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Abstract

Contrastive learning has emerged as a premier
method for learning representations with or with-
out supervision. Recent studies have shown its
utility in graph representation learning for pre-
training. Despite successes, the understanding of
how to design effective graph augmentations that
can capture structural properties common to many
different types of downstream graphs remains in-
complete. We propose a set of well-motivated
graph transformation operations derived via graph
spectral analysis to provide a bank of candidates
when constructing augmentations for a graph con-
trastive objective, enabling contrastive learning to
capture useful structural representation from pre-
training graph datasets. We first present a spectral
graph cropping augmentation that involves filter-
ing nodes by applying thresholds to the eigenval-
ues of the leading Laplacian eigenvectors. Our
second novel augmentation reorders the graph
frequency components in a structural Laplacian-
derived position graph embedding. Further, we
introduce a method that leads to improved views
of local subgraphs by performing alignment via
global random walk embeddings. Our experimen-
tal results indicate consistent improvements in
out-of-domain graph data transfer compared to
state-of-the-art graph contrastive learning meth-
ods, shedding light on how to design a graph
learner that is able to learn structural properties
common to diverse graph types.

1 INTRODUCTION

Representation learning is of perennial importance, with
contrastive learning being a recent prominent technique.
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Taking images as an example, under this framework, a set
of transformations is applied to image samples, without
changing the represented object or its label. Candidate trans-
formations include cropping, resizing, Gaussian blur, and
color distortion. These transformations are termed augmen-
tations (Chen et al., 2020b; Grill et al., 2020). A pair of
augmentations from the same sample are termed positive
pairs. During training, their representations are pulled to-
gether (Khosla et al., 2020). In parallel, the representations
from negative pairs, consisting of augmentations from dif-
ferent samples, are pushed apart. The contrastive objective
encourages representations that are invariant to distortions
but capture useful features. This constructs general repre-
sentations, even without labels, that are usable downstream.

Recently, self-supervision has been employed to support the
training process for graph neural networks (GNNs). Several
approaches (e.g., Deep Graph Infomax (DGI) (Velickovic
et al., 2019), InfoGCL (Xu et al., 2021)) rely on mutual infor-
mation maximization or information bottlenecking between
pairs of positive views. Other GNN pre-training strategies
construct objectives or views that rely heavily on domain-
specific features (Hu et al., 2020b,c). This inhibits their
ability to generalize to other application domains. Some re-
cent graph contrastive learning strategies such as GCC (Qiu
et al., 2020) and GraphCL (You et al., 2020) can more read-
ily transfer knowledge to out-of-domain graph domains,
because they derive embeddings based solely on local graph
structure, avoiding possibly unshared attributes entirely.
However, these approaches employ heuristic augmentations
such as random walk with restart and edge-drop, which are
not designed to preserve graph properties and might lead
to unexpected changes in structural semantics (Lee et al.,
2022). There is a lack of diverse and effective graph transfor-
mation operations to generate augmentations. We aim to fill
this gap with a set of well-motivated graph transformation
operations derived via graph spectral analysis to provide a
bank of candidates when constructing augmentations for a
graph contrastive objective. This allows the graph encoder
to learn structural properties that are common for graph data
spanning multiple graphs and domains.

Contributions. We introduce three novel methods: (i)
spectral graph cropping, (ii) graph frequency component
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Table 1: Properties of different approaches to graph contrastive (unsupervised) learning. ⋆ indicates that the method was not originally
designed for pre-training, but can be trivially adapted to it. See Appendix 7 for a more complete description with relevant references.

Approaches
Goal is pre-training

or transfer
No requirement

for features
Domain
transfer

Shareable graph
encoder

Category 1 (DGI, InfoGraph, MVGRL, DGCL, InfoGCL, AFGRL) % % % %

Category 2 (GPT-GNN, Strategies for pre-training GNNs) " % % "

Category 3 (Deepwalk, LINE, node2vec) % " " %

Category 4 (struc2vec, graph2vec, DGK, Graphwave, InfiniteWalk) % " " %

Category 5 (GraphCL, CuCo⋆, GCC, BYOV, GRACE⋆, GCA⋆, Ours) " " " "

reordering, both being graph data augmentations, and a
post-processing step termed (iii) local-global embedding
alignment. We also propose a strategy to select from can-
didate augmentations, termed post augmentation filtering.
First, we define a graph transformation that removes nodes
based on the graph Laplacian eigenvectors. This general-
izes the image crop augmentation. Second, we introduce an
augmentation that reorders graph frequency components in
a structural Laplacian-derived position embedding. We mo-
tivate this by showing its equivalence to seeking alternative
diffusion matrices instead of the Laplacian for factorization.
This resembles image color channel manipulation. Third,
we introduce the approach of aligning local structural posi-
tional embeddings with a global embedding view to better
capture structural properties that are common for graph data.
Taken together, we improve state-of-the-art methods for
contrastive learning on graphs for out-of-domain graph data
transfer. We term our overall suite of augmentations SGCL
(Spectral Graph Contrastive Learning).

2 RELATED WORK

Graph contrastive methods. Table 1 divides existing work
into five categories. Category 1 methods rely on mutual
information maximization or bottlenecking. Category 2
methods require that pre-train and downstream task graphs
come from the same domain. Category 3 includes random
walk based embedding methods and Category 4 includes
structural similarity-based methods. These methods do not
provide shareable parameters (You et al., 2020). Category 5
(our setting): These methods explicitly target pre-training
or transfer. Two of the more closely related approaches are
Graph Contrastive Coding (GCC) (Qiu et al., 2020) and
GraphCL (You et al., 2020). In GCC, the core augmentation
is random walk with return (Tong et al., 2006) and Lapla-
cian positional encoding is used to improve out-of-domain
generalization. GraphCL (You et al., 2020) expands this
augmentation suite by including node dropping, edge pertur-
bations, and attribute masking. Other methods in Category
5 construct adaptive/learnable contrastive views (Zhu et al.,
2021; Chu et al., 2021; You et al., 2022; Lee et al., 2022).
Please see Appendix 7 for more detailed discussion.

Graph structural augmentations. We focus on the most

general, adaptable and transferable structure-only scenario
— learning a GNN encoder using a large scale pre-training
dataset with solely structural data and no attributes or labels.
While not all methods in category 5 address this setting,
they can be adapted to run in such conditions by removing
domain or attribute-reliant steps. The graph augmentation
strategy plays a key role in the success of graph contrastive
learning (Qiu et al., 2020; You et al., 2020; Li et al., 2021;
Sun et al., 2019; Hassani and Khasahmadi, 2020; Xu et al.,
2021) and is a natural target as our area of focus. Commonly-
used graph augmentations include: 1) attribute dropping
or masking (You et al., 2020; Hu et al., 2020c); 2) ran-
dom edge/node dropping (Li et al., 2021; Xu et al., 2021;
Zhu et al., 2020, 2021); 3) graph diffusion (Hassani and
Khasahmadi, 2020) and 4) random walks around a center
node (Tong et al., 2006; Qiu et al., 2020). Additionally,
there is an augmentation called GraphCrop (Wang et al.,
2020), which uses a node-centric strategy to crop a contigu-
ous subgraph from the original graph while maintaining its
connectivity; this is different from the spectral graph crop-
ping we propose. Existing structure augmentation strategies
are not tailored to any special graph properties and might
unexpectedly change the semantics (Lee et al., 2022).

Positioning our work. Encoding human-interpretable struc-
tural patterns such as degree, triangle count, and graph mo-
tifs, is key to successful architectures such as GIN (Xu et al.,
2019) or DiffPool (Ying et al., 2018) and these patterns
control the quality of out-of distribution transfer (Yehudai
et al., 2021) for graph tasks, which naturally relates to the
pre-train framework where the downstream dataset may dif-
fer in distribution from the pre-train corpus. We seek a
GNN which learns to capture structural properties common
to diverse types of downstream graphs.

These commonly used structural patterns (e.g., degree, tri-
angle count) are handcrafted. It is preferable to learn these
features instead of defining them by fiat. Our goal is to
create an unsupervised method that learns functions of the
graph structure alone, which can freely transfer downstream
to any task. The use of spectral features to learn these struc-
tural embeddings is a natural choice; spectral features such
as the second eigenvalue or the spectral gap relate strongly
to purely structural features such as the number of clusters
in a graph, the number of connected components, and the
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d-regularity (Spielman, 2007). Methods based on spectral
eigendecomposition such as Laplacian embeddings are ubiq-
uitous, and even random-walk based embeddings such as
LINE (Tang et al., 2015) are simply eigendecompositions
of transformed adjacency matrices. Instead of handcraft-
ing degree-like features, we strive to construct a learning
process that allows the GNN to learn, in an unsupervised
fashion, useful structural motifs. By founding the process
on the spectrum of the graph, learning can move freely be-
tween the combinatorial, discrete domain of the nodes and
the algebraic domain of embeddings.

Such structural features are required for the structure-only
case, where we have large, unlabeled, pre-train graphs, and
no guarantee that any attributes are shared with the down-
stream task. This is the most challenging setting in graph
pre-training. In such a setting, it is only structural patterns
that can be learned from the corpus and potentially trans-
ferred and employed in the downstream phase.

