded condition number.

In computational science, there has been significant work
on active learning and experimental design for fitting other
classes of functions adept at modeling high dimensional
physical phenomena [Chkifa et al., 2018, Cohen and De-
Vore, 2015, Adcock et al., 2022b, Hampton and Doostan,
2015b]. Most such results focus on minimizing squared
prediction error. For situations involving model mismatch,
the agnostic (adversarial noise) setting is more appropriate
than assuming i.i.d. zero mean noise, which is more typ-
ical in classical statistical results on experimental design
[Pukelsheim, 2006]. To obtain results in the agnostic setting
for linear function families, much of the prior work in com-
putational science uses “coherence motivated” sampling
techniques [Cohen and Migliorati, 2017, Rauhut and Ward,
2012, Hampton and Doostan, 2015a]. Such methods are
equivalent to leverage score sampling [Avron et al., 2019].

Leverage score sampling and related methods have found
widespread applications in the design of efficient algorithms,
including in the construction of graph sparsifiers, coresets,
randomized low-rank approximations, and in solving over-
constrained linear regression problems [Spielman and Sri-
vastava, 2011, Feldman and Langberg, 2011, Drineas et al.,
2008, Cohen et al., 2017, Musco and Musco, 2017, Das-
gupta et al., 2008, Drineas et al., 2006, Cohen et al., 2015,

Kacham and Woodruff, 2020].

Recently, there has been renewed attention on using leverage
score sampling for solving the active linear regression prob-
lem for various loss functions [Erdélyi et al., 2020, Chen and
Derezinski, 2021, Meyer et al., 2023, Musco et al., 2022].
While all of these results are heavily tailored to linear mod-
els, a small body of works addresses the problem of active
learning for non-linear problems. This includes problems of
the form ∥f(Xw − y)∥22, where f is Lipschitz [Munteanu
et al., 2018, Mai et al., 2021]. While not equivalent to our
problem, this formulation captures important tasks like lo-
gistic regression. Our work can be viewed as broadening
the range of non-linear problems for which leverage score
sampling yields natural worst-case guarantees.

Finally, we mention a few papers that directly address the
active learning problem for functions of form f(Xw). Co-
hen et al. [2012] studies adaptive query algorithms, but in a
different setting than our paper. Specifically, they address
the easier (noiseless) realizable setting, where samples are
obtained from a function of the form f(Xw∗) for a ground
truth w∗. They also make stronger smoothness assump-
tions on f , although their algorithm can handle the case
when f is not known in advance. Follow-up work also ad-
dress the multi-index problem in the same setting [Fornasier
et al., 2012]. Also motivated by applications in efficient
PDE surrogate modeling, Tyagi and Cevher [2012] study
the multi-index problem, but again in the realizable setting.
Their techniques can handle mean centered i.i.d. noise, but
not adversarial noise or model mismatch.

2 PRELIMINARIES

Notation. Throughout the paper, we use bold lower-case
letters for vectors and bold upper-case letters for matrices.
We let ei denotes the ith standard basis vector (all zeros, but
with a 1 in position i). The dimension of ei will be clear
from context. For a vector x ∈ Rn with entries x1, . . . , xn,
∥x∥2 = (

∑n
i=1 x

2
i )

1/2 denotes the Euclidean norm. Bd(r)
denotes a ball of radius r centered at 0, i.e. Bd(r) = {x ∈
Rd : ∥x∥ ≤ r}. For a scalar function f : R → R and vector
y, we use f(y) to denote the vector obtained by applying f
to each entry of y. For a fixed matrix X, unobserved target
vector y, and non-linearity f , we denote ∥f(Xw∗)− y∥22
by OPT where w∗ ∈ argminw ∥f(Xw)− y∥2.

