
Faster Projection-Free Augmented Lagrangian Methods
via Weak Proximal Oracle

Dan Garber Tsur Livney Shoham Sabach
Technion Technion Technion

Abstract

This paper considers a convex composite opti-
mization problem with affine constraints, which
includes problems that take the form of mini-
mizing a smooth convex objective function over
the intersection of (simple) convex sets, or reg-
ularized with multiple (simple) functions. Moti-
vated by high-dimensional applications in which
exact projection/proximal computations are not
tractable, we propose a projection-free aug-
mented Lagrangian-based method, in which pri-
mal updates are carried out using a weak prox-
imal oracle (WPO). In an earlier work, WPO
was shown to be more powerful than the stan-
dard linear minimization oracle (LMO) that un-
derlies conditional gradient-based methods (aka
Frank-Wolfe methods). Moreover, WPO is com-
putationally tractable for many high-dimensional
problems of interest, including those motivated
by recovery of low-rank matrices and tensors,
and optimization over polytopes which admit ef-
ficient LMOs. The main result of this paper
shows that under a certain curvature assump-
tion (which is weaker than strong convexity),
our WPO-based algorithm achieves an ergodic
rate of convergence of O(1/T ) for both the ob-
jective residual and feasibility gap. This re-
sult, to the best of our knowledge, improves
upon the O(1/

√
T ) rate for existing LMO-based

projection-free methods for this class of prob-
lems. Empirical experiments on a low-rank
and sparse covariance matrix estimation task and
the Max Cut semidefinite relaxation demonstrate
that of our method can outperform state-of-the-
art LMO-based Lagrangian-based methods.
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1 Introduction

Throughout the paper, we consider the following minimiza-
tion problem

min
x∈E1,y∈E2

f(x) +RX (x) +RY(y) s.t. Ax = y, (OP)

where E1 and E2 are finite Euclidean spaces, f : E1 → R
is a convex and β-smooth function, RX : E1 → (−∞,∞]
and RY : E2 → (−∞,∞] are proper, lower semi-
continuous and convex functions, and A : E1 → E2 is a
linear mapping.

Problems that fall into the model (OP) appear in many in-
teresting and important active research areas such as ma-
chine learning, signal processing, statistics, and more. For
example, the recovery of a matrix or a tensor which is both
sparse and of low rank is useful in problems such as co-
variance matrix estimation Andrews (1991); Driscoll and
Kraay (1998); Richard et al. (2012), graph and image de-
noising Buades et al. (2005a,b); Zhang et al. (2017b, 2020)
and link prediction Liben-Nowell and Kleinberg (2003); Lü
and Zhou (2011); Zhang et al. (2017a). More applications
of Problem (OP) can be found in brain mapping Ogawa
et al. (1992); Lancaster et al. (2000); Gramfort et al. (2013)
and multiple sequence alignment Corpet (1988); Chenna
et al. (2003); Katoh and Toh (2008); Yen et al. (2016).

An important family of efficient methods for solving prob-
lems in the form of model (OP) are Lagrangian-based
methods, and most notably augmented Lagrangian meth-
ods Mizoguchi et al. (1960); Hestenes (1969); Powell
(1969). Starting with the classical proximal method of
multipliers Rockafellar (1976), and until more recently
Sabach and Teboulle (2019); De Marchi (2022); Dhingra
et al. (2018); Chambolle and Pock (2016), such methods,
which are based on proximal/projection computations (due
to the nonsmooth functions RX and RY in Problem (OP))
have been successfully developed and corresponding prov-
able convergence rates have been established. However,
in many cases of interest such proximal/projection com-
putations are not tractable in high-dimensional problems,
for instance when either RX or RY is a nuclear norm
regularizer for matrices, which underlies many recovery
problems of low-rank matrices and tensors (see, for in-
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stance, Candès and Recht (2009); Candès et al. (2011);
Gandy et al. (2011)), or an indicator function for a poly-
tope. Thus, with the growing interest in recent years in
so-called projection-free methods, which are mostly based
on the use of linear minimization oracles (LMO) instead
of proximal/projection oracles through the Frank-Wolfe
method (aka conditional gradient, see for instance Jaggi
(2013)), and are often much more efficient to implement
for high-dimensional problems (e.g., in case RX or RY
is a nuclear norm regularizer or an indicator function for
a polytope which captures some well-studied combinato-
rial structure, see for instance Jaggi (2013); Hazan and
Kale (2012)), have been studied Liu et al. (2019); Yurt-
sever et al. (2019); Silveti-Falls et al. (2020). However,
these methods suffer from slow convergence rates com-
pared to their proximal/projection-based counterparts, with
the worst-case guaranteed convergence rate being at best
O(1/

√
T ), where T is the number of iterations executed.

This rate is not known to be improvable even under addi-
tional standard curvature assumptions such as strong con-
vexity of the function f(·) in Problem (OP)1. A recent at-
tempt to obtain faster projection-free methods under rel-
atively mild assumptions has been made in Gidel et al.
(2018), however as we discuss in detail in the appendix (see
Section A), there is a major problem with their proof which
does not seem easily fixable. We also refer the interested
reader to the excellent discussions in Gidel et al. (2018) on
major issues with other previous attempts to prove faster
rates for projection-free methods.

For the simpler problem of minimizing a smooth convex
objective function over a convex and compact set, and in
particular in case the feasible set is either a polytope or a
nuclear norm ball of matrices or a spectrahedron (set of
positive semidefinite matrices with unit trace), several re-
cent works showed how simple modifications of the Frank-
Wolfe method can lead to provably faster convergence
rates, under standard curvature assumptions, see for in-
stance Garber and Hazan (2016); Lacoste-Julien and Jaggi
(2015); Beck and Shtern (2017); Garber (2016); Allen-Zhu
et al. (2017); Garber and Kaplan (2019). Thus, in the con-
text of the significantly more complex Problem (OP), our
work considers the following natural question:

Can we design a projection-free augmented
Lagrangian-based method that, at least under standard

curvature assumptions, improves upon the current
O(1/

√
T ) convergence rate?

We answer this question on the affirmative side by provid-
ing a projection-free method with a rate ofO(1/T ), both in
terms of the objective function residual and the feasibility

1This is not surprising since it is well-known that in general,
and as opposed to projection/proximal-based methods, the Frank-
Wolfe method does not benefit from strong convexity, see for in-
stance discussions in Garber and Hazan (2016); Garber (2016);
Allen-Zhu et al. (2017).

gap of the affine constraint in Problem (OP).

Our approach departs from previous projection-free meth-
ods which guarantee only a rate of O(1/

√
T ) in two as-

pects. First, as already suggested, we make a curvature as-
sumption on Problem (OP): we introduce a curvature con-
dition we call primal quadratic gap (see definition in the
sequel). In particular, this condition holds whenever the
smooth function f(·) in Problem (OP) is strongly convex,
but also holds in case f(·) is a composition of a strongly
convex function with a linear transformation (e.g., a least
squares objective, which need not be strongly convex) and
RX ,RY are indicators for polytopes. Second, while pre-
vious projection-free methods rely on the availability of a
linear minimization oracle (LMO), in this work we con-
sider a slightly stronger oracle which was already con-
sidered in recent works Allen-Zhu et al. (2017); Garber
et al. (2021); Garber and Kaplan (2019) (these however
do not apply to problems such as Problem (OP), which in-
cludes affine constraints), namely the weak proximal oracle
(WPO)2. In a nutshell, this oracle solves a certain relaxed
version of the proximal/projection problem, which can still
be much more efficient to solve than the standard proxi-
mal/projection problem, but can provide more informative
directions than that of the LMO. Two prime examples for
the efficiency of implementing the WPO are when (i) RX
orRY is an indicator function for a polytope which admits
and efficient LMO, then the WPO could be implemented
based on a single call to the LMO of the polytope, and
(ii) RX or RY is an indicator function/regularizer corre-
sponding to the matrix nuclear norm and a unique low-rank
optimal solution exists, then implementing the WPO corre-
sponds to a low-rank SVD computation with rank matching
that of the low-rank optimal solution, which is much more
efficient than proximal/projection computation, which gen-
erally requires a full-rank SVD (see a detailed discussion in
Allen-Zhu et al. (2017); Garber and Kaplan (2019); Garber
et al. (2021)).

The combination of the two ingredients: a curvature con-
dition and the weak proximal oracle, to obtain faster con-
vergence rates for projection-free methods should not come
as a surprise since it was already instrumental in achieving
similar improvements for projection-free methods in set-
tings that do not include affine constraints as in model (OP),
see for instance Garber and Hazan (2016); Lacoste-Julien
and Jaggi (2015); Garber (2016); Allen-Zhu et al. (2017);
Garber and Kaplan (2019)3. To the best of our knowledge,

2The term “weak proximal oracle” was originally coined in
Garber and Kaplan (2019).

3While technically Garber and Hazan (2016); Lacoste-Julien
and Jaggi (2015) rely on the use of a standard LMO for the fea-
sible set (which they assume to be a polytope), as we show in
the sequel, the way they use the output of the LMO to construct
the new descent direction is very similar to the implementation of
a WPO. In particular, we rely on observations from Garber and
Hazan (2016) to construct an efficient WPO for polytopes.
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this is the first time such an approach is used for a problem
of the form of model (OP).

1.1 Paper organization

In Section 2, we discuss the augmented Lagrangian ap-
proach for solving the Problem (OP), present the Primal
Quadratic Gap property (PQG) needed for our algorithm’s
analysis. We also recall the notion of the Weak Proximal
Oracle that will be used in our algorithm and discuss its
implementation in several important scenarios. In the Ap-
pendix (see Section D), we give examples of problems of
interest, for which our algorithm might be appealing to use.
In Section 3, we develop our algorithm and prove our main
rate of convergence result. In Section 4, we demonstrate
the empirical performance of our algorithm.

