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Abstract

Many methods that build powerful variational dis-
tributions based on unadjusted Langevin transi-
tions exist. Most of these were developed using
a wide range of different approaches and tech-
niques. Unfortunately, the lack of a unified analy-
sis and derivation makes developing new methods
and reasoning about existing ones a challenging
task. We address this giving a single analysis
that unifies and generalizes these existing tech-
niques. The main idea is to augment the target
and variational by numerically simulating the un-
derdamped Langevin diffusion process and its
time reversal. The benefits of this approach are
twofold: it provides a unified formulation for
many existing methods, and it simplifies the devel-
opment of new ones. In fact, using our formula-
tion we propose a new method that combines the
strengths of previously existing algorithms; it uses
underdamped Langevin transitions and powerful
augmentations parameterized by a score network.
Our empirical evaluation shows that our proposed
method consistently outperforms relevant base-
lines in a wide range of tasks.

1 INTRODUCTION

Several recent work attempts to build powerful variational
distributions using unadjusted Hamiltonian Monte Carlo
(HMC) transition kernels (Salimans et al., 2015; Wolf et al.,
2016; Caterini et al., 2018; Wu et al., 2020; Thin et al.,
2021; Zhang et al., 2021; Geffner & Domke, 2021; Chen
et al., 2022). In principle, one would like to use the last
sample marginal of the HMC chain as variational distri-
bution. Since this marginalization is typically intractable,
these methods use auxiliary variables (Agakov & Barber,
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2004); they build an augmented variational distribution that
includes all samples generated in the chain, an augmented
target, and perform variational inference (VI) on these aug-
mented distributions. Training proceeds by maximizing the
ELBO using unbiased reparameterization gradients, made
possible by using uncorrected transitions.

One such method is Unadjusted Langevin Annealing (ULA)
(Wu et al., 2020; Thin et al., 2021), which can be seen as
an approximation of Annealed Importance Sampling (Neal,
2001; Jarzynski, 1997). The method builds a sequence of
densities that gradually bridge an initial approximation to
the target, and augments the variational distribution and
target using uncorrected overdamped Langevin kernels tar-
geting each of these bridging densities.

While ULA has shown good performance, it has two limita-
tions: It is based on overdamped Langevin dynamics, which
are known to suffer from random walk behavior (Neal et al.,
2011, §5.2), and it augments the target using an approxima-
tion of the Annealed Importance Sampling augmentation,
which is known to be suboptimal (Del Moral et al., 2006).
These two limitations were addressed independently. Uncor-
rected Hamiltonian Annealing (UHA) (Geffner & Domke,
2021; Zhang et al., 2021) extends ULA to use underdamped
Langevin transitions, known to improve convergence over
the overdamped variant (Cheng et al., 2018). Meanwhile,
Monte Carlo Diffusion (MCD) (Doucet et al., 2022) extends
ULA to use better augmentations for the target. Both of
these lead to significant performance improvements over
ULA, albeit through orthogonal enhancements.

These methods were developed using different approaches:
While UHA was developed as a differentiable approxima-
tion to Annealed Importance Sampling with underdamped
Langevin transitions, MCD was developed by numerically
simulating the overdamped Langevin diffusion and its time
reversal, approximating intractable terms with a score net-
work (Song & Ermon, 2019). The fact that these methods
have different derivations and are based on different tech-
niques makes it difficult to reason about their benefits, draw-
backs, and the connections between them. It also means it
is not obvious how to combine both of their benefits.

This paper introduces a formulation for Langevin-based
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VI that encompasses previously proposed methods. This
formulation can be seen as a generalization of MCD (Doucet
et al., 2022) that uses underdamped Langevin dynamics,
instead of the overdamped variant. Like MCD (Doucet et al.,
2022), our approach is based on the analysis of continuous
time processes. Its main components are the underdamped
Langevin diffusion process and its time reversal, which are
numerically simulated to derive the augmentations for the
variational approximation and target. We introduce our
approach for Langevin-based VI in section 3.

Our method is compatible with multiple numerical simu-
lation schemes, with different choices leading to different
algorithms. Section 4 introduces a simulation scheme based
on splitting methods (Bou-Rabee & Owhadi, 2010; Mel-
chionna, 2007). We show that this specific scheme can be
used to recover ULA, MCD and UHA, providing a unified
view for all of them, and shedding light on the connections
between them, their benefits and limitations.

Additionally, our formulation facilitates the development
of new methods. We use it to propose Langevin Diffusion
VI (LDVI), a novel method that combines the best of UHA
and MCD: it uses powerful and improved augmentations
for the target, like MCD, while enjoying the benefits of
underdamped Langevin transitions, like UHA. We evaluate
LDVI empirically in section 5, showing that it outperforms
ULA, UHA and MCD in a range of inference tasks.

Finally, we explore the importance of the numerical simu-
lation scheme. In section 5.2 we observe that one can also
develop methods using a Euler-Maruyama type discretiza-
tion scheme. Our experimental results therein show that
the simulation method used plays a crucial role in the al-
gorithms’ performance, suggesting a possible direction to
explore to further improve these methods.

2 PRELIMINARIES

Variational Inference. VI approximates a target distribu-
tion p(z) = p̄(z)/Z (known up to the normalizing constant
Z) with a simpler distribution q. It works by finding the
parameters of q that maximize the evidence lower bound

ELBO(q(z)‖p̄(z)) = E
q(z)

log
p̄(z)

q(z)
. (1)

Noting that logZ = ELBO(q(z)‖p̄(z)) + KL(q(z)‖p(z)),
it can be seen that maximizing the ELBO is equivalent to
minimizing the KL-divergence from the approximation q(z)
to the target p(z).

MCMC-VI. Many methods have been developed to use
MCMC to build powerful variational approximations. Ide-
ally, one would use the last sample marginal of an MCMC
chain as the approximating distribution. However, since
computing this marginal is typically intractable, most meth-
ods are based on augmentations (Agakov & Barber, 2004)

and variants of Annealed Importance Sampling (Wu et al.,
2020; Thin et al., 2021; Geffner & Domke, 2021; Zhang
et al., 2021; Doucet et al., 2022). They define a sequence
of unnormalized densities π̄k(z) = q(z)1−βk p̄(z)βk , for
k = 1, . . . ,K − 1 and 0 < β1 < . . . < βK−1 < 1, for-
ward transitions Fk(zk+1|zk) that (approximately) leave πk
invariant, backward transitions Bk(zk|zk+1), and build the
augmented target and variational distribution as

q(z1:K) = q(z1)

K−1∏
k=1

Fk(zk+1|zk)

p̄(z1:K) = p̄(zK)

K−1∏
k=1

Bk(zk|zk+1).

(2)

Then, one attempts to tune the forward and backward tran-
sitions to maximize the ELBO between these augmented
distributions, equivalent to minimizing the KL divergence
between them. The chain rule for the KL-divergence
(Cover, 1999) then guarantees KL(q(zK)‖p(zK)) ≤
KL(q(z1:K)‖p(z1:K)), justifying the use of the marginal
of q(z1:K) over zK to approximate the original target distri-
bution.

