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Abstract

This work provides several fundamental charac-
terizations of the optimal classification function
under the demographic parity constraint. In the
awareness framework, akin to the classical uncon-
strained classification case, we show that maxi-
mizing accuracy under this fairness constraint is
equivalent to solving a fair regression problem fol-
lowed by thresholding at level 1/2. We extend this
result to linear-fractional classification measures
(e.g., F-score, AM measure, balanced accuracy,
etc.), highlighting the fundamental role played by
regression in this framework. Our results leverage
recently developed connection between the demo-
graphic parity constraint and the multi-marginal
optimal transport formulation. Informally, our
result shows that the transition between the un-
constrained problem and the fair one is achieved
by replacing the conditional expectation of the la-
bel by the solution of the fair regression problem.
Finally, leveraging our analysis, we demonstrate
an equivalence between the awareness and the
unawareness setups for two sensitive groups.

1 INTRODUCTION

Our experience of life is increasingly and insidiously being
influenced by algorithmic predictions. It is now well ac-
cepted that such predictions might replicate or even amplify
societal biases and discrimination because of machine learn-
ing algorithms’ training process (Barocas et al., 2019). A
key difficulty in overcoming the effect of those biases is the
lack of a precise understanding of how statistical algorithms
make predictions: these algorithms are often designed to
minimize a user-specified data-dependent loss and yield a
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highly complex prediction rule, leaving practitioners—and
theoreticians—unable to understand and explain the issued
predictions. Our goal is to provide a sound and simple math-
ematical characterization of the prediction process in the
presence of fairness constraints.
In this paper we study the demographic parity fairness con-
straint (Calders et al., 2009) in the awareness framework—
allowing the prediction rules to explicitly take the sensitive
attribute as an input. Even though this constraint is relatively
well understood from an algorithmic perspective in both
classification (Agarwal et al., 2018; Menon and Williamson,
2018; Zeng et al., 2022; Schreuder and Chzhen, 2021; Yang
et al., 2020; Jiang et al., 2020; Chiappa et al., 2020; Feldman
et al., 2015; Gordaliza et al., 2019) and regression (Chzhen
et al., 2020b,a; Le Gouic et al., 2020; Jiang et al., 2020;
Agarwal et al., 2019; Chiappa and Pacchiano, 2021), the
connection between the two setups remains opaque. The
main goal of the current paper is to unveil it.
In contrast, in the traditional unconstrained learning setup,
the relation between classification and its regression coun-
terpart is well understood and can be found in all standard
books on the subject (see, e.g., Hastie et al., 2009; De-
vroye et al., 2013; James et al., 2013; Mohri et al., 2018).
For instance, a standard result illustrating this connection
states that if η minimizes the squared risk, the classifier
g∗(·) = 1 (η(·) ≥ 1/2) minimizes the misclassification er-
ror. Such results form the first building block of many
theoretical and practical studies (see, e.g., Audibert and Tsy-
bakov, 2007; Yang, 1999; Massart and Nédélec, 2006; Biau
et al., 2008). More recently, the connection between regres-
sion and classification was pushed even further. For instance,
replacing the misclassification error by the F-score (Van Ri-
jsbergen, 1974; Chinchor, 1992), Zhao et al. (2013) showed
that an F-score maximizer can be obtained by properly
thresholding the minimizer of the squared risk η. Moreover,
a recent thread of results establish this fundamental relation
for a large variety of performance measures including AM
measure, the Jaccard similarity coefficient, and G-mean, to
name a few (Menon et al., 2013; Koyejo et al., 2014, 2015;
Yan et al., 2018). Again, akin to the standard minimiza-
tion of misclassification error problem, all these develop-
ments led to many theoretical and practical advances (see,
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e.g., Jasinska et al., 2016; Chzhen, 2020; Narasimhan et al.,
2015; Kotlowski and Dembczyński, 2016; Bascol et al.,
2019; Boughorbel et al., 2017). Interestingly, some works
that consider group fairness constraints do report F-score
as a performance measure in their empirical studies without
actually tailoring an algorithm to optimize it directly (see,
e.g., Biswas and Rajan, 2020, 2021; Chen et al., 2022; Wang
and Singh, 2021; Dablain et al., 2022; Wick et al., 2019).
A possible cause of this is the absence of characterization
of fair (F-score) optimal classifiers in the fairness literature.
In this paper we fill this gap for the demographic parity
constraint and a large class of performance measures.
Literature that treats group fairness notions is typically dis-
tinguished by two features: fairness definition and access to
the sensitive attribute at prediction time. While this work
focuses on demographic parity, we discuss both awareness
and unawareness setups—allowing or not the access to the
sensitive attribute at prediction time respectively. Unlike
the case of awareness, in which a significant understanding
has been achieved from a theoretical perspective, the case
of unawareness remains opaque with contributions mainly
focusing on algorithmic constructions (see e.g., Agarwal
et al., 2018, 2019; Oneto et al., 2020; Michele et al., 2017;
Narasimhan, 2018). A notable work of Lipton et al. (2018)
puts forward several empirical evidences highlighting criti-
cal issues arising in the unawareness setup. Our work makes
a step towards a more explicit and transparent description
of the optimal classifier under the demographic parity con-
straint with unawareness by introducing a simple theoretical
reduction scheme to the awareness setup for binary protected
attribute. Consequently, our results support theoretically the
empirical claims made by Lipton et al. (2018).
Contributions. The goal of this work is to establish a
link between regression and classification problems under
the demographic parity constraint. We make the following
contributions to the study of algorithmic fairness: 1) we
show that, under mild assumptions, if f∗ minimizes the
squared risk under the demographic parity constraint, then
1 (f∗ ≥ 1/2) minimizes the probability of misclassification
under the same constraint; 2) we extend the above result to a
large family of performance measures introduced in Koyejo
et al. (2015) for unconstrained classification; 3) in the case
of a binary sensitive attribute, we provide a simple reduction
scheme that transforms, in a optimal way, the unawareness
setup into the awareness one.
The first two contributions show the fundamental role played
by regression in the context of demographic parity constraint
and are built using basic tools from univariate optimal trans-
port theory. As an interesting consequence of our analysis,
we show that the notion of strong demographic parity intro-
duced by Jiang et al. (2020) is equivalent to the usual demo-
graphic parity when a performance measure is minimized.
The latter indicates that the post-hoc or the downstream
threshold will never harm the demographic parity constraint.
The last contribution constitutes a step towards the theoret-

ical treatment of the unawareness setup—a problem that
still remains open. Importantly, even though our results are
stated in the fair learning setting, they imply new results
in the general learning setting. In particular, our results
characterize the optimal unconstrained classifier for a large
class of classification performance measures.

2 PROBLEM SETUP

Consider a triplet (X, S, Y ) ∈ X × [K]×{0, 1}, following
some joint distribution P, consisting of the nominally non-
sensitive and sensitive features, and the label, respectively.
Classifiers are functions of the form g : X × [K] 7→ {0, 1}
and score functions take the form f : X × [K] 7→ [0, 1]. The
set of all classifiers is denoted by G and the set of all score
functions is denoted by F . We set η(X, S) ≜ E[Y | X, S]
and recall that η minimizes the squared risk without any
constraint. For each s ∈ [K], we define ps ≜ P(S = s).
The central object of this work is the optimal fair score
function

f∗∈ argmin
f∈F

{
E(Y−f(X, S))2 : f(X, S) ⊥⊥ S

}
. (1)

An explicit expression for f∗ under standard assumptions
was derived in (Chzhen et al., 2020b; Le Gouic et al., 2020)
using the univariate optimal transport theory and the reduc-
tion of the problem in Eq. (1) to a multi-marginal optimal
transport formulation. In particular, they showed that, un-
der mild assumptions, there is a one-to-one correspondence
between the problem in Eq. (1) and the problem

minν∈P2(R)
∑K

s=1 psW
2
2 (Law(η(X, S) | S = s), ν) ,

where W2 is the Wasserstein-2 distance (Villani, 2009, Def-
inition 6.1) and P2(R) denotes the space of univariate prob-
ability measures with finite second moment. Denoting by
ν⋆ the solution of the above problem, it was shown that

f∗(x, s) = TLaw(η(X,S)|S=s)→ν⋆

(
η(x, s)

)
,

where TLaw(η(X,S)|S=s)→ν⋆ is the optimal transport map
from Law(η(X, S) | S = s) to ν⋆. Up until now, unlike
in the regression setting, it was not clear if a direct link
between optimal transport and the fair binary classification
problem existed–or even made sense. Our work shows that
such a connection exists and that it is fundamental.
Notation. Given a real-valued function f : X × [K] → R,
we denote by µs(f) the univariate measure defined for all
A ⊂ R as µs(f)(A) ≜ P(f(X, S) ∈ A | S = s). For
any univariate measure µ, we denote by Fµ its cumulative
distribution. For any x ∈ R we set (x)+ ≜ max{x, 0}.

3 THE MISCLASSIFICATION RISK: A
WARM-UP

In this section, we begin by tackling the classical minimiza-
tion of the misclassification risk problem and highlight the
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main novelties and advances with respect to previous works.
To this end, we consider the following optimal (in terms of
the misclassification risk) fair classifier

g∗ ∈ argmin
g∈G

{P(Y ̸= g(X, S)) : g(X, S) ⊥⊥ S} . (2)

We work under the following assumption.