2 Preliminaries

2.1 Notation

Throughout the paper, we will use the following notation
for simplifying the presentation and developments. We use

the following compact notations q :=

[
x
y

]
≡ (x, y) ∈ E1×

E2 =: E, andRQ(q) := RX (x) +RY(y). In addition, we
define the linear mapping K : E → E2 := [A,−I], where
I is an identity linear mapping. This way we can compactly
write the constraint Ax = y as Kq = 0. For any finite Eu-
clidean space V of dimension n, we denote the standard Eu-
clidean inner product of any two points x := [x1, . . . , xn]>

and y := [y1, . . . , yn]> ∈ V, by 〈x, y〉 :=
∑n
i=1 xi · yi,

and we let ‖x‖ :=
√
〈x, x〉 and ‖x‖1 :=

∑n
i=1 |xi| denote

the standard Euclidean norm and the `1 norm, respectively.
For any two finite Euclidean spaces V1 and V2, the spectral
norm of the linear mapping T : V1 → V2, is denoted by
‖T ‖ := maxx∈V1 {‖T x‖ : ‖x‖ = 1}. While both norms
are denoted the same, throughout the paper it will be clear
from the context which of the norms is used in each ap-
pearance. In addition, ‖X‖F denotes the Frobenius norm
of a matrix X, ‖X‖nuc denotes its nuclear norm and tr(X)
denotes its trace. We denote by Sd+ the set of all positive
semidefinite matrices of size d × d and by Sτ the spec-
trahedron of all matrices in Sd+ with trace τ . We use the
notation δC(·) to denote the indicator function of the set C.

2.2 The Augmented Lagrangian

The augmented Lagrangian (AL) of Problem (OP) with a
multiplier (dual variable) w ∈ E2 is defined as

Lρ(q,w) ≡ Lρ(x, y,w)

:= f(x) +RQ(q) + 〈w,Kq〉+
ρ

2
‖Kq‖2, (1)

where ρ > 0 is a penalty parameter associated to the linear
equality constraint. Note that the (standard) Lagrangian of

Problem (OP) is recovered when ρ = 0.

We also require the two following standard assumptions
which we assume to hold true throughout the paper.

Assumption 1. The augmented Lagrangian has a saddle
point, i.e., there exists a point (q∗,w∗) ∈ E×E2 satisfying

Lρ(q∗,w) ≤ Lρ(q∗,w∗) ≤ Lρ(q,w∗), (2)

for all q ∈ E and w ∈ E2.

Assumption 2. (Slater’s Condition) There exist x ∈
ri(dom(f) ∩ dom(RX )) and y ∈ ri(dom(RY)) such that
Ax = y, where ri denotes the relative interior of a set.

We denote by P∗ the set of optimal solutions of the primal
problem (OP), and byD∗ the set of optimal solutions of the
associated dual problem.

Under the above two assumptions, and thanks to the con-
vexity of Problem (OP), strong duality holds. As a result,
and thanks to Proposition 2, the set of saddle points ofLρ is
non-empty and corresponds to the set of all pairs (q∗,w∗),
where q∗ ∈ P∗ and w ∈ D∗ (see also Appendix B.3).

In order to find solutions of Problem (OP), we will solve
the following equivalent saddle point problem

min
q∈E

max
w∈E2

Lρ(q,w), (3)

whose optimal solutions are the saddle points of Lρ.

From now on, we will denote the optimal objective function
value by Lρ(q∗,w∗), for all saddle points (q∗,w∗), and for
short we will write L∗ρ.

The smooth part of the augmented Lagrangian (SAL) of
Problem (OP) is defined, for any q ∈ E and w ∈ E2, by

S(q,w) ≡ S(x, y,w) := f(x) + 〈w,Kq〉+ ρ

2
‖Kq‖2. (4)

The following result will be essential to our developments
in the sequel. Its simple proof is deferred to the appendix.

Lemma 2.1. The function q → S(q,w), for any fixed w ∈
E2, is smooth with parameter βS = β + ρ(‖A‖+ 1)2.

2.2.1 Primal Quadratic Gap

We now study a new property of the smooth function q →
S(·,w), for any fixed w ∈ E2, which we refer to as the
Primal Quadratic Gap (PQG).

Definition 1. (Primal Quadratic Gap) We say that Problem
(OP) satisfies the Primal Quadratic Gap property with a
parameter αS > 0, if for any q ∈ dom(RQ), the point
q∗ := arg minq∗∈P∗ ‖q− q∗‖2 ∈ P∗ satisfies, for all w ∈
E2, the following inequality

〈q∗−q,∇qS(q,w)〉 ≤ S(q∗,w)−S(q,w)−αS
2
‖q∗−q‖2.

(5)
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Algorithm Oracle Rate Oracle implementa-
tion in polytope setup

Oracle implementation
in nuclear norm setup

Assumptions

Proximal Method of Mul-
tipliers Rockafellar (1976);
Sabach and Teboulle (2019)

proximal O(1/T ) projection full-rank SVD

Accelerated Primal Dual
Chambolle and Pock (2016)

proximal O(1/T 2) projection full-rank SVD strong convexity

Conditional Gradient Aug-
mented Lagrangian Yurtsever
et al. (2019)

LMO O(1/
√
T ) LMO rank-one SVD

This work weak
proximal

O(1/T ) LMO plus convex
quadratic opt. over
simplex

rank(x∗)-SVD primal quadratic gap
(weaker than strong
convexity)

Table 1: Comparison of augmented Lagrangian-based methods with different optimization oracles for Problem (OP). The
“Rate” column specifies the convergence rate only in terms of the number of iterations T and suppresses all other quantities.
“Polytope setup” in the forth column refers to a setting in whichRX is an indicator function of some compact and convex
polytope andRY is some proximal friendly function. “Nuclear norm setup” in the fifth column refers to a setting in which
RX is a matrix nuclear norm regularizer and RY is some proximal friendly function. x∗ denotes the optimal solution,
which is assumed to be unique. Both columns specify the dominating cost of implementing the appropriate optimization
oracle for the x variable.

This property is a weaker version of the strong convexity
property. Here, instead of assuming the inequality (5) holds
for any two points, we only require that it holds for any
point q ∈ dom(RQ) and the corresponding closest optimal
solution of Problem (OP).

Example 1. If the function f(x) is strongly convex, then
the function q → S(q,w), for a fixed w ∈ E2, is strongly
convex with a certain parameter αS . This implies that in
this case the SAL S(q,w) satisfies the primal quadratic gap
property, with the same parameter αS .

Theorem 1. Suppose that f : E1 → R is α-strongly con-
vex. Then, Problem (OP) admits a unique primal optimal
solution q∗ and it satisfies the PQG property with the pa-
rameter αS = min{α2 ,

αρ
α+2ρ‖A‖2 } > 0. In particular, the

function q → S(q,w), for any fixed w ∈ E2, is strongly
convex.

The proof is deferred to the Appendix (see Section B).

Example 2. IfRQ is an indicator function for a polytope,
we can show that the PQG property holds true even when
f(·) need not be strongly convex. Alternatively, we will
make the following assumption.

Assumption 3. (i) f ≡ g ◦ B, where B : E1 → E3 is
a linear mapping, and g : E3 → R is αg-strongly
convex.

(ii) RQ(q) := RX (x) +RY(y) is an indicator of a com-
pact and convex polytope F ≡ {q ∈ E : Cq ≤ b},
where C : E→ Rp is a linear mapping, and b ∈ Rp.

Theorem 2. Suppose that Assumption 3 holds true. Then,
there exists a constant σ > 0 such that if ρ ≥ αg , then

Problem (OP) satisfies the PQG property with the parame-
ter αS = αgσ

−1.

The proof is deferred to the Appendix (see Section B).

2.3 Weak Proximal Oracle

In this section, we present the main ingredient of our al-
gorithm, which is used to update the primal variable q of
Problem (3) — the weak proximal oracle, a concept which
we adapt from Garber and Kaplan (2019) to our augmented
Lagrangian framework.

To this end, we will need to define the following function.
Given two points q ∈ E and w ∈ E2 together with two
scalars η ∈ (0, 1] and µ > 0, we define the function

Φλ(v) := RQ(v) + 〈v,∇qS(q,w) + 2µK>Kq〉

+
λ

2

(
η(βS + 2µ‖K‖2)

)
‖v− q‖2,

where βS is the smoothness parameter of S(·,w) (indepen-
dent of w), and λ ≥ 1 is a parameter.

Before we formally define the notion of weak proximal or-
acle, we would like to define the notion of Strong Proximal
Oracle. We say that a procedure is a (Strong) Proximal
Oracle applied to the augmented Lagrangian Lρ(q,w) ≡
S(q,w) +RQ(q), which is associated with Problem (OP),
if it computes the exact minimizer of Φλ for λ = 1. That
is, solves the problem minv∈E Φ1(v).

Definition 2. (Weak Proximal Oracle) We say that a proce-
dure, which is denoted by WPOλ(q,w, η, µ), is a λ-Weak
Proximal Oracle applied to Lρ(q,w), if it returns a point
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v ∈ E which satisfies that

∀q∗ ∈ P∗ : Φ1(v) ≤ Φλ(q∗), (6)

where we recall that P∗ is the set of optimal solutions of
Problem (OP).

Recalling that q is simply a convenient notation for the con-
catenation of the original two vector variables x and y, the
implementation of an oracle whose output satisfies (6) is
naturally achieved by decoupling the condition (6) into two
parts, one w.r.t. the variable x and the other w.r.t. the vari-
able y. That is, we consider two separate computations of
two points, vx ∈ E1 and vy ∈ E2, satisfying the following
inequalities with some λx, λy ≥ 1:

∀x∗ ∈ X ∗ : Φx
1(vx) ≤ Φx

λx
(x∗), (7)

where X ∗ := {x∗ ∈ E1 : (x∗,Ax∗) ∈ P∗}, and

Φx
λx

:= RX (vx) + 〈vx,∇xS(q,w) + 2µA>Kq〉

+ λx
η(βS + 2µ‖K‖2)

2
‖vx − x‖2.

(8)

Similarly,

∀y∗ ∈ Y∗ : Φy
1(vy) ≤ Φy

λy
(y∗), (9)

where Y∗ := {Ax∗ ∈ E2 : x∗ ∈ X ∗}, and

Φy
λy

(vy) := RY(vy) + 〈vy,∇yS(q,w)− 2µKq〉

+ λy
η(βS + 2µ‖K‖2)

2
‖vy − y‖2.