Importance Sampling. As discussed, our approach is
based on importance sampling according to statistical lever-
age scores: we fix a set of probabilities p1, . . . , pn, use
them to sample m rows from the regression problem
∥f(Xw)− y∥22, and solve a reweighted least squares prob-
lem to find a near optimal choice for w. Formally, this
can be implemented by defining a sampling matrices of the
following form:

Definition 2 (Importance Sampling Matrix). Let
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{p1, . . . , pn} ∈ (0, 1]n be a given set of probabilities (so
that

∑
i pi = 1). A matrix S is an m × n importance

sampling matrix if each of its rows is chosen to equal
1√
m·pi

· ei with probability proportional to pi.

To compute an approximate to min ∥f(Xw)− y∥22 we will
solve an optimization problem involving the sub-sampled
objective ∥Sf(Xw)− Sy∥22. It is easily verified that for

any choice of p1, . . . , pn and any vector z, E
[
∥Sz∥22

]
=

∥z∥22 . We will use this fact repeatedly.

Properties of Leverage Scores. Our importance sampling
mechanism is based on sampling by the leverage scores
τ1(X), . . . , τn(X) of the design matrix X ∈ Rd×n. For
any full-rank d × d matrix R, we have that τi(XR) =
τi(X). This is clear from Definition 1 and implies that τi(X)
only depends on the column span of X. In our proofs, this
property will allow us to easily reduce to the setting where
X is assumed to be a matrix with orthonormal columns.

We will also use the following well-known fact about using
leverage score sampling to construct a “subspace embed-
ding” for a matrix X.

Lemma 1 (Subspace Embedding (see e.g. Theorem 17 in
Woodruff [2014]). Given X ∈ Rn×d with leverage scores
τ1(X), . . . , τn(X), let pi = τi(X)/

∑
i τi(X). Let S ∈

Rm×n be a sampling matrix constructed as in Definition 2
using the probabilities p1, . . . , pn. For any 0 < γ < 1, as
long as m ≥ c · d log(d/δ)/γ2 for some fixed constant c,
then with probability 1− δ we have that for all w ∈ Rd,

(1− γ)∥Xw∥22 ≤ ∥SXw∥22 ≤ (1 + γ)∥Xw∥22.

Lemma 1 establishes that, with high probability, leverage
score sampling preserves the norm of any vector Xw in the
column span of X. This guarantee can be proven using an
argument that reduces to a matrix Chernoff bound [Spielman
and Srivastava, 2011]. This is a critical component for pre-
viously known active learning guarantees for fitting linear
functions using leverage score sampling [Sarlos, 2006].

3 MAIN RESULT

With preliminaries in place, we are ready to prove Theorem
1. We begin with pseudocode for Algorithm 1, which obtains
the guarantee of the theorem via leverage score sampling
combined with a novel regularization strategy.

The core of Algorithm 1 is the optimization problem:

ŵ = argmin
w:∥SXw∥2

2≤
1

ε·L2 ∥S(y∥2
2

∥Sf(Xw)− Sy∥22 . (1)

Since this problem involves a Euclidean constraint on SXw,
it is notably different from the more standard (weighted) em-
pirical risk minimization problem: minw ∥Sf(Xw)−Sy∥22.

Algorithm 1 Leverage Score Based Active Learning for
Single Neuron Models
input: Matrix X ∈ Rn×d, L-Lipschitz non-linearity
f : R → R with f(0) = 0, query access to target vector
y ∈ Rn, number of samples m.
output: Approximate solution to minw ∥f(Xw)− y∥22.

1: Compute τi(X) for all i = 1, . . . , n.
2: Set pi = τi(X)/

∑n
j=1 τi(X) for all i = 1, . . . , n.

3: Construct S ∈ Rm×n according to Definition 2 with
probabilities p1, . . . , pn.

4: Query y at m locations to obtain Sy ∈ Rm.
5: Solve the minimization problem:

ŵ = argmin
w:∥SXw∥2

2≤
1

ε·L2 ∥S(y∥2
2

∥Sf(Xw)− Sy∥22

6: return ŵ

We believe that the norm constraint is necessary for getting
acceptable upper bounds in the agnostic setting and cannot
be eliminated. However, in our experiments (Section 4) we
were able to safely ignore the constraint without hurting em-
pirical performance. In any case, with or without constraint,
minimizing (1) is a non-convex neuron fitting problem, and
we do not attempt to theoretically analyze its computational
complexity in this paper; however, it can be solved easily
in practice using standard first-order optimization methods
(such as gradient descent or its projected version).