Assumption 3.1. For s ∈ [K], let Law(η(X, S) | S = s)
be continuous and supported on an interval.

A slightly modified version of the above was used in the
context of fairness in (Chzhen et al., 2020b,a; Le Gouic
et al., 2020; Jiang et al., 2020) and also also in the classical
unconstrained classification with generalized performance
measures (Yan et al., 2018). In Section A, we relax the
above assumption and provide a proof that unifies the aware-
ness case considered just below with the unawareness case
presented in Section 5, Theorem 5.2.

The first warm-up result is reminiscent of those recently
obtained in (Zeng et al., 2022; Schreuder and Chzhen, 2021).
The proof based on the minmax duality and is very similar
to the classical Neyman-Pearson lemma. While it does
not allow to immediately reach our goals, it gives several
fundamental insights that were already invoked in previous
works on the demographic parity constraint (Lipton et al.,
2018; Hardt et al., 2016).

Theorem 3.2. Under Assumption 3.1, g∗ : X × [K] →
{0, 1} defined in (2) can be expressed as

g∗(x, s) = 1 (2η(x, s)− 1 ≥ λ∗
s/ps) ,

where λ∗ = (λ∗
1, . . . , λ

∗
K)⊤ ∈ RK is a solution of

min
λ∈RK

{
E
[∣∣∣∣2η(X, S)− 1− λS

pS

∣∣∣∣
]
: E
[
λS

pS

]
= 0

}
.

The main takeaway message from the above theorem is:
under the stated assumption, the optimal fair classifier can
be derived as a group-wise thresholding of the regression
function η, with thresholds eventually depending on the sen-
sitive groups. For a similar statement without the continuity
assumption, we refer the reader to Zeng et al. (2022) who
derived optimal randomized classifiers using the Neyman-
Pearson lemma. Let us now provide a novel characterization
of an optimal fair classifier.

Theorem 3.3 (Wasserstein based fair optimal classifier).
Under Assumption 3.1, g∗ : X × [K] → {0, 1} defined in
(2) can be expressed as

g∗(x, s) = 1 (f∗(x, s) ≥ 1/2) with f∗ defined in (1) .

Discussion. The above result is instructive on its own—one
can solve binary classification under the demographic parity
constraint by solving the corresponding regression problem.

We recall that (Chzhen et al., 2020b; Le Gouic et al., 2020)
built a statistically consistent algorithm for the estimation
of the latter. Furthermore, they showed that,

f∗(x, s) =

( K∑

σ=1

pσF
−1
µσ(η)

)
◦ Fµs(η)

︸ ︷︷ ︸
transport to the barycenter

◦ η(x, s) .

Feldman et al. (2015) proposed to transport the group-wise
distribution of η(X, S) towards their common barycenter as
a disparity removal strategy. Yet, a theoretical justification
was missing and this approach remained a heuristic until
the work of Gordaliza et al. (2019) who provided an upper
bound on the excess risk in terms of the Wasserstein barycen-
ter objective. Later, Jiang et al. (2020) relied on the barycen-
ter formulation involving the Earth Mover distance (Rachev
and Rüschendorf, 1998) and showed that a transport-based
prediction results in a minimal perturbation post-processing.
However, the use of the Earth Mover distance might result in
non-uniqueness issues. Our Theorem 3.3 gives a complete
theoretical justification of the transport based fair classifica-
tion algorithms. Theorem 4.3 in Section 4 further extends
this connection to non-decomposable measures.

Besides, Jiang et al. (2020) introduced a notion of strong
demographic parity, which amounts to taking classifiers
g : X × [K] → {0, 1} for which there exists a score func-
tion f : X × [K] → [0, 1] such that f(X, S) ⊥⊥ S and
g(x, s) = 1 (f(x, s) ≥ 1/2). This notion was later used
in (Chiappa et al., 2020; Chiappa and Pacchiano, 2021).
Theorem 3.3 implies that the optimal classifier under the
demographic parity constraint satisfies, an a priori more
restrictive fairness notion—the strong demographic parity.
Indeed, any classifier that satisfies strong demographic par-
ity is demographic parity fair. Hence, we have deduced
the equivalence between the two definitions at the optimum.
The notion of strong demographic parity introduced by Jiang
et al. (2020) can be seen in a downstream or post-hoc set-
tings. That is, the learner first tries to fit a score function and
only after a particular threshold is selected in a potentially
non-stationary way. Strong demographic parity implies that
any threshold selection made by the learner will yield a fair
classifier. In that sense, our results show that building a
score function via an optimal fair regression function is opti-
mal for misclassification risk and, as we see in Section 4, for
many other classification measures. In appendix we provide
a simple proof of Theorem 3.3. The proof itself is rather
instructive and gives rise to the following interpretation.

Remark 3.4. The proof of Theorem 3.3 reveals that
the optimal fair classifier can be written as g∗(x, s) =
1
(
Fµs(η)

(
η(x, s)

)
≥ γ∗), where γ∗ is given by Eq. (19) of

the proof. Recall that q 7→∑K
s=1 psF

−1
µs(η)

(q) is the quan-
tile function of the Wasserstein-2 barycenter of measures
(µs(η))s∈[K], weighted by (ps)s∈[K] (see, e.g., Agueh and
Carlier, 2011, Section 6.1). Thus, denoting this barycenter
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Figure 1: Illustration of Bayes and fair optimal classifiers. Left: group-wise cumulative distributions of η(X, S)—the
threshold is .5; Middle: Illustration of Theorem 3.3—black solid line corresponds to Fµ(f∗); Right: illustration of
group-wise thresholds that correspond to the fair optimal classifier.

by µ̄(η), g∗ can be alternatively expressed as

g∗(x, s) = 1
(
Fµs(η)

(
η(x, s)

)
≥ Fµ̄(η)

(
1/2
))

.

The last display shows that while the thresholds of η differ
across groups (as per Theorem 3.2), this threshold sensitive-
group independent if viewed from the perspective of group-
wise ranking. Putting it simply, if Fµ̄(η)(1/2) = p ∈ (0, 1),
then the (1−p) × 100% best individuals from each group
get classified positively. This property reflects the notion
of rational ordering (see Lipton et al., 2018, Section 4)
that follows from order preservation property of f∗ (see
Chzhen and Schreuder, 2022, Section 4). Figure 1 provides
a graphical illustration of the above observations.

We note that as in other works explaining a given fairness
constraint, we do not argue for or against the policy itself.

Price of Fairness. From Theorem 3.3, we can derive an
exact expression for the Price of Fairness (PoF) as well
as an easy-to-estimate upper-bound. We recall that PoF is
typically defined as the difference between the risk of fair
optimal classifier and the Bayes optimal one, i.e.,

PoF ≜ P(Y ̸= g∗(X, S))−min
g∈G

P(Y ̸= g(X, S)) ,

where g∗ : X × [K] → {0, 1} is defined in (2).

Proposition 3.5. Let Assumption 3.1 be satisfied. Then,

PoF = E|η(X, S)− 1/2| − E|f∗(X, S)− 1/2| ,

with f∗ defined in (1).

Corollary 3.6. In the context of regression under the De-
mographic Parity constraint, Chzhen and Schreuder (2022)
introduce a measure of unfairness for score functions f :

X × [K] → R as

U(f) = min
ν∈P2(R)

K∑

s=1

psW
2
2(µs(f), ν) ,

where P2(R) stands for univariate probability measures
with finite second moment. In view of Proposition 3.5, we
deduce that

PoF ≤ E|η(X, S)− f∗(X, S)|
≤
√
E|η(X, S)− f∗(X, S)|2 =

√
U(η) ,

where the last equality is due to (Chzhen et al., 2020b, The-
orem 2.3). The above inequality is rather intuitive and
instructive—the price of fairness is controlled by the level
of unfairness of the Bayes optimal prediction function.

This bound is a significant improvement to (Gordaliza et al.,
2019, Theorem 3.3), who only derived this result for K = 2.
Furthermore, their result required Lipschitz continuity of
η(x, s) for s ∈ {1, 2} and gave worse leading constants.

4 NON-DECOMPOSABLE
PERFORMANCE MEASURES

In this part we extend the analysis of the previous sec-
tion to a broader class of performance measures, which
includes the F-score, the AM-mean, and the misclassifi-
cation risk among others. We follow the framework put
forward by Koyejo et al. (2014), who introduced the so-
called linear fractional performance measures. Formally,
given coefficients (n0, n1, n2) ∈ R3 and (d0, d1, d2) ∈ R3,
the performance of a classifier g : X × [K] → {0, 1} is
measured by its utility U(n,d)(g) defined as

n0 + n1P(g(X, S)=1, Y=1) + n2P(g(X, S)=1)

d0 + d1P(g(X, S)=1, Y=1) + d2P(g(X, S)=1)
. (3)
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Expression (n0, n1, n2) (d0, d1, d2)

Accuracy P(Y = g(X, S)) (1− py=1, 2, −1) (1, 0, 0)

Fb-score (1+b2)P(Y=1, g(X,S)=1)
b2P(Y=1)+P(g(X,S)=1) (0, 1 + b2, 0) (b2py=1, 0, 1)

Jaccard P(Y=1, g(X,S)=1)
P(Y=1, g(X,S)=0)+P(g(X,S)=1) (0, 1, 0) (py=1, −1, 1)

AM-measure 1
2

{
P(g(X, S)=0 | Y=0)+P(g(X, S)=1 | Y=1)

}
( 12 ,

1
2py=1+

1
2py=0 , − 1

2py=0 ) (1, 0, 0)

Table 1: Some examples of measure that can be represented by Eq. (3). For more examples see Choi et al. (2010). We set
for this table py=1 ≜ P(Y = 1) and py=0 ≜ P(Y = 0).