3 GRAPH CONTRASTIVE LEARNING

We consider a setting where we have a set of graphs G =
{Gt} available for pre-training using contrastive learning.
If we are addressing graph-level downstream tasks, then we
work directly with the Gt. However, if the task is focused
on nodes (e.g., node classification), then we associate with
each node i ∈ Gt a subgraph Gi, constructed as the r-ego
subnetwork around i in Gt, defined as

Gi ≜ Gt[{v ∈ Gt : d(i, v) ≤ r}] , (1)

where d(u, v) is the shortest path distance between nodes i
and v and G[S] denotes the subgraph induced from G by the
subset of vertices S. During pre-training there are no labels,
but in a fine-tuning phase when labels may be available, a
subgraph Gi inherits any label associated with node i. Thus,
node classification is treated as graph classification, finding
the label of Gi. This processing step allows us to treat node
and graph classification tasks in a common framework.

Our goal is to construct an encoder parametrized by θ, de-
noted Eθ, such that for a set of instances Gi ∈ G, the output
Eθ(Gi) captures the essential information about Gi required
for downstream tasks. We employ instance discrimination
as a contrastive learning objective and minimize (Gutmann
and Hyvärinen, 2010, 2012; Hjelm et al., 2018):

− log
exp⟨Eθ(G′+), Eθ′(G+)⟩

⟨Eθ(G′+), Eθ′(G+)⟩+
∑r

j=1⟨Eθ(G′+), Eθ′(Gj−)⟩
.

(2)
Here, G+, G′+ may be any augmented version of G, and
one of them can be G itself. There is an additional sum in
the denominator, denoting the number of negative instances.

For the encoder, we construct structure positional embed-
dings generalizable to unseen graphs. Let Gi have N nodes,

adjacency matrix Ai, diagonal degree matrix Di. The nor-
malized Laplacian of Gi is Li, which is eigendecomposed:

Li = I −D
−1/2
i AiD

−1/2
i , UiΛiU

T
i = Li . (3)

With the Λi (eigenvalues) sorted in ascending order of mag-
nitude, the first k columns of Ui yield the k-dimensional po-
sitional embedding, Xi, of shape N × k. The pair (Gi,Xi)
then serves as input to a GNN graph encoder (in our case
GIN (Xu et al., 2019)), which creates a corresponding hid-
den vector Hi of shape N×h, where h is the dimensionality
of the final GNN layer. Each row corresponds to a vertex
v ∈ Gi. A readout function (Gilmer et al., 2017; Xu et al.,
2019), which can be a simple permutation invariant function
such as summation, or a more complex graph-level pooling
function, takes the hidden states over v ∈ Gi and creates an
h-dimensional graph representation ri. A view of Gi can be
created by conducting an independent random walk (with
return) from node i, and collecting all the nodes visited in
the walk to form G′

i. The random walk captures the local
structure around i in Gi while perturbing it, and is inher-
ently structural. A random walk originating from another
node j ∈ Gj , j ̸= i leads to a negative example Gj−.

4 SPECTRAL GRAPH CONTRASTIVE
AUGMENTATION FRAMEWORK

In this work, we introduce two novel graph data augmen-
tation strategies: graph cropping and reordering of graph
frequency components. We also propose two important
quality-enhancing mechanisms. The first, which we call
augmentation filtering, selects among candidate augmen-
tations based on their representation similarity. The sec-
ond, called local-global embedding view alignment, aligns
the representations of the nodes that are shared between
augmentations. We add the masking attribute augmenta-
tion (Hu et al., 2020b) which randomly replaces embed-
dings with zeros to form our overall flow of operations for
augmentation construction, as depicted in Figure 1. The
first two mandatory steps are ego-net formation and random
walk. Subsequent steps may occur (with probabilities as
pfilter, pcrop, palign, pmask, preorder) or may not. Two of
the steps — mask and reorder — are mutually exclusive.
For more detail, see Appendix 10.4. In the remainder of
the section, we provide a detailed description of the core
novel elements in the augmentation construction procedure:
(i) spectral cropping; (ii) frequency component reordering;
(iii) similar filtering; and (iv) embedding alignment. We
aim to be as general as possible and graphs are a general
class of data - images, for instance, may be represented
as grid graphs. Our general graph augmentations such as
“cropping" reduce to successful augmentations in the image
domain, lending them credence, as a general method should
excel in all sub-classes it contains.
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of the visible spectrum. The successful color reordering
augmentation for images (Chen et al., 2020b) thus corre-
sponds to a permutation of frequency components. This
motivates us to introduce a novel augmentation that is de-
rived by reordering the graph frequency components in a
structural position embedding. A structural position embed-
ding can be obtained by factorization of the graph Lapla-
cian. The Laplacian eigendecomposition corresponds to a
frequency-based decomposition of signals defined on the
graph (Von Luxburg, 2007a; Chung and Graham, 1997). We
thus consider augmentations that permute, i.e., reorder, the
columns of the structural positional embedding Xi.

However, arbitrary permutations do not lead to good aug-
mentations. In deriving a position embedding, the normal-
ized Laplacian Li is not the only valid choice of matrix to
factorize. Qiu et al. (2018) show that popular random walk
embedding methods arise from the eigendecompositions of:

log(

r∑
j=1

(I−Li)
r)D−1

i = log
(
Ui

( r∑
j=1

(I−Λi)
r
)
UT

i

)
D−1

i .

(4)
We have excluded negative sampling and graph volume
terms for clarity. We observe that

∑r
j=1(I −Li)

r replaces
(I−Li) in the spectral decomposition. Just as the adjacency
matrix Ai encodes the first order proximity (edges), A2

i

encodes second order connectivity, A3
i third order and so

on. Using larger values of r in equation 4 thus integrates
higher order information in the embedding. The sought-
after eigenvectors in X are the columns in U corresponding
to the top k values of

∑r
j=1(1 − λ)j . There is no need to

repeat the eigendecomposition to obtain a new embedding.
The higher-order embedding is obtained by reordering the
eigenvectors (in descending order of

∑r
j=1(1− λw)

j).

This motivates our proposed reordering augmentation and
identifies suitable permutation matrices. Rather than per-
mute all of the eigenvectors in the eigendecomposition, for
computational efficiency, we first extract the k eigenvectors
with the highest corresponding eigenvalues in the first order
positional embedding derived using (I −Li). The reorder-
ing augmentation only permutes those k eigenvectors. The
augmentation thus forms XiPr where Pr is a permutation
matrix of shape k × k. The permutation matrix Pr sorts
eigenvectors with respect to the values

∑r
j=1(1−λw)

j . We
randomize the permutation matrix generation step by sam-
pling an integer uniformly in the range [1, rmax] to serve as
r and apply the permutation to produce the view G′

i.

4.3 Embedding Alignment

In this subsection and the next, we present two quality en-
hancing mechanisms that are incorporated in our spectral
augmentation generation process and lead to superior aug-
mentations. Both use auxiliary global structure information.

Consider two vertices v and v′ in the same graph Gt.

Methods such as Node2vec (Grover and Leskovec, 2016),
LINE (Tang et al., 2015), & DeepWalk (Perozzi et al., 2014)
operate on Gt outputting an embedding matrix Et. The row
corresponding to vertex v provides a node embedding ev .

Node embedding alignment allows comparing embeddings
between disconnected graphs G1, G2 utilizing the structural
connections in each graph (Singh et al., 2007; Chen et al.,
2020c; Heimann et al., 2018; Grave et al., 2019). Consider
two views G′

i, G
′′
i and a node vi such that vi ∈ G′

i, vi ∈ G′′
i .

Given the embeddings X′
i,X

′′
i for G′

i, G
′′
i , ignoring permu-

tation terms, alignment seeks to find an orthogonal matrix
Q satisfying X′′

i Q ≈ X′
i. If the embedding is computed

via eigendecomposition of L′
i, L

′′
i , the final structural node

embeddings (rows corresponding to vi in X′
i,X

′′
i ) for vi

may differ. To correct this, we align the structural features
X′

i,X
′′
i , using the global matrix Et as a bridge.

Specifically, let NG′
i

be the sub-matrix of Et obtained by
collecting all rows j such that vj ∈ Gi. Define NG′′

i
simi-

larly. We find an orthogonal matrix Q∗ = minQ ||X′
iQ−

NG′
i
||2. The solution is ACT , where ABCT is the singu-

lar value decomposition (SVD) of (X′
i)

TNG′
i

(Heimann
et al., 2018; Chen et al., 2020c). Similarly, we compute Q∗∗

for G′′
i . We consider the resulting matrices X′

iQ
∗ ≈ NG′

i

and X′′
i Q

∗∗ ≈ NG′′
i

. Since NG′
i
,NG′′

i
are both derived

from Et, the rows (embeddings) corresponding to a com-
mon node are the same. We can thus derive improved aug-
mentations by reducing the undesirable disparity induced
by misalignment and replacing X′

i,X
′′
i with their aligned

counterparts X′
iQ

∗,X′′
i Q

∗∗, terming this as align.