As an first step to proving Theorem 1, we link the quality of
the solution to (1) to that of the optimum regressor, w∗ ∈
argminw ∥f(Xw)− y∥2, as follows.
Claim 1. Let ŵ be the vector returned by Algorithm 1 and
let OPT = ∥f(Xw∗)− y∥22. With probability 49/50, for
a fixed constant C > 0, we have

∥Sf(Xŵ)− Sy∥22 ≤ C ·
(
OPT + εL2∥Xw∗∥22

)
.

Proof. Consider the case when ∥SXw∗∥22 ≤ 1
εL2 ∥Sy∥22.

Then w∗ satisfies the constraint of the above optimization
problem so we have that

∥Sf(Xŵ)− Sy∥22 ≤ ∥Sf(Xw∗)− Sy∥22 ≤ C ·OPT.

The last inequality follows with probability 49/50 via
Markov’s inequality since

E
[
∥Sf(Xw∗)− Sy∥22

]
= ∥f(Xw∗)− y∥22 = OPT.

On the other hand, consider the case where ∥SXw∗∥22 ≥
1

εL2 ∥Sy∥22. Then we have that ∥Sy∥22 ≤ εL2 · ∥SXw∗∥22.
In this case, we can plug in the zero vector to the above mini-
mization problem (since zero clearly satisfies the constraint)
and conclude again that:

∥Sf(Xŵ)− Sy∥22 ≤ ∥Sf(X0)− Sy∥22 = ∥Sy∥22
≤ εL2∥SXw∗∥22 ≤ 2εL2∥Xw∗∥22.
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The last inequality follows from the subspace embedding
inequality from Lemma 1. Note that the constraint of
f(0) = 0 is used above as f(X0) = f(0) = 0.

3.1 Concentration Bounds

Claim 1 upper bounds the error of ŵ in solving the sub-
sampled regression problem ∥Sf(Xŵ)− Sy∥22. To show
that it also provides a good solution for the original prob-
lem minw ∥f(Xŵ)−y∥22 we require several concentration
results that are a consequence of leverage score sampling.
These results are similar to Lemma 1, except that they show
that sampling with S also preserves the norm of vectors ob-
tained via non-linear transformations of the form f(Xw).

The first bound gives a guarantee on preserving the distance
between two fixed vectors, f(Xw1)− f(Xw2). In contrast
to the relative error subspace embedding of Lemma 1, the
bound involved an additive error term; this extra term is
likely unavoidable in the most general case of Lipschitz f .

Lemma 2. Let f and X be as in Theorem 1. Let S ∈ Rm×n

be an importance sampling matrix chosen with probabilities
{p1, . . . , pn}, where pi = τi(X)/

∑n
i=1 τi(X). As long as

m ≥ 3d log(2/δ)
ε2 , then with probability ≥ 1−δ, for any fixed

pair of vectors w1,w2 ∈ Rd, we have:

∥f(Xw1)− f(Xw2)∥22 − εL2 ∥Xw1 −Xw2∥22
≤ ∥Sf(Xw1)− Sf(Xw2)∥22
≤ ∥f(Xw1)− f(Xw2)∥22 + εL2 ∥Xw1 −Xw2∥22 .

By combining Lemma 2 with an ε-net argument, we can ex-
tend the bound to obtain a one-sided guarantee that involves
the distance between f(Xw∗) and f(Xw) for all w within
a ball of radius R.

Lemma 3. Let f , X, and y be as in Theorem 1. Let w∗ =
argminw ∥f(Xw)− y∥22 and let R be a fixed radius. Let
S ∈ Rm×n be an importance sampling matrix as in Lemma
2. As long as m ≥ cd

2 log(1/ε)
ε2 for ε < 1 and fixed constant

c, then with probability 49/50, for all ŵ ∈ Bd(R),

∥f(Xŵ)− f(Xw∗)∥22 ≤ 4 · ∥Sf(Xŵ)− Sf(Xw∗)∥22
+ ε2L2R2 + ε2L2∥Xw∗∥22.