We denote by dom(U(n,d)) ⊂ G the set of all classifiers
g : X × [K] → {0, 1} for which the denominator of U(n,d)

is non-zero. It is important to emphasize that both n and
d are allowed to depend on the unknown distribution of
the data P but not on the classifier g. For instance, the
F1-score (Van Rijsbergen, 1974) corresponds to the choice
(n0, n1, n2) = (0, 2, 0) and (d0, d1, d2) = (P(Y=1), 0, 1).
We refer to (Choi et al., 2010) for additional examples of
different choices of (n, d) corresponding to different clas-
sification performance measures. Recently, Yang et al.
(2020) studied linear performance measures in the con-
text of fairness, which essentially corresponds to the spe-
cial case of the above linear fractional formulation with
(d0, d1, d2) = (1, 0, 0)—which, for instance, does not en-
compass the F1-score. In another direction, Celis et al.
(2019) considered linear fractional formulation of fairness
constraints while optimizing the misclassification risk. How-
ever, given the structure of the constraints, this problem can
essentially be re-formulated as misclassification risk mini-
mization under linear fairness constraints.
As it is common in the literature on generalized performance
measures, we view U(n,d) as a utility to be maximized, con-
trary to the minimization of the risk viewpoint from the
previous section. Thus, our goal is to study

g∗(n,d) ∈ argmax
g∈dom(U(n,d))

{
U(n,d)(g) : g(X, S) ⊥⊥ S

}
. (4)

A remarkable property of linear fractional measures is that
the unconstrained maximizer can still be obtained by thresh-
olding the regression function η. Yet, the threshold in this
case might depend on the unknown distribution P and ought
to be estimated. Let us provide couple of standard examples.

Example 4.1. Consider the problem of maximizing the ac-
curacy: maxg∈G P(Y = g(X, S)). Setting (n0, n1, n2) =
(1 − P(Y = 1), 2,−1) and (d0, d1, d2) = (1, 0, 0), we
see that the above formulation falls within the considered
framework.

Example 4.2. Consider the problem:

max
g∈G

2P(g(X, S) = 1, Y = 1)

P(Y = 1) + P(g(X, S) = 1)
,

of maximizing the F1-score. Zhao et al. (2013) showed that

the solution g∗ of the above can be written as

g∗(x, s) = 1 (η(x, s) ≥ θ∗) where

θ∗ is the unique solution of θP(Y = 1) = E(η(X, S)−θ)+.

Koyejo et al. (2014) pushed further these results demonstrat-
ing that the “thresholding principle” remains true for the
whole family of linear fractional measures. In what follows,
we will show that their result is still valid if one replaces
η by f∗—the solution of the fair regression problem. This
validity is established in a strong sense, meaning that even
the equation (as in Example 4.2) determining the threshold
is preserved.

Theorem 4.3 (Fair optimal classifier for non-decomposable
measures). Let Assumption 3.1 be satisfied. Assume that
d ∈ R3 is such that: d0 +min

{
min{d1, 0}+ d2, 0

}
≥ 0.

Assume that the coefficients (n, d) ∈ R3 ×R3 satisfy one of
the following mutually exclusive conditions:





d2n1>n2d1 and d0n1−n0d1≥ (n0d2−d0n2)+
n0d2 − d0n2
n2d1 − d2n1

≤ P(Y = 1)
, (C1)

or




d2n1 = n2d1 and n1d0 > d1n0

d0n2 − n0d2
n0d1 − d0n1

∈ [0, 1]
. (C2)

Then, g∗(n,d) defined in Eq. (4) can be expressed for all
(x, s) ∈ X × [K] as

g∗(n,d)(x, s) = 1
(
f∗(x, s) ≥ θ∗(n,d)

)
, (5)

where θ∗(n,d) is either the unique solution of

E [(f∗(X, S)− θ)+] =θ ·
{
n0d1 − d0n1
n2d1 − d2n1

}

+

{
n0d2 − d0n2
n2d1 − d2n1

}
,

(6)

if n2d1 ̸= d2n1 or θ∗(n,d) =
d0n2−n0d2
n0d1−d0n1

otherwise.
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A few comments are in order. First of all, Theorem 4.3 states
that the pre-cited “thresholding principle” still holds for op-
timizing linear-fractional performance measures under the
demographic parity constraint: optimal fair classifiers can
be obtained by thresholding the optimal fair regression func-
tion f∗ at the right threshold level θ∗(n,d). Moreover, in the
case n2d1 = d2n1 an explicit expression is provided, while
if n2d1 ̸= d2n1 one needs to solve a fixed-point equation to
find the optimal threshold. Given that the function defining
the fixed-point equation is univariate, monotone and con-
tinuous, the bisection method (or any other univariate root-
finding method) can be used to obtain an approximation of
the optimal threshold up to arbitrary precision. Finally, since
the conditions on the coefficients might seem opaque at first
sight, let us argue why they are harmless and meaningful.
Intuitively, these conditions specify only two requirements:
1) The maximization of U(n,d)(g) makes sense—the more
the classifier aligns with Y , the better. In particular, they
exclude P(Y ̸= g(X, S)), whose maximization does not
make sense. 2) The denominator of U(n,d) is non-negative.
One can verify that all the measures presented in Table 1
do indeed satisfy these conditions as well as many other
linear fractional performance measures from Choi et al.
(2010). We would also like to point out that while the
conditions of Theorem 4.3 are cumbersome, they are easy
to check in practice, unlike those given in (Koyejo et al.,
2014), who relied on sign(n1 − U(n,d)(g

∗
(n,d))d1). Indeed,

to check the latter, one needs to know or estimate the
optimal value of U(n,d) beforehand, which is not always
feasible in practice. In contrast, conditions (C1) and (C2)
only involve the known coefficients (n, d). Finally, let us
remark that U(n,d) = U(−n,−d) and both conditions (C1)
and (C2) are invariant under the (n, d) 7→ (−n,−d) trans-
formation. Yet, to fix only one of them, we additionally
require d0+min

{
min{d1, 0}+ d2, 0

}
≥ 0, which forces

the user to fix the signs of d properly. Let us empha-
size that, if d0 + min

{
min{d1, 0} + d2, 0

}
> 0, then

dom(U(n,d)) = G—the denominator does not zero-out—
which is a consequence of Lemma C.1.

Proof of Theorem 4.3 follows from the following two results.
The first lemma is similar to the main result of (Koyejo et al.,
2014), while the second one gives an explicit expression
for the excess-score of any fair classifier. The actual proof
technique shares some similarities with the analysis of F1-
score in (Chzhen, 2020) who provided an alternative proof
to the result of Zhao et al. (2013) recalled in Example 4.2.
Lemma 4.4. Let g∗(n,d) be defined in Theorem 4.3, assume
that θ∗(n,d) in (6) exists. Then, under Assumption 3.1,

U(n,d)

(
g∗(n,d)

)
=

n2 + θ∗(n,d)n1

d2 + θ∗(n,d)d1
if n2d1 ̸= d2n1 or

U(n,d)

(
g∗(n,d)

)
=

n0 + n1E
(
f∗(X, S)− θ∗(n,d)

)
+

d0 + d1E
(
f∗(X, S)− θ∗(n,d)

)
+

,

otherwise.

The next result provides an explicit expression for the excess
score of any fair classifier g.
Lemma 4.5. Let Assumption 3.1 be satisfied. Let g∗(n,d) be

defined as in Theorem 4.3 and assume that θ∗ ≜ θ∗(n,d)
defined in Eq. (6) exists. Let µ̄(η) be the Wasserstein
barycenter of measures µ1(η), . . . , µK(η) weighted by
p1, . . . , pK , respectively. Define β∗ as β∗ = Fµ̄(η)(θ

∗).
Let E(n,d)(g) ≜ U(n,d)

(
g∗(n,d)

)
− U(n,d)

(
g
)
. Then, for any

classifier g ∈ dom(U(n,d)) such that g(X, S) ⊥⊥ S, excess
score E(n,d)(g) equals to

CP,(n,d) ·
E|η(X, S)−F−1

µS(η)(β
∗)|1 (g∗(X, S) ̸=g(X, S))

d0+d1P(Y=1, g(X, S)=1)+d2P(g(X, S)=1)
,

where

CP,(n,d) =





d2n1−n2d1
d2 + θ∗d1

n2d1 ̸=d2n1

n1d0 − d1n0
d0+d1E(f∗(X, S)−θ∗)+

n2d1=d2n1

.

Furthermore, under the conditions on (n, d) specified in
Theorem 4.3; we have E(n,d)(g) ≥ 0 for all classifiers g :
X × [K] → {0, 1}.