(10)

The following proposition is a simple observation.
Proposition 1. Assume that vx ∈ E1 satisfies (7) with some
parameter λx ≥ 1, and vy ∈ E2 satisfies (9) with some
parameter λy ≥ 1. Then, v = (vx, vy) satisfies (6) with
λ = max{λx, λy} ≥ 1.

The main difficulty in satisfying (7) and (9) is mainly be-
cause of the nonsmooth functions RX and RY , respec-
tively. This motivates the following definition.
Definition 3. (Weak Proximal Friendly) We say that a con-
vex functionRX (RY ) is weak proximal friendly for Prob-
lem (OP), if a point vx ∈ E1 (vy ∈ E2) satisfying (7) ((9))
(for some finite λx (λy)) can be computed efficiently. We
say that Problem (OP) is weak proximal friendly ifRX and
RY are both weak proximal friendly.

Let us now discuss some of the most important and inter-
esting examples of weak proximal friendly functions.

2.3.1 Proximal friendly functions

When RX (RY) is a (strong) proximal friendly function
(i.e., an exact minimizer of Φx

1 (Φy
1), as defined in (8) ((10))

could be computed efficiently), it follows immediately that
it is also a weak proximal friendly function with parameter
λx = 1 (λy = 1).

2.3.2 Matrix nuclear norm regularization/constraint

In a typical low-rank matrix recovery setup, in which the
nuclear norm is used as a convex surrogate for low-rank
(see, for instance, the seminal works Candes and Recht
(2012); Candès et al. (2011)), we have that E1 = Rm×n
and RX is an indicator function of a nuclear norm ball
or a nuclear norm regularizer, or an indicator function of
the spectrahedron (the set of all positive semidefinite ma-
trices with trace equals some fixed positive parameter), in
case the solution is also required to be positive semidefinite.
Assuming there exists a unique optimal low-rank solution,
i.e., X ∗ = {X∗} with rank(X∗) = k << min{m,n},
then an oracle for (7) amounts to computing a single rank-k
SVD of an m× n matrix, plus additional computationally-
cheaper operations, which in high dimension is far more
efficient than a proximal/projection computation, which in
general requires a full-rank SVD, see detailed discussions
in Allen-Zhu et al. (2017); Garber et al. (2021); Garber and
Kaplan (2019). Concretely, to satisfy (7) in this case we
solve:

arg min
V∈Rm×n: rank(V)≤k

Φx
1(V), (11)

and the corresponding WPO parameter is λx = 1.

Note that Problem (11) follows the same structure of the
standard proximal computation w.r.t. the function RX ,
only that it is further constrained over the set of bounded
rank matrices (which makes the problem more efficient to
solve). Formally, we have the following theorem (extracted
from the relevant discussions in Allen-Zhu et al. (2017);
Garber et al. (2021); Garber and Kaplan (2019)).

Theorem 3. Let (Q,W) ∈ E × E2 be a pair of pri-
mal and dual points, where Q = (X,Y) ∈ Rm×n ×
E2. Let β̂ := βS + 2µ‖K‖2. Denote M := X −
1
ηβ̂

(
∇XS(Q,W) + 2µA>KQ

)
. Let U,Σ,V be the SVD

matrices of M, i.e., M = UΣV>.

• If RX (·) = ν‖ · ‖nuc, for some ν > 0, then a solution
to (11) is the matrix M̃ = UΣ̃V>, for

Σ̃ = diag(max{σ1(M)− ζ, 0}, . . . ,
max{σk(M)− ζ, 0}, 0, . . . , 0),

where ζ := ν
ηβ̂

.

• IfRX (·) = δNB(τ)(·) is the indicator function for the
nuclear norm ball of radius τ , then a solution to (11)
is given by M̃ = UΣ̃V>, where here Σ̃ is the diagonal
matrix whose diagonal is the projection of the vector
(σ1(M), . . . , σk(M), 0, . . . , 0) onto the `1 norm ball
of radius τ .

• If RX (·) = δSτ (·) is the indicator function for the
spectahedron {X | X � 0, tr(X) = τ}, for some given
τ > 0, then letting UΛU> be the eigen-decomposition
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of M, a solution to (11) is the matrix M̃ = UΛ̃U>,
where Λ̃ is the diagonal matrix whose diagonal is the
projection of the vector (λ1(M), . . . , λk(M), 0, . . . , 0)
onto the simplex of radius τ .

In all these three cases, the runtime to compute M̃ is dom-
inated by the computation of the top k components in the
SVD of M.

2.3.3 Polytope constraint

In case RX (RY ) is an indicator function for a convex and
compact polytope for which a linear minimization oracle
can be implemented efficiently, thenRX (RY ) is also weak
proximal friendly. Concretely, it is possible to construct an
oracle for (7) ((9)) using a single call to the linear mini-
mization oracle, plus some additional computations (that
do not require any oracle access).

Theorem 4. Let RX (RY) be an indicator function for
a convex and compact polytope F . Suppose a point x ∈
E1 = Rd (y ∈ E2 := Rd) is given explicitly as a con-
vex combination of t vertices of the polytope {z1, . . . , zt}.
Let us denote the new output of the LMO of F w.r.t. the
linear objective function determined by the vector px :=
∇xS(q,w) + 2µA>Kq (py := ∇yS(q,w) − 2µKq) by
zt+1 and let M = [z1, . . . , zt+1] ∈ Rd×(t+1). Let β̂ :=
βS + 2µ‖K‖2. Then, we can compute a point satisfying
(7) ((9)) with a parameter λ(F) ≥ 1 by returning the point
vx = Mγ∗x (vy = Mγ∗y ), where γ∗x (γ∗y ) is an optimal so-
lution to the following convex quadratic problem over the
simplex of size t+ 1:

min
γ≥0,〈1,γ〉=1

〈Mγ, px〉+
ηβ̂

2
‖Mγ − x‖2 (12)

(
min

γ≥0,〈1,γ〉=1
〈Mγ, py〉+

ηβ̂

2
‖Mγ − y‖2

)
, (13)

where 1 ∈ Rt+1 is the vector of ones.

Note that the returned solution vx = Mγ∗x (vy = Mγ∗y ) is
now given explicitly in the form of a convex combination of
at most t+ 1 vertices of the polytope.

The proof is based on several observations from Garber and
Hazan (2016) and is given in the Appendix (see Section C).

The fact that the implementation of the WPO described in
Theorem 4 only increases the number of vertices in the sup-
port of the computed point vx (vy) by at most one is impor-
tant, since our algorithm for solving the saddle point prob-
lem (3) using this WPO makes a single call to this oracle
per iteration. Hence, when the overall number of iterations
is not very large, we will have that on each iteration, the
input point x (y) to this oracle will be supported on only
a few vertices of the polytope, which means that Problem
(12) ((13)) could be solved very efficiently.

The WPO parameter λ(F) depends on the geometry of the
polytope F and may depend in worst case on the dimen-
sion, more details can be found in the Appendix (see Sec-
tion C).

2.4 Some Illustrative Examples

In Appendix D we discuss in detail several notable ap-
plications of interest which satisfy both of our main as-
sumptions: they satisfy the primal quadratic gap prop-
erty and they admit efficient implementations of the WPO
(though they do not necessarily admit an efficient stan-
dard strong proximal oracle). These include two main ex-
amples: (i) recovering low-rank matrices and tensors via
Frobenius norm minimization subject to nuclear norm con-
straints/regularizations plus an optional additional simple
constraint/regularization (e.g., `1 regularization to promote
sparsity in addition to low-rank), assuming that the optimal
solution (matrix or tensor) is indeed low-rank, and (ii) min-
imizing a least squares objective (not necessarily a strongly
convex one) over the intersection of polytopes, each admit-
ting an efficient LMO.

3 Algorithm and Convergence Analysis

Our weak proximal oracle-based algorithm for solving the
saddle point problem (3) is given as Algorithm 1. At each
iteration, the primal variable is updated using a Frank-
Wolfe-style update, in the sense that the updated primal
variable is given as a convex combination of the previous
primal iterate and the output of some oracle. As opposed
to the classical Frank-Wolfe method, which relies on the
output of a linear minimization oracle, here we rely on the
output of a weak proximal oracle described in the preced-
ing sections. The update of the dual variable is done via a
standard gradient ascent step.

Algorithm 1 Weak Proximal Method of Multipliers

1. Input: Primal and dual step sizes η ∈ [0, 1], µ > 0, a
WPO oracle with parameter λ ≥ 1, and initialization
(q0,w0) ∈ dom(RQ)× E2.

2. Main step: For t = 0, 1, ... generate the sequence
{(qt,wt)}t∈N as follows

vt = WPOλ(qt,wt, η, µ), (14)
qt+1 = (1− η)qt + ηvt, (15)
wt+1 = wt + µKqt+1. (16)

Before stating our main result, the convergence guarantees
of Algorithm 1, let us introduce some helpful notation.

• For any q = (x, y) ∈ E, we denote the value of the
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objective function of Problem (OP) by h(q) := f(x)+
RX (x) +RY(y).

• Given a sequence {qt}t∈N, we define the correspond-
ing ergodic sequence {q̄t}t∈N by q̄t := 1

T

∑t−1
j=0 qj+1

for all t ∈ N.

• For any t ∈ N, we denote by dt := Lρ(qt,wt) − L∗ρ,
where L∗ρ denotes the AL value of a saddle point.

To formally present our main result, we also recall that
αS and βS denote the primal quadratic gap parameter and
smoothness parameter of S(q,w), respectively.

Theorem 5. (An O(1/T) ergodic convergence rate) Let
(q∗,w∗) be a saddle point of Lρ and let {(qt,wt)}t∈N be
a sequence generated by Algorithm 1 with a primal step
size η = αS

2λ(βS+2µ(‖A‖+1)2) ∈ (0, 1], and µ satisfying

0 < µ ≤
√
λα2

S+λ
2β2
S−λβS

4λ(‖A‖+1)2 . Then, for any c ≥ 2‖w∗‖
and any integer T ≥ 1 we have

h(q̄T )− h(q∗) ≤ B(ρ, µ)

T
and ‖Kq̄T ‖ ≤

2B(ρ, µ)

cT
,

where

B(ρ, µ) =
(c+ ‖w0‖)2

2µ

+ max

{
0,

2d1(β + (ρ+ 2µ)(‖A‖+ 1)2)

αS

}
,

d1 = Lρ(q1,w1) − Lρ(q∗,w∗) and β is the smoothness
parameter of f .