While augmentations bypass intractable marginaliza-
tions, they introduce additional looseness in that
ELBO(q(z1:K)‖p(z1:K)) ≤ ELBO(q(zK)‖p(zK)). For
a given set of forward transitions Fk, this inequality can
in principle be made tight by using the optimal backward
transitions (Del Moral et al., 2006)

Bk(zk|zk+1) = Fk(zk+1|zk)
q(zk)

q(zk+1)
. (3)

In practice, however, the marginal densities q(zk) are not
exactly known, so algorithms must use other choices for Bk.
There are two desiderata: the ratio Bk/Fk must be tractable
(required to get a tractable expression for the ELBO between
the augmented distributions), and the transitions should be
differentiable (not strictly needed, but desirable, as it allows
the use of reparameterization gradients to tune all parame-
ters). Most recent methods were developed with these two
properties in mind (Salimans et al., 2015; Wolf et al., 2016;
Wu et al., 2020; Thin et al., 2021; Geffner & Domke, 2021;
Zhang et al., 2021; Doucet et al., 2022; Jankowiak & Phan,
2021). For instance, ULA uses unadjusted overdamped
Langevin kernels for both Fk and Bk, and UHA extends it
to use underdamped Langevin kernels. For the latter, the
distributions from eq. (2) are further augmented to include
momentum variables ρ, leading to

q(z1:K , ρ1:K) = q(z1, ρ1)

K−1∏
k=1

Fk(zk+1, ρk+1|zk, ρk)

p̄(z1:K , ρ1:K) = p̄(zK , ρK)

K−1∏
k=1

Bk(zk, ρk|zk+1, ρk+1),

(4)
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and to the augmented ELBO

ELBO(q(z1:K , ρ1:K)‖p̄(z1:K , ρ1:K)) =

E
q

[
log

p̄(zK , ρK)

q(z1, ρ1)
+

K−1∑
k=1

log
Fk(zk+1, ρk+1|zk, ρk)

Bk(zk, ρk|zk+1, ρk+1)

]
.

(5)

3 LANGEVIN DIFFUSION
VARIATIONAL INFERENCE

This section introduces our approach for Langevin-based
VI. It provides a way to build the augmented distributions
from eq. (4). Its main components are (1) the underdamped
Langevin diffusion process and its time reversal, (2) a nu-
merical simulation scheme to approximately simulate these
processes, and (3) a score network (Doucet et al., 2022; Song
& Ermon, 2019) used to approximate intractable terms in
the time-reversed process. Together, these produce the for-
ward and backward transitions Fk and Bk with a tractable
ratio. Since our approach is compatible with many simu-
lation schemes, we first introduce it in a general way, and
present a specific simulation scheme in section 4.

3.1 Langevin Diffusion

This sub-section introduces the Langevin diffusion process
and its time reversal, which will be used to derive the for-
ward and backward transitions in the following sections.
Let πt(z) be a sequence of densities bridging from the start-
ing distribution for t = 0 to the target for t = T . That
is, π0(z) = q(z) and πT (z) = p(z). The Langevin diffu-
sion process is characterized by the following stochastic
differential equation (SDE):

dzt = ρtdt

dρt =
[
∇ log πt(zt)− γρt

]
dt+

√
2γ dwt,

(6)

where t ∈ [0, T ], wt is a standard Wiener process, γ > 0
is a friction coefficient, and (z0, ρ0) ∼ q(z0, ρ0). The for-
ward transitions Fk will be derived by simulating this pro-
cess. The motivation behind the use of this process comes
from its good convergence properties. Intuitively, evolv-
ing eq. (6) yields values for (zt, ρt) that tend to be close
to πt(z)N (ρ|0, I). Thus, one may hope that the marginal
density of the process at time T is close to p(z)N (ρ|0, I),
meaning the distribution of the final value zT may be close
to the target of interest.

The backward transitions Bk, on the other hand, will be
derived by simulating the time-reversed SDE corresponding
to eq. (6). Defining yt = zT−t and λt = ρT−t, this time-
reversed process is characterized by (obtained using results
for time-reversed diffusions (Anderson, 1982; Haussmann

& Pardoux, 1986), see appendix B)

dyt =− λtdt
dλt =[γλt −∇ log πT−t(yt)+

2γ∇λ log qT−t(yt, λt)]dt+
√

2γ dwt,

(7)

where qt is the marginal of the forward process at time t. For-
mally, this process is initialized with (y0, λ0) ∼ qT (y0, λ0).
However, in what follows, where we use it to define the
backward transitions to augment the target, it will be initial-
ized as (y0, λ0) ∼ p(y0, λ0). The motivation for using the
reverse time SDE from eq. (7) is that, under exact simula-
tion, it yields the optimal backward transitions from eq. (3)
(i.e. no additional looseness in the augmented ELBO).

3.2 Transitions via SDE Simulation

The forward and backward transitions will be obtained by
simulating the forward and time-reversed processes for a
fixed period of time δ = T/K. If we could simulate the
above SDEs exactly, then

• The forward transition Fk(zk+1, ρk+1|zk, ρk) would be
obtained by simulating the forward process from time
t = kδ up to time t = (k + 1)δ, starting from the initial
values (z, ρ) = (zk, ρk),

• The backward transition Bk(zk, ρk|zk+1, ρk+1) would
be obtained by simulating the reverse-time SDE from
time t = (K − k)δ up to time t = (K − k− 1)δ, starting
from the initial values (y, λ) = (zk+1, ρk+1).

It can be shown that these backward transitions are optimal.
That is, if one could simulate eqs. (6) and (7) exactly to
get the forward and backward transitions defined above, the
resulting augmentations would be tight in the sense that the
augmented ELBO from eq. (5) would have no additional
looseness compared to an ELBO defined between the last
sample marginals qK(zK , ρK) and p̄(zK , ρK).

Unfortunately, these transitions are intractable for two rea-
sons. First, the forward marginal density qt that appears in
the reverse SDE is unknown. Second, it is intractable to
exactly simulate or evaluate either of the above SDEs.

Approximating ∇λlogqT−t(yt, λt). The first source of
intractability of the optimal transitions is the score term
∇λ log qT−t(yt, λt), which is typically unavailable. In-
spired by the fact that qT−t(y, λ) is expected to be close to
πT−t(y)N (λ|0, I), we propose to approximate this term as

∇λ log qT−t(yt, λt) ≈ −λt + s(T − t, yt, λt), (8)

where s : R×RD ×RD → RD is some learnable function
approximator. Following recent work (Song et al., 2020;
Song & Ermon, 2019; Sohl-Dickstein et al., 2015; Ho et al.,
2020; Doucet et al., 2022), we use a neural network, typ-
ically referred to as score network, which is trained with
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the other parameters to maximize the ELBO. The intuition
behind our approximation in eq. (8) comes from considering
scenarios where the forward transitions mix fast. In such
cases qT−t(yt, λt) will be close to πT−t(yt)N (λt|0, I),
and thus the approximation ∇λ log qT−t(yt, λt) ≈ −λt
should work well. (In fact, as we show in section 4.2, sev-
eral well-known methods are recovered by removing the
score network; that is, fixing s(t, y, λ) = 0.)

Transitions via numerical simulation. The second
source of intractability is that it is rarely possible to simu-
late the forward and reverse SDEs exactly. Thus, we use
a numerical simulation scheme to approximately simulate
them. The requirements for the simulation scheme are (1) it
must yield transitions with a tractable ratio, and (2) it must
be differentiable, in order to allow unbiased reparameteriza-
tion gradients (Titsias & Lázaro-Gredilla, 2014; Kingma &
Welling, 2013; Rezende et al., 2014). Section 4 presents a
scheme that satisfies these.

3.3 Framework for Langevin-based VI

Our formulation for Langevin-based VI is based on the tran-
sitions described above. To get a specific instance, several
choices are required:

• A momentum augmented target p̄(zK , ρK) =
p̄(zK)p(ρK |zK) that retains original target p̄(z) as
marginal, often defined as p̄(zK)N (ρK |0, I),

• A momentum augmented initial approximation q(z1, ρ1),
often defined as q(z1)N (ρ1|0, I),

• A score network s(t, z, ρ) to approximate intractable term
involving qt(z, ρ),

• Forward and backward transitions Fk and Bk with a
tractable ratio, obtained by numerically simulating the
forward and reverse SDEs from eqs. (6) and (7).

For specific choices for these components, we can compute

p̄(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=
p̄(zK , ρK)

q(z1, ρ1)

K−1∏
k=1

Bk(zk, ρk|zk+1, ρk+1)

Fk(zk+1, ρk+1|zk, ρk)
,

(9)
required to estimate and optimize the ELBO from eq. (5).

4 NUMERICAL SIMULATION SCHEME

This section introduces two numerical simulation schemes,
one for the forward SDE and one for the time-reversed
SDE, which yield transitions with a tractable ratio. We
begin by giving explicit algorithmic representations for these
transitions and an expression for their ratio (section 4.1). We
then explain how our formulation for Langevin-based VI
with these transitions can be used to recover several existing
methods, including ULA, MCD and UHA (section 4.2), and
also how it can be used to derive new methods (section 4.3).