Remark 4.6. Lemma 4.5, together with Lemma C.4, stated
in appendix, implies that CP,(n,d) =

(
n1−d1U(n,d)(g

∗
(n,d))

)
.

Hence, the inequality E(n,d)(g) ≥ 0 for all g is implied from
{
d0 + d1P(Y=1, g(X, S)=1) + d2P(g(X, S)=1) > 0

n1 − d1U(n,d)(g
∗
(n,d)) ≥ 0

,

for all g ∈ dom(U(n,d)). The first of the above condi-
tions is ensured if d0 + min

{
min{d1, 0} + d2, 0

}
≥ 0

(Lemma C.1) assumed in Theorem 4.3 and the second one
is ensured by (C1) or (C2), as proved in Lemma C.2.

Let us remark that the content of this section can be seen
as a strict improvement over Koyejo et al. (2014) who only
derived Lemma 4.4 in the absence of the fairness constraint.
Indeed, assuming that S ⊥⊥ X , ensures that any classifier g
is demographic parity fair and that f∗ ≡ η. In the absence
of the demographic parity constraint, Assumption 3.1 is
unnecessary and exactly the same strategy gives the charac-
terization of the optimal unconstrained classifier.

Examples: accuracy and F1-score. In this part, we
give specific examples of the parameters (n0, n1, n2) and
(d0, d1, d2) and instantiate Theorem 4.3 and Lemma 4.5.
The first examples concerns the accuracy as a performance
metric. It highlights the generality of the derived results.
Example 4.7 (Accuracy under fairness constraint). Recall-
ing the coefficients specified in Example 4.1, we see that in
this case n2d1 = d2n1 and that condition (C2) is satisfied.
Hence under Assumption 3.1, Theorem 4.3 states that

g∗(n,d)(x, s) = 1
(
f∗(x, s) ≥ θ∗(n,d)

)
,
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with θ∗(n,d) =
d0n2−n0d2
n2d1−d2n1

= 1·(−1)−(1−P(Y=1))·0
(1−P(Y=1))·0−1·2 = 1

2 max-
imizes P(Y ̸= g(X, S)) under the demographic parity
constraint. Thus, it coincides with the result of Theo-
rem 3.3. Furthermore, Lemma 4.5 states that for any classi-
fier g : X × [K] → {0, 1} such that g(X, S) ⊥⊥ S, it holds
that P(Y=g∗(n,d)(X, S))−P(Y=g(X, S)) equals to

2E|η(X, S)−F−1
µS(η) ◦ Fµ̄(η)(.5)|1 (g∗(X, S) ̸=g(X, S)) .

We invite the reader to compare the above expression with
its classical version (Devroye et al., 2013, Theorem 2.2).

The second example concerns the F1-score that has been
used in several empirical works on fairness as a performance
measure (Wang and Singh, 2021; Dablain et al., 2022; Wick
et al., 2019).

Example 4.8 (F1-score under fairness constraint). Recall
that the F1-score is defined as

F1(g) =
2P(g(X, S) = 1, Y = 1)

P(Y = 1) + P(g(X, S) = 1)
.

Using the coefficients specified in Example 4.2, we see that
for this case n2d1 ̸= d2n1 and condition (C1) is satisfied.
Hence, under Assumption 3.1, Theorem 4.3 states that

g∗(n,d)(x, s) = 1
(
f∗(x, s) ≥ θ∗(n,d)

)
,

with θ∗(n,d) being a unique solution of

P(Y = 1)θ = E(f∗(X, S)− θ)+ ,

maximizes the F1-score under the demographic parity con-
straint. Furthermore, Lemma 4.5 states that for any classi-
fier g : X × [K] → {0, 1} such that g(X, S) ⊥⊥ S, it holds
that F1

(
g∗(n,d)

)
− F1

(
g
)

equals to

2E
∣∣η(X, S)−F−1

µS(η) ◦ Fµ̄(η)

(
θ∗(n,d)

)∣∣1 (
g∗(n,d)(X, S) ̸=g(X, S)

)
P(Y = 1) + P(g(X, S) = 1)

.

We invite the reader to compare the above expression with
its unconstrained version (Chzhen, 2020, Lemma 2).

5 THE UNAWARENESS CASE

All the previous parts were concerned with the awareness
setup—we allowed ourselves to use the sensitive attribute
explicitly. However, it can happen in practice that for legal
or ethical reasons, the sensitive attribute cannot be used
as an input at prediction time (Barocas and Selbst, 2016).
Throughout this section we look at classifiers of the form g :
X → {0, 1}. By abuse of notation, and as long as confusion
cannot occur, we use the same notation G to denote the set
of all classifiers in the unawareness setup. We also need
to introduce the conditional distribution of the sensitive
attribute S, given the nominally non-sensitive features X .

For all s ∈ [K], we set τs(X) = P(S = s | X). With one
more abuse of notation, we set η(X) ≜ E[Y | X]. In this
section we look for

g∗ ∈ argmin
g∈G

{P(g(X) ̸= Y ) : g(X) ⊥⊥ S} . (7)

Note that the only difference with the previous setup is the
absence of the sensitive input S in the input of g. Lipton
et al. (2018) investigated this framework empirically and
provided evidence against its use in practice. In particular,
they empirically showed that while not permitting using
the sensitive attribute S, many algorithms still learn the
link between S and X implicitly. Our first result gives a
theoretical justification to this phenomenon.

As in the awareness case, we work under a continuity as-
sumption, adapted to this scenario. Recall that Assump-
tion 3.1 imposed continuity of the regression function distri-
bution Law(η(X, s)) for each sensitive group s ∈ S. Here
we need a different assumption to account for the fact that
S is not accessible anymore, namely the continuity of any
linear combination of the regression functions distributions
η(X) and (τs(X))s∈K .

Assumption 5.1. For every s ∈ [K] and for every vector
c1, . . . , cK ∈ R such that c1+. . .+cK = 0, the distribution
Law(η(X) +

∑K
σ=1

cσ
pσ

τσ(X) | S = s) is continuous.

Akin to Theorem 3.2, we derive the explicit form of an
optimal fair classifier in the unawareness setting.

Theorem 5.2. Under Assumption 5.1, a solution g∗ defined
in Eq. (7) can be expressed for x ∈ X as

g∗(x) = 1
(
2η(x)− 1 ≥∑K

σ=1 λ
∗
στσ(x)/pσ

)
,

where λ∗ = (λ∗
1, . . . , λ

∗
K) ∈ RK is a solution of

min
λ∈RK

{
E

∣∣∣∣∣2η(X)−1−
K∑

σ=1

λστσ(X)

pσ

∣∣∣∣∣ : E
[
λS

pS

]
=0

}
. (8)

We make two observations. First of all, the optimal fair
classifier is no longer given by the group-wise threshold.
Yet, one can think of the term θ(x) ≜

∑K
σ=1

λ∗
στσ(x)
pσ

as the
x-dependent threshold. The optimal classifier g∗ tries to
guess the value of the sensitive attribute from the features
to properly set the threshold. Note that as in the awareness
case, here we have E[θ(X)] = 0. Thus, in average, the
“threshold” remains being equal to 1/2 as in the standard
classification setup. Secondly, we see that if S is measurable
w.r.t. X , we fall back to the awareness case. Otherwise each
λ∗
s is weighted by the conditional distribution of S | X .

Importantly, it is remains an open problem to give a connec-
tion of the above problem with the corresponding regression
setup. The main reason for it is the current lack of an ex-
plicit solution to the optimal fair regression problem in the
unawareness case. Some attempts were made in (Chzhen
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and Schreuder, 2020), yet they are unsatisfactory and do
not give a complete picture. Intuitively, the difficulty of
extending the optimal transport based approach to the un-
awareness setup lies in our inability to establish the source
of a given x. In other words, given x, we have no idea which
of PX|S=1, . . . ,PX|S=K it was sampled from. Hence, we
cannot build a transport map from Law(η(X, S) | S = s)
to their common barycenter since it requires the knowledge
of S. Naively, one might think to use Ŝ(X)—the best pre-
diction of S given X—instead of S. While intuitive, it is
easy to see that simply replacing S by Ŝ(X) in Theorem 3.3
does not even satisfy the demographic parity constraint in
general. As we show in the next paragraph, the connec-
tion between the fair classification and fair regression can
be made explicit in the unawareness case if we consider
the case of K = 2. The existence of such a connection is
explained by the Hahn decomposition theorem for signed
measure, whose generalization (even its formulation) to
many measures is unclear.

Binary sensitive attribute: the (P → P⋆) reduction. In
this section we describe a reduction of the fair unaware
binary classification problem to the awareness case for K =
2. First of all, let us recall that the minimization of P(Y ̸=
g(X, S)) over g under any constraints is equivalent to the
minimization of E[g(X, S)(1−2η(X, S))] under the same
constraints. Furthermore, the same applies to the awareness
case where we only need to replace η(X, S) by η(X).

For our reduction, given a distribution P on X × {1, 2} ×
{0, 1}, we build another distribution P⋆ on X × {1, 2} and
a function η̃ : X × {1, 2} → [0,+∞) with the following
property: there is a one-to-one correspondence between a
solution g∗P of

min {EP[g(X)(1− 2η(X))] : g(X) ⊥⊥P S} ,

and a solution g∗P⋆ of

min {EP⋆ [g(X, S)(1− 2η̃(X, S))] : g(X, S) ⊥⊥P⋆ S} .