4.4 Augmentation Filter.

Consider two views G′
i, G

′′
i resulting from random walks

from a node ai of which Gi is the ego-network in Gt. Let
EG′

i
=

∑
vz∈G′

i
ez. We can measure the similarity of

the views as ⟨EG′
i
,EG′′

i
⟩. To enforce similar filtering

of views, we accept the views if they are similar to avoid
potential noisy augmentations: ⟨EG′ ,EG′′ ⟩

||EG′ ||||EG′′ || > 1− c, for
some constant 0 ≤ c ≤ 1 . (For choice of c, see appendix
10.3.) We couple this filtering step with the random walk
to accept candidates (Figure 1). Please note that applying
similarity filtering empirically works much better than the
other possible alternative, diverse filtering. We present the
ablation study in appendix section 10.5.

4.5 Theoretical Analysis.

We conduct a theoretical analysis of the spectral crop aug-
mentation. In the Appendix, we extend this to a variant
of the similar filtering operation. We investigate a simple
case of the two-component stochastic block model (SBM)
with 2N nodes divided equally between classes 0, 1. These
results are also extensible to certain multi-component SBMs.
Let the edge probabilities be p for edges between nodes of
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Table 2: Datasets for pre-training, sorted by number of vertices. Bolded dataset indicates use for ablation.

Dataset DBLP (SNAP) Academia DBLP (NetRep) IMDB Facebook LiveJournal
Nodes 317,080 137,969 540,486 896,305 3,097,165 4,843,953
Edges 2,099,732 739,384 30,491,458 7,564,894 47,334,788 85,691,368

class 0, q for edges between nodes of class 1, and z for
edges between nodes of different classes. We assume that
p > q > z > 0.

Denote by G a random graph from this SBM. We define
the class, Y (G), to be the majority of the classes of its
nodes, with Y (v) being the class of a node v. Abusing
notation, we will use Y (G′) to denote the majority label
of subgraphs G′ of G for any G′. Let Ed,v(G) denote
the ego-network of v up to distance d in G. Let Cϵ(v) be
the cropped local neighbourhood around node v defined as
{v′ : ||λ(v′) − λ(v)|| ≤ ϵ} where λ(v) = [λ2(v), λ3(v)],
with λj as the j-th eigenvector (sorted in ascending order
by eigenvalue) of the Laplacian of G. In the Appendix, we
prove the following result:

Theorem 1 Let node v be chosen uniformly at random from
G, a 2N -node graph generated according to the SBM de-
scribed above. With probability ≥ 1− f(N) for a function
f(N) → 0 as N → ∞, ∃ϵ ∈ R+, kmax ∈ N such that :

∀k ∈ N ≤ kmax, Y (Ek,v(G)) = Y (Cϵ(v)) = Y (v) (5)

This theorem states that for the SBM, both a view generated
by the ego-network and a view generated by the crop aug-
mentation acquire, with high probability as the number of
nodes grows, graph class labels that coincide with the class
of the centre node. This supports the validity of the crop
augmentation — it constructs a valid “positive” view.

We further analyze global structural embeddings and simi-
lar/diverse filtering, and specify f(N), in Appendix 16.

The proof of Theorem 1 relies on the Davis-Kahan the-
orem. Let A,H ∈ RN×N ,A = AT ,H = HT with
µ1 ≥ µ2 ≥ . . . µN the eigenvalues of A, v1,v2, . . . ,vN

the corresponding eigenvectors of A, and v′
1,v

′
2, . . .v

′
N

those of A+H . By the Davis-Kahan theorem (Demmel,
1997) (Theorem 5.4), if the angle between vi,v

′
i is θi, then,

with ∥H∥op as the max eigenvalue by magnitude of H

sin(2θi) ≤
2∥H∥op

N ×minj ̸=i |µi − µj |
(6)

In our setting, we consider A + H to be the adjacency
matrix of the observed graph, which is corrupted by some
noise H applied to a “true” adjacency matrix A. The angle
θi measures how this noise H impacts the eigenvectors,
which are used in forming Laplacian embeddings and also
in the cropping step. Consider θ2, the angular error in the
second eigenvector. For a normalized adjacency matrix,

such that µ1 = 1, this error scales as 1
min(µ2−µ3,µ1−µ2)

.
We can anticipate that the error is larger as µ2 becomes
larger (µ1 − µ2 falls) or smaller (µ2 − µ3 falls). The error
affects the quality of the crop augmentation and the quality
of generated embeddings. In Section 5.2, we explore the
effectiveness of the augmentations as we split datasets by
their spectral properties (by an estimate of µ2). As expected,
we observe that the crop augmentation is less effective for
graphs with large or small (estimated) µ2.

5 EXPERIMENTS
Datasets. The datasets for pretraining are summarized in
Table 2. They are relatively large, with the largest graph
having ∼4.8 million nodes and ∼85 million edges. Key
statistics of the downstream datasets are summarized in the
individual result tables. Our primary node-level datasets are
US-Airport (Ribeiro et al., 2017) and H-index (Zhang et al.,
2019a) while our graph datasets derive from (Yanardag and
Vishwanathan, 2015) as collated in (Qiu et al., 2020). Node-
level tasks are at all times converted to graph-level tasks
by forming an ego-graph around each node, as described in
Section 3. We conduct similarity search tasks over the aca-
demic graphs of data mining conferences following (Zhang
et al., 2019a). Full dataset details are in Appendix section
10.

Training scheme. We use two representative contrastive
learning training schemes for the graph encoder via
minibatch-level contrasting (E2E) and MoCo (He et al.,
2020) (Momentum-Contrasting). In all experiment tables,
we present results where the encoder only trains on pre-train
graphs and never sees target domain graphs. In Appendix 10,
we provide an additional setting where we fully fine-tune all
parameters with the target domain graph after pre-training.
We construct all graph encoders (ours and other baselines)
as a 5 layer GIN (Xu et al., 2019) for fair comparison.

Competing baselines. As noted in our categorization of
existing methods in Table 1, the closest analogues to our ap-
proach are GraphCL (You et al., 2020) and GCC (Qiu et al.,
2020) which serve as our key benchmarks. Additionally, al-
though they are not designed for pre-training, we integrated
the augmentation strategies from MVGRL (Hassani and
Khasahmadi, 2020), Grace (Zhu et al., 2020), Cuco (Chu
et al., 2021), and Bringing Your Own View (BYOV) (You
et al., 2022) to work with the pre-train setup and datasets
we use. We include additional baselines that are specif-
ically tailored for each downstream task and require un-
supervised pre-training on target domain graphs instead
of our pre-train graphs. We include Struc2vec (Ribeiro
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Table 4: Graph (left) and node (right) classification results when the pre-trained graph encoder transfers to an out-of-domain graph.
"-" indicates the model cannot produce reasonable results after 24 hours of training, as explained in (Qiu et al., 2020). Bold indicates
best result; asterisk indicates statistical significant difference from next best. Appendix 11 provides standard deviations and confidence
intervals.

Graph Classification

Datasets IMDB-B IMDB-M COLLAB RDT-B RDT-M

# graphs 1,000 1,500 5,000 2,000 5,000
# classes 2 3 3 2 5

Avg. # nodes 19.8 13.0 74.5 429.6 508.5

DGK 67.0 44.6 73.1 78.0 41.3
graph2vec 71.1 50.4 – 75.8 47.9
InfoGraph 73.0 49.7 – 82.5 53.5

Training mode MoCo E2E MoCo E2E MoCo E2E MoCo E2E MoCo E2E
GCC 72.0 71.7 49.4 49.3 78.9 74.7 89.8 87.5 53.7 52.6

GraphCL 72.2 70.9 49.3 47.9 77.2 74.1 88.7 87.2 52.9 51.8
GRACE 71.7 71.5 49.2 48.8 78.3 74.5 89.2 87.0 53.4 52.0

CuCo 71.8 71.3 48.7 48.5 78.5 74.2 89.3 87.8 52.5 51.6
BYOV 72.3 72.0 48.5 49.2 78.4 75.1 89.5 87.9 53.6 53.0

MVGRL 72.3 72.2 49.2 49.4 78.6 75.0 89.6 87.4 53.4 52.8
InfoGCL 72.0 71.0 48.8 48.2 77.8 74.6 89.1 87.3 52.7 52.2

GCA 72.2 71.9 49.0 48.7 78.4 74.4 88.9 87.5 53.2 52.4
SGCL 73.4* 73.0 50.0 49.8 79.7* 75.6 90.6* 88.4 54.2* 53.8

Node Classification

Datasets US-Airport H-index

|V | 1,190 5,000
|E| 13,599 44,020

ProNE 62.3 69.1
GraphWave 60.2 70.3
Struc2vec 66.2 ≥ 1 Day

Training mode MoCo E2E MoCo E2E

GCC 65.6 64.8 75.2 78.3
GraphCL 62.8 63.5 74.3 76.5

GRACE 62.6 63.3 74.5 77.0
MVGRL 65.2 64.5 75.1 78.1

CuCo 64.9 64.3 75.3 78.2
BYOV 65.3 64.7 76.0 78.1

InfoGCL 63.2 64.1 75.4 77.6
GCA 64.5 64.3 75.8 78.0
SGCL 65.9 65.3 76.7 78.9*

across 80 trials and confidence intervals (Appendix 11) for
our proposed design, GraphCL (You et al., 2020), MV-
GRL (Hassani and Khasahmadi, 2020), Grace (Zhu et al.,
2020), Cuco (Chu et al., 2021) and BYOV (You et al., 2022).
Confidence intervals indicate a span between the 5-th and
95-th percentiles, estimated by bootstrapping over splits and
random seeds. For the other baselines, we copy the results
reported in (Qiu et al., 2020).