Algorithm 1 Forward transition Fk(zk+1, ρk+1|zk, ρk)

Require: zk, ρk, step-size δ
Re-sample momentum ρ′k ∼ mF (ρ′k|ρk, γ, δ)
Update ρ′′k = ρ′k + δ

2∇ log πkδ(zk)

Update zk+1 = zk + δρ′′k
Update ρk+1 = ρ′′k + δ

2∇ log πkδ(zk+1)

 Leapfrog step
τLP(zk, ρ

′
k)

return (zk+1, ρk+1)

Algorithm 2 Backward transition Bk(zk, ρk|zk+1, ρk+1)

Require: zk+1, ρk+1, step-size δ
Update ρ′′k = ρk+1 − δ

2∇ log πk(zk)

Update zk = zk+1 − δρ′′k
Update ρ′k = ρ′′k − δ

2∇ log πk(zk+1)

 Inverse leapfrog
τ−1LP (zk+1, ρk+1)

Re-sample momentum ρk ∼ mB(ρk|ρ′k, zk, γ, δ)
return (zk, ρk)

4.1 Forward and Backward Transitions

The forward transitions used to approximately simulate to
forward SDE are shown in algorithm 1. They consist of two
steps: (partial) momentum resampling from some distribu-
tion mF (see section 4.1.1), followed by a single leapfrog
integrator step typically used to simulate Hamiltonian dy-
namics (Neal et al., 2011; Betancourt, 2017) (denoted by
τLP in algorithm 1, which consists on sequential determin-
istic updates to the variables ρ, z, and ρ). As explained
in section 4.1.1, these transitions are derived by simulat-
ing the forward SDE from eq. (6) using splitting methods
(Bou-Rabee & Owhadi, 2010; Melchionna, 2007).

The backward transitions used to approximately simulate
the time-reversed SDE are shown in algorithm 2. They also
consist of two steps: the inverse of a single leapfrog integra-
tor step used to simulate Hamiltonian dynamics, followed
by a (partial) momentum resampling from some distribu-
tion mB . We include their derivation and details for the
momentum resampling distribution mB in section 4.1.1.

In order to use these transitions for Langevin-based VI, we
need an expression for their ratio. This is given in lemma 1,
proved in appendix D.

Lemma 1. Let Fk(zk+1, ρk+1|zk, ρk) and
Bk(zk, ρk|zk+1, ρk+1) be the transitions defined in
algorithms 1 and 2, mF and mB the momentum resampling
distributions used in these transitions, δ the discretization
step-size, and γ > 0 the damping coefficient. Then,

Bk(zk, ρk|zk+1, ρk+1)

Fk(zk+1, ρk+1|zk, ρk)
=
mB(ρk|ρ′k, zk, γ, δ)
mF (ρ′k|ρk, γ, δ)

, (10)

where ρ′k is as defined in algorithms 1 and 2, given by
(zk, ρ

′
k) = τ−1LP (zk+1, ρk+1).

Using the transitions from algorithms 1 and 2 and their ratio
given in lemma 1 we can get an exact expression for the
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augmented ELBO from eq. (5). While computing this aug-
mented ELBO exactly is typically intractable, an unbiased
estimate can be obtained using a sample from q(z1:K , ρ1:K),
as shown in algorithm 3.

Algorithm 3 Generating the augmented ELBO (eq. (5)).
Sample (z1, ρ1) ∼ q(z1, ρ1).
Initialize estimator as L ← − log q(z1, ρ1).
for k = 1, 2, · · · ,K − 1 do

Run Fk (alg. 1) on (zk, ρk), store ρ′k, zk+1, ρk+1.
Update L ← L+ log

mB(ρk|ρ′k,zk,γ,δ)
mF (ρ′k|ρk,γ,δ)

.

Update L ← L+ log p̄(zK , ρK).
return L

4.1.1 Derivation of Forward and Backward
Transitions

We now show the derivation for the forward and backward
transitions using splitting methods (Bou-Rabee & Owhadi,
2010; Melchionna, 2007), which have been observed to
work well for Langevin processes (Leimkuhler & Matthews,
2013; Monmarché, 2021). Simply put, splitting methods
split an SDE into multiple simpler components, simulate
each component for a time-step of size δ, and then combine
the solutions sequentially to build the δ-sized step for the
original SDE.

Forward transitions. These are obtained by approxi-
mately simulating the forward SDE using a splitting method.
Following Monmarche (Monmarché, 2021), we split the
SDE in three components, AF , BF and OF ,1[

dzt

dρt

]
=

[
ρtdt
0

]
︸ ︷︷ ︸

AF

,

[
dzt

dρt

]
=

[
0

∇ log πt(zt)dt

]
︸ ︷︷ ︸

BF

,

[
dzt

dρt

]
=

[
0

−γρtdt+
√
2γdwt

]
︸ ︷︷ ︸

OF

,

each one simpler than the original SDE, and then build
the forward transition by sequentially composing the sim-
ulations for components OFBFAFBF . The final forward
transition shown in algorithm 1 can be obtained by noting
that each of the individual components can be simulated
with the following strategies:

Simulating AF . This can be done exactly. Given initial
values (zt0 , ρt0) at time t0, simulating AF for a time δ
results in (zt0+δ, ρt0+δ) = (zt0 + δρt0 , ρt0).

1A similar split was used in the context of generative modeling
by Dockhorn et al. (Dockhorn et al., 2021), albeit for a different
(simpler) diffusion which targets a Gaussian using a different defi-
nition for the bridging densities, as typically done with diffusion
models (Sohl-Dickstein et al., 2015).

Simulating BF . Given initial values (zt0 , ρt0) at time t0,
and using that πt0 ≈ πt0+δ for small δ, simulating
BF for a time δ results in (zt0+δ, ρt0+δ) = (zt0 , ρt0 +
δ∇ log πt0(zt0)).

Simulating OF . This can be done exactly, as OF corre-
sponds to an Ornstein–Uhlenbeck process. Given an ini-
tial value of ρt0 at time t0, simulating OF for a time δ
gives ρt0+δ ∼ N (ρt0+δ|ηρt0 , (1 − η2)I), where η =
exp(−γδ). However, as we will see next, exact simu-
lation for the corresponding component of the reverse
SDE is not possible. Thus, it may be useful to simulate
OF approximately as well, using the Euler-Maruyama
scheme (Maruyama, 1955; Bayram et al., 2018), which
gives ρt0+δ ∼ N (ρt0+δ|ρt0(1− γδ), 2γδI). We use mF

to denote generically the momentum resampling distribu-
tion used, which could be any of the ones just described.

In summary, simulating OF yields the momentum resam-
pling step, while composing the simulations for BFAFBF
yields the leapfrog integration step (note that since BF is
simulated twice, it is done with a step-size of δ/2.)

Backward transitions. Like for the forward transitions,
these are derived by splitting the reverse SDE in three com-
ponents, AB , BB and OB (using our approximation for the
score term),[

dyt

dλt

]
=

[
−λtdt

0

]
︸ ︷︷ ︸

AB

,

[
dyt

dλt

]
=

[
0

−∇ log πT−t(yt)dt

]
︸ ︷︷ ︸

BB

,

[
dyt

dλt

]
=

[
0

−γλtdt+ 2γs(T − t, yt, λt)dt+
√
2γdwt

]
︸ ︷︷ ︸

OB

,

Then, we construct the backward transition by sequentially
composing the simulations for components BBABBBOB ,
where the sequence BBABBB yields the inverse of the
leapfrog integrator step, and OB yields the momentum
resampling step. The derivation follows the one for the
forward transitions closely, with one main difference: sim-
ulating component OB has an additional difficulty, due
to the presence of the term involving the score network
s. While in general OB cannot be simulated exactly (un-
less we fix s = 0), it can be done approximately using
the Euler-Maruyama method, which results in the mo-
mentum resampling distribution mB(λt+δ|λt, yt, γ, δ) =
N (λt+δ|λt(1− γδ) + 2γδs(T − t, yt, λt), 2γδI). We give
further details in appendix C.