In other words, if g∗P⋆ is an optimal fair classifier for dis-
tribution P⋆ under awareness, then g∗P⋆ can be transformed
into an optimal fair classifier g∗P for P under unawareness.
In what follows, we present the reduction and, given the
distribution P, explain the procedure to build P⋆.

Let TV ≜ 1
2

∫ ∣∣dPX|S=1 − dPX|S=2

∣∣. Note that if TV =
0, then X ⊥⊥ S and any unaware classifier satisfies the
demographic parity constraint. Hence, we assume that
TV ∈ (0, 1]. We define P⋆ in three steps.
Step 1. The distribution of X given S under P⋆ is

P⋆
X|S=s = (PX|S=s − PX|S ̸=s)+/TV ,

where (PX|S=1 − PX|S=2)+ and (PX|S=2 − PX|S=1)+ is
the Hahn decomposition of the signed measure PX|S=2 −
PX|S=1 (see, e.g., Billingsley, 2008, Theorem 32.1);
Step 2. the distribution of S under P⋆ is defined as: P⋆(S =

1) = P⋆(S = 2) = 1/2;
Step 3. the new pseudo-regression function η̃ is defined as

η̃(x, s) =
1

2
+

TV

2
· 2η(x)− 1

|(τ1(x)/p1)− (τ2(x)/p2)|

for x ∈ supp(P⋆
X|S=1) ∩ supp(P⋆

X|S=2);
We note that under P⋆, the sensitive attribute S is measurable
w.r.t. X since the supports of P⋆

X|S=1 and P⋆
X|S=2 do not

intersect. We refer η̃ as to the pseudo-regression function
since it is not guaranteed that it takes values in [0, 1] and,
hence, is not necessary a valid regression function of Y | X
under P⋆ for Y ∈ {0, 1}.

Proposition 5.3 (Unawareness to awareness reduction). Let
P be any distribution on X × {1, 2} × {0, 1}. Let P⋆ and η̃
be defined using the three steps procedure described above
and g∗P⋆ be any solution of

min {EP⋆ [g(X, S)(1− 2η̃(X, S))] : g(X, S) ⊥⊥P⋆ S} .

Then, g∗P : X → {0, 1} defined point-wise as

g∗P(x) =





g∗P⋆(x, 1) x ∈ supp(P⋆
X|S=1)

g∗P⋆(x, 2) x ∈ supp(P⋆
X|S=2)

1 (η(x) ≥ 1/2) otherwise

,

is a solution of min {EP[g(X)(1− 2η(X))] : g(X) ⊥⊥P S}.

The above result provide a theoretical justification to the
empirical observations made by Lipton et al. (2018). Indeed,
they have empirically shown that in the unawareness setting,
many classification algorithms tailored for the demographic
parity constraint, are forced to “guess” the sensitive attribute
S. Theoretically, this is reflected by the construction of the
distribution X | S under P⋆. Furthermore, since the re-
duction is performed to the awareness setup, the results of
previous sections on the connection between fair regres-
sion and fair classification still applies. Yet, we emphasize
that the above argument is only valid for K = 2 and its
extension to K > 2 remains an open problem. The main
difficulty comes from the absence of a version of the Hahn
decomposition for more than two measures.

6 FAIR LEARNING: FROM INFINITE TO
FINITE SAMPLE

All the previous sections were concerned with the “infinite
sample” regime—the case of known distribution P. While
not being the main focus of the paper, given the established
connection with the problem of fair regression, one can eas-
ily pass from the infinite to the finite-sample regime. Indeed,
there are many algorithms that allow to consistently estimate
the optimal fair score function f∗. For instance, Agarwal
et al. (2019) give an in-processing algorithm with provable
finite sample generalization bounds; Le Gouic et al. (2020)
propose a consistent estimator of f∗; Chzhen et al. (2020b)
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Figure 2: Empirical group-wise outcomes for logistic regression (left) and the proposed post-processed fair plug-in
classifier (right) for the misclassification risk. The data was generated as follows. We drew N samples for each sensitive
class as X|S=1 ∼ N (−1, 1), X|S=2 ∼ N (1, 1) and Y |X=x ∼ Bernoulli(1/(1+e−x)). We fitted a Logistic Regression
classifier ĝLR using scikit-learn (Pedregosa et al., 2011). For the fair plug-in classifier, we obtained an estimator f̂ of
the optimal fair regression function f∗ following Chzhen et al. (2020b) and we considered ĝfair(x, s) ≜ 1(f̂(x, s) ≥ 1/2).

provide an algorithm with finite sample fairness and risk
guarantees; Chzhen and Schreuder (2022) exhibit a modi-
fication of the two aforementioned estimators that enjoys
stronger fairness and risk guarantees.

Once an estimator f̂ of f∗ is constructed, one only needs to
estimate the threshold θ∗ specified in Theorem 4.3. Recall
that there are two cases considered in Theorem 4.3, the first
one requires finding a root of a specific function and the sec-
ond one gives an explicit expression for θ∗. For the first case
one can use the unsupervised approach recycling f̂ and only
estimating EX|S [·] and the, potentially distribution depen-
dent coefficients, (n0, n1, n2), (d0, d1, d2). For the second
case one only needs to estimate or substitute the values of
(n0, n1, n2), (d0, d1, d2). Alternatively, for the threshold es-
timation, one can deploy the grid-search technique proposed
by Koyejo et al. (2014) by again recycling the base estima-
tor f̂ of f∗. In either case one ends up with a flexible and
rather direct approach for building data-driven algorithms.
We note however that the second approach requires addi-
tional labeled data, while the first one is only based on the
unlabeled data. The final classification algorithm eventually
takes the form of 1(f̂(x, s) ≥ θ̂).

As a proof of concept, we have implemented the described
approach on a toy example for the misclassification risk. A
description of the considered toy problem as well as em-
pirical results are provided in Figure 4. Figure 4 (left)
displays predictions without fairness constraints for both
groups; Figure 4 (right) displays predictions of the pro-
cedure described above. Appendix D contains additional
experiments and figures. In particular, we display an empir-
ical counter-part to Figure 1 and provide empirical results
for other risk measures such as the Fb-score and Jaccard.

7 CONCLUSION

We have derived an explicit connection between the re-
gression and classification under the demographic parity
constraint problems. Leveraging the optimal transport in-
terpretation of the optimal fair regressor, we have shown
that the regression-classification link is akin to the classi-
cal unconstrained setup. As a by-product of this result, we
have derived an exact expression for the Price of Fairness.
This connection is extended to non-decomposable perfor-
mance measures and, remarkably, amounts to replacing the
standard regression function by its fair counterpart. Finally,
we have provided a reduction scheme to pass from the un-
awareness setup to the awareness setup in the case of the
binary sensitive attribute, hence giving the first explicit so-
lution of the fair optimal unaware classifier. Our results
are instructive and, relying on the previous studies, lead
to wide spectrum of algorithms that can be used with non-
decomposable measures. Future works will be focused on
further clarification of other notions of fairness constraint
by providing clean and interpretable theoretical studies.
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Supplementary material for “Fair learning with Wasserstein barycenters
for non-decomposable performance measures”

Additional notation For any probability measure µ on X and a function f : X → R, we denote by f♯µ, the image
measure of µ. For any univariate measure µ, we denote by Fµ its cumulative distribution, and by F−1

µ its quantile function,
given by F−1

µ (p) ≜ min{x : µ((−∞, x]) ≥ p}.

A A UNIFIED PROOF FOR DERIVING OPTIMAL FAIR CLASSIFIERS

In this section we state and prove a general result which implies both Theorem 3.2 and Theorem 5.2. On top of the problem
setup presented in Section 2, let W be a random variable taking its values in some abstract space W . Moreover, define the
regression functions τs(w) ≜ P (S = s | W = w) , s ∈ [K]. The random variable W should be thought as (X, S) for the
awareness setting and X for the unawareness setting. Our goal is to find a solution

g∗ ∈ argmin
g∈G

{P(g(W ) ̸= Y ) : g(W ) ⊥⊥ S} . (9)

The general result will be stated under the following continuity assumption. It requires continuity of the distribution of any
linear combination of the regression functions evaluated at W .

Assumption A.1. For every s ∈ [K] and for every vector c = (c1, . . . , cK)⊤ ∈ RK such that c1 + . . . + cK = 0, the
distribution Law(η(W ) +

∑K
σ=1

cσ
pσ

τσ(W ) | S = s) is continuous.

Akin to Assumptions 3.1 and 5.1, Assumption A.1 is not necessary to prove our result but it greatly simplifies its presentation
and interpretation. Let us now state the general result which encompasses the two special cases presented in the main body
of the paper.