Our design achieves robust improvement on both node and
graph classification tasks over other baselines for the domain
transfer setting. We emphasize that the graph encoders for
all the baselines from Category 5 in Table 1 are not trained
on the target source dataset, whereas other baselines use this
as training data (in an unsupervised fashion). Although this
handicaps the domain transfer-based methods, our proposed
method performs competitively or even significantly bet-
ter compared to classic unsupervised learning approaches
including ProNE (Zhang et al., 2019b), GraphWave (Don-
nat et al., 2018) and Struc2vec (Ribeiro et al., 2017) for
node-level classification tasks and DGK, graph2vec and In-
foGraph for graph level classification. We observe similar
improvements relative to baselines for both the E2E and
MoCo training schemes. These improvements are also evi-
dent for the similarity search task. The performance gains
are also present when the encoder is fully fine-tuned on
graphs from the downstream task, but due to space limita-
tions, we present the results in Appendix 10.

Effectiveness of individual augmentations, process-
ing/selection steps, and pairwise compositions. We show
evaluation results (average over 80 trials) for both individual
augmentations or filtering/selection steps and their pairwise
compositions in Figure 4. For a clear demonstration, we

select Reddit-binary as the downstream task and the small-
est pre-train DBLP (SNAP) dataset. Using more pre-train
datasets should result in further performance improvements.
The full ablation study results are presented in Appendix 10.
As noted previously (You et al., 2020), combining augmen-
tations often improves the outcome. We report improvement
relative to the SOTA method GCC (Qiu et al., 2020). Perfor-
mance gains are observed for all augmentations. On average
across 7 datasets, spectral crop emerges as the best aug-
mentation of those we proposed. Appendix 10.5 reports the
results of ablations against random variants of the crop and
reorder augmentations; the specific procedures we propose
lead to a substantial performance improvement.

Performance variations due to spectral properties. We
split the test graphs into quintiles based on their λ2 values
to explore whether the test graph spectrum impacts the per-
formance of the proposed augmentation process. Figure 5
displays the improvements obtained for each quintile. As
suggested by our theoretical analysis in Section 4.5, we see
a marked elevation for the middle quintiles of λ2. These
results support the conjecture that small or large values of
λ2 (an approximation of µ2 in Section 4.5) adversely affect
the embedding quality and the crop augmentation.

6 CONCLUSION

We introduce SGCL, a comprehensive suite of spectral aug-
mentation methods suited to pre-training graph neural net-
works contrastively over large scale pre-train datasets. The
proposed methods do not require labels or attributes, being
reliant only on structure, and thus are applicable to a wide va-
riety of settings. We show that our designed augmentations
can aid the pre-training procedure to capture generalizable
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structural properties that are agnostic to downstream tasks.
Our designs are not ad hoc, but are well motivated through
spectral analysis of the graph and its connections to aug-
mentations and other techniques in the domains of vision
and network embedding analysis. The proposed augmenta-
tions make the graph encoder — trained by either E2E or
MoCo — able to adapt to new datasets without fine-tuning.
The suite outperforms the previous state-of-the-art methods
with statistical significance. The observed improvements
persist across multiple datasets for the three tasks of node
classification, graph classification and similarity search.
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Supplementary Materials for SGCL

LIST OF ALL CONTENTS

• Sections 7 to 9 position our work better and provide references.

• Section 10 has implementation details, ablations, statistical tests, and all other results not in the main text. Section 11
adds confidence intervals and some more results and confidence intervals.

• Section 12 has some results for MNIST and CIFAR-10 to illustrate linkages between our method and image cropping.

• Section 13 discusses limitations, societal impact and reproducibility.

• Section 14 has additional ablations based on spectral properties.

• Section 15 has proofs of some mathematical results used in the paper for various augmentations.

• Section 16 has proofs on the stochastic block model.

• Sections 17, 18, 19 add small details that help explain how the entire suite works. Section 17 has time complexity
graphs, section 18 has a case of negative transfer which pops up in some experiments and looks anomalous otherwise,
and section 19 visualizes why we need to align two graphs in the first place.
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7 POSITION OF OUR WORK

We emphasize that there are three distinct cases of consideration in the field of contrastive learning in graphs. We hope to
make a clear separation between them to help readers understand our model design and the choice of baselines as well as the
datasets we conduct experiments on. A summarizing of the position of our work vs. prior works is presented in Table 5.

Table 5: Detailed analysis of our work vs. existing work

Pre-train with
Freeze encoder
(Out of domain)

Pre-train with
encoder fine-tune
(Out of domain)

Pre-train with
Freeze encoder
(Same domain)

Pre-train with
encoder fine-tune
(Same domain)

Unsupervised
learning

Training
Data {XLP ,A}pretrain

{XLP ,A}pretrain
{XLP ,A,Y}downstream

{X,A}pretrain
{X,A}pretrain

{X,A,Y}downstream
{X,A}downstream

Methods in
the category Ours,GCC Ours,GCC

GPT-GNN, GraphCL, MICRO-Graph
JOAO, BYOV, GraphMAE

GPT-GNN, GraphCL, MICRO-Graph
JOAO, BYOV, GraphMAE

InfoGCL, MVGRL
GraphCL, GCA

First, we have out of domain pre-training, where the encoder only sees a large pre-training corpus in the training phase
that may share no node attributes at all with the downstream task. A representative method is GCC (Qiu et al., 2020). For
example, this pre-training dataset can be a large citation network or social network (as the pre-train corpus used in our
paper), while the downstream task may be on a completely different domain such as molecules. Since no node attributes are
shared between the two domains, the initial node attributes have to rely solely on structure, e.g., the adjacency or Laplacian
matrices and embeddings derived from their eigendecomposition . Importantly, in this case, the encoder is never trained on
any labeled or unlabeled instances for the downstream graph related tasks before doing the inference. It allows the model
to obtain the results on the downstream task very fast (since only the model inference step is applied to obtain the node
representations for the downstream tasks). We call this setting pre-training with frozen encoder (out of domain). This is the
most difficult graph contrastive learning (GCL) related task. In our paper, we strictly follow this setup. The downstream task
performance can be further improved if the downstream training instances (data, but also possibly with labels) are shown to
the GNN encoder. We call this setting pre-training with fine-tuning (out of domain).

Second, we have the domain specific pre-training method where the encoder sees a large pre-training corpus which shares
similar features or the same feature tokenization method as the downstream task. The representative methods that fall
under this category include GPT-GNN Hu et al. (2020c), GraphCL (You et al., 2020), MICRO-Graph (Zhang et al., 2020),
JOAO (You et al., 2021), BYOV (You et al., 2022), and GraphMAE (Hou et al., 2022). The typical experiment design
for this setting is to pre-train the GNN encoder on a large-scale bioinformatics dataset, and then fine-tune and evaluate on
smaller datasets of the same category. Since the feature space is properly aligned between the pre-train dataset and the
downstream datasets, the node attributes usually are fully exploited during the pre-training stage. Similarly, the downstream
task performance can be further improved if the downstream tasks (data and/or their labels) are shown to the GNN encoder.
We call these two setting pre-training with frozen encoder (same domain) and pre-training with encoder fine-tuning (same
domain).

Third, in the unsupervised learning setting for GCL, there is no large pre-training corpus that is distinct from the downstream
task data. Rather, the large training set of the downstream task is the sole material for contrastive pre-training. Note that
in this case, if there are multiple unrelated downstream tasks, e.g., a citation network and also a molecule task, a separate
pre-training procedure must be conducted for each task and a separate network must be trained. The representative methods
that fall under this category include InfoGCL (Xu et al., 2021), MVGRL (Hassani and Khasahmadi, 2020), GraphCL (You
et al., 2020), GCA (Zhu et al., 2021). Generally speaking, for tasks that rely heavily on the node attributes (such as citations,
and molecule graphs), such unsupervised methods, when the training set data (adjacency matrix and node attributes) is
available for the unsupervised training phase, can potentially outperform the out of domain pre-trained frozen encoder case.
But this is natural, and expected, because in the out-of-domain pre-training with a frozen encoder setting the pre-trained
network never even sees the source domain. It can never take advantage of node attributes because the pre-train datasets do
not share the same feature space as the downstream task. It can only rely on the potential transferable structural features.
But this is also not its purpose - its purpose is to act like a general large language model (LLM) or a Foundation Model
like GPT-3. Such a model is not necessarily an expert in every area and can be outperformed by, for instance, specific
question-answer-specialized language models for answering questions, but it performs relatively well zero-shot in most tasks
without needing any pre-training. This is why in our main paper, we did not compare with the commonly used small-scale
datasets (Cora, Citesser) for the unsupervised learning tasks.