The following lemma accounts for the main step in the
proof of our fast convergence rates given in Theorem 5 and
also accounts for the main technical novelty of our paper.
It leverages both the primal quadratic gap property and the
weak proximal oracle, to obtain a linear convergence rate
for the value of the augmented Lagrangian.

Lemma 3.1. Let {(qt,wt)}t∈N be a sequence generated by
Algorithm 1 with η and µ as given in Theorem 5. Then, for
all t ∈ N we have that dt+1 ≤ (1− η)td1.

4 Numerical Experiments

We compare the empirical performance of our algo-
rithm with the state-of-the-art projection-free conditional
gradient-based algorithm from Yurtsever et al. (2019). For
each of the algorithms we tested two variants, see Table
4.1 for details. Due to lack of space, some of the imple-
mentation details and most of the results are deferred to the
Appendix (see Section F).

We consider two tasks which involve optimization with
low-rank matrices and are cast as optimization over the

spectrahedron: estimation of a low-rank and sparse covari-
ance matrix from noisy observations, and the semidefinite
relaxation for Max Cut. For both tasks, implementing the
WPO in our algorithms involves a low-rank SVD with rank
that is at least that of the optimal solution (see, for instance,
Section D.1 of the Appendix). Thus, throughout this sec-
tion we denote the rank of the optimal solution by r∗ and
our algorithm’s estimate of it by r̂∗.

4.1 Low-rank and sparse covariance estimation

We consider the following convex relaxation for recovering
a low-rank and sparse positive semidefinite matrix from a
noisy matrix observation Σ̂:

min
S

1

2
‖S−Σ̂‖2F s.t. S � 0, tr(S) = τ, ‖S‖1 ≤ s. (CME)

As discussed in Section D.1, this problem satisfies all the
assumptions required for our theoretical guarantees to hold.

Data generation. Our experiment is inspired by previous
experiments conducted in Richard et al. (2012) and Gidel
et al. (2018). We first generate a block diagonal, sparse
and low-rank covariance matrix Σ ∈ Rd×d, where we set
d = 400. Then, we draw d vectors zi ∼ N (0,Σ), add
a Gaussian noise N (0, σ = 0.6) to each entry of zi, and
create the noisy matrix Σ̂ := 1

d

∑d
i=1 ziz>i . To create

the blocks of Σ, we use r blocks of the form uu> where
u ∼ U([−1, 1]). This way we ensure that Σ is of rank at
most r. In order to enforce sparsity, while ensuring the low
rank of Σ, before computing uu>, we only keep the en-
tries ui for which |ui| > 0.9 (the rest of the entries become
zero). Our choices of τ and s, the radius of the nuclear
norm ball and the `1 norm ball, respectively, are chosen as
the nuclear norm and `1 norm of Σ. We use rank values
r ∈ {5, 10, 20}.

Results. We ran both algorithms (two variants for each)
for a fixed number of iterations T = 2000. The results are
the averages over 20 i.i.d. runs of the experiment (each ex-
periment randomly selects Σ and Σ̂). In the graphs, we plot

the (normalized) objective ‖S−Σ̂‖
2
F

2‖Σ̂‖2F
, the distance from fea-

sibility ‖S−P`1(s)(S)‖F , where P`1(s)(S) is the projection
of S onto the `1-norm ball of radius s, and the recovery
error of Σ measured by ‖S−Σ‖

2
F

2‖Σ‖2F
. All measures are plot-

ted both w.r.t. the number of iterations and the runtime (in
seconds). Initially we set the SVD rank parameter for our
algorithm to be exactly r, i.e., we set r̂∗ = r. To simulate a
more challenging and realistic setting, we redid the experi-
ments for r = 10 and r = 20, but this time we run our algo-
rithm with a 1.5x overestimate of the rank, i.e., we use for
it SVD computations of rank r̂∗ = 15 and r̂∗ = 30, respec-
tively. All other parameters remain unchanged (note this
does not affect the baseline which regardless of the rank
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Algorithm Description SVD rank
Mean (ours) Returns the mean (ergodic) of the primal sequence produced by Algorithm 1 r̂∗

Last (ours) Returns the last primal point produced by Algorithm 1 r̂∗

CGAL-const Baseline algorithm from Yurtsever et al. (2019) using ”const” option for dual updates 1
CGAL-decr Baseline algorithm from Yurtsever et al. (2019) using ”decr” option for dual updates 1

Table 2: Description of algorithms compared in the empirical study. The last column specifies the rank of SVD needed to
update primal variable at each iteration.

Figure 1: Results for low-rank and sparse covariance estimation with r = 20 and r̂∗ = 30.

Figure 2: Results for Max Cut with graph G1 when r̂∗ = r∗ = 13 (two leftmost panels) and when r̂∗ = 20 (two rightmost
panels).

performs only rank-one SVD computations). In Figure 1,
we show the convergence w.r.t. all measures as a function
of runtime when r = 20 and we overestimate the rank for
our algorithm to r̂∗ = 30. We can see that w.r.t. all mea-
sures, both of our variants clearly outperform the baseline.
The rest of the results, which exhibit a very similar trend,
are provided in the Appendix (see Section F).

4.2 Max Cut

We now consider the following well-known semidefinite
relaxation for the Max Cut problem:

min
S
−tr(CS) s.t. S � 0, tr(S) = d, diag(S) = 1, (MC)

where C is the Laplacian matrix of a combinatorial graph,
diag(S) is the vector of elements on the main diagonal of
the matrix S ∈ Sd+, and 1 is a vector of ones of length d.

Note that since the objective function is linear, this prob-
lem does not necessarily satisfy our primal quadratic gap
condition (Definition 1). Still this does not revoke the ap-
plicability of our algorithm for this problem.

Datasets. We used the G1, G2 and G3 graphs from the
Gset dataset4. These are graphs of size 800 × 800. The

4Y. Ye. Gset random graphs, found in:
https://www.cise.ufl.edu/research/sparse/matrices/Gset/index.html

ranks of the optimal solutions for the max cut problem
in these graphs are conveniently given in Ding and Udell
(2021), Table 1 (the ranks of the optimal solutions are
r∗ = 13 for G1 and G2, and r∗ = 14 for G3).

Results. We ran all algorithms for 2000 iterations. For
each of the datasets we repeated the experiment 10 times
and averaged the runtimes for more reliable measurements.
Here also, we initially set the SVD rank parameter for our
algorithm to be exactly r, i.e., we set r̂∗ = r, but we also
redid the experiment for G1 when overestimating the rank
of the optimal solution for our algorithm, taking r̂∗ = 20
(while r∗ = 13). We plot the objective value and the fea-
sibility gap measured by ‖diag(S)− 1‖ both w.r.t. number
of iterations and runtime. Figure 2 shows the convergence
w.r.t. runtime for the graph G1 in case r∗ is used exactly
or overestimated when setting the SVD rank parameter of
our algorithms, r̂∗. We can see that when r̂∗ = r, both of
our variants are faster than the baselines. When r̂∗ > r,
while our ”Mean” variant is slightly surpassed by the base-
line w.r.t. the objective, it converges faster to a feasible
solution. Our ”Last” variant performs better than the base-
line w.r.t. both measurements. The rest of the results are
reported in the Appendix (see Section F).
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A Issue with the Convergence Proofs in Gidel et al. (2018)

In Section C of the paper (see pages 13-14), given a compact set X (formally defined in Subsection 2.2 on page 3), the
authors define the following functions (equation numbers are as in the original paper):

L := f(x) + 1X (x) + 〈y,Mx〉+
λ

2
‖Mx‖2, (45)

d(y) := min
x∈X
L(x, y), (46)

d∗ = max
y
d(y).

In addition, the authors denote the smoothness parameter of f(x) + λ
2 ‖Mx‖2 by Lλ (assuming f is smooth), the set of

optimal dual solutions is denoted by Y∗, the minimal distance between y and a point in Y∗is denoted by dist(y,Y∗), and
the diameter of X is denoted by D (defined as the maximum norm between two points in X ).

Through these notations, the authors state the following theorem, which is crucial for their convergence analysis.

Theorem 6 (Theorem 1 in Gidel et al. (2018)). Under Slater’s condition, there exists α > 0, such that for any dual variable
y, the following holds:

d∗ − d(y) ≥ 1

2LλD2
min{α2dist2(y,Y∗), αLλD2dist(y,Y∗)}. (92)

In order to prove this result, they define the function

fλ(x) := f(x) + 1X (x) +
λ

2
‖Mx‖2 (48)

and at the beginning of the proof of Lemma 1 (on page 15), for any x ∈ X and any given u ∈ Rm, the authors also define
the function:

gx(u) := fλ(u + x)− fλ(x)− 〈u,n〉, n ∈ ∂fλ(x). (58)

From the definition of fλ we can equivalently write it as follows

(f +
1

2
‖M · ‖2)(u + x)− (f +

1

2
‖M · ‖2)(x)− 〈u,∇(f +

1

2
‖M · ‖2)(x)〉+ 1X (u + x)− 1X (x)− 〈u,n′〉,

where n′ ∈ ∂1X (x) = NXc (x) := {n′ ∈ Rm|〈n′, x− x′〉 ≥ 0,∀x′ ∈ X} is the normal cone of X .

Now, right after the definition of gx(u) in Eq. (58), the authors define the following function

hx(u) :=
Lλ
2
‖u‖2 + 1X (u + x),

and use the Descent Lemma5 to claim that

∀u ∈ Rm : gx(u) ≤ hx(u). (17)

However, we observe that using the Descent Lemma and the fact that x ∈ X , we obtain that

gx(u) ≤ Lλ
2
‖u‖2 + 1X (u + x)− 〈u,n′〉 = hx(u)− 〈u,n′〉.