4.2 Recovering Known Methods

As mentioned previously, ULA, MCD and UHA were orig-
inally derived using different techniques and approaches.
Some of these methods use overdamped Langevin dynam-
ics, while others use the underdamped variant; some were
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derived as approximations of Annealed Importance Sam-
pling, while others emerged from an analysis of continuous
time diffusion processes. This section’s main purpose is to
show that all of these methods can be derived in a unified
way using the formulation for Langevin-based VI from sec-
tion 3.3 with the numerical simulation schemes introduced
above. We begin by briefly giving details about ULA, MCD
and UHA (including their different derivations), followed
by an explanation of how these methods can be recovered
with our approach.

ULA (Wu et al., 2020; Thin et al., 2021) works directly with
unadjusted overdamped Langevin kernels (i.e. no momen-
tum variables), defining the forward transitions as

Fk(zk+1|zk) = N (zk+1|zk + δ∇ log πk(zk), 2δI). (11)

Then, using the fact that Fk(zk+1|zk) is approximately re-
versible with respect to πk when the step-size δ is small,
it defines the backward transitions as Bk(zk|zk+1) =
Fk(zk|zk+1). The ratio between these transitions, and thus
the augmented ELBO, are straightforward to compute (see
appendix D). Broadly speaking, the method can be seen
as a differentiable approximation to Annealed Importance
Sampling with overdamped Langevin transitions.

Theorem 4.1. ULA is recovered by the formulation
from section 3.3 with p̄(zK , ρk) = p̄(zK)N (ρK |0, I),
q(z1, ρ1) = q(z1)N (ρ1|0, I), s(t, z, ρ) = 0, and the tran-
sitions from algorithms 1 and 2 with exact momentum re-
sampling (possible due to removing the score network) with
η = 0 (high friction limit).

MCD (Doucet et al., 2022) was developed by studying the
overdamped Langevin diffusion process, given by

dzt = ∇ log πt(zt)dt+
√

2 dwt. (12)

It uses unadjusted overdamped Langevin kernels for the
forward transitions (i.e. simulating eq. (12) with the Euler-
Maruyama scheme), and uses backward transitions derived
by simulating the reverse-time diffusion corresponding to
eq. (12), also with the Euler-Maruyama scheme, using a
score network to approximate intractable terms.

Theorem 4.2. MCD is recovered by the formula-
tion from section 3.3 with s(t, z, ρ) = s̃(t, z),
p̄(zK , ρk) = p̄(zK)N (ρK |s̃(T, zK), I), q(z1, ρ1) =
q(z1)N (ρ1|s̃(δ, z1)), the forward transitions from algo-
rithm 1 with exact momentum resampling for η = 0 (high
friction limit), and the backward transition from algorithm 2
using the momentum resampling distribution described in
appendix D.

UHA (Geffner & Domke, 2021; Zhang et al., 2021) was
developed as an approximation to Annealed Importance
Sampling using underdamped Langevin dynamics. It uses
unadjusted underdamped Langevin kernels for the forward

transitions, and the unadjusted reversal of a Metropolis ad-
justed underdamped Langevin kernel for the backward tran-
sitions (simply put, Geffner and Domke (Geffner & Domke,
2021) and Zhang et al. (Zhang et al., 2021) derived an
exact expression for the reversal of a Metropolis adjusted
underdamped Langevin kernel, and proposed to remove the
correction step to define the backward transition).

Theorem 4.3. UHA is recovered by the formulation
from section 3.3 with p̄(zK , ρk) = p̄(zK)N (ρK |0, I),
q(z1, ρ1) = q(z1)N (ρ1|0, I), s(t, z, ρ) = 0, and the transi-
tions from algorithms 1 and 2 with exact momentum resam-
pling (possible due to removing the score network) with a
learnable η.

We include proofs in appendix D. All follow similar steps,
we get the exact transitions and expression for the ELBO
given the specific choices made in each case, and compare
to that of the original method, verifying their equivalence.

4.3 LDVI: A New Method

Apart from recovering many existing methods, new algo-
rithms can be derived using the proposed simulation scheme.
As an example, we propose Langevin Diffusion VI (LDVI),
a novel method that combines the benefits of MCD (back-
ward transitions aided by a score network) with the benefits
of UHA (underdamped dynamics). It is obtained by us-
ing the formulation from section 3.3 with p̄(zK , ρK) =
p̄(zK)N (ρK |0, I), q(z1, ρ1) = q(z1)N (ρ1|0, I), a full
score network s(t, z, ρ), and the transitions from algo-
rithms 1 and 2 with the momentum resampling distributions

mF (ρ′k|ρk, γ, δ) = N (ρ′k|ρk(1− γδ), 2γδI)

mB(ρk|ρ′k, zk, γ, δ) = N (ρk|ρ′k(1− γδ)+
2γδs(kδ, zk, ρ

′
k), 2γδI),

which are obtained by simulating components OF and
OB using the Euler-Maruyama scheme (Maruyama, 1955;
Bayram et al., 2018).

5 EXPERIMENTS

This section presents an empirical evaluation of different
methods that follow our framework. We are interested in the
effect that different choices have on the final performance.
Specifically, we are interested in studying the benefits of us-
ing underdamped dynamics (UHA and LDVI) instead of the
overdamped variant (ULA and MCD), the benefits of using
powerful backward transitions aided by learnable score net-
works (MCD and LDVI), and the benefits of combining both
improvements (LDVI) against each individual one (MCD
and UHA). We explore this empirically in section 5.1.

We are also interested in how the numerical simulation
scheme used affects the methods’ performance. We explore
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Ionosphere Sonar

ULA MCD UHA LDVI ULA MCD UHA LDVI

K = 8 −116.4.05 −114.6.01 −115.6.05 −114.4.02 −122.4.1 −117.2.1 −120.1.02 −116.3.03

K = 16 −115.4.01 −113.6.03 −114.4.03 −113.1.01 −119.9.02 −114.4.02 −116.8.08 −112.6.04

K = 32 −114.5.05 −112.9.05 −113.4.03 −112.4.03 −117.4.1 −112.4.05 −113.9.1 −110.6.08

K = 64 −113.8.02 −112.5.04 −112.8.04 −112.1.01 −115.3.05 −111.1.7 −111.9.02 −109.7.02

K = 128 −113.1.04 −112.2.02 −112.3.02 −111.9.01 −113.5.03 −110.2.04 −110.6.07 −109.1.03

K = 256 −112.7.01 −112.1.02 −112.1.02 −111.7.01 −112.1.08 −109.7.03 −109.7.05 −108.9.02

Table 1: Combining underdamped dynamics with score networks, as done by LDVI, yields better results than all
other methods for both datasets. ELBO (higher is better, standard deviations in gray) achieved after training by different
methods for different values of K for a logistic regression model with two datasets, ionosphere (d = 35) and sonar (d = 61).
Plain VI achieves an ELBO of −124.1.15 nats with the ionosphere dataset, and −138.6.2 nats with the sonar dataset. Best
result for each dataset and value of K highlighted.