Theorem A.1: Fair optimal classifier (unified version)
Let Assumption A.1 be satisfied. Then a solution g∗ defined in Eq. (9) can be expressed for all w ∈ W as

g∗(w) = 1

(
2η(w)− 1 ≥

K∑

σ=1

λ∗
στσ(w)

pσ

)
,

where λ∗ = (λ∗
1, . . . , λ

∗
K) ∈ RK is a solution of

min
λ∈RK

{
E

[∣∣∣∣∣2η(W )− 1−
K∑

σ=1

λστσ(W )

pσ

∣∣∣∣∣

]
: E
[
λS

pS

]
= 0

}
. (10)

Remark A.2 (Relating the above result to the main body). It is straightforward to derive Theorem 3.2 and Theorem 5.2
from Theorem A.1. Indeed, to prove Theorem 3.2, set W = (X, S),w = (x, s) and notice that τσ(w) = P(S = σ | X =
x, S = s) = δs(σ). In particular, Assumption A.1 is weaker than Assumption 5.1 and one can check that the optimal fair
classifiers coincide. Similarly, Theorem 5.2 can be derived from Theorem A.1 by setting W = X,w = x.

Proof of Theorem A.1. One can verify that the minimization of P(g(W )) ̸= Y ) over g is equivalent to the minimization of
E[g(W )(1− 2η(W ))]. Furthermore, the demographic parity constraint can be equivalently expressed as

E[g(W ) | S = s] = E[g(W )] , s ∈ [K] .

Thus, we are interested in the solution of the optimization problem

min
g∈G




∑

s∈[K]

psE[g(W )(1− 2η(W )) | S = s] : E[g(W ) | S = s] = E[g(W )] , s ∈ [K]



 .
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Recall that we defined the random variable τs(W ) = P (S = s | W ) , s ∈ [K]. The Lagrangian for the above problem can
be expressed as

L(g,λ) = E

[
g(W )

(
(1− 2η(W ))−

K∑

σ=1

λσ(1− p−1
σ τσ(W ))

)]
,

where λ ∈ RK . Weak duality implies that

min
g

max
λ

L(g,λ) ≥ max
λ

min
g

L(g,λ) . (11)

Our approach to derive the optimal fair classifier can be decomposed in two classical steps: find optimal solutions to the
dual problem maxλ ming L(g,λ); show that strong duality holds so that the optimal solutions to the dual problem are also
optimal for the primal problem.

Solving the dual problem. In what follows we focus our attention on the dual maxmin problem, which can be solved
analytically. We first solve for any λ the inner minimization problem of the maxmin formulation

min
g

L(g,λ) . (12)

Since g can be any function from W to {0, 1}, the above problem can be solved point-wise. In particular, one can check that
the solution is given by

g∗(w) = 1

(
2η(w)− 1 ≥

K∑

σ=1

λσ(p
−1
σ τσ(w)− 1)

)
.

Plugging the optimal solution g∗ back in the dual problem, we obtain as solution of the outer maximization problem

λ∗ ∈ argmin
λ∈RK

E

[(
2η(W )− 1 +

K∑

σ=1

λσ(1− p−1
σ τσ(W ))

)

+

]
. (13)

The objective of the above optimization problem is non-negative, continuous convex as a function of λ. Lemma A.3 ensures
that λ∗ exists.

The objective function of problem in Eq. (13) is not smooth everywhere due to the presence of the positive part function.
However, thanks to Assumption A.1, the set of points at which the objective function is not differentiable has zero Lebesgue
measure and can thus be ignored (see, e.g., Bertsekas, 1973, Proposition 3). The First-Order Optimality Condition (FOOC)
on the optimal Lagrange multiplier λ∗ then reads as

E[p−1
s τs(W )1 (g∗(W ) = 1)] = P(g∗(W ) = 1) , ∀s ∈ [K] .

The LHS of the above inequality can be simplified into

E[p−1
s τs(W )1 (g∗(W ) = 1)] =

K∑

s=1

E[τs(W )1 (g∗(W ) = 1) | S=s] = P(g∗(W ) = 1 | S=s) ,

showing that the FOOC on λ∗ is equivalent to g∗ satisfying DP.

Strong duality. The above reasoning showed that g∗ defined with the optimal Lagrange multiplier λ∗ is feasible for the
primal problem. Combining this property with Eq. (11) implies that g∗ is also a solution of the primal problem.

A more convenient expression. Using the fact that 2(a)+ = a + |a| and Eτs(W ) = ps, we can express the optimal
Lagrange multiplier λ∗ as

λ∗ ∈ argmin
λ∈RK

E

[∣∣∣∣∣2η(W )− 1 +

K∑

σ=1

λσ(1− p−1
σ τσ(W ))

∣∣∣∣∣

]
.
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Moreover, introducing G(λ) = E
[∣∣∣2η(W )− 1 +

∑K
σ=1 λσ(1− p−1

σ τσ(W ))
∣∣∣
]
, we observe that for any c ∈ R and

λ ∈ RK it holds that G(λ) = G(λ+ cp), where p = (p1, . . . , pK)⊤ ∈ RK . Hence, since we are interested in any solution
of the above optimization problem, we can define (g∗,λ∗) as

g∗(w) = 1

(
2η(w)− 1 ≥

K∑

σ=1

λσp
−1
σ τσ(w)

)
,

λ∗ ∈ argmin
λ∈RK

{
E

[∣∣∣∣∣2η(W )− 1−
K∑

σ=1

λσp
−1
σ τσ(W )

∣∣∣∣∣

]
: λ̄ = 0

}
.

Lemma A.3. Let Assumption A.1 be satisfied, then the mapping

λ 7→ E

[(
2η(W )− 1 +

K∑

σ=1

λσ(1− p−1
σ τσ(W ))

)

+

]
(14)

attains its minimum.

Proof. In the end of the proof of Theorem A.1 we have show that minimization of (14) is equivalent to the minimization of

λ 7→ E

[∣∣∣∣∣2η(W )− 1−
K∑

σ=1

λσp
−1
σ τσ(W )

∣∣∣∣∣

]

on the hyperplane
{
λ ∈ RK : λ̄ = 0

}
. Thus, it is sufficient to show that

min
λ∈RK

{
E

[∣∣∣∣∣2η(W )− 1−
K∑

σ=1

λσp
−1
σ τσ(W )

∣∣∣∣∣

]
: λ̄ = 0

}

is attained.

It is clear that the mapping in question is convex on RK . Hence, it is sufficient to show that it is coercive (see e.g. Bauschke
and Combettes, 2017, Proposition 11.15). It holds that

E

∣∣∣∣∣2η(W )− 1−
K∑

σ=1

λσp
−1
σ τσ(W )

∣∣∣∣∣ = E |⟨(λ/p, 1), (V , H)⟩| , (15)

where we introduced the vector V ≜ (τ1(W ), . . . , τK(W )), H ≜ 1− 2η(W ), and (λ/p, 1) ≜ (λ1/p1, . . . , λK/pK , 1) ∈
RK+1. Thus, in view of (15), by Markov’s inequality, for any κ > 0 it holds that

E

∣∣∣∣∣2η(W )−1−
K∑

σ=1

λσ

pσ
τσ(W )

∣∣∣∣∣ ≥ κ∥(λ/p, 1)∥P(|⟨(λ/p, 1), (V , H)⟩| > κ∥(λ/p, 1)∥) , (16)

where ∥ · ∥ denotes the Euclidean norm. Note that if we are able to show that for some κ0 > 0, the right hand side of the
above inequality is bounded away from zero, the proof of coercivity is concluded since ∥(λ/p, 1)∥ ≥ mins∈[K]{p−1

s }∥λ∥.
To this end, let us introduce

F (u, t) = P(|⟨u, (V , H)⟩| ≤ t) ,

for all t ≥ 0 and u ∈ H0 being defined as

H0 =
{
u ∈ RK+1 : ∥u∥ = 1, u = (λ1/p1, . . . , λK/pk, 1) for some λ1 + . . .+ λK = 0

}
.

By Assumption A.1, for any u ∈ H0, the mapping t 7→ F (u, t) is continuous on (0,+∞) with F (u, 0) = 0 and
F (u,+∞) = 1. Furthermore, for any u ∈ H0,h ∈ RK+1 such that u+ h ∈ H0 and for any δ > 0, t > 0, we have thanks
to triangle’s inequality and monotonicity of F (u, ·)

F (u+ h, t+ δ) ∈
[
F (u, t+ δ − 2∥h∥), F (u, t+ δ + 2∥h∥)

] δ−→0

∥h∥−→0−−−−−→ F (u, t) ,
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where the convergence follows from the assumed continuity of F (u, ·). Thus, (u, t) 7→ F (u, t) is continuous. Since H0 is
compact, we have that

G(t) ≜ sup
u∈H0

F (u, t) ,

is continuous on [0,+∞). Hence, the intermediate value theorem guarantees that there exists κ0 > 0 such that

G(κ0) = 1− inf
λ1+...+λK=0

P(|⟨(λ/p, 1), (V , H)⟩| > κ0∥(λ/p, 1)∥) =
1

2
.