Proofs of Lemma 1 and 3 are deferred to Appendix 5.

3.2 Proof of Main Result

With Claim 1 and Lemma 3 in place, we are now ready to
prove our main result.

Proof of Theorem 1. First note that, without loss of general-
ity, we can assume that X has orthonormal columns. In par-
ticular, if X is not orthonormal, we can write it as X = QR
where Q ∈ Rn×rank(X) has orthonormal columns and R

is a square full-rank matrix. The leverage scores of Q are
equal to those of X. Moreover, any solution ŵ to (1) has
a corresponding solution Rŵ to the minimization problem
if X were replaced by Q. So solving the above problem is
equivalent to first explicitly orthogonalizing X and solving
the same problem.

Next, we use the elementary fact that for any vectors a and
b, ∥a+ b∥22 ≤ 2∥a∥22 + 2∥b∥22. This give the bound:

∥f(Xŵ)− y∥22
≤ 2 ∥f(Xŵ)− f(Xw∗)∥22 + 2 ∥f(Xw∗)− y∥22
≤ 2 ∥f(Xŵ)− f(Xw∗)∥22 + 2 ·OPT. (2)

We need to bound the first term. To do so, we first observe
that, thanks to the constraint imposed in (1), the norm of
ŵ can be bounded, which allows us to apply Lemma 3. In
particular, we claim that with probability 49/50,

∥ŵ∥22 ≤ 100

εL2
· ∥y∥22. (3)

To see that this is the case, note that under our assumption
that X is orthogonal, we have ∥ŵ∥22 = ∥Xŵ∥22. We can
bound ∥Xŵ∥22 as follows:

∥Xŵ∥22 ≤ 2 ∥SXŵ∥22 (Lemma 1)

≤ 2
1

ε · L2
∥Sy∥22 (From the constraint in (1))

≤ 100

ε · L2
∥y∥22 (Markov’s inequality).

In the last inequality, we used that E[∥Sy∥22] = ∥y∥22.

Since ŵ lies in Bd(R), where R2 = 100
εL2 · ∥y∥22, we can ap-

ply Lemma 3 and conclude that, as long as m ≥ cd
2 log(1/ε)

ε2 :

∥f(Xŵ)− f(Xw∗)∥22
≤ 4 ∥Sf(Xŵ)− Sf(Xw∗)∥22 + 100ε∥y∥22

+ ε2L2 ∥Xw∗∥22
≤ 8 ∥Sf(Xŵ)− Sy∥22 + 8 ∥Sf(Xw∗)− Sy∥22

+ 100ε∥y∥22 + ε2L2 ∥Xw∗∥22
≤ 8 ∥Sf(Xŵ)− Sy∥22 + C ·OPT

+ 100ε∥y∥22 + ε2L2 ∥Xw∗∥22 .

As in the proof of Claim 1, the last inequality follows
with probability 49/50 via Markov’s inequality since
E
[
∥Sf(Xŵ)− Sy∥22

]
= ∥f(Xw∗)− y∥22 = OPT .

Next, we apply Claim 1 to bound ∥Sf(Xŵ)− Sy∥22 ≤
O
(
OPT + εL2∥Xw∗∥22

)
. So overall, we conclude that

for a constant C,

∥f(Xŵ)− y∥22 ≤ C ·
(
OPT + εL2∥Xw∗∥22 + ε∥y∥22

)
.