Brownian motion Lorenz system

ULA MCD UHA LDVI ULA MCD UHA LDVI

K = 8 −1.9.05 −1.4.06 −1.6.03 −1.1.03 −1168.2.1 −1168.1.1 −1166.3.1 −1166.1.06

K = 16 −1.5.06 −0.8.04 −1.1.03 −0.5.03 −1165.7.1 −1165.6.1 −1163.1.3 −1162.2.07

K = 32 −1.1.05 −0.4.05 −0.5.04 0.1.04 −1163.2.04 −1163.3.04 −1160.3.05 −1157.6.1

K = 64 −0.7.03 −0.1.1 0.1.02 0.5.03 −1160.9.04 −1161.1.04 −1157.7.05 −1153.7.1

K = 128 −0.3.03 0.2.04 0.4.01 0.7.01 −1158.9.05 −1158.9.05 −1155.4.07 −1153.1.1

K = 256 −0.1.02 0.5.01 0.6.01 0.9.02 −1157.2.06 −1157.1.06 −1153.3.1 −1151.1.2

Table 2: LDVI yields better results than all other methods for both models. ELBO (higher is better, standard deviations
in gray) achieved after training by different methods for different values of K for two time series models (d = 32 for the
Brownian motion model and d = 90 for Lorenz system). Plain VI achieves an ELBO of −4.4.02 nats on the Brownian
motion model and −1187.8.4 nats on the Lorenz system model. Best result for each model and value of K highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI

K = 8 −75.5.02 −75.1.05 −74.9.01 −74.9.01

K = 16 −75.2.04 −74.6.04 −74.6.01 −74.5.03

K = 32 −74.9.03 −74.3.03 −74.2.02 −74.2.02

K = 64 −74.6.01 −74.1.02 −74.1.01 −73.9.05

K = 128 −74.3.03 −73.9.01 −73.8.02 −73.7.01

K = 256 −74.1.01 −73.7.01 −73.7.02 −73.6.01

Table 3: LDVI yields better results than all other meth-
ods. ELBO (higher is better, standard deviations in gray)
achieved after training by different methods for different
values of K for a random effect regression model with the
seeds dataset (d = 26). Plain VI achieves an ELBO of
−77.1.02 nats. Best result for each value of K highlighted.

this in section 5.2, where we propose and evaluate empiri-
cally an alternative simulation scheme based on a simpler
splitting than the one introduced in section 4.

In all cases, we use the different methods to perform
inference on a wide range of tasks for values of K ∈

{8, 16, 32, 64, 128, 256}, and report mean ELBO achieved
after training, with standard deviations computed over three
different random seeds. For all methods we set q(z) to
a mean-field Gaussian, initialized to a maximizer of the
ELBO, and train all parameters using Adam for 150000
steps. We repeat all simulations for the learning rates 10−3,
10−4 and 10−5, and keep the best one for each method and
model. For all methods we tune the initial distribution q(z),
discretization step-size δ, and the bridging densities’ pa-
rameters β. For LDVI and UHA we also tune the damping
coefficient γ > 0, and for LDVI and MCD we tune the
score network s, which has two hidden layers with residual
connections (He et al., 2016). We implement all methods
using Jax (Bradbury et al., 2018).

5.1 Underdamped dynamics and score networks

Logistic Regression. Table 1 shows results achieved by
ULA, MCD, UHA and LDVI on a logistic regression model
with two datasets, ionosphere (Sigillito et al., 1989) (d = 35)
and sonar (Gorman & Sejnowski, 1988) (d = 61). It can
be observed that going from overdamped to underdamped
dynamics yields significant performance improvements: For
the sonar dataset, UHA with K = 64 bridging densities
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Brownian motion Logistic regression (sonar)

UHAEM UHA LDVIEM LDVI UHAEM UHA LDVIEM LDVI

K = 8 −2.8.4 −1.6.03 −2.8.4 −1.1.03 −124.1.1 −120.1.02 −118.5.1 −116.3.03

K = 16 −2.2.04 −1.1.03 −1.4.03 −0.5.03 −119.9.08 −116.8.08 −114.4.05 −112.6.04

K = 32 −1.6.02 −0.5.04 −0.5.02 0.1.04 −116.4.1 −113.9.1 −111.7.04 −110.6.08

K = 64 −0.9.04 0.1.02 0.1.05 0.5.03 −113.8.1 −111.9.02 −110.3.04 −109.7.02

K = 128 −0.4.03 0.4.01 0.4.04 0.7.01 −111.9.1 −110.6.07 −109.6.04 −109.1.03

K = 256 0.1.04 0.6.01 0.6.05 0.9.02 −110.7.1 −109.7.05 −109.1.06 −108.9.02

Table 4: ELBO (higher is better, standard deviations in gray) achieved by UHAEM and LDVIEM, the variants of UHA and
LDVI that use the transitions from algorithms 4 and 5.

performs better than ULA with K = 256, and LDVI with
K = 64 performs better than MCD with K = 256. Simi-
larly, it can be observed that the use of score networks for
the backward transitions also yields significant gains: For
the sonar dataset, MCD and LDVI withK = 64 outperform
ULA and UHA, respectively, with K = 256. Finally, re-
sults show that combining both improvements is beneficial
as well, as it can be seen that LDVI outperforms all other
methods for all datasets and values of K.

Time series. We consider two time series models obtained
by discretizing two different SDEs, one modeling a Brow-
nian motion with a Gaussian observation model (d = 32),
and other modeling a Lorenz system, a three-dimensional
nonlinear dynamical system used to model atmospheric
convection (d = 90). We give details for these models in
appendix A. Both were obtained from the “Inference Gym”
(Sountsov et al., 2020). Results are shown in table 2. The
conclusions are similar to the ones for the logistic regres-
sion models: underdamped dynamics and score networks
yield gains in performance, and LDVI, which combines both
improvements, performs better than all other methods.

Random effect regression. Table 3 shows results on a
random effect regression model with the seeds dataset
(Crowder, 1978) (d = 26) (model details in appendix A).
The same conclusions hold, both UHA and MCD perform
better than ULA, and LDVI performs better than all other
methods.

5.2 Effect of Numerical Simulation Scheme

All the methods studied so far are based on the simulation
scheme introduced in section 4. We note that other sim-
ulations methods, which yield different transitions, could
be used. We are interested in studying how the simulation
scheme used affects methods’ performance.

We consider the forward and backward transitions shown in
algorithms 4 and 5, obtained by simulating the SDEs using
the Euler-Maruyama scheme as explained in appendix E
(where we also give an expression for the ratio of the tran-

sitions). We propose two methods using these transitions:
One that uses a full score network s, and other one that uses
no score network (i.e. fixes s = 0). Intuitively, these can be
seen as variants of LDVI and UHA that use this new simu-
lation scheme, so we term them LDVIEM and UHAEM.2

Algorithm 4 Forward transition Fk(zk+1, ρk+1|zk, ρk) ob-
tained with modified Euler-Maruyama

Resample momentum ρk+1 ∼ N (ρk(1 − γδ) +
δ∇ log πkδ(zk), 2γδI).
Update position zk+1 = zk + δρk+1.
return (zk+1, ρk+1)

Algorithm 5 Backward transition Bk(zk, ρk|zk+1, ρk+1)
obtained with modified Euler-Maruyama

Update position zk = zk+1 − δρk+1.
Resample momentum ρk ∼ N (ρk+1(1 − δγ) −
δ∇ log πkδ(zk) + 2δγs(kδ, zk, ρk+1), 2δγI).
return (zk, ρk)

Table 4 shows results for the Brownian motion model and
the logistic regression model with the sonar dataset (full
results in appendix E). It can be observed that each of
LDVIEM and UHAEM performs worse than its counter-
part using the simulation scheme from section 4, LDVI
and UHA. Interestingly, for the Brownian motion model,
UHAEM is also outperformed by ULA. This sheds light on
the importance of the simulation scheme used: for some
models, the benefits obtained by using underdamped dy-
namics and a score network may be lost by using a poorly
chosen simulation scheme.
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A MODEL DETAILS

A.1 Time Series Models

This models are presented following their descriptions in the Inference Gym documentation (Sountsov et al., 2020). Both
are obtained by discretizing an SDE and using a Gaussian observation model.

Brownian motion with Gaussian observation noise The model is given by

αinn ∼ LogNormal(loc = 0, scale = 2)

αobs ∼ LogNormal(loc = 0, scale = 2)

x1 ∼ N (loc = 0, scale = αinn)

xi ∼ N (loc = xi−1, scale = αinn) i = 2, . . . , 30

yi ∼ N (loc = xi, scale = αobs) i = 1, . . . , 30.

The goal is to do inference over variables αinn, αobs and xi (i = 1, . . . , 30), given the observations yi, for i ∈ {1, . . . , 10}∪
{20, . . . , 30} (i.e. the ten middle observations are missing).