Previous papers in this field such as GraphMAE (Hou et al., 2022) often include the frozen, pre-trained models under
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the unsupervised category in the experiments, which is not completely accurate or fair. In fact, this category is relatively
understudied and introduces unique challenges for the out-of-domain transfer setting. Its importance, and relative lack of
study, is precisely why it deserves attention - it is a step toward out-of-domain generalization on graphs and avoids expensive
pre-training in every domain. In the following table, we provide a novel way to categorize the existing graph contrastive
learning work and we hope it provides better insight to the readers in terms of the position of our work.

Please note that even though not directly applicable for the pre-train (out of domain) mode, for the existing methods under
the category of pre-train (same domain) and unsupervised learning, we are able to make modifications to allow them to be
applied in the out of domain settings. The main changes are 1) we use the pre-train out of domain corpus {XLP ,A}pretrain to
train the GNN encoder instead of {X,A}downstream; 2) since the feature space between the pre-train domains and the target
domain are not aligned, we use XLP instead of the original feature X. We conduct the above modification to some of the
existing unsupervised learning based methods such as MVGRL (Hassani and Khasahmadi, 2020) and GraphCL (You et al.,
2020). This is also why we cannot, without running the out of domain pre-training experiment setups, directly report the
experimental performance in the previous papers (largely unsupervised, except GCC), and why some of our numbers do not
always agree with those reported in the original paper, e.g., MVGRL on IMDB-BINARY. The entire training process is
completely different with a new pre-training corpus, and the same numbers are not guaranteed to occur.

8 REASONS TO PURSUE AUGMENTATIONS BASED ON GRAPH SPECTRA

First, we want to address the question of what is meant by the term "universal topological properties". Our method is
inherently focused on transferring the pre-trained GNN encoder to any domain of graphs, including those that share no
node attributes with the pre-train data corpus. This means that the only properties the encoder can use when building its
representation are transferable structural clues. We use the word topological to denote this structure-only learning. The
word universal denotes the idea of being able to easily transfer from pre-train graphs to any downstream graphs. It is a
common practice to augment node descriptors with structural features (Errica et al., 2020), especially for graph classification
tasks. DiffPool (Ying et al., 2018) adds the degree and clustering coefficient to each node feature vector. GIN (Xu et al.,
2019) adds a one-hot representation of node degrees. In short, a universal topological property is some property such as the
human-defined property of "degree" that we hope the GNN will learn in an unsupervised fashion. Just as degree - a very
useful attribute to know for any graph for many downstream tasks - is derivable from the adjacency matrix by taking a row
sum, we hope the GNN will learn a sequence of operations that distill some concept that is even more meaningful than the
degree and other basic graph statistics.

Since structural clues are the only ones that can be transferable between pre-train graphs and the downstream graphs, the
next part to answer is why spectral methods, and why should we use the spectral-inspired augmentations to achieve the
out-of-domain generalization goal. We elaborate as follows.

For multiple decades, researchers have demonstrated the success of graph spectral signals with respect to preserving
the unique structural characteristics of graphs (see (Torres et al., 2020) and references therein). Graph spectral analysis
has also been the subject of extensive theoretical study and it has been established that the graph spectral information is
important to characterize the graph properties. For example, graph spectral values (such as the Fiedler eigenvalue) related
directly to fundamental properties such as graph partitioning properties (Kwok et al., 2013; Lee et al., 2014) and graph
connectivity (Chung, 1997; Kahale, 1995; Fiedler, 1973). Spectral analyses of the Laplacian matrix have well-established
applications in graph theory, network science, graph mining, and dimensionality reduction for graphs (Torres et al., 2020).
They have also been used for important tasks such as clustering (Belkin and Niyogi, 2001; Von Luxburg, 2007b) and
sparsification (Spielman and Srivastava, 2008). Moreover, many network embedding methods such as LINE (Tang et al.,
2015) and DeepWalk reduce to factorizing a matrix derived from the Laplacian, as addressed in NetMF (Qiu et al., 2018).
These graph spectral clues allow us to extract transferable structural features and structural commonality across graphs
from different domains. All of these considerations motivate us to use spectral-inspired augmentations for graph contrastive
learning to fully exploit the potential universal topological properties across graphs from different domains.

9 RELATED WORK EXTENSION

9.1 Representation Learning on Graphs

A significant body of research focuses on using graph neural networks to encode both the underlying graph describing
relationships between nodes as well as the attributes for each node (Kipf and Welling, 2017; Gilmer et al., 2017; Hamilton
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et al., 2017; Veličković et al., 2018; Xu et al., 2019). The core idea for GNNs is to perform feature mapping and recursive
neighborhood aggregation based on the local neighborhood using shared aggregation functions. The neighborhood feature
mapping and aggregation steps can be parameterized by learnable weights, which together constitute the graph encoder.

There has been a rich vein of literature that discusses how to design an effective graph encoding function that can leverage
both node attributes and structure information to learn representations (Kipf and Welling, 2017; Hamilton et al., 2017;
Veličković et al., 2018; Zhang et al., 2018; Wu et al., 2019; Chen et al., 2020a; Xu et al., 2019). In particular, we highlight
the Graph Isomorphism Network (GIN) (Xu et al., 2019), which is an architecture that is provably one of the most expressive
among the class of GNNs and is as powerful as the Weisfeiler Lehman graph isomorphism test. Graph encoding is a crucial
component of GNN pre-training and self-supervised learning methods. However, most existing graph encoders are based
on message passing and the transformation of the initial node attributes. Such encoders can only capture vertex similarity
based on features or node proximity, and are thus restricted to being domain-specific, incapable of achieving transfer to
unseen or out-of-distribution graphs. In this work, to circumvent this issue, we employ structural positional encoding to
construct the initial node attributes. By focusing on each node’s local subgraph level representation, we can extract universal
topological properties that apply across multiple graphs. This endows the resultant graph encoder with the potential to
achieve out-of-domain graph data transfer.

9.2 Data Augmentations for Contrastive Learning

Augmentations for image data. Representation learning is of perennial importance in machine learning with contrastive
learning being a recent prominent technique. In the field of representation learning for image data, under this framework,
there has been an active research theme in terms of defining a set of transformations applied to image samples, which do not
change the semantics of the image. Candidate transformations include cropping, resizing, Gaussian blur, rotation, and color
distortion. Recent experimental studies (Chen et al., 2020b; Grill et al., 2020) have highlighted that the combination of
random crop and color distortion can lead to significantly improved performance for image contrastive learning. Inspired by
this observation, we seek analogous graph augmentations.

Augmentations for graph data. The unique nature of graph data means that the augmentation strategy plays a key role in
the success of graph contrastive learning (Qiu et al., 2020; You et al., 2020; Li et al., 2021; Sun et al., 2019; Hassani and
Khasahmadi, 2020; Xu et al., 2021). Commonly-used graph augmentations include: 1) attribute dropping or masking (You
et al., 2020; Hu et al., 2020c): these graph feature augmentations rely heavily on domain knowledge and this prevents
learning a domain invariant encoder that can transfer to out-of-domain downstream tasks; 2) random edge/node dropping (Li
et al., 2021; Xu et al., 2021; Zhu et al., 2020, 2021): these augmentations are based on heuristics and they are not tailored to
preserve any special graph properties; 3) graph diffusion (Hassani and Khasahmadi, 2020): this operation offers a novel way
to generate positive samples, but it has a large additional computation cost (Hassani and Khasahmadi, 2020; Page et al.,
1999; Kondor and Lafferty, 2002). The graph diffusion operation is more costly than calculation and application of the
Personalized Page Rank (PPR) (Page et al., 1999) based transition matrix since it requires an inversion of the adjacency
matrix; and 4) random walks around a center node (Tong et al., 2006; Qiu et al., 2020): this augmentation creates two
independent random walks from each vertex that explore its ego network and these form multiple views (subgraphs) of each
node. Additionally, there is an augmentation called GraphCrop (Wang et al., 2020), which uses a node-centric strategy to
crop a contiguous subgraph from the original graph while maintaining its connectivity; this is different from the spectral
graph cropping we propose. Existing structure augmentation strategies are not tailored to any special graph properties and
might unexpectedly change the semantics (Lee et al., 2022).

9.3 Pre-training, Self-supervision, Unsupervised & Contrastive Graph Representation Learning

Though not identical, pre-training, self-supervised learning, and contrastive learning approaches in the graph learning
domain use many of the same underlying methods. A simple technique such as attribute masking can, for example, be used
in pre-training as a surrogate task of predicting the masked attribute, while in the contrastive learning scenario, the masking
is treated as an augmentation. We categorize the existing work into the following 5 categories.

Category 1. One of the early works in the contrastive graph learning direction is Deep Graph Infomax (DGI) (Velickovic
et al., 2019). Though not formally identified as contrastive learning, the method aims to maximize the mutual information
between the patch-level and high-level summaries of a graph, which may be thought of as two views. Infomax is a similar
method that uses a GIN (Graph Isomorphism Network) and avoids the costly negative sampling by using batch-wise
generation (Sun et al., 2019). MVGRL (Hassani and Khasahmadi, 2020) tackles the case of multiple views, i.e., positive
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Table 6: Properties of different approaches to graph contrastive (unsupervised) learning. ⋆ indicates that the method was not originally
designed for pre-training, but can be trivially adapted to it. A fuller description with relevant references is added in the appendix.