In view of Eq. (16), we conclude.
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B OMITTED PROOFS

Proof of Theorem 3.3. Theorem 3.2 implies that under Assumption 3.1 the optimal classifier is of the form g∗(x, s) =
1 (η(x, s) ≥ β∗

s ) for some β∗ = (β∗
s )s∈[K] ∈ RK . It follows from (Van der Vaart, 2000, Lemma 21.1(iv)) and Assump-

tion 3.1 that η(x, s) = F−1
µs(η)

◦ Fµs(η)(η(x, s)) for almost all x ∈ Rd w.r.t. PX|S=s. Thus, it is sufficient to look at the
classifiers of the form

g(x, s) = 1
(
F−1
µs(η)

◦ Fµs(η)(η(x, s)) ≥ βs

)
,

or, equivalently, at g(x, s) = 1
(
Fµs(η)(η(x, s)) ≥ Fµs(η)(βs)

)
(Van der Vaart, 2000, Lemma 21.1(i)). Now, the inverse

transform theorem states that under Assumption 3.1, F−1
µs(η)

(U) has the same distribution as η(X, S) conditionally on
S = s, for U uniformly distributed on (0, 1). Then,

P (g(X, S) = 1 | S = s) = P
(
Fµs(η) ◦ F−1

µs(η)
(U) ≥ Fµs(η)(βs)

)
= 1− Fµs(η)(βs) ,

where we have used that Fµs(η) ◦ F−1
µs(η)

(u) = u for all u ∈ (0, 1) (Van der Vaart, 2000, Lemma 21.1(ii)). Thus, g verifies
the DP constraint if and only if Fµs(η)(βs) does not depend on s. Denoting by γ this constant, we find that the optimal fair
classifier must be of the form g(x, s) = 1

(
Fµs(η)(η(x, s)) ≥ γ

)
. The risk of any such classifier is given by

R(g) = E[Y ] +
∑

s∈[K]

psE[1
(
Fµs(η)(η(x, s)) ≥ γ

)
(1− 2η(X, s)) | S = s] . (17)

Using again inverse transform theorem, Eq. (17) can be further simplified to the following expression:

R(g) = E[Y ] +
∑

s∈[K]

ps

1∫

0

1
(
Fµs(η) ◦ F−1

µs(η)
(u) ≥ γ

)
(1− 2F−1

µs(η)
(u)) du . (18)

Under Assumption 3.1, Fµs(η) ◦ F−1
µs(η)

(u) = u for all u ∈ (0, 1). Thus, Eq. (18) reduces to

R(g) = E[Y ] +

1∫

γ

∑

s∈[K]

ps(1− 2F−1
µs(η)

(u)) du .

This function is minimized at γ∗ which satisfies
( ∑

s∈[K]

psF
−1
µs(η)

)
(γ∗) = 1/2 , (19)

and the optimal classifier under the demographic parity constraints is given by g∗(x, s) = 1
(
Fµs(η)(η(x, s)) ≥ γ∗). Taking

into account the condition satisfied by γ∗, we conclude.

Proof of Proposition 3.5. It is a well known fact that ming∈G P(Y ̸= g(X, S)) = Emin{η(X, S), 1 − η(X, S)} =
1/2−E|η(X, S)− 1/2|, where the last equality follows from the fact that min{a, b} = 1

2 (a+ b− |a− b|). Thus, we only
need to show that P(Y ̸= g∗(X, S)) = 1/2− E|f∗(X, S)− 1/2|. For any classifier g, we have

P(Y ̸= g(X, S)) = E[η(X, S)(1− g(X, S))] + E[(1− η(X, S))g(X, S)] .

We conclude the proof recalling the expression of g∗ provided in Theorem 3.3 under Assumption 3.1 and using Lemma C.3.

Proof of Theorem 4.3. Let us first show that θ∗(n,d) exists and unique. Indeed, the mapping

θ 7→ θ ·
{
n0d1 − d0n1
n2d1 − d2n1

}
+

{
n0d2 − d0n2
n2d1 − d2n1

}
− E [(f∗(X, S)− θ)+] ,

is continuous and monotone increasing on [0, 1] under the specified conditions. On the one hand, for θ = 0 we have
E[f∗(X, S)] = P(Y = 1) (see Chzhen and Schreuder, 2022, Section 4, item 4 on average stability) the above mapping
evaluates to

{
n0d2−d0n2
n2d1−d2n1

}
− P(Y = 1) ≤ 0. On the other hand, for θ = 1, it evaluates to

{
n0d1−d0n1
n2d1−d2n1

}
+
{

n0d2−d0n2
n2d1−d2n1

}
≥ 0.

The existence follows from the intermediate value theorem and the uniqueness from monotonicity. The rest of the proof
follows from Lemma 4.5 and Lemma 4.4.
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Proof of Lemma 4.4. For compactness we drop the subscripts (n, d) in this proof. Using Lemma C.3, we find that

P (g∗(X, S) = 1, Y = 1) = E [f∗(X, S)g∗(X, S)]

= E
[
(f∗(X, S)− θ∗)+

]
+ θ∗E [g∗(X, S)] .

Case 1: n2d1 ̸= d2n1. Combining this result with (6), we obtain the following expression for U(g∗):

n0(n2d1 −���d2n1 ) + n1 (θ
∗(n0d1 − d0n1) + (���n0d2 − d0n2)) + (n2 + θ∗n1)(n2d1 − d2n1)E[g∗(X, S)]

d0(���n2d1 − d2n1) + d1 (θ∗(n0d1 − d0n1) + (n0d2 −���d0n2 )) + (d2 + θ∗d1)(n2d1 − d2n1)E[g∗(X, S)]
.

Factorizing the numerator and denominator by (n2 + θ∗n1) and (d2 + θ∗d1) respectively, the above can be written as

U(g∗) =
n2 + θ∗n1
d2 + θ∗d1

· (n0d1 − d0n1) + (n2d1 − d2n1)E[g∗(X, S)]

(n0d1 − d0n1) + (n2d1 − d2n1)E[g∗(X, S)]
=

n2 + θ∗n1
d2 + θ∗d1

,

concluding the proof for the first case.
Case 2: n2d1 = d2n1. In this case, notice that we have

n1θ
∗ =

n1n2d0 − n0n1d2
n0d1 − n1d0

= n2
n1d0 − n0d2
n0d1 − n1d0

= −n2 ,

and, following the same computations, d1θ∗ = −d2. Plugging the above equalities in the definition of U(g∗) yields

U(g∗) =
n0 + n1E(f∗(X, S)− θ∗)+
d0 + d1E (f∗(X, S)− θ∗)+

.

The proof is concluded.

Proof of Lemma 4.5. Let µ̄(η) be the Wasserstein barycenter of measures µ1(η), . . . , µK(η), weighted by p1, . . . , pK
respectively. Assumption 3.1 and the form of f∗ ensures that the fair optimal classifier in Eq. (5) can be expressed as

g∗(x, s) = 1
(
η(x, s) ≥ F−1

µs(η)
◦ Fµ̄(η)

(
θ∗
))

= 1
(
η(x, s) ≥ F−1

µs(η)
(β∗)

)
,

where β∗ = Fµ̄(η)(θ
∗). Fix an arbitrary classifier g which satisfies the demographic parity constraint.

Our goal is to develop U(g∗)−U(g), which we express as a sum of two terms I+ II, with

I ≜
n1 (E[η(X, S)(g∗(X, S)− g(X, S))]) + n2E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
,

and

II ≜ −U(g)
d1 (E[η(X, S)(g∗(X, S)− g(X, S))]) + d2E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.

One verifies that indeed U(g∗)−U(g) = I+ II. Thanks to the alternative definition of g∗ introduced in the beginning of this
proof, for any a, b ∈ R we have

aE[η(X, S)(g∗(X, S)− g(X, S))] + bE[g∗(X, S)− g(X, S)]

= aE
[∣∣∣η(X, S)− F−1

µS(η)(β
∗)
∣∣∣1 (g∗(X, S) ̸= g(X, S))

]

+ E[(b+ aF−1
µS(η)(β

∗))(g∗(X, S))− g(X, S)]

= aE
[∣∣∣η(X, S)− F−1

µS(η)(β
∗)
∣∣∣1 (g∗(X, S) ̸= g(X, S))

]

+ (b+ aF−1
µ̄(η)(β

∗))E[g∗(X, S))− g(X, S)] ,

where the last equality is due to the fact that g satisfies the demographic parity constraint. Thus, setting ∆(g∗, g) ≜

E
[
|η(X, S)− F−1

µS(η)(β
∗)|1 (g∗(X, S) ̸= g(X, S))

]
and recalling that θ∗ = F−1

µ̄(η)(β
∗) we can express I and II as

I =
n1∆(g∗, g) + (n2 + n1θ

∗)E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
,

II = −U(g)
d1∆(g∗, g) + (d2 + d1θ

∗)E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.
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Case 1: n2d1 ̸= d2n1. Lemma 4.4 implies that

I =
n1∆(g∗, g) + U(g∗)(d2 + d1θ

∗)E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.

Combining the above two expressions for I and II we obtain

U(g∗)−U(g) = (U(g∗)−U(g))
(d2 + d1θ

∗)E[g∗(X, S)− g(X, S)]

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]

+ (n1 −U(g)d1)
∆(g∗, g)

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.

Simplifying the above and using Lemma C.3, we obtain

U(g∗)−U(g) = (n1 −U(g)d1)
∆(g∗, g)

d0 + d1E [(f∗(X, S)− θ∗)+] + (d2 + θ∗d1)E[g(X, S)]
.