Now, if u + x ∈ X , then the rightmost term highlighted in red (including the minus sign) is non-negative by the definition
of the normal cone (taking x′ = u + x), and thus can’t be omitted, and so the inequality (17) cannot be deduced.

Adding the missing term throughout the rest of the proof, we eventually get a more complicated inequality instead of (75)
in the original paper. Thus, the value of the constant α in the theorem above, for which the positivity is proven (see (76)
in Gidel et al. (2018)), is irrelevant, and the fixed expression for α for which we can obtain the error bound property (see
(92)), becomes even more complicated. It is then unclear that α can be proven to be strictly positive, which is required for
the convergence results in Gidel et al. (2018).

5Recall that in this case, the Descent Lemma reads as follows
(f + 1

2
‖M · ‖2)(u + x)− (f + 1

2
‖M · ‖2)(x)− 〈u,∇(f + 1

2
‖M · ‖2)(x)〉 ≤ Lλ

2
‖u‖2.
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B Smoothness and Primal Quadratic Gap Bounds for the Augmented Lagrangian

B.1 Proof of Lemma 2.1(smoothness of S w.r.t. the primal variable)

Proof. Since f(x) is β-smooth we obviously have that S(·,w), for any fixed w ∈ E2, is (β + ρ‖K‖2)-smooth. Moreover,
recalling the definition of the spectral norm, we have

‖K‖ := max
‖q‖2=1

‖Kq‖ = max
‖x‖2+‖y‖2=1

‖Ax− y‖ ≤ max
‖x‖2+‖y‖2=1

‖Ax‖+ ‖y‖ ≤ max
‖x‖2=1

‖Ax‖+ max
‖y‖2=1

‖y‖2 = ‖A‖+ 1.

Hence, the desired result follows.

B.2 Proof of Theorem 1 (primal quadratic gap when f is strongly convex)

Proof. Let us define φw(q) := S(q,w) for any q ∈ E and any w ∈ E2. We start the proof by presenting two properties of
φw, that hold regardless of the strong convexity of f .

First, from the differentiability of f , for any q =

[
x
y

]
∈ E, we have that

∇φw(q) =

[
∇f(x)

0

]
+K>w + ρK>Kq. (18)

Second, from the definition of φw, we get, for any q1 =

[
x1
y1

]
,q2 =

[
x2
y2

]
∈ E, that

φw(q2)− φw(q1) =f(x2)− f(x1) + 〈w,K(q2 − q1)〉+
ρ

2
‖Kq2‖2 −

ρ

2
‖Kq1‖2

=f(x2)− f(x1) + 〈K>w,q2 − q1〉+ ρ〈Kq1,K(q2 − q1)〉+
ρ

2
‖Kq2 −Kq1‖2

=f(x2)− f(x1) + 〈K>w + ρK>Kq1,q2 − q1〉+
ρ

2
‖Kq2 −Kq1‖2. (19)

Now, from the α-strong convexity of f(x), we have, for any x1, x2 ∈ E1, that

f(x2)− f(x1) ≥ 〈∇f(x1), x2 − x1〉+
α

2
‖x2 − x1‖2. (20)

From (18), (19) and (20) we further have

φw(q2)− φw(q1) ≥ 〈∇f(x1), x2 − x1〉+
α

2
‖x2 − x1‖2 +

ρ

2
‖Kq2 −Kq1‖2 + 〈K>w + ρK>Kq1,q2 − q1〉.

= 〈∇φw(q1),q2 − q1〉+
α

2
‖x2 − x1‖2 +

ρ

2
‖Ax2 −Ax1 + y2 − y1‖2, (21)

where the last equality also follows from the definition of K.

Now, since for every a, b ∈ R, and s > 0 it holds that

(a+ b)2 ≥ (1− s)a2 +
s− 1

s
b2,

we get that for every s ≥ 1

‖Ax2 −Ax1 + y2 − y1‖2 ≥ (‖Ax2 −Ax1‖ − ‖y2 − y1‖)2

≥ (1− s)‖Ax2 −Ax1‖2 +
s− 1

s
‖y2 − y1‖2

≥ ‖A‖2(1− s)‖x2 − x1‖2 +
s− 1

s
‖y2 − y1‖2, (22)

where the first inequality follows from the well-known Cauchy-Schwarz inequality.
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Combining (21) and (22), and denoting δ(s) := min{α + ρ‖A‖2(1 − s), ρ(s − 1)/s}, we get for every s ≥ 1,
that

φw(q2)− φw(q1) ≥ 〈∇φw(q1),q2 − q1〉+
1

2

(
α+ ρ‖A‖2(1− s)

)
‖x2 − x1‖2 +

ρ(s− 1)

2s
‖y2 − y1‖2

≥ 〈∇φw(q1),q2 − q1〉+
δ(s)

2
(‖x2 − x1‖2 + ‖y2 − y1‖2)

= 〈∇φw(q1),q2 − q1〉+
δ(s)

2
‖q2 − q1‖2.

The result now follows, since taking s̃ = 1 + α
2ρ‖A‖2 > 1, we have

δ(s̃) = αS = min

{
α

2
,

αρ

α+ 2ρ‖A‖2

}
> 0,

as required.

B.3 Proof of Theorem 2 (primal quadratic gap whenRQ is an indicator for a polytope)

The strong duality of a primal dual saddle point problem ensures that for every primal optimal solution there exists a dual
optimal solution (and vice versa) such that the pair forms a saddle point. In the case of Problem (3), we can observe the
following crucial property, which proves that the set of saddle points is the entire set P∗ × D∗, meaning that if strong
duality holds, every couple consisting of an optimal solution of Problem (OP) and an optimal solution of the dual problem
associated with (OP), is a saddle point of Lρ.

Proposition 2. Let (q∗1,w∗1) and (q∗2,w∗2) be two saddle points of Lρ. Then, (q∗1,w∗2) is also a saddle point of Lρ.

Proof. Since q∗1 and q∗2 are optimal solutions of Problem (OP), they are in particular feasible solutions of Problem (OP)
and thus satisfy Kq∗1 = Kq∗2 = 0. Hence, recalling the definition of Lρ we have that Lρ(q∗1,w∗1) = Lρ(q∗1,w∗2) and that
Lρ(q∗2,w∗1) = Lρ(q∗2,w∗2).

Therefore, applying the saddle point inequality (2) with (q∗1,w∗1), we have for all w ∈ E2, that

Lρ(q∗1,w) ≤ Lρ(q∗1,w
∗
1) = Lρ(q∗1,w

∗
2). (23)

In addition, applying (2) with (q∗2,w∗2), we have for all q ∈ E, that

Lρ(q,w∗2) ≥ Lρ(q∗2,w
∗
2) = Lρ(q∗2,w

∗
1) ≥ Lρ(q∗1,w

∗
1) = Lρ(q∗1,w

∗
2). (24)

Note that the second inequality is another application of (2) with the saddle point (q∗1,w∗1).

By (23) and (24) we get that (q∗1,w∗2) is a saddle point.

Lemma B.1. Let (x∗1, y∗1) ≡ q∗1 and (x∗2, y∗2) ≡ q∗2 be two optimal solutions of Problem (OP). Then, Bx∗1 = Bx∗2.

Proof. Let w∗ ∈ D∗. From the optimality of q∗1,q∗2,w∗, and by Assumptions 1 and 2, as well as Proposition 2, we have
that both (q∗1,w∗) and (q∗2,w∗) are saddle points. By the saddle point property given in (2), we have

Lρ(q∗1,w
∗) = Lρ(q∗2,w

∗) = min
q∈E
Lρ(q,w∗). (25)

Assume on the contrary that Bx∗1 6= Bx∗2. Then, by the αg-strong convexity of g, we have

g

(
B
(

x∗1 + x∗2
2

))
≤ 1

2
(g(Bx∗1) + g(Bx∗2))− αg

8
‖Bx∗1 − Bx∗2‖2 <

1

2
(g(Bx∗1) + g(Bx∗2)). (26)

From the convexity ofRX andRY , we have thatRQ(q) is convex. Hence, the function

ψ(q) := RQ(q) + 〈w∗,Kq〉+
ρ

2
‖Kq‖2,
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is convex in q. Thus, from (25) and (26), we have

Lρ
(

q∗1 + q∗2
2

,w∗
)

= g

(
B
(

x∗1 + x∗2
2

))
+ ψ

(
q∗1 + q∗2

2

)
<

1

2
g(Bx∗1) +

1

2
g(Bx∗2) +

1

2
ψ(q∗1) +

1

2
ψ(q∗2)

=
1

2
Lρ(q∗1,w

∗) +
1

2
Lρ(q∗2,w

∗)

= min
q∈E
Lρ(q,w∗),

which is a contradiction.

The following Lemma is a known property of polytopes, which is stated without a proof. For a proof we refer the reader to
Lemma 4 of Garber (2019).

Lemma B.2. (Hoffman’s Lemma) Let F := {q ∈ E|Cq ≤ b} be a compact and convex polytope and let T : V1 → V2 be
a linear mapping. Given some c ∈ V2, we define the set F(T , c) := {q ∈ F|T q = c}. If F(T , c) 6= ∅, then there exists
σ > 0 such that for any q ∈ P we have

dist(q,F(T , c)) ≤ σ‖T q− c‖2,
where we define dist(q,F(T , c)) := minz∈F(T ,c) ‖z− q‖2.

Remark 1. The value of σ depends on C and T .

Lemma B.3. There exists a constant σ > 0, such that for any q ≡ (x, y) ∈ F , we have

f(x∗)− f(x) ≥ 〈∇f(x), x∗ − x〉+
αgσ

−1

2
‖q∗ − q‖2 − αg

2
‖Kq‖2, (27)

where q∗ ≡ (x∗, y∗) ∈ P∗ is the projection of q onto P∗.

Proof. From Lemma B.1, it follows that there exists some b∗ ∈ E3, such that for every optimal solution x∗ of Problem
(OP), we have that Bx∗ = b∗.

Now, let us denote Fb∗ := {q ∈ F : Bx = b∗,Kq = 0}. We will now show that Fb∗ = P∗.