(4)



Active Learning for Single Neuron Models with Lipschitz Non-Linearities

40 60 80 100 120

0.05

0.1

0.15

0.2

Sample Sizes

R
el

at
iv

e
E

rr
or

Leverage score sampling
Uniform sampling

(a) ReLU(.4x1 + .4x2 − .4), uniform data

10 20 30 40 50 60

0.004

0.006

0.008

Sample Sizes

Leverage score sampling
Uniform sampling

(b) (.8x1 + .1x2 − .1)2, uniform data

10 20 30 40 50 60

0

0.01

0.02

0.03

0.04

Sample Sizes

Leverage score sampling
Uniform sampling

(c) ReLU(.7x1+.1x2−.4), Gaussian data

Figure 1: Median relative error for learning two-dimensional single neuron models involving a ReLU non-linearity for a
synthetic X with rows selected from a uniform or Gaussian distribution. The target vector y was obtained by corrupting the
ground truth with Gaussian noise with variance .05. In all cases our active leverage score sampling method outperforms
naive uniform sampling. As expected, the improvement is more significant when a small number of samples are taken.

By triangle inequality, we have that

∥y∥22 ≤ 2OPT + 2∥f(Xw∗)∥22
≤ 2OPT + 2L2∥Xw∗∥22.

Using this fact, plugging (4) into (2), and rearranging terms
yields the stated main result with probability. Union bound-
ing overall all events assumed to hold in the proof, the result
holds with probability > 45/50 = 9/10.

4 EXPERIMENTAL RESULTS

To complement our theoretical analysis, we also provide
experimental results showing the promise of leverage score
sampling for actively learning singe neuron models. We
consider both synthetic data problems, as well as several
tests derived from differential equation approximation prob-
lems. We focus on sample efficiency – i.e., how many
samples from y are required to obtain a good approximation
to minw ∥f(Xw) − y∥22. Computational efficiency is not
a major concern: as discussed, in typical applications of
single-neuron learning in computational science, collecting
samples requires numerically solving a differential equation,
which dominates any runtime cost of the actual fitting pro-
cedure [Adcock et al., 2022a]. Moreover, leverage score
sampling has already proven an efficient active learning tool
for linear function classes [Cohen and DeVore, 2015].

Overall, for all problems tested, our experiments show that
leverage score sampling obtains a better sample/accuracy
trade-off than the standard approach of choosing sample
points uniformly at random from X.

Synthetic Data. For the synthetic data problems, we set
X to contain 105 random vectors drawn from either a two
dimensional Gaussian distribution (“Gaussian data”), or uni-
formly from the two-dimensional box [−1, 1]2 (“uniform
data”). We also add a column of all 1’s to X, which corre-
sponds to including a bias term in the single-neuron model.

We select a ground truth w∗, and create y = f(Xw∗) + g,
where g is a vector of mean-centered Gaussian noise and
f is the ReLU non-linearity. We then compute ŵ by sub-
sampling data via leverage scores (as in Algorithm 1) and
minimizing ∥Sf(Xw)− Sy∥22 over our subsampled data.

In our experiments we found that the constraint in Eq. 1
could be dropped without hurting the performance of lever-
age score sampling. For these low-dimensional synthetic
problems, we simply used brute force search to optimize
weights to ensure that a true minimum was found. We then
run 100 trials each for various subsample sizes, and report
median relative error: ∥f(Xw∗)− y∥22/∥y∥22. As show in
Figure 1, leverage scores sampling outperforms uniform
sampling, especially for a relatively small number of sam-
ples. As expected, for a large number of samples, both
methods eventually perform comparably, as both will obtain
a ŵ very close to the optimal w∗.

Test Problems. We consider three test problems involving
the approximation of various Quantities of Interest (QoI’s)
for three parametric differential equations: a damped har-
monic oscillator, the heat equation, and the steady viscous
Burger’s equation.

Test 1. We first consider a second order ODE modeling a
damped harmonic oscillator with a sinusoidal force applied,
which corresponds to the parametric differential equation:

d2x

dt2
(t) + c · dx

dt
(t) + k · x(t) = f · cos(ωt);

x(0) = x0,
dy

dt
(0) = x1.

Here, (x, t) is the oscillator’s space and time coordinates,
and c, k, f, ω are parameters. The choice of parameters
significantly impact the final solution; for example, if the
frequency term ω is close to the resonant frequency of the
oscillator, we expect the driving force to lead to large os-
cillations. We consider as our QoI the maximum oscillator
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(a) True Quantity of Interest. (b) Approx. based on 200 uniform samples. (c) Approx. based on 200 leverage samples.