Lorenz system The model is given by

x1 ∼ N (loc = 0, scale = 1)

y1 ∼ N (loc = 0, scale = 1)

z1 ∼ N (loc = 0, scale = 1)

xi ∼ N (loc = 10(yi−1 − xi−1), scale = αinn) i = 2, . . . , 30

yi ∼ N (loc = xi−1 (28− zi−1)− yi−1), scale = αinn) i = 2, . . . , 30

zi ∼ N (loc = xi−1 yi−1 −
8

3
zi−1, scale = αinn) i = 2, . . . , 30,

oi ∼ N (loc = xi, scale = 1) i = 2, . . . , 30,

where αinn = 0.1 (determined by the discretization step-size used for the original SDE). The goal is to do inference over
xi, yi, zi for i = 1, . . . , 30, given observed values oi for i ∈ {1, . . . , 10} ∪ {20, . . . , 30}.

A.2 Random effect regression

This model can be found in the MultiBUGS (Goudie et al., 2020) documentation. It is essentially a random effects regression
model, given by

τ ∼ Gamma(0.01, 0.01)

a0 ∼ N (0, 10)

a1 ∼ N (0, 10)

a2 ∼ N (0, 10)

a12 ∼ N (0, 10)

bi ∼ N
(

0,
1√
τ

)
i = 1, . . . , 21

logitsi = a0 + a1 xi + a2 yi + a12 xi yi + b1 i = 1, . . . , 21

ri ∼ Binomial(logitsi, Ni) i = 1, . . . , 21.

The goal is to do inference over the variables τ, a0, a1, a2, a12 and bi for i = 1, . . . , 21, given observed values for xi, yi and
Ni. The data used was obtained from (Crowder, 1978), which models the germination proportion of seeds arranged in a
factorial layout by seed and type of root.
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B TIME-REVERSED SDE FOR UNDERDAMPED LANGEVIN PROCESS

Consider a diffusion process of the form

dxt = f(zt, t)dt+G(zt, t)dwt, (13)

where t ∈ 0, T . Defining ut = xT−t, the process that inverts the one above is given by (Haussmann & Pardoux, 1986;
Anderson, 1982; Dockhorn et al., 2021)

dut =
[
−f(ut, T − t) +G(ut, T − t)G(ut, T − t)>∇ log qT−t(ut)

]
dt+G(ut, T − t)dwt. (14)

This result can be used to derive the time-reversed diffusion for the underdamped Langevin process, by expressing the
forward process as (using x = [z, ρ])[

dzt

dρt

]
=

[
ρt

∇ log πt(zt)− γρt
]

︸ ︷︷ ︸
f(xt,t)

dt+

[
0 0
0
√

2γ

]
︸ ︷︷ ︸

G(xt,t)

[
dwt1
dwt2

]
, (15)

and applying eq. (14).

C DERIVATION OF BACWARD TRANSITIONS FROM ALGORITHM 2

The time-reversed SDE is split into three components as[
dyt

dλt

]
=

[
−λtdt

0

]
︸ ︷︷ ︸

AB

+

[
0

−∇ log πT−t(yt)dt

]
︸ ︷︷ ︸

BB

+

[
0

−γρtdt+ 2γs(T − t, yt, λt)dt+
√

2γdwt

]
︸ ︷︷ ︸

OB

.

Then, the final transitions are given by sequentially composing the simulations for components BBABBBOB .

Simulating AB: This can be done exactly. Given initial values (yt0 , λt0) at time t0, simulating AB for a time δ results in
(yt0+δ, λt0+δ) = (yt0 + δλt0 , λt0).

Simulating BB: Given initial values (yt0 , λt0) at time t0, and using that πT−t0 ≈ πT−t0+δ for small δ, simulating BF for
a time δ results in (yt0+δ, λt0+δ) = (yt0 , λt0 + δ∇ log πT−t0(yt0)).

Simulating OB: In contrast to the forward transitions, this component cannot be simulated exactly due to the presence
of the term involving s (it can be done exactly if we fix s = 0). This component can be simulated approximately, for
instance, using the Euler-Maruyama scheme. Given an initial values yt0 and λt0 at time t0, simulating OB for a time δ
gives λt0+δ ∼ N (λt0+δ|λt0(1− γδ) + 2γδs(T − t, yt0), 2γδI). We will use mB to denote generically the momentum
resampling distribution used.

Finally, the backward transitions from algorithm 2 are obtained by sequentially combining the results above, and transforming
back to the variables z and ρ using the fact that zt = yT−t and ρt = λT−t.
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D PROOFS

D.1 Proof of lemma 1

This proof follows closely the one from Geffner and Domke (Geffner & Domke, 2021). We will derive expressions for the
forward and backward transitions separately, and take the ratio at the end. In the derivation, we replace all delta functions by
Gaussians with variance ∆, and take the limit ∆→ 0 with the final expressions. We use (z′, ρ′) = τLP,k(z, ρ) to denote the
leapfrog integration step typically used by HMC targeting the bridging density πk (see algorithm 1 for a definition), which
is invertible and volume preserving (Jacobian determinant equals one).

Forward transitions We will divide the forward transition from algorithm 1 in two steps:

1. Resampling step: z′k, ρ
′
k ∼ mF (ρ′k|ρk, γ, δ)N (z′k|zk,∆),

2. Deterministic step: (zk+1, ρk+1) = τLP,k(z′k, ρ
′
k).

Using that τLP,k is invertible and volume preserving, we get

Fk(zk+1, ρk+1|zk, ρk) = mF

(
(τ−1LP,k)ρ(zk+1, ρk+1)

∣∣∣ρk, γ, δ)N ((τ−1LP,k)z(zk+1, ρk+1)
∣∣∣zk,∆) , (16)

where (τ−1LP,k)ρ(zk+1, ρk+1) is defined as the second component of τ−1LP,k(zk+1, ρk+1), and similarly (τ−1LP,k)z(zk+1, ρk+1)
as its first component.

Backward transitions Similarly, we divide the backward transitions from algorithm 2 in two steps:

1. Deterministic step: (z′k, ρ
′
k) = τ−1LP,k(zk+1, ρk+1),

2. Resampling step: zk, ρk ∼ N (zk|z′k,∆)mB(ρk|ρ′k, zk, γ, δ).

Then, we get

Bk(zk, ρk|zk+1, ρk+1) = N
(
zk

∣∣∣(τ−1LP,k)z(zk+1, ρk+1),∆
)
mB

(
ρk

∣∣∣(τ−1LP,k)ρ(zk+1, ρk+1), zk, γ, δ
)
. (17)

Finally, using ρ′k = (τ−1LP,k)ρ(zk+1, ρk+1) and z′k = (τ−1LP,k)z(zk+1, ρk+1) to simplify notation, taking the ratio between Fk
and Bk yields

Bk(zk, ρk|zk+1, ρk+1)

Fk(zk+1, ρk+1|zk, ρk)
=
mB (ρk|ρ′k, zk, γ, δ)
mF (ρ′k|ρk, γ, δ)

, (18)

since the ratio between the Gaussian densities cancel.
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D.2 Proof of theorem 4.1

ULA summary ULA uses the following transitions

Fk(zk+1|zk) = N (zk+1|zk + ε∇ log πk(zk), 2ε)

Bk(zk|zk+1) = N (zk|zk+1 + ε∇ log πk(zk+1), 2ε)
(19)

The forward transition yields
zk+1 = zk + ε∇ log πk(zk) +

√
2ε ξk, (20)

where ξk ∼ N (0, I), for k = 1, ...,K − 1.

Then, ULA’s lower bound can be written as (using N (a|b, c) with c ≥ 0 to denote the pdf of a Gaussian with mean b and
variance c evaluated at a)

p(zK)

q(z1)

K−1∏
k=1

Bk(zk|zk+1)

Fk(zk+1|zk)
=
p(zK)

q(z1)

K−1∏
k=1

N (zk|zk+1 + ε∇ log πk(zk+1), 2ε)

N (zk+1|zk + ε∇ log πk(zk), 2ε)
(21)

=
p(zK)

q(z1)

K−1∏
k=1

N (−ε∇ log πk(zk)− ε∇ log πk(zk+1)−
√

2ε ξk|0, 2ε)
N (
√

2ε ξk|0, 2ε)
(22)

=
p(zK)

q(z1)

K−1∏
k=1

N
(√

ε
2 log πk(zk) +

√
ε
2∇ log πk(zk+1) + ξk|0, 1

)
N (ξk|0, 1)

, (23)

where we obtain eq. (22) using the expression for zk+1 from eq. (20).