Let q ∈ P∗, then obviously Kq = 0 and q ∈ F (a feasible solution) and from Lemma B.1 it follows that Bx = b∗.
Therefore, P∗ ⊆ Fb∗ .

On the other hand, any point q ∈ Fb∗ is feasible, as it satisfies Kq = 0. Moreover, by the choice of b∗, any
q ≡ (x, y) ∈ Fb∗ satisfies Bx = b∗ = Bx∗, for any optimal primal solution q∗ ≡ (x∗,Ax∗) ∈ P∗. Now, since we also
have that q ∈ F , the value of the objective of q satisfies, for any such point q∗

g(Bx) +RQ(q) = g(b∗) = g(Bx∗) +RQ(q∗),

which means that the objective value of any q ∈ Fb∗ is optimal. Therefore, q ∈ P∗ and we have that Fb∗ ⊆ P∗, and thus
P∗ = Fb∗ .

Let 0E2
: E2 → E2 be the zero linear operator 0E2

(y) = 0. By applying Hoffman’s Lemma with

B̃ := [B, 0E2
], T :=

[
B̃
K

]
, c :=

[
b∗
0

]
,

there exists a constant σ > 0, such that for any q ∈ F , we have (notice that B̃q = Bx)

dist(q,Fb∗) = min
z∈Fb∗

‖z−q‖2 ≤ σ‖T q−c‖2 = σ

∥∥∥∥[B̃q− b∗
Kq

]∥∥∥∥2 = σ(‖B̃q−b∗‖2+‖Kq‖2) = σ(‖Bx−b∗‖2+‖Kq‖2).

Thus, by denoting q∗ := arg minz∈Fb∗
‖z− q‖2, we obtain that

‖Bx− b∗‖2 ≥ σ−1‖q∗ − q‖2 − ‖Kq‖2. (28)
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Now, from (28), the αg-strong convexity of g, and the optimality of q∗ =

[
x∗
y∗

]
, we have

f(x∗)− f(x) = g(Bx∗)− g(Bx)

≥ 〈x∗ − x,B>∇g(Bx)〉+
αg
2
‖Bx∗ − Bx‖2

= 〈x∗ − x,B>∇g(Bx)〉+
αg
2
‖b∗ − Bx‖2

≥ 〈x∗ − x,∇f(x)〉+
αgσ

−1

2
‖q∗ − q‖2 − αg

2
‖Kq‖2.

This completes the desired result since P∗ = Fb∗ .

Applying Lemma B.3, as well as the two properties of φw(q) presented in (18) and (19), we can now prove Theorem 2.

Proof of Theorem 2. For any q ∈ F , we denote q∗ = arg minz∈P∗ ‖z − q‖2. Recalling the beginning of the proof of
Theorem 1, by plugging q1 = q ≡ (x, y) and q2 = q∗ ≡ (x∗, y∗) in (19), we have (recall that Kq∗ = 0)

φw(q∗)− φw(q) = f(x∗)− f(x) + 〈K>w + ρK>Kq,q∗ − q〉+
ρ

2
‖Kq‖2.

Combining it with Lemma B.3, and recalling (18), we have

φw(q∗)− φw(q) ≥ 〈∇f(x), x∗ − x〉+
αgσ

−1

2
‖q∗ − q‖2 − αg

2
‖Kq‖2 +

ρ

2
‖Kq∗ −Kq‖2 + 〈K>w + ρK>Kq,q∗ − q〉

= 〈∇φw(q),q∗ − q〉+
αgσ

−1

2
‖q∗ − q‖2 +

ρ− αg
2
‖Kq‖2

≥ 〈∇φw(q),q∗ − q〉+
αgσ

−1

2
‖q∗ − q‖2,

where the last inequality is true since ρ ≥ αg , which proves the desired result with αS = αgσ
−1 (recalling φw(q) =

S(q,w)).

C Proof of Theorem 4 (weak proximal oracle for polytopes)

Proof of Theorem 4. We present a proof that the point vx as defined in the theorem indeed satisfies (7). The proof that vy
satisfies (9) follows the exact same arguments with the obvious modifications. We build on an observation from Garber
and Hazan (2016), that given a point x ∈ F , that is formed by a convex combination of t vertices of F , a vector p ∈ Rd,
and a radius r ∈ R+, there exists a point x̃ ∈ F such that:

1. 〈x̃,p〉 ≤ 〈z,p〉 ∀z ∈ F ∩B(x, r),

2. ‖x− x̃‖ ≤ ω · r,

3. x̃ is in the convex hull of the t vertices needed to represent x, and the vertex which is the output of the LMO of F
w.r.t. p,

where B(x, r) is a ball of radius r centered at x and ω ≥ 1 is some constant that depends on the geometry of F (see Garber
and Hazan (2016) Section 2).

For any u ∈ F , let x̃u be a point satisfying the above three properties for r = ‖u−x‖ and p = px := ∇xS(q,w)+2µA>Kq.
Due to Property 3 above, x̃u can be written as a linear combination of the vertices z1, . . . , zt+1, i.e., x̃u = Mγ, for some
γ ∈ Rt+1 in the simplex (recall that the columns of M are z1, . . . , zt+1). Therefore, by the choice vx = Mγ∗x , where γ∗x is
a minimizer of (12), we have for any u ∈ F , that

〈vx,p〉+
η(βS + 2µ‖K‖2)

2
‖vx − x‖2 ≤ 〈x̃u,p〉+

η(βS + 2µ‖K‖2)

2
‖x̃u − x‖2. (29)
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By combining Properties 1 and 2 above, we have for any u ∈ F , that

〈x̃u,p〉+
η(βS + 2µ‖K‖2)

2
‖x̃u − x‖2 ≤ 〈u,p〉+

ω2η(βS + 2µ‖K‖2)

2
‖u− x‖2. (30)

Combining the last two inequalities, we have that (7) is indeed satisfied with RX (·) = δF (·) and λx = ω2 for any u ∈ F ,
and in particular for any x∗ ∈ X ∗ ⊆ F .

D Some Illustrative Examples

In this section, we describe several families of problems of interest for which our two main assumptions — the primal
quadratic gap property (Definition 1) and the availability of an efficient weak proximal oracle (Definition 2), hold true.

D.1 Structured Low-Rank Matrix Recovery

Consider the following optimization problem in which the goal is to recover a structured low-rank matrix from some noisy
matrix observation Σ:

min
S∈Rm×n

1

2
‖S−Σ‖2F + ν‖S‖nuc +RY(A(S)), (31)

where ν > 0, RY is assumed to be a proximal friendly function (or even a weak proximal friendly function, recall
Definition 3), and the unique optimal solution (guaranteed from strong convexity of the squared Frobenius norm term) is
low rank.

For instance, whenA := I is the identity mapping andRY is an `1 regularizer, Problem (31) is a natural convex relaxation
for recovering a matrix that is both low-rank and sparse, see for instance Richard et al. (2012).

Setting f(S) := 1
2‖S − Σ‖2F , and RX := ν‖S‖nuc we get a problem of the form of model (OP). Primal quadratic gap

holds since f is strongly convex (see Theorem 1). By the assumption of low-rank of the optimal solution, as well as its
uniqueness, according to the discussion in Section 2.3.2, RX is indeed a weak proximal friendly function and in general,
Problem (31) is weak proximal friendly.

D.2 Low-Rank Tensor Recovery

The previous example could be extended to the more general and important problem of recovering low-rank tesnors.
Analogously to matrices, the rank of a N -way real tensor X, N > 2, could be defined as the minimum number of rank
one tensors (of the same dimensions) whose sum equals the original tensor, and here we denote it by rank(X). However,
in general, even determining the rank of a given tensor is NP-Hard Johan (1990). An alternative is to use standard matrix
rank in an appropriate manner. Let X ∈ Rn1×···×nN be a N -way tensor. For any i ∈ {1, . . . , N}, let Ai : Rn1×···×nN →
Rni×Ii , Ii := 1

ni

∏N
j=1 nj , be a linear mapping that flattens the tensor into a Rni×Ii matrix, by flattening all dimensions

except for the ith dimension, see exact definition in Kolda and Bader (2009); Gandy et al. (2011). This leads to the
definition of the n-rank of aN -way tensor X, which is given by rankn(X) := (rank(A1X), . . . , rank(ANX)) ∈ NN , where
rank(AiX) is the standard matrix rank ofAiX. It is a fairly simple observation that maxi∈{1,...,N} rankn(X)(i) ≤ rank(X).
This leads to the following natural convex relaxation Gandy et al. (2011), which is analogous to nuclear norm-based
relaxations for the matrix case, for the problem of recovering a low-rank tensor from a given noisy tensor measurement T:

min
X∈Rn1×···×nN

1

2
‖X− T‖22 +RX (X) + ν

N∑
i=1

‖Yi‖nuc

s.t. AiX = Yi ∀i ∈ [N ],

(32)

where ‖·‖2 denotes the `2 norm for the appropriate tensor space, ν > 0, andRX is some (weak) proximal friendly function
that may encode additional structure of the tensor to be recovered (e.g., sparsity if we take it to be an `1 regularizer).

Using the notations of Problem (OP), we will denote the following f(X) = 1
2‖X − T‖22, AX := [A1X>, . . . ,ANX>]>,

Y = Y1 × · · · × YN ∈ Rn1×I1 × · · · × RnN×IN , andRY(Y) := ν
∑N
i=1 ‖Yi‖nuc.

As in the previous example, the primal quadratic gap property holds since f is strongly convex and the optimal solution
(X∗,Y∗) is unique. Now, let us assume that X∗ has a low n-rank, meaning rank(Y∗i ) = rank(AiX∗) ≤ k, for a fairly small
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k. In this case, since the variable Y is given as a cartesian product, the weak proximal computation w.r.t. the variable Y
naturally decouples into N separate weak proximal computation w.r.t. each of the blocks Y1, . . . ,YN . It should be noted
that each block enjoys the same structure as in the low-rank matrix case6, i.e., amounts to a k-SVD computation of a real
matrix (as described in Section 2.3.1). Since additionally RX is assumed to be a (weak) proximal friendly function, we
have that in general, Problem (32) is weak proximal friendly.