(d) True Quantity of Interest. (e) Approx. based on 120 uniform samples. (f) Approx. based on 120 leverage samples.

Figure 2: The top 3 images represent a plot of single neuron model fit to the maximum displacement QoI for a parametric
ODE modeling a driven harmonic oscillator; and, the bottom 3 images represent the fit of the maximum temperature QoI for
the heat equation PDE with sinusoidal initial condition. Evidently, leverage score sampling provides a better fit.

displacement after 20 seconds, and the goal is to estimate
this value for all k and ω in the rectangle U = [1, 3]× [0, 2].

We choose to approximate the QoI (which is always posi-
tive) with a function of the form ReLU(p(k, ω)), where p
is bivariate polynomial with total degree q = 9. This is
accomplished by setting X to be a Vandermonde matrix
of Legendre polynomials evaluated at a grid of values on
[1, 3]× [0, 2]. X has 55 = (q+1)(q+2)/2 columns, which
is the total number of terms in a degree q bivariate polyno-
mial. Each row in X corresponds to a different choice of
parameters k, ω. We fit our single neuron model to the QoI
using gradient descent with a standard adaptive step-size,
again dropping the constraint in (1). As shown in the top
three images of Figure 2, for a fixed number of samples,
leverage score sampling leads to a visually better fit than
uniform sampling. Quantitatively, we see in Figure 4 that
leverage score sampling gives almost an order of magnitude
lower error across a wide range of sampling numbers.

In Figure 3, we visualize how, for this problem, uniform
samples differ from those collected using leverage scores.
The Vandermonde matrix X has higher leverage score for
rows corresponding to points near the boundary of [1, 3]×
[0, 2], so more samples are taken for (k, ω) values near
the boundary. The benefits of sampling near the boundary
are well-known for fitting simple polynomials [Cohen and
Migliorati, 2017]. It is interesting that these benefits remain
when the polynomial is combined with a non-linearity.

Test 2. We consider the 1-dimensional heat equation for
values of x ∈ [0, 1] with a time-dependent boundary equa-
tion and sinusoidal initial condition. This is modeled by the
partial differential equation:

π
∂u

∂t
=

∂2u

∂x2
, µ(0, t) = 0, µ(x, 0) = sin(ωπx)

πe−t +
∂u(1, t)

∂t
= 0

As our QoI we consider the maximum temperate over all
values of x for times t ∈ [0, 3] and frequencies ω ∈ [0, 5].
This leads to a highly varied QoI surface, which we again
choose to fit with a model of the form f(p(t, ω)). We let p be

(a) Uniform Random Samples (b) Leverage Score Samples

Figure 3: The plots visualize uniform vs. leverage score
sampling for selecting example parameter values from the
box [1, 3]× [0, 2] for fitting the QoI for Test Problem 1. Our
leverage score method tends to sample more heavily near
the perimeter of the box to fit the single neuron model.
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(a) Damped harmonic oscillator. (b) Heat equation. (c) Steady viscous Burger’s equation.

Figure 4: Sample complexity vs. relative error ∥f(Xŵ) − y∥22/∥y∥22 for fitting the QoI’s specified for our three test
problems. All experiments were run for 100 trials per sample value and we plot the median error and interquartile range.

a degree q = 11 bivariate polynomial, so X has 78 columns.
For this problem we choose f(a) = ea to be the exponential
function; otherwise the experimental setup is identical to
Test Problem 1. Despite the fact that this non-linearity is
not Lipschitz, we again see visually better performances of
leverage score sampling for a fixed number of samples in the
bottom three plots Figure 2, and quantitatively better error
in Figure 4. This result suggests our leverage score based
active learning method may be robust to non-linearities that
are just “locally” instead of globally Lipschitz.