Recovering ULA Using exact momentum resampling for the forward transitions gives ρ′k ∼ N (ηρk, (1− η2)I), where
η = exp(−γδ).) Using η = 0 (high friction limit) gives ρ′k ∼ N (0, I), which is used in place of mF (ρ′k|ρk, γ, δ) in
algorithm 1. The final forward transitions Fk(zk+1, ρk+1|zk, ρk) are thus given by

Simulate OF : ρ′k ∼ N (0, I) → ρ′k = ξk ∼ N (0, I)

Simulate BF : ρ′′k = ρ′k +
δ

2
∇ log πk(zk) → ρ′′k = ξk +

δ

2
∇ log πk(zk)

Simulate AF : zk+1 = zk + δρ′′k → zk+1 = zk +
δ2

2
∇ log πk(zk) + δξk

Simulate BF : ρk+1 = ρ′′k +
δ

2
∇ log πk(zk+1) → ρk+1 = ξk +

δ

2
∇ log πk(zk) +

δ

2
∇ log πk(zk+1).

(24)

It can be seen that the forward dynamics for z are exactly the same as those used by ULA (eq. (20)), using ε = δ2/2.

Thanks to removing the score network (i.e. s(t, z, ρ) = 0), exact momentum resampling is possible for the backward
transitions Bk(zk, ρk|zk+1, ρk+1) as well. Similarly to the forward transitions, this gives ρk ∼ N (0, I), which should be
used in place of mB(ρk|ρ′k, zk, γ, δ) in algorithm 2.

Finally, using the transitions with these resampling distributions, the momentum augmented distributions given by
p̄(zK , ρk) = p̄(zK)N (ρK |0, I) and q(z1, ρ1) = q(z1)N (ρ1|0, I), and the result from lemma 1, we get

p(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=
p(zK)

q(z1)

K−1∏
k=1

N (ρk+1|0, I)

N (ρ′k|0, I)
(25)

=
p(zK)

q(z1)

K−1∏
k=1

N (ξk + δ
2∇ log πk(zk) + δ

2∇ log πk(zk+1)|0, I)

N (ξk|0, I)
, (26)

where the second line is obtained by replacing ρk+1 and ρ′k by their respective expressions from eq. (24). Taking ε = δ2/2
gives the ratio used by ULA (eq. (23)), showing that our framework with the choices from theorem 4.1 recovers ULA.
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D.3 Proof of theorem 4.2

MCD summary MCD uses the same forward transitions as ULA

Fk(zk+1|zk) = N (zk + ε∇ log πk(zk), 2ε), (27)

and backward transitions given by

Bk(zk|zk+1) = N (zk+1 + ε∇ log πk(zk+1) + 2εs̃ (kδ, zk+1) , 2ε) . (28)

Using these transitions, and writing zk+1 = zk + ε∇ log πk(zk) +
√

2ε ξk (where ξk ∼ N (0, I)), MCD yields the ratio

p̄(z1:K)

q(z1:K)
=
p(zK)

q(z1)

K−1∏
k=1

Bk(zk|zk+1)

Fk(zk+1|zk)

=
p̄(zK)

q(z1)

K−1∏
k=1

N (
√

ε
2∇ log πk(zk) +

√
ε
2∇ log πk(zk+1) +

√
2εs̃(kδ, zk+1) + ξk|0, 1)

N (ξk|0, 1)
. (29)

Recovering MCD The forward transitions used by our framework to recover MCD are exactly the same as the ones
used in the proof of theorem 4.1, shown in eq. (24). Therefore, the forward dynamics for z are given by zk+1 =

zk + δ2

2 ∇ log πk(zk) + δξk, which is exactly the same as the forward dynamics used by MCD, taking ε = δ2/2.

Deriving the backward transitions requires simulating component OB . Using s(T − t, yt, λt) = s(T − t, yt) (as stated in
theorem 4.2), this component is given by[

dyt

dλt

]
=

[
0

−γρtdt+ 2γs(T − t, yt)dt+
√

2γdwt

]
. (30)

Since dyt = 0, we get that yt is constant as a function of t. However, the term s(T − t, yt) is not a constant with
respect to time, due to its first argument. Thus, in general, exact simulation for this component is intractable. However,
approximating s(T − t, yt) ≈ s(T − t0, y

t0) for t ∈ [t0, t0 + δ], we can simulate it as λt0+δ ∼ N (ηλt0 + 2s(T −
t0, y

t)(1 − η), (1 − η2)I), where η = exp(−γδ).3 Taking η = 0 and expressing the transitions in terms of z and ρ
yields the backward transitions Bk(zk, ρk|zk+1, ρk+1) from algorithm 2 with momentum resampling distribution given by
mB(ρk|ρ′k, zk, γ, δ) = N (2s(kδ, zk), I).

Using the above transitions, the momentum augmented distributions given by

p̄(zK , ρK) = p̄(zK)N (ρK |2s (Kδ, zK) , I) and q(z1, ρ1) = q(z1)N (ρ1|2s (δ, z1) , I) ,

and the result from lemma 1, our framework yields

p̄(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=
p̄(zK)N (ρK |2s (Kδ, zK) , I)

q(z1)N (ρ1|2s (δ, z1) , I)

K−1∏
k=1

N (ρk|2s(kδ, zk, I))

N (ρ′k|0, I)
. (31)

Finally, replacing ρk+1 and ρ′k by their expressions from eq. (24), this ratio can be written as

p̄(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=
p(zK)

q(z1)

K−1∏
k=1

N
(
ξk + δ

2∇ log πk(zk) + δ
2∇ log πk(zk+1)− 2s ((k + 1)δ, zk+1) |0, I

)
N (ξk|0, I)

, (32)

which recovers the ratio used by MCD taking ε = δ2

2 and s ((k + 1)δ, zk+1) = − 1
2

√
2ε s̃ (kδ, zk+1). This shows that our

framework with the choices from theorem 4.2 recovers MCD.

3This is obtained by noting that the process dλt = adt − γλtdt +
√
2γdwt, where a is a constant, admits exact simulation as

λt0+δ ∼ N (λt0η + a
γ
(1− η), (1− η2)I), where η = exp(−γδ). Our result follows from setting a = γs(T − t0, yt0).
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D.4 Proof of theorem 4.3

For this proof we will use τLP(z, ρ) to denote a single step of the leapfrog integrator typically used by HMC (see algorithm 1
for the definition), and γ(z, ρ) to denote the operator that negates the momentum variables, that is, (z,−ρ) = γ(z, ρ).

UHA uses forward transitions Fk(zk+1, ρk+1|zk, ρk) that consist of three steps

1. Resample momentum as ρ′k ∼ N (ηρk, (1− η2)I), where η = exp(−γδ),

2. Apply a leapfrog step τLP followed by a negation of the momentum, which gives (z′′k , ρ
′′
k) = (γ ◦ τLP)(zk, ρ

′
k),

3. Negate the momentum, which gives (zk+1, ρk+1) = γ(z′′k , ρ
′′
k).

Combining steps (2) and (3) gives (zk+1, ρk+1) = (γ ◦ γ ◦ τLP)(zk, ρ
′
k), which can be simplified to (zk+1, ρk+1) =

τLP(zk, ρ
′
k), since γ is an involution (self-inverting). Thus, UHA transitions can be expressed as a sequence of two steps:

momentum resampling, followed by an application of a leapfrog step used by HMC. This is exactly the same as the forward
transition from algorithm 1 with exact momentum resampling.