D.3 Least Squares Over Intersection of Polytopes

Let F1, . . . ,Fn be convex and compact polytopes in Rd, for which a linear minimization oracle can be implemented
efficiently. Given M ∈ Rp×d and b ∈ Rp, we consider the following constrained least squares optimization problem:

min
x∈Rd

1

2
‖Mx− b‖2 s.t. x ∈

n⋂
i=1

Fi. (33)

We can see that this problem is of the form of (OP) by setting f(x) := 1
2‖Mx− b‖2,RX (x) := δF1

(x), A := [I, . . . , I]>

(n− 1 times), where I is the identity mapping, andRY(y) = RY([y>1 , . . . , y>n−1]>) :=
∑n−1
i=1 δFi+1(yi), where δFi(·) is

the indicator function of the polytope Fi, i = 1, . . . , n.

Notice we can write f as g ◦B, where B = M, and g(·) = 1
2‖(·)−b‖2, which is a 1-strongly convex function. In addition,

RQ here is an indicator function of the product of the polytopes F1×· · ·×Fn. Hence, according to Theorem 2, by setting
the augmented Lagrangian parameter to ρ ≥ 1, this problem satisfies the primal quadratic gap property.

Since we assumed each of the polytopes Fi admits an efficient linear minimization oracle, as discussed in Section 2.3.3,
each of the indicator functions δFi is weak proximal friendly. Further more, since the variable y admits a simple carte-
sian product structure, the weak proximal oracle w.r.t. y naturally decouples into n − 1 separate weak proximal oracle
computations, each w.r.t. to one of the polytopes Fi, i = 2, . . . , n, and so, Problem (33) is also weak proximal friendly.

E Proof of Theorem 5

In order to prove Theorem 5, we first need to establish two intermediate results. The first result was established in Sabach
and Teboulle (2019). For the sake of completeness we state it here and reprove it. The other is the proof of Lemma 3.1
stated before.

Lemma E.1. (Objective and feasibility approximation) Let (q∗,w∗) be a saddle point of Lρ. Let q ∈ E, and suppose that
c ≥ 2‖w∗‖, for some c > 0. If

h(q)− h(q∗) + c‖Kq‖+
ρ

2
‖Kq‖2 ≤ δ, (34)

holds for some δ ≥ 0, then the following assertions hold

1. h(q)− h(q∗) ≤ δ.

2. ‖Kq‖ ≤ 2δ
c .

Proof of Lemma E.1. The first assertion holds since c‖Kq‖+ ρ
2‖Kq‖2 ≥ 0. Moreover, since (q∗,w∗) is a saddle point of

Lρ, we have
h(q∗) = Lρ(q∗,w∗) ≤ Lρ(q,w∗) = h(q) + 〈w∗,Kq〉+

ρ

2
‖Kq‖2. (35)

Combining (34) and (35) we have

c‖Kq‖ ≤ δ + 〈w∗,Kq〉 ≤ δ + ‖w∗‖ · ‖Kq‖ ≤ δ +
c

2
‖Kq‖.

Rearranging the last inequality, yields the second assertion.

We now prove Lemma 3.1.

6Gandy et al. (2011) formally shows this decoupling for strong proximal computations. It then becomes trivial to apply this for weak
proximal computations.
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Proof of Lemma 3.1. For any t ∈ N, let (q∗t ,w∗) be a saddle point of Lρ, such that the pair {qt,q∗t } satisfies the primal
quadratic gap (see (5)), i.e., q∗t = arg minq∗∈P∗ ‖qt − q∗‖2 and w∗ ∈ D∗. Since Lρ(q∗t ,w∗) = L∗ρ, we have

dt+1 = Lρ(qt+1,wt+1)− Lρ(q∗t ,w
∗)

= Lρ(qt+1,wt+1)− Lρ(qt+1,wt) + Lρ(qt+1,wt)− Lρ(qt,wt) + Lρ(qt,wt)− Lρ(q∗t ,w
∗)

= 〈wt+1 − wt,Kqt+1〉+ Lρ(qt+1,wt)− Lρ(qt,wt) + dt

= dt + µ‖Kqt+1‖2 + Lρ(qt+1,wt)− Lρ(qt,wt), (36)

where the last equality follows from (16). Now, using the feasibility of q∗t (Kq∗t = 0), we have

‖Kqt+1‖2 = ‖Kqt+1 −Kqt +Kqt −Kq∗t ‖2

= ‖Kqt+1 −Kqt‖2 + 2〈Kqt+1 −Kqt,Kqt −Kq∗t 〉+ ‖Kqt −Kq∗t ‖2

= η2‖Kvt −Kqt‖2 + 2η〈Kvt −Kqt,Kqt〉+ ‖Kqt −Kq∗t ‖2

≤ η2‖K‖2 · ‖vt − qt‖2 + η〈vt − qt, 2K>Kqt〉+ ‖K‖2 · ‖qt − q∗t ‖2, (37)

where the last equality follows from (15). By the βS-smoothness of S(·,w), the convexity ofRQ(q) and (15), we have

Lρ(qt+1,wt)− Lρ(qt,wt) = S(qt+1,wt)− S(qt,wt) +RQ(qt+1)−RQ(qt)

≤ η2βS
2
‖vt − qt‖2 + η〈vt − qt,∇qS(qt,wt)〉+ η(RQ(vt)−RQ(qt)). (38)

Now, from (14), recalling (6), since q∗t ∈ P∗, we have that

RQ(vt) + 〈vt,∇qS(qt,wt) + 2µK>Kqt〉+
η(βS + 2µ‖K‖2)

2
‖vt − qt‖2 ≤

RQ(q∗t ) + 〈q∗t ,∇qS(qt,wt) + 2µK>Kqt〉+
λη(βS + 2µ‖K‖2)

2
‖q∗t − qt‖2. (39)

By combining (36), (37), (38) and (39) we obtain the following

dt+1 − dt = µ‖Kqt+1‖2 + Lρ(qt+1,wt)− Lρ(qt,wt)

≤ 2µ‖K‖2

2
‖qt − q∗t ‖2 +

η2(βS + 2µ‖K‖2)

2
‖vt − qt‖2 + η(RQ(vt)−RQ(qt))

+ η〈vt − qt,∇qS(qt,wt) + 2µK>Kqt〉

≤ 1

2

(
2µ‖K‖2 + λη2(βS + 2µ‖K‖2)

)
‖qt − q∗t ‖2 + η(RQ(q∗t )−RQ(qt))

+ η〈q∗t − qt,∇qS(qt,wt)〉+ 2µη〈Kq∗t −Kqt,Kqt〉. (40)

Let us, for convenience, denote r = 2µ(‖A‖ + 1)2 ≥ 2µ‖K‖2. Now, recall that q∗t was chosen to satisfy (5). Therefore,
from (40) and (5), as well as the feasibility of q∗t , we obtain that

dt+1 − dt ≤
1

2

(
2µ‖K‖2 − ηαS + λη2(βS + 2µ‖K‖2)

)
‖qt − q∗t ‖2 − 2µη‖Kqt‖2 (41)

+η[S(q∗t ,wt) +RQ(q∗t )− S(qt,wt)−RQ(qt)]

≤1

2

(
r − ηαS + λη2(βS + r)

)
‖qt − q∗t ‖2 + η[Lρ(q∗t ,wt)− Lρ(qt,wt)]. (42)

Since q∗t is a feasible solution of the Problem (OP), we have that Lρ(q∗t ,wt) = Lρ(q∗t ,w∗) = L∗ρ. Thus, from (42), after
substituting η = αS

2λ(βS+r)
∈ [0, 1], we have for all t ∈ N (recall that λ ≥ 1)

dt+1 ≤ (1− η)dt +
1

2
(r − ηαS + λη2(βS + r))‖qt − q∗t ‖2 = (1− η)dt +

1

2

(
r − α2

S

4λ(βS + r)

)
‖qt − q∗t ‖2.

Taking any µ > 0 such that 2µ(‖A‖ + 1)2 ≡ r ≤
√
λα2

S+λ
2β2
S−λβS

2λ , we get that r − α2
S

4λ(βS+r)
≤ 0, and therefore we

immediately obtain that
dt+1 ≤ (1− η)dt,

which proves the desired result.
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We will now proceed to prove our convergence rate result.

Proof of Theorem 5. First, let {wt}t∈N be the sequence of dual points generated by Algorithm 1. For any t ∈ N and any
w ∈ E2, we define

∆t(w) :=
1

2
‖w− wt‖2 −

1

2
‖w− wt+1‖2.

We notice that for any t ∈ N and w ∈ E2 we have

Lρ(qt+1,w)− Lρ(qt+1,wt+1) = 〈w− wt+1,Kqt+1〉

=
1

µ
〈w− wt+1,wt+1 − wt〉

=
1

µ
∆t(w)− 1

2µ
‖wt+1 − wt‖2

≤ 1

µ
∆t(w).