Approaches
Goal is pre-training

or transfer
No requirement

for features
Domain
transfer

Shareable graph
encoder

Category 1 (DGI, InfoGraph, MVGRL, DGCL, InfoGCL, AFGRL) % % % %

Category 2 (GPT-GNN, Strategies for pre-training GNNs) " % % "

Category 3 (Deepwalk, LINE, node2vec) % " " %

Category 4 (struc2vec, graph2vec, DGK, Graphwave, InfiniteWalk) % " " %

Category 5 (GraphCL, CuCo⋆, GCC, BYOV, GRACE⋆, GCA⋆, Ours) " " " "

pairs per instance, similar to Contrastive Multiview coding for images. DGCL (Li et al., 2021) adopts a disentanglement
approach, ensuring that the representation can be factored into components that capture distinct aspects of the graph.
InfoGCL (Xu et al., 2021) learns representations using the Information Bottleneck (IB) to ensure that the views minimize
overlapping information while preserving as much label-relevant information as possible. None of the methods in this
category is capable of capturing universal topological properties that extend across multiple graphs from different domains.

Category 2. Predicting masked edges/attributes in chemical and biological contexts has emerged as a successful pre-train
task. GPT-GNN (Hu et al., 2020c) performs generative pre-training successively over the graph structure and relevant
attributes. In (Hu et al., 2020b), Hu et al. propose several strategies (attribute masking, context structure prediction)
to pre-train GNNs with joint node-level and graph-level contrastive objectives. This allows the model to better encode
domain-specific knowledge. However, the predictive task for these methods relies heavily on the features and domain
knowledge. As a result, the methods are not easily applied to general graph learning problems.

Category 3 Random-walk-based embedding methods like Deepwalk (Perozzi et al., 2014), LINE (Tang et al., 2015),
and Node2vec (Grover and Leskovec, 2016) are widely used to learn network embeddings in an unsupervised way. The
main purpose is to encode the similarity by measuring the proximity between nodes. The embeddings are derived from
the skip-gram encoding method, Word2vec, in Natural Language Processing (NLP). However, the proximity similarity
information can only be applied within the same graph. Transfer to unseen graphs is challenging since the embeddings
learned on different graphs are not naturally aligned.

Category 4 To aid transferring learned representations, another approach of unsupervised learning attempts encoding
structural similarities. Two nodes can be structurally similar while belonging to two different graphs. Handcrafted domain
knowledge based representative structural patterns are proposed in (Yanardag and Vishwanathan, 2015; Ribeiro et al., 2017;
Narayanan et al., 2017). Spectral graph theory provides the foundation for modelling structural similarity in (Qiu et al.,
2018; Donnat et al., 2018; Chanpuriya and Musco, 2020).

Category 5 In the domain of explicitly contrastive graph learning, we consider Graph Contrastive Coding (GCC) (Qiu
et al., 2020) as the closest approach to our work. In GCC, the core augmentation used is random walk with return (Tong
et al., 2006). This forms multiple views (subgraphs) of each node. GraphCL (You et al., 2020) expands this augmentation
suite to add node dropping, edge perturbations, and attribute masking. Additionally, although they are not designed for
pre-training, we integrated the augmentation strategies from MVGRL (Hassani and Khasahmadi, 2020), Grace (Zhu et al.,
2020), Cuco (Chu et al., 2021), and Bringing Your Own View (BYOV) (You et al., 2022) to work with the pre-train setup in
category 5.

10 IMPLEMENTATION DETAILS, ADDITIONAL RESULTS, AND ABLATIONS

10.1 Codebase References

In general, we follow the code base of GCC (Qiu et al., 2020), provided at : https://github.com/THUDM/GCC. We use it as
a base for our own implementation (provided along with supplement). Please refer to it in general with this section. For
results using struc2vec (Ribeiro et al., 2017), ProNE (Zhang et al., 2019b), Panther (Zhang et al., 2015), RolX (Henderson
et al., 2012) and graphwave (Donnat et al., 2018) we report the results directly from (Qiu et al., 2020) wherever applicable.

https://github.com/THUDM/GCC
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10.2 Dataset Details

We provide the important details of the pre-training datasets in the main paper, so here we describe the downstream datasets.
We obtain US-airport from the core repository of GCC (Qiu et al., 2020) which itself obtains it from (Ribeiro et al., 2017).
H-index is obtained from GCC as well via OAG (Zhang et al., 2019a). COLLAB, REDDIT-BINARY, REDDIT-MULTI5K,
IMDB-BINARY, IMDB-MULTI all originally derive from the graph kernel benchmarks (Morris et al., 2020), provided at :
https://chrsmrrs.github.io/datasets/. Finally, the top-k similarity datasets namely KDD-ICDM,SIGIR-CIKM,and SIGMOD-
ICDE, are obtained from the GCC repository (Qiu et al., 2020); these were obtained from the original source, Panther (Zhang
et al., 2015).

10.3 Hyperparameters and Statistical Experimental Methodology

Hyperparameters: Training occurs over 75, 000 steps with a linear ramping-on (over the first 10%) and linear decay (over
the last 10%) using the ADAM optimizer, with an initial learning rate of 0.005, β1 = 0.9, β2 = 0.999, ϵ = 10−8. The
random walk return probability is 0.8. The E2E dictionary size K = 1023, for MoCo 16384. The batch size is 1024 for
E2E and 32 for MoCo. The dropout is set to 0.5 with a degree embedding of dimension 16 and positional embedding of
dimension 64. These hyperparameters are retained from GCC and do not require grid search. The hyperparameter c for
alignment is chosen by grid search from 6 values, namely 0.2, 0.25, 0.3, 0.35, 0.4, 0.45.

Runtime: Using DBLP as the test bed, we observed 33.27 seconds per epoch for baseline GCC, which was only increased
to at most 41.08 seconds in the settings with the most augmentations. Note that epoch time is largely CPU controlled in our
experience and may vary from server to server. However, we found that the ratios between different methods were far more
stable. The main paper reports these values on a per graph basis.

Confidence intervals and statistical methodology : To construct confidence bounds around our results, we carry out the
following procedure. We introduce some randomness through seeds. The seed is employed twice: once during training the
encoder, and again while fine-tuning the encoder on downstream tasks on the datasets. We carry out training with 8 random
seeds, resulting in 8 encoders. From each of these encoders, the representation of the graphs in the downstream datasets is
extracted.

Next, we train a SVC (for graph datasets) or a logistic regression module (for node datasets), both with a regularization
co-efficient over 10 stratified K-fold splits. Before testing the model obtained from the train fraction of any split, we sample
uniformly with replacement from the test set of the split of size T until we draw T samples. These instances are graphs
(ego-graphs for the case of node datasets and distinct graphs for the case of graph datasets). After this we report the testing
result. This is a bootstrapping procedure that leads to a random re-weighing of test samples. This entire process - i.e.,
generating a new 10-fold split, training, bootstrapping, testing - is repeated 10 times per encoder.

This leads to a total of 800 data points per encoder, allowing fine-grained confidence intervals. However, we found that
performance varied too strongly as a function of the splits, leading us to average over the splits instead. Therefore, each
determination carries an effective sample size of 80. Upon this, the Whitney-Mann, Wilcoxon signed rank, and t-tests are
carried out to determine p-values, 5 to 95 percentile confidence bounds, and standard deviations.

10.4 Augmentation Details and Sequences

Masking: As mentioned in the main paper, we follow previous work (Hu et al., 2020b) and add simple masking of Xi.
The masking involves setting some columns to zero. Since we consider smaller eigenvalues of Li to be more important, we
draw an integer z uniformly in the range [0,M ] and mask out z eigenvectors corresponding to the top z eigenvalues of Li.

Sequence of augmentations: We have discussed the creation of views of G′
i from graph instances Gi. However, in our

case, the goal is to create two positive views G′
i, G

′′
i per mini-batch for an instance Gi. Let us now clarify the sequence of

augmentations we employ. It should be understood that for any Gi, the negative view is any augmented or un-augmented
view of Gj , j ̸= i.

• First, we create G′
i, G

′′
i using random walk with return on Gi. We use the random walk hyperparameters identified

in (Qiu et al., 2020).

• With probability pfilter, we then test G′
i, G

′′
i using similarity or diversity thresholds 1−c and repeat the first step if the

test fails. If G′
i, G

′′
i do not pass in tmax tries, we proceed to the next step.

https://chrsmrrs.github.io/datasets/
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• We randomly crop both G′
i, G

′′
i independently with probabilities over different crops c1, c2, . . . (including no crop). In

total, we allow five outcomes, i.e. c1, c2, c3, c4, c5 = 1−
∑4

i=1 ci. The last outcome is the case of no cropping. We
keep c1 = c2, c3 = c4. These correspond to different types of crops, explained below. We can term c1 + c2 + c3 + c4
as pcrop.

• With probability palign, we replace X′
i,X

′′
i with X′

iQ
∗,X′′

i Q
∗∗ or keep X′

i,X
′′
i unchanged with probability 1−palign.