Test 3. Finally, we consider steady state viscous Burger’s
equation given by the following PDE:

u · du
dx

= ν · d
2u

dx2
, u(a) = α, u(b) = β,

where u(x) is defined over the interval x ∈ [a, b], ν > 0 is
the viscosity parameter, and α and β are boundary parame-
ters. We consider the point at which the solution changes its
sign as the quantity of interest. It is experimentally known
that this QoI is particularly sensitive to the choice of α
and β and not to the viscosity. Therefore, we fix ν = 0.1,
[a, b] = [−1, 1], and vary α, β ∈ [0.8, 1.2] × [−1.2,−0.8].
We subtract the QoI obtained for these parameters by the
minimum value to ensure that the function is always pos-
itive and again fit with a single neuron model of the form
ReLU(p(α, β)), where p has total degree 7. Results in Fig-
ure 4 align with the previous test problems: leverage score
sampling shows a clear improvement over uniform sampling.
For this problem, the improvement was less significant for
a larger number of samples, suggesting that the model was
simple enough that both the uniform and leverage score
methods were able to eventually obtain a near-optimal fit.

5 DISCUSSION AND FUTURE WORK

We believe our main theoretical result can be improved in a
number of ways. Most importantly, an ideal result would ob-
tain a near-linear dependence on d instead of a dependence
on d2, mirroring the O(d log d) sample complexity obtained

Figure 5: Hard instance for obtaining relative error.

by leverage score sampling for the active linear regression
problem. The d2 dependence is an inherent artifact of our
ε-net analysis; possible approaches to improve this include
appealing to a more careful net construction, as in Musco
et al. [2022], or more directly reducing to matrix concen-
tration, as was done in recent work to obtain a near-linear
dependence for a related problem involving ℓ1 embeddings
of vectors transformed by Lipschitz non-linearities [Mai
et al., 2021].

One might also hope to improve the error bound of Theorem
1. For example, it would be ideal to obtain a pure relative
error bound of the form ∥f(Xŵ)−y∥22 ≤ C ·OPT . Unfor-
tunately, we can argue that this is not possible without taking
a number of samples exponential in d. Consider a (d+ 1)
data matrix X whose first d columns contain all of the 2d

vertices of the d dimensional hypercube (i.e., there is a row
containing every binary vector of length d). Let the last col-
umn of X be the all-ones vector. Consider the 1-Lipschitz
non-linearity f(a) = ReLU(a) and let y = f(Xw) for
some ground truth w, in which case a pure relative error
guarantee requires exactly recovering y (since OPT = 0).
As visualized in Figure 5, since there is a hyperplane sepa-
rating any vertex in the hypercube from all other vertices,
for any i it is possible to find a wi such that ReLU(Xwi)
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evaluates to 1 in its ith coordinate, and 0 everywhere else.
Without observing at least Ω(2d) entries from y, we cannot
distinguish between the case when y = ReLU(Xwi) for a
randomly chosen i or y = ReLU(X0).

Finally, we note that a major open direction for future re-
search is to obtain provable active learning methods in the
agnostic setting for the more challenging multi-index model,
or in the case when f is not known in advance (and must
be learned as part of the training process). We have some
preliminary progress for the case where f is unknown, but
defer a full discussion to future work.
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In this section we present the detailed proof of Lemma 2 and Lemma 3.

Proof of Lemma 2. Let xi denote the ith row of X and let u = f(Xw1) − f(Xw2) and v = Xw1 − Xw2. Since f is
L-Lipschitz, for every i ∈ [n], we have that:

ui = |f(⟨xi,w1⟩)− f(⟨xi,w2⟩)|i
≤ L · |⟨xi,w1⟩ − ⟨xi,w2⟩|i ≤ Lvi. (5)

Let ji ∈ [n] be the index of the row from X selected by the ith row in S. We have that ∥Su∥22 =
∑m

i=1

u2
ji

m·pji
, where

pji = τji(X)/ rank(X). We thus have that E ∥Su∥22 = ∥u∥22. Moreover, we can bound the variance in each term of the
sum. In particular, we have that:

Var

[
u2
ji

pji

]
≤ E

(u2
ji

pji

)2
 =

n∑
k=1

u4
k

p2k
· pk =

n∑
k=1

L4v4k rank(X)

τk(X)
.