Thus, summing the above inequality for all t = 0, 1, . . . , T − 1, we have

T−1∑
t=0

(Lρ(qt+1,w)− Lρ(qt+1,wt+1)) ≤ 1

µ

T−1∑
t=0

∆t(w)

=
1

2µ

T−1∑
t=0

(‖w− wt‖2 − ‖w− wt+1‖2)

=
1

2µ
(‖w− w0‖2 − ‖w− wT ‖2) (43)

≤ 1

2µ
‖w− w0‖2

≤ 1

2µ
(‖w‖+ ‖w0‖)2. (44)

In addition, from Lemma 3.1, we have that dt+1 ≤ d1(1− η)t. Thus, if d1 > 0, we have that

T−1∑
t=0

(Lρ(qt+1,wt+1)− Lρ(q∗,w∗)) =
T−1∑
t=0

dt+1 ≤ d1
T−1∑
t=0

(1− η)t ≤ d1
∞∑
t=0

(1− η)t =
d1
η
,

where the second equality follows from the classical result on the geometric series. Hence, using Lemma 2.1, we obtain
that

T−1∑
t=0

(Lρ(qt+1,wt+1)− Lρ(q∗,w∗)) ≤ 2d1
αS

(
β + (2µ+ ρ)(‖A‖+ 1)2

)
. (45)

Otherwise, if d1 ≤ 0, we have

T−1∑
t=0

(Lρ(qt+1,wt+1)− Lρ(q∗,w∗)) =

T−1∑
t=0

dt+1 ≤
T−1∑
t=0

d1(1− η)t ≤ 0. (46)

Combining (45) and (46) yields

T−1∑
t=0

(Lρ(qt+1,wt+1)− Lρ(q∗,w∗)) ≤ max

{
0,

2d1
αS

(β + (ρ+ 2µ)(‖A‖+ 1)2)

}
. (47)

Now, since Lρ(·,w) is convex, and since Lρ(q∗,w∗) = Lρ(q∗,w) for any w ∈ E2, which follows from the feasibility of
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q∗, we get, for any w ∈ E2, that

h(q̄T )− h(q∗) + 〈w,Kq̄T 〉+
ρ

2
‖Kq̄T ‖2 = Lρ(q̄T ,w)− Lρ(q∗,w)

≤ 1

T

T−1∑
t=0

(Lρ(qt+1,w)− Lρ(q∗,w))

=
1

T

T−1∑
t=0

(Lρ(qt+1,w)− Lρ(q∗,w∗))

=
1

T

[
T−1∑
t=0

(Lρ(qt+1,w)− Lρ(qt+1,wt+1))

+

T−1∑
t=0

(Lρ(qt+1,wt+1)− Lρ(q∗,w∗))

]

≤ 1

T

[
(‖w‖+ ‖w0‖)2

2µ
+ max

{
0,

2d1
αS

(β + (ρ+ 2µ)(‖A‖+ 1)2)

}]
, (48)

where the last inequality follows from (44) and (47). Maximizing both sides over ‖w‖ ≤ c, we get

h(q̄T )− h(q∗) + c‖Kq̄T ‖+
ρ

2
‖Kq̄T ‖2 ≤

1

T

[
(c+ ‖w0‖)2

2µ
+ max

{
0,

2d1(β + (ρ+ 2µ)(‖A‖+ 1)2)

αS

}]
=
B(ρ, µ)

T
.

The result now follows from Lemma E.1 by substituting δ = B(ρ, µ)/T .

F Implementation Details of Experiments and Additional Results

F.1 Low-rank and sparse covariance estimation

F.1.1 Implementation Details

Our Algorithm:

• Implementing the algorithm, we set RX and RY to be indicators of the spectrahedron Sτ and the `1-norm ball of
radius s, respectively, and we set A to be the identity operator. Hence in each iteration the main computations of our
algorithm are one low-rank SVD and one `1-norm ball projection. We also set f(x) ≡ f(S) := 1

2‖S − Σ̂‖2F . In
particular, we set the rank estimate for our algorithm, which determines the rank of the SVD computations, as r̂∗ = r.

• Given the values of ρ and µ, we set the value of the primal step size η to be sent to the WPO according to the formula
given in Theorem 5, with respect to the value of µ, and the values of αS and βS induced from the value of ρ (notice
here the WPO parameter is λ = 1). Note that for any µ > 0, η ∈ [0, 1].

• For the actual primal step, we used line search. That is, we set:

ηt = arg min
η∈[0,1]

{µ‖Kqt+1(η)‖2 + Lρ(qt+1(η),wt)},

where qt+1(η) := ηvt+(1−η)qt, and vt is the output of the WPO. This problem has a closed form solution. It could
be easily verified that using this line search does not change the gurantees of Theorem 5.

• We implemented and examined two variants of our algorithm. One which returns the mean of the sequence of primal
points generated by Algorithm 1, which we dub ”Mean”. This is the variant for which we have a theoretically
guaranteed convergence rate. The second variant, which we dub ”Last”, returns the last primal point of the sequence
generated by Algorithm 1. This variant seems to be a natural improvement for the Mean variant in practice, in terms
of convergence rate.
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The Baseline Algorithm: The baseline algorithm for our experiments is the CGAL algorithm introduced in Yurtsever
et al. (2019) (Algorithm 1 in the paper). This algorithm solves Problem (OP) if RX and RY are indicators of convex sets
X ⊂ E1, which is compact, and Y ⊆ E2. Yurtsever et al. (2019) suggests two methods for computing the dual step size
at every time step — decreasing step sizes (which we dub ”decr”), and constant step sizes (which we dub ”const”). We
present results for both choices. These dual updates also depend on a sequence of dual bounds {Dk}k∈N. In accordance
with the recommendation in Yurtsever et al. (2019) for best practical performance, we set Dk = DX ‖A‖ρ0,∀k ∈ N,
where DX is the diameter of X and ρ0 is an initial penalty parameter for the augmented Lagrangian (this algorithm uses
increasing values of ρ, while we use a constant value). In the implementation of this algorithm we also set A to be the
identity operator, X to be the spectrahedron, and Y to be an `1-norm ball. One iteration of CGAL, thus, requires a single
rank-one SVD operation and two projections onto the `1-norm ball.

SVD implementation and rank overestimation: Both algorithms require low-rank SVD computations. The baseline
requires a single rank-one SVD on each iteration, and our algorithm performs a single rank-r̂∗ SVD every iteration, where
we recall r̂∗ is an estimation of r∗, the rank of the optimal solution, which is assumed to be small. We perform these
computations for both algorithms using the scipy.sparse.linalg.eigsh() built-in function in Python, which gets as an input
the rank of the SVD required. For our algorithm, we examined two cases. In the first one, we set r̂∗ = r. In the second
case, we purposely overestimated r∗ by a factor of 1.5, meaning we set r̂∗ = 1.5r. Another parameter of this function is a
tolerance parameter, which serves as a stopping condition, which we set to 0.01 for both algorithms, to avoid long running
times reaching irrelevant levels of precision.

Manual Tuning of hyper parameters: In our algorithm, given the value of the quadratic penalty parameter ρ, our
theory suggests taking values of the dual step size µ which are often highly pessimistic in practice (less than 10−3 for
this experiment). We thus increase the value of µ beyond its theoretical bound for better practical results and simply
set µ = 0.2, which seems to work well. For the tuning of ρ, given the choice µ = 0.2, we started with 1, and kept
multiplying/dividing by a factor of 5, until a parameter outperformed its neighbors (the neighbors of 1 are 0.2 and 5, to be
clear), over the average of 20 i.i.d. runs. The tuning was done separately for the two variants of our algorithm (”Mean” and
”Last”). The tuning of the parameter ρ0 for the baseline algorithm was done similarly, and was done separately for its two
different variants (“decr” and “const”). The values of ρ for our algorithm and ρ0 for the baseline are presentes in Table 3.

Algorithm
r

5 10 20

Last (ours) 25 5 1
Mean (ours) 5 5 1
CGAL-const 1 0.2 0.2
CGAL-decr 1 1 1

Table 3: Values of ρ (our algorithm, top two rows) and ρ0 (baseline algorithm, bottom two rows).

Initialization: For both algorithms we initialized S to be the projection of Σ̂ onto the spectrahedron of trace τ , and the
dual variable to be zero. In addition, for our algorithm, we initialized the additional variable y to be the projection of Σ̂
onto the `1 norm ball of radius s.

F.1.2 Results

The complete set of results is given in Figures 3, 4, 5, 6, 7.

F.2 Max Cut

F.2.1 Implementation Details

Our Algorithm We setRX to be an indicator of the spectrahedron Sτ with τ = d. We set A to be the identity operator,
and set RY to be the indicator function for the set of d × d matrices with a diagonal of ones. Hence on each iteration,
the main computation of our algorithm is a single low-rank SVD. We also set f(x) ≡ f(S) := −tr(CS), for simplicity
of computation. As in the CME experiments, we use line search for computing the primal step size on each iteration for
this problem as well. In particular, we set the rank estimate for our algorithm, which determines the rank of the SVD
computations, as r̂∗ = r∗.
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Figure 3: Results for low-rank and sparse covariance estimation for r = r̂∗ = 5.

The Baseline Algorithm As in the implementation of our algorithm, we set A to be the identity operator, X to be the
spectrahedron Sτ with τ = d, and Y to be the set of d × d matrices with diagonal of ones. We used the same objective
function as in our algorithm. Hence, for the baseline algorithm, the only expensive computation is a rank-one SVD
computation on each iteration.

SVD computations and rank overestimation We used the same Python built-in function for thin SVD computations
as in the previous experiment. Here we also set the tolerance parameter of the function to 0.01 for all algorithms. For the
G1 graph we also considered overestimating the rank of the optimal solution for our algorithm, taking the SVD rank to be
r̂∗ = 20, where we know r∗ = 13 is the rank of the optimal solution.

Manual Tuning Since this problem does not satisfy the PQG property, the choice of η becomes heuristic, which adds
another free parameter to our algorithm. Here we chose µ = 0.2 and η = 0.2 arbitrarily, while the choice of ρ = 1 for
both variants of our algorithm, and ρ0 = 1 for both variants of the baseline was done the same way as in the previous
experiment, based on the performance over the graph G1 , where r̂∗ = r∗ = 13 (Figure 8). Here, we used the same
parameters for all of four datasets (Figures 8,9,10,11).

Initialization For both algorithms we initialized S to be the identity matrix, and the dual variable to be zero. In addition,
for our algorithm, we initialized the additional variable y to be the identity matrix as well.

F.2.2 Results

The complete set of results is given in Figures 8, 9, 10, 11.
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Figure 4: Results for low-rank and sparse covariance estimation for r = r̂∗ = 10.

Figure 5: Results for low-rank and sparse covariance estimation for r = r̂∗ = 20.



Running heading title breaks the line

Figure 6: Results for low-rank and sparse covariance estimation for r = 10 and r̂∗ = 15.

Figure 7: Results for low-rank and sparse covariance estimation for r = 20 and r̂∗ = 30.
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Figure 8: Results for Max Cut with graph G1 (r∗ = r̂∗ = 13).

Figure 9: Results for Max Cut with graph G2 (r∗ = r̂∗ = 13).
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Figure 10: Results for Max Cut with graph G3 (r∗ = r̂∗ = 14).

Figure 11: Results for Max Cut with graph G1 (r∗ = 13) for r̂∗ = 20.
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