Similarly, the backward transitions Bk(zk, ρk|zk+1, ρk+1) used by UHA also consist of three steps, given by

1. Negate the momentum, which gives (z′′k , ρ
′′
k) = γ(zk+1, ρk+1).

2. Apply a leapfrog step τLP followed by a negation of the momentum, which gives (zk, ρ
′
k) = (γ ◦ τLP)(z′′k , ρ

′′
k),

3. Resample momentum as ρk ∼ N (ηρ′k, (1− η2)I), where η = exp(−γδ).

Using the fact that γ ◦ τLP = (γ ◦ τLP)−1 = τ−1LP ◦ γ−1 (Neal et al., 2011), steps (1) and (2) above can be combined as
((γ ◦ τLP) ◦ γ)(zk+1, ρk+1) = (τ−1LP ◦ γ−1 ◦ γ)(zk+1, ρk+1) = τ−1LP (zk+1, ρk+1). This shows that the backward transitions
used by UHA can be expressed as a sequence of two steps: the inverse of a leapfrog step used by HMC, followed by exact
resampling of the momentum. This is exactly the same as the backward transition from algorithm 2 with exact momentum
resampling (possible due to removing the score network).

This shows that the forward and backward transitions used by UHA are recovered by our framework with the simulation
scheme from section 4, using the choices stated in theorem 4.3. Finally, using the momentum augmented distributions given
by

p̄(zK , ρK) = p̄(zK)N (ρK |0, I) and q(z1, ρ1) = q(z1)N (ρ1|0, I),

and the result from lemma 1, our framework yields the ratio

p̄(z1:K , ρ1:K)

q(z1:K , ρ1:K)
=
p̄(zK)N (ρK |0, I)

q(z1)N (ρ1|0, I)

K−1∏
k=1

N (ρk|0, I)

N (ρ′k|0, I)

=
p̄(zK)

q(z1)

K−1∏
k=1

N (ρk+1|0, I)

N (ρ′k|0, I)
,

which is exactly the ratio used by UHA. This shows that our framework with the choices from theorem 4.3 recovers UHA.
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Table 5: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the ionosphere (d = 35) dataset. Higher is better. Plain VI achieves an ELBO of −124.1 nats. Best result for each value of
K highlighted.

Logistic regression (Ionosphere)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −116.4 −114.6 −115.6 −114.4 −117.7 −115.5
K = 16 −115.4 −113.6 −114.4 −113.1 −115.9 −113.8
K = 32 −114.5 −112.9 −113.4 −112.4 −114.6 −112.9
K = 64 −113.8 −112.5 −112.8 −112.1 −113.6 −112.4
K = 128 −113.1 −112.2 −112.3 −111.9 −113.1 −112.1
K = 256 −112.7 −112.1 −112.1 −111.7 −112.5 −111.9

E SIMPLER DISCRETIZATION SCHEME FROM SECTION 5.2

This section shows the derivation of the forward and backward transitions from algorithms 4 and 5 together and an expression
for their ratio, and results on all datasets using the resulting method.

E.1 Transitions

Forward transitions The forward transitions F em
k (zk+1, ρk+1|zk, ρk) from algorithm 4 are obtained by splitting the

forward SDE as [
dzt

dρt

]
=

[
ρtdt

0

]
︸ ︷︷ ︸
UF

+

[
0

∇ log πt(zt)dt− γρtdt+
√

2γdwt

]
︸ ︷︷ ︸

VF

,

and by sequentially composing the simulations for components VFUF . Component VF is simulated using the Euler-
Maruyama scheme, while UF is simulated exactly. This yields the forward transitions from algorithm 4.

Backward transitions The backward transitions Bem
k (zk, ρk vertzk+1, ρk+1) from algorithm 5 are obtained by splitting

the time-reversed SDE as[
dyt

dλt

]
=

[
−λtdt

0

]
︸ ︷︷ ︸

UB

+

[
0

−∇ log πT−t(yt)dt− γλtdt+ 2γs(T − t, yt, λt)dt+
√

2γdwt

]
︸ ︷︷ ︸

VB

and by sequentially composing the simulations for components UBVB . Component UB is simulated exactly, while VB is
simulated using the Euler-Maruyama scheme. This yields the backward transitions from algorithm 5.

Ratio between transitions The ratio between the transitions from algorithms 4 and 5 is given by

Bem
k (zk, ρk|zk+1, ρk+1)

F em
k (zk+1, ρk+1|zk, ρk)

=
N (ρk|ρk+1(1− δγ)− δ∇ log πkδ(zk) + 2δγs(kδ, zk, ρk+1), 2δγI)

N (ρk+1|ρk(1− γδ) + δ∇ log πkδ(zk), 2γδI)
. (33)

This can be obtained following a similar reasoning as the one used to prove lemma 1.

E.2 Results on all models

Results for all models are shown in tables 5, 6, 7, 8 and 9. In addition to UHAEM and LDVIEM, the tables include results
for ULA, MCD, UHA and LDVI as well, to facilitate comparisons. It can be observed that, for all models, using the
simpler transitions from algorithms 4 and 5 (i.e. UHAEM and LDVIEM) lead to worse results than those obtained using the
transitions from algorithms 1 and 2 (i.e. UHA and LDVI).
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Table 6: ELBO achieved after training by different methods for different values of K for a logistic regression model with
the sonar (d = 61) dataset. Higher is better. Plain VI achieves an ELBO of −138.6 nats. Best result for each value of K
highlighted.

Logistic regression (Sonar)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −122.4 −117.2 −120.1 −116.3 −124.1 −118.5
K = 16 −119.9 −114.4 −116.8 −112.6 −119.9 −114.4
K = 32 −117.4 −112.4 −113.9 −110.6 −116.4 −111.7
K = 64 −115.3 −111.1 −111.9 −109.7 −113.8 −110.3
K = 128 −113.5 −110.2 −110.6 −109.1 −111.9 −109.6
K = 256 −112.1 −109.7 −109.7 −108.9 −110.7 −109.1

Table 7: ELBO achieved after training by different methods for different values of K for the Brownian motion model
(d = 32). Higher is better. Plain VI achieves an ELBO of −4.4 nats. Best result for each value of K highlighted.

Brownian motion

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1.9 −1.4 −1.6 −1.1 −2.8 −2.8
K = 16 −1.5 −0.8 −1.1 −0.5 −2.2 −1.4
K = 32 −1.1 −0.4 −0.5 0.1 −1.6 −0.5
K = 64 −0.7 −0.1 0.1 0.5 −0.9 0.1
K = 128 −0.3 0.2 0.4 0.7 −0.4 0.4
K = 256 −0.1 0.5 0.6 0.9 0.1 0.6

Table 8: ELBO achieved after training by different methods for different values of K for the Lorenz system model (d = 90).
Higher is better. Plain VI achieves an ELBO of −1187.8 nats. Best result for each value of K highlighted.

Lorenz system

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −1168.2 −1168.1 −1166.3 −1166.1 −1170.5 −1170.5
K = 16 −1165.7 −1165.6 −1163.1 −1162.2 −1169.8 −1166.8
K = 32 −1163.2 −1163.3 −1160.3 −1157.6 −1167.9 −1162.9
K = 64 −1160.9 −1161.1 −1157.7 −1153.7 −1161.3 −1161.4
K = 128 −1158.9 −1158.9 −1155.4 −1153.1 −1158.1 −1163.4
K = 256 −1157.2 −1157.1 −1153.3 −1151.1 −1163.1 −1154.6

Table 9: ELBO achieved after training by different methods for different values of K for a random effect regression model
with the seeds dataset (d = 26). Higher is better. Plain VI achieves an ELBO of −77.1 nats. Best result for each value of K
highlighted.

Random effect regression (seeds)

ULA MCD UHA LDVI UHAEM LDVIEM

K = 8 −75.5 −75.1 −74.9 −74.9 −75.9 −75.5
K = 16 −75.2 −74.6 −74.6 −74.5 −75.1 −75.1
K = 32 −74.9 −74.3 −74.2 −74.2 −74.8 −74.8
K = 64 −74.6 −74.1 −74.1 −73.9 −74.4 −74.4
K = 128 −74.3 −73.9 −73.8 −73.7 −74.1 −74.1
K = 256 −74.1 −73.7 −73.7 −73.6 −73.9 −73.7
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