• We apply one of the mask and reorder augmentations on both G′
i, G

′′
i independently to form the final positive pairs.

That is, for G′
i, we mask it with pmask, or reorder it with preorder, or keep it unchanged with 1− pmask − preorder.

The same process is then done, independently, for G′′
i .

For a graph G, the xmin, xmax, ymin, ymax values for cropping are chosen as follows. We calculate the values taken
by the second eigenvector over G and rank them, and set xmin on the basis of the rank. That is, xmin = R0.2 would
correspond to xmin being set as the 20-th percentile value over G. This is done instead of absolute thresholds to sidestep the
changes of the second eigenvector over the different Gs. The corresponding different types of crop are, written as R values
[xmin, xmax, ymin, ymax] tuples :

• [R0.2, R0.8, R0.2, R0.8] with c1 = 0.1

• [R0.1, R0.9, R0.1, R0.9] with c2 = 0.1

• [R0, R0.8, R0, R0.8] with c3 = 0.05

• [R0.2, R1.0, R0.2, R1.0] with c4 = 0.05

• No crop, with c5 = 0.7

Note that in terms of alignment augmentations, our arguments regarding X′
i,X

′′
i being transformed to X′

iQ
∗,X′′

i Q
∗∗ as it

respects the inner product carry over if we instead use X′
i,X

′′
i Q

∗∗(Q∗)T or X′
iQ

∗(Q∗∗)T,X′′
i as the augmented views.

Order of augmentations. We have chosen the augmentations to proceed in this order due to the following reasons.

• Of all the candidates for the first augmentation in our sequence, the random walk is supreme as it cuts down on the size
of the ego-net for the future steps and the Laplacian eigendecomposition’s complexity as well. Doing away with it
greatly increases the runtime for any other step preceding it.

• Filtering is best done as early as possible to reject candidates on its basis before expensive augmentation steps have
already been performed. Hence, we place it second.

• Cropping precedes align, mask and ordering as these change the attribute vectors, and cropping uses the second
eigenvector which is part of the embedding itself.

• Alignment precedes mask and reorder, as alignment on shifted embeddings post-mask or post-reorder no longer follows
from our arguments of its necessity.

• Mask and reorder are mutually exclusive as reordering a masked matrix does not obey the diffusion matrix argument we
make for reordering as an augmentation. While masking a diffused matrix is logically allowed, we did not experiment
on this case thoroughly and did not find any encouraging preliminary empirical results for this case.

We do not claim our order is the best of all possible permutations. Nevertheless, it can be seen the choice is not entirely ad
hoc.

10.5 Ablation Tables

The necessity of our spectral crop and reorder frequency components. We first report in Table 1 the results of ablations
that involve replacing the proposed crop and reorder augmentations with random analogues. The results validate the
necessity of following our eigenspectrum-designed approaches for cropping and reordering. We explore replacing the
proposed crop with a random crop (randomly selecting a subgraph by excluding nodes). For reordering, we compare to a
random permutation of spectral positional encoding. We observe a consistent drop in performance across all datasets when
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Table 1: Ablation study for random versions of crop and permute vs. our spectral cropping and spectral positional encoding permute, E2E
only. Bolding means best, asterisk for significance. Statistical analysis and standard deviations in Appendix 11.

Augment US-Airport H-index IMDB-B IMDB-M COLLAB RDT-B RDT-M
GCC 64.8 78.3 71.7 49.3 74.7 87.5 52.6
SGCL - Random Permute 63.5 76.1 71.4 47.8 74.2 86.8 52.2
SGCL - Random Crop 64.5 78.5 71.8 49.4 74.4 87.8 52.1
SGCL 65.3* 78.9 73.0* 49.8 75.6* 88.4* 53.8*

Table 2: Pairwise effect of augmentations and post-processing methods, with E2E, frozen setting, on Reddit-binary, showing raw
percentage gains over GCC (Qiu et al., 2020). Further ablations appear in Appendix 10. Marked are statistically significant positives and
negatives.

Dataset S-Crop Mask S-Reorder Align Similar Diverse
S-Crop 0.22 0.47 0.43 0.54 0.71 -0.38
Mask 0.15 0.26 0.35 0.42 -0.15
S-Reorder 0.18 0.19 0.58 0.45
Align 0.16 0.56 -0.26
Similar 0.31 N/A
Diverse -0.72

we replace either augmentation with its random counterpart. This indicates that our spectral augmentation designs can make
a significant difference in terms of capturing more effective universal topological properties.

In this section we now report the results for all other datasets when subjected to pairwise augmentations. We do want to
re-iterate that since we have ten downstream datasets and five large-scale pre-train datasets, we select Reddit-binary as the
downstream task and the smallest pre-train DBLP (SNAP) dataset as a demonstration. Using more pre-train datasets should
result in further performance improvements, but due to computation time constraints, we focus on the simpler setting. We
present these results (raw percentage gains over GCC) in tables 2,3,4,5,6,7,8. Statistically positive and negative cases are
marked accordingly.

Dataset Crop Mask Reorder Align Similar Diverse
Crop 0.62 0.58 0.55 0.43 0.85 0.32
Mask -0.24 -0.56 -1.04 0.52 -0.17
Reorder -0.14 -0.49 0.38 -0.26
Align -0.47 0.64 -0.56
Similar 0.45 N/A
Diverse -0.59

Table 3: Ablation results on Reddit-5K
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Dataset Crop Mask Reorder Align Similar Diverse
Crop 0.83 0.92 1.16 0.98 0.87 0.62
Mask -0.32 0.58 0.22 -0.35 -0.78
Reorder 0.75 0.82 0.56 0.43
Align 0.18 -0.19 -0.22
Similar -0.08 N/A
Diverse -0.15

Table 4: Ablation results on IMDB-Binary

Dataset Crop Mask Reorder Align Similar Diverse
Crop 0.24 0.42 0.56 0.47 0.38 0.31
Mask 0.31 0.52 0.43 0.25 0.38
Reorder 0.48 0.38 0.21 0.34
Align 0.28 0.20 0.36
Similar -0.11 N/A
Diverse 0.06

Table 5: Ablation results on h-index dataset

Dataset Crop Mask Reorder Align Similar Diverse
Crop -0.08 0.27 -0.18 -0.43 0.28 0.22
Mask 0.31 0.26 0.16 0.43 0.38
Reorder -0.15 -0.23 -0.07 0.03
Align -0.12 0.14 0.05
Similar 0.25 N/A
Diverse 0.14

Table 6: Ablation results on US-Airport dataset

Dataset Crop Mask Reorder Align Similar Diverse
Crop 0.23 0.42 0.32 0.34 0.71 0.54
Mask 0.18 0.45 0.32 0.62 0.42
Reorder 0.22 0.45 0.55 0.59
Align 0.15 0.68 0.52
Similar 0.48 N/A
Diverse 0.34

Table 7: Ablation results on COLLAB dataset

Dataset Crop Mask Reorder Align Similar Diverse
Crop 0.35 0.25 0.48 0.21 0.57 0.66
Mask -0.07 0.22 -0.19 0.22 0.47
Reorder 0.28 0.17 0.38 0.82
Align -0.11 0.16 0.54
Similar 0.19 N/A
Diverse 0.62

Table 8: Ablation results on IMDB-Multi dataset
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10.6 Additional Results with MoCo and Fine-tuning

Pre-trained encoders fine-tuned using ADAM with 3 epochs warmup and 3 epochs ramp-down with a learning rate of 0.005
are used for the fine-tuned case. These results appear in tables 9, 10 and 11. We present results for E2E and MoCo (He et al.,
2020) in both the frozen and fine-tuned setting.

Table 9: Node classification. Results obtained by pretraining along with fine-tuning on the downstream dataset labels for both E2E and
MoCo, with frozen results also re-provided from the main paper. Statistical details are discussed in Appendix 11. The methods that appear
above the “Frozen" category are compared relative to frozen methods. They require no fine-tuning and are more similar to frozen methods,
however they are distinct in that they are not pre-training heavy but rather extract the structure directly like Laplacian methods, making
them distinct but strong baselines with the least requirement in terms of pre-training or data-specific work. Thus, there forms a continuum
from these methods to fully fine-tuned methods with frozen methods lying in an intermediate position.