In the last step we have used the upper bound from (5) , and the fact that pk = τk(X)/ rank(X). From the definition of
leverage scores (Definition 1), and the fact that v lies in the span of X, we have that τk(X) ≥ v2

k

∥v∥2
2

. So we can further upper
bound the variance as follows:

Var

[
u2
ji

pji

]
≤ L4 ·

n∑
k=1

v2k∥v∥22 rank(X)

= L4 · ∥v∥42 · rank(X)

≤ L4 · d∥v∥42.

Moreover, we have that with probability 1,
u2
ji

pji
≤ maxk L

2 · v2
k rank(X)
τk(X) ≤ L2 · d∥v∥22.

Finally, applying Bernstein’s to the sum ∥Su∥22 = 1
m

∑m
i=1

u2
ji

pji
, we have that:

Pr
[∣∣∥Su∥22 − ∥u∥22

∣∣ ≥ t/m
]

≤ 2 exp

(
− t2/2

m · L4 · d∥v∥42 + t · L2 · d∥v∥22/3

)
.

Setting m = 3d log(2/δ)
ε2 and t = m · ε∥v∥22 · L2 and plugging in we have:

Pr
[∣∣∥Su∥22 − ∥u∥22

∣∣ ≥ εL2∥v∥22
]

≤ 2 exp

(
−

1
2m

2ε2∥v∥42L4

m · L4 · d∥v∥42 +mεL4 · d∥v∥42/3

)
≤ δ.

This completes the bound.

Proof of Lemma 3. Let N be an (εR)-net in the Euclidean norm on Bd(R). I.e. for every v ∈ Bd(R), there should be some
point z ∈ N such that ∥z− v∥2 ≤ εR. It is well known that such an N exists with cardinality |N | ≤

(
1 + 2

ε )
)d

(see e.g.
Lemma 5.2 in Vershynin [2012]) . Applying Lemma 2 with δ = 1

50|N | and combining with a union bound, we conclude that

as long as m ≥ cd
2 log(1/ε)

ε4 for a fixed constant c, then with probability 49/50, for all z ∈ N ,

∥f(Xz)− f(Xw∗)∥22 ∈
[
∥Sf(Xz)− Sf(Xw∗)∥22 ± ε2L2∥Xz−Xw∗∥22

]
. (6)

Now, let z∗ be the closest point to ŵ in N . I.e., z∗ = argminz∈N ∥z− ŵ∥2. Applying (6) and the fact that for any two
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vectors a,b, ∥a+ b∥22 ≤ 2∥a∥2 + 2∥b∥22, we have:

∥f(Xŵ)− f(Xw∗)∥22 ≤ 2 ∥f(Xz∗)− f(Xw∗)∥22 + 2 ∥f(Xŵ)− f(Xz∗)∥22
≤ 2 ∥Sf(Xz∗)− Sf(Xw∗)∥22 + 2ε2L2∥Xz∗ −Xw∗∥22 + 2 ∥f(Xŵ)− f(Xz∗)∥22
≤ 4 ∥Sf(Xŵ)− Sf(Xw∗)∥22 + 4 ∥Sf(Xz∗)− Sf(Xŵ)∥22 + 2ε2L2∥Xz∗ −Xw∗∥22 + 2 ∥f(Xŵ)− f(Xz∗)∥22
≤ 4 ∥Sf(Xŵ)− Sf(Xw∗)∥22 + 4 ∥f(Xz∗)− f(Xŵ)∥22 + 6ε2L2∥Xz∗ −Xw∗∥22 + 2L2∥Xŵ −Xz∗∥22
≤ 4 ∥Sf(Xŵ)− Sf(Xw∗)∥22 + 4L2 ∥Xz∗ −Xŵ∥22 + 6ε2L2(R+ ∥Xw∗∥2)2 + 2L2∥Xŵ −Xz∗∥22
≤ 4 ∥Sf(Xŵ)− Sf(Xw∗)∥22 + 4ε2L2R2 + 12ε2L2R2 + 12∥Xw∗∥22 + 2ε2L2R2.

Combining terms and adjusting constants on ε yields the bound.
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