As in Lemma 4.4 (using the expression for the numerator), we deduce that

d0 + d1E [(f∗(X, S)− θ∗)+] + (d2 + θ∗d1)E[g(X, S)]

=
(d2 + θ∗d1) ((n0d1 − d0n1) + (n2d1 − d2n1)E[g(X, S)])

n2d1 − d2n1
,

and using the definition of U(g), we can write

n1 −U(g)d1 =
(n1d0 − d1n0) + (n1d2 − d1n2)E[g(X, S)]

d0 + d1E[η(X, S)g(X, S)] + d2E[g(X, S)]
. (20)

Combining the last three displays, we arrive at the claimed equality

U(g∗)−U(g) =
d2n1 − n2d1
d2 + θ∗d1

·
E|η(X, S)− F−1

µS(η)(β
∗)|1 (g∗(X, S) ̸= g(X, S))

d0 + d1E[η(X, S)g(X, S)] + d2E[g(X, S)]
.

Case 2: n2d1 = d2n1. We have shown in the proof of Lemma 4.4 that in this particular case, n1θ∗ + n2 = d1θ
∗ + d2 = 0.

Hence I and II reduce to

I =
n1∆(g∗, g)

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
,

II = −U(g)
d1∆(g∗, g)

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.

Consequently, the difference of utilities is expressed as

U(g∗)−U(g) = (n1 −U(g)d1)
∆(g∗, g)

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)]
.

Again invoking the result of Lemma C.3, we deduce

d0 + d1E[η(X, S)g∗(X, S)] + d2E[g∗(X, S)] = d0 + d1E [(f∗(X, S)− θ∗)+] .

The above two displays combined with Eq. (20) and the condition n2d1 = d2n1 yield

U(g∗)−U(g) =
n1d0 − d1n0

d0 + d1E [(f∗(X, S)− θ∗)+]
· ∆(g∗, g)
d0 + d1E[η(X, S)g(X, S)] + d2E[g(X, S)]

.

The proof is concluded.

Proof of Proposition 5.3. For any g : X × {1, 2} → {0, 1}, define g̃ : X → {0, 1} as

g̃(x) =





g(x, 1) x ∈ supp(P⋆
X|S=1)

g(x, 2) x ∈ supp(P⋆
X|S=2)

1 (η(x) ≥ 1/2) x ∈ supp(PX) \
(
supp(P⋆

X|S=1) ∪ supp(P⋆
X|S=2)

) .
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Note that the above correspondence of g and g̃ is invertible since the supports of P⋆
X|S=1 and P⋆

X|S=2 do not intersect by
construction. Observe that for any g : X × {1, 2} → {0, 1} it holds that

g(X, S) ⊥⊥P⋆ S ⇐⇒ g(·, 1)♯P⋆
X|S=1 = g(·, 2)♯P⋆

X|S=2 ⇐⇒ g̃♯PX|S=1 = g̃♯PX|S=2 .

Thus, given any classifier g satisfying the demographic parity constraint under P⋆, we can transform it to a classifier that
satisfies the constraints under P. Furthermore, since

EP⋆ [g(X, S)(1− 2η̃(X, S))] = EP[g̃(X)(1− 2Y )1
(
X ∈ supp(P⋆

X|S=1) ∩ supp(P⋆
X|S=2)

)
] ,

taking any classifier ḡ : X → {0, 1} we can write

EP[ḡ(X)(1− 2Y )] = EP⋆ [ḡ(X, S)(1− 2η̃(X, S))1
(
X ∈ supp(P⋆

X|S=1) ∩ supp(P⋆
X|S=2)

)
]

+ EP[ḡ(X)(1− 2Y )1
(
X ̸∈ supp(P⋆

X|S=1) ∩ supp(P⋆
X|S=2)

)
] ,

where in the first equality, we added the input S to ḡ sue to the fact that S is X measurable under P⋆. Note that the second
term is minimized point-wise by the Bayes classifier, while the first term is minimized by g∗P⋆ thanks to the equivalence
established for the demographic parity constraint.
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C AUXILIARY RESULTS

The first lemma ensures that under certain conditions, the denominator of the linear fractional performance measure is
always positive.

Lemma C.1. Assume that d0 +min
{
min{d1, 0}+ d2, 0

}
≥ 0, then for any classifier g : X × [K] → {0, 1}

d0 + d1P(Y = 1, g(X, S) = 1) + d2P(g(X, S) = 1) ≥ 0 .

Furthermore, if d0 +min
{
min{d1, 0}+ d2, 0

}
> 0, then the above inequality is strict.

Proof. Observe that

d0 + d1P(Y = 1, g(X, S) = 1) + d2P(g(X, S) = 1) = d0 + E[(d1Y + d2)g(X, S)]

≥ d0 + E[(min{d1, 0}+ d2)g(X, S)]

≥ d0 +min
{
min{d1, 0}+ d2, 0

}

≥ 0 .

The second claim follows the same lines.

The second result gives a sufficient condition for positivity of the leading coefficient in Remark 4.6.

Lemma C.2. Assume that d0 +min
{
min{d1, 0}+ d2, 0

}
≥ 0 and either Eq. (C1) or Eq. (C2) is satisfied, then for any

classifier g ∈ dom(U(n,d))

n1 − d1U(n,d)(g) ≥ 0 .

Proof. Observe that in both cases, by Lemma C.1, we have

sign(n1 − d1U(n,d)(g)) = sign

(
(n1d0 − d1n0) + (n1d2 − d1n2)E[g(X, S)]

)
. (21)

Case 1: n2d1 ̸= d2n1. In that case condition (C1) implies that n1d2 − d1n2 > 0 and n1d0−d1n0
n1d2−d1n2

≥ 0. In view of (21) we
conclude.
Case 2: n2d1 = d2n1. The proof is immediate from (21) and the first part of condition (C2).

The next lemma establishes an extended average stability property from (Chzhen and Schreuder, 2022).

Lemma C.3. Let Assumption 3.1 be satisfied, then

E[(f∗(X, S)− η(X, S))1 (f∗(X, S) ≥ θ)] = 0 ,

for all θ ∈ [0, 1].

Proof. Fix some θ ∈ [0, 1]. Introducing T ∗(·) ≜
(∑K

σ=1 pσF
−1
µσ(η)

)
(·), we recall that

f∗(x, s) = T ∗ ◦ Fµs(η)(η(x, s)) .

Furthermore, since both FµS(η)(η(X, S)) and (FµS(η)(η(X, S)) | S = s) are distributed uniformly on (0, 1) under
Assumption 3.1, we can write

E[(f∗(X, S)− η(X, S))g∗(X, S)]

= E[T ∗(U)1 (T ∗(U) ≥ θ)]−
K∑

s=1

psE[F−1
µs(η)

(U)1 (T ∗(U) ≥ θ) | S = s] = 0 .

Finally, the last result relates the excess risk obtained in Lemma 4.5 with the expression presented in Remark 4.6.
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Lemma C.4. Under the conditions of Lemma 4.4, we have

n1 − d1U(g∗) =





d2n1 − n2d1
d2 + θ∗(n,d)d1

if d2n1 ̸= n2d1

n1d0 − d1n0
d0 + d1E(f∗(X, S)− θ∗(n,d))+

if d2n1 = n2d1

.

Proof. We drop the subscript (n, d) for compactness.
Case 1: d2n1 ̸= n2d1. Using the corresponding case of Lemma 4.4 and solving it for θ∗, we deduce that

θ∗ =
n2 − d2U(g∗)
d1U(g∗)− n1

.

Hence, from the above we deduce that

d2 + θ∗d1 =
d1n2 − d2n1
d1U(g∗)− n1

=⇒ d2n1 − n2d1
d2 + θ∗d1

= n1 − d1U(g∗) .

Case 1: d2n1 = n2d1. Again using the corresponding case of Lemma 4.4 and solving it for E(f∗(X, S)− θ∗)+, we deduce
that

E(f∗(X, S)− θ∗(n,d))+ =
d0U(g∗)− n0
n1 − d1U(g∗)

.

Hence, from the above we deduce that

d0 + d1E(f∗(X, S)− θ∗)+ =
d0n1 − d1n0
n1 − d1U(g∗)

=⇒ n1d0 − d1n0
d0 + d1E(f∗(X, S)− θ∗)+

= n1 − d1U(g∗) .

The proof is concluded.
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D ADDITIONAL PLOTS
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Figure 3: Empirical quantile functions of η̂(·, 1), η̂(·, 2) and of their Wasserstein-2 barycenter (orange, green, and blue
curves, respectively).
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ĝfair(x, 1) = 0
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Figure 4: Empirical group-wise outcomes for logistic regression (left) and the proposed post-processed fair plug-in
classifier (right) for the Jaccard risk measure. The experimental setting is the same as that of Figure 4. The optimal
threshold given in Theorem 4.3 was estimated using Brent’s method as implemented in scipy (Virtanen et al., 2020).
For the fair plug-in classifier, we obtained an estimator f̂ of the optimal fair regression function f∗ following Chzhen
et al. (2020b) and an estimator of the optimal threshold θ̂ given in Theorem 4.3 using Brent’s method as implemented in
scipy (Virtanen et al., 2020). We then considered ĝfair(x, s) ≜ 1(f̂(x, s) ≥ θ̂).
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Figure 5: Proportion of positively classified observations as the Fb score precision-recall trade-off parameter b varies (see
Table 1 for the definition of Fb score). The experimental setting is the same as that of Figure 4. The optimal threshold given
in Theorem 4.3 was estimated using Brent’s method as implemented in scipy (Virtanen et al., 2020).
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