US-Airport H-index

|V | 1,190 5,000
|E| 13,599 44,020

Frozen-like methods
ProNE 62.3 69.1

GraphWave 60.2 70.3
Struc2vec 66.2 ≥ 1 Day

Frozen
Training mode MoCo E2E MoCo E2E

GCC 65.6 64.8 75.2 78.3
GraphCL 62.8 63.5 74.3 76.5
GRACE 62.6 63.3 74.5 77.0
MVGRL 65.2 64.5 75.1 78.1

CuCo 64.9 64.3 75.3 78.2
BYOV 65.3 64.7 76.0 78.1

InfoGCL 63.2 64.1 75.4 77.6
GCA 64.5 64.3 75.8 78.0
SGCL 65.9 65.3 76.7 78.9*

Fine-tuned
Training mode MoCo E2E MoCo E2E

GCC 67.2 68.3 80.6 80.5
GraphCL 64.3 66.4 79.0 78.8
GRACE 64.0 65.9 78.2 78.5
MVGRL 66.5 67.9 79.6 79.9

CuCo 66.1 67.7 79.4 80.1
BYOV 67.0 67.8 80.3 80.2

InfoGCL 65.5 67.2 79.8 79.5
GCA 66.8 67.6 80.0 79.9
SGCL 67.5 68.6 80.8 80.7
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Table 10: Graph classification results when the pre-trained graph encoder transfers to an out-of-domain graph or is fine tuned. "-"
indicates the model is unable to produce reasonable results given 24 hours of training time, as explained in (Qiu et al., 2020). Bolding
indicates best result, asterisk indicates statistical significance. Standard deviations, confidence intervals etc. in Appendix 11. The methods
that appear above the “Frozen" category are compared relative to frozen methods. They require no fine-tuning and are more similar to
frozen methods, however they are distinct in that they are not pre-training heavy but rather extract the structure directly like Laplacian
methods, making them distinct but strong baselines with the least requirement in terms of pre-training or data-specific work. Thus, there
forms a continuum from these methods to fully fine-tuned methods with frozen methods lying in an intermediate position.

Datasets IMDB-B IMDB-M COLLAB RDT-B RDT-M

# graphs 1,000 1,500 5,000 2,000 5,000
# classes 2 3 3 2 5

Avg. # nodes 19.8 13.0 74.5 429.6 508.5

Frozen-like methods
DGK 67.0 44.6 73.1 78.0 41.3

graph2vec 71.1 50.4 – 75.8 47.9
InfoGraph 73.0 49.7 – 82.5 53.5

Frozen
Training mode MoCo E2E MoCo E2E MoCo E2E MoCo E2E MoCo E2E

GCC 72.0 71.7 49.4 49.3 78.9 74.7 89.8 87.5 53.7 52.6
GraphCL 72.2 70.9 49.3 47.9 77.2 74.1 88.7 87.2 52.9 51.8
GRACE 71.7 71.5 49.2 48.8 78.3 74.5 89.2 87.0 53.4 52.0

CuCo 71.8 71.3 48.7 48.5 78.5 74.2 89.3 87.8 52.5 51.6
BYOV 72.3 72.0 48.5 49.2 78.4 75.1 89.5 87.9 53.6 53.0

MVGRL 72.3 72.2 49.2 49.4 78.6 75.0 89.6 87.4 53.4 52.8
InfoGCL 72.0 71.0 48.8 48.2 77.8 74.6 89.1 87.3 52.7 52.2

GCA 72.2 71.9 49.0 48.7 78.4 74.4 88.9 87.5 53.2 52.4
SGCL 73.4* 73.0 50.0 49.8 79.7* 75.6 90.6* 88.4 54.2* 53.8

Fine-tuned
Training mode MoCo E2E MoCo E2E MoCo E2E MoCo E2E MoCo E2E

DGCNN 70.0 47.8 73.7 - -
GIN 75.6* 51.5* 80.2 89.4* 54.5

GCC(Random) 75.6 50.9 79.4 87.8 52.1
GCC 73.8 70.8 50.3 48.5 81.1 79.0 87.6 86.4 53.0 47.4

GraphCL 73.5 71.1 49.8 47.9 80.6 78.6 87.1 86.7 51.9 48.7
GRACE 73.0 71.3 49.4 47.4 79.5 77.6 86.5 86.7 51.5 48.3

CuCo 72.6 71.2 49.2 46.9 78.1 77.0 86.8 86.5 51.3 48.3
BYOV 73.5 72.4 50.1 49.6 81.2 79.3 88.2 87.0 53.9 50.2

MVGRL 72.3 72.2 49.2 49.4 78.6 77.3 87.9 86.8 53.4 49.8
InfoGCL 73.6 71.5 50.0 48.4 80.2 78.8 87.5 86.3 52.4 49.2

GCA 73.1 71.7 49.5 47.9 79.8 78.2 88.0 86.5 52.1 48.6
SGCL 74.2 72.8 50.6 50.1 81.5* 79.8 88.5 87.4 54.4 50.8
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Table 11: Top-k similarity search (k = 20, 40), frozen cases only with 4 structural methods (Random, RolX, Panther, GraphWave) that
are also similar to frozen methods in runtime requirements (see previous tables). Bolding indicates best result, asterisk indicates statistical
significance. Standard deviations, confidence intervals etc. in Appendix 11.

KDD-ICDM SIGIR-CIKM SIGMOD-ICDE

|V | 2,867 2,607 2,851 3,548 2,616 2,559
|E| 7,637 4,774 6,354 7,076 8,304 6,668
# ground truth 697 874 898

k 20 40 20 40 20 40

Frozen-like methods
Random 0.0198 0.0566 0.0223 0.0447 0.0221 0.0521
RolX 0.0779 0.1288 0.0548 0.0984 0.0776 0.1309
Panther++ 0.0892 0.1558 0.0782 0.1185 0.0921 0.1320
GraphWave 0.0846 0.1693 0.0549 0.0995 0.0947 0.1470

E2E
GCC 0.1047 0.1564 0.0549 0.1247 0.0835 0.1336
GraphCL 0.0986 0.1574 0.0583 0.1209 0.0796 0.1205
GRACE 0.1021 0.1558 0.0568 0.1226 0.0864 0.1262
MVGRL 0.0982 0.1483 0.0514 0.1174 0.0774 0.1159
CuCo 0.1063 0.1543 0.0568 0.1274 0.0924 0.1374
BYOV 0.1068 0.1585 0.0592 0.1268 0.0824 0.1318
InfoGCL 0.0972 0.1550 0.0595 0.1217 0.0802 0.1237
GCA 0.1007 0.1563 0.0559 0.1197 0.0849 0.1244

SGCL 0.1105* 0.1642 0.0658 0.1363* 0.1076* 0.1561*

MoCo
GCC 0.0904 0.1521 0.0652 0.1178 0.0846 0.1425

GraphCL 0.0835 0.1507 0.0629 0.1165 0.0872 0.1434
GRACE 0.0852 0.1516 0.0616 0.1172 0.0917 0.1469
MVGRL 0.0826 0.1458 0.0559 0.1116 0.0851 0.1387
CuCo 0.0864 0.1512 0.0624 0.1216 0.0877 0.1414
BYOV 0.0926 0.1553 0.0642 0.1228 0.0859 0.1468
InfoGCL 0.0848 0.1536 0.0619 0.1183 0.0884 0.1425
GCA 0.0843 0.1507 0.0607 0.1192 0.0865 0.1426

SGCL 0.0978* 0.1627 0.0765 0.1306* 0.1049* 0.1583*
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10.7 Datasets and Benchmark Code

We obtain the datasets from the following sources :

• https://github.com/leoribeiro/struc2vec/tree/master/graph

• https://www.openacademic.ai/oag/

• https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

And the relevant benchmarks from :

• GCC : https://github.com/THUDM/GCC

• GraphCL : https://github.com/Shen-Lab/GraphCL

• MVGRL : https://github.com/kavehhassani/mvgrl

• BYOV : https://github.com/Shen-Lab/GraphCL_Automated

• CuCo : https://github.com/BUPT-GAMMA/CuCo

• GRACE : https://github.com/CRIPAC-DIG/GRACE

https://github.com/leoribeiro/struc2vec/tree/master/graph
https://www.openacademic.ai/oag/
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://github.com/THUDM/GCC
https://github.com/Shen-Lab/GraphCL
https://github.com/kavehhassani/mvgrl
https://github.com/Shen-Lab/GraphCL_Automated
https://github.com/BUPT-GAMMA/CuCo
https://github.com/CRIPAC-DIG/GRACE
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11 HARDWARE DETAILS AND STATISTICAL CONFIDENCE INTERVALS OF RESULTS

Hardware and software: We tested all code on Python 3.7 with PyTorch 1.3.1, CUDA 10.1, scikit-learn 0.20.3. The Tesla
V 100 (one per model per run) served as the GPU.

We compute statistical confidence bounds only for the methods whose results we do not copy over from the GCC paper.

Table 12: Node classification. Results indicate the upper confidence bound (95 percentile) and the lower (5th percentile) and the standard
deviation in brackets.

US-Airport H-index

|V | 1,190 5,000
|E| 13,599 44,020

Training mode MoCo E2E MoCo E2E

GraphCL 63.7
62.2(0.4)

64.2
62.8(0.3)

73.9
75.2(0.4)

77.8
75.4(0.9)

GRACE 63.5
61.9(0.4)

63.9
62.7(0.3)

74.1
74.9(0.3)

77.9
76.0(0.6)

MVGRL 65.5
64.9(0.2)

64.7
64.3(0.1)

75.5
74.8(0.2)

78.4
77.7(0.2)

CuCo 65.2
64.5(0.2)

64.6
63.9(0.2)

75.9
74.8(0.3)

78.5
77.8(0.2)

BYOV 65.5
64.9(0.2)

65.2
64.0(0.4)

76.6
75.5(0.3)

78.5
77.6(0.3)

InfoGCL 63.6
62.7(0.3)

64.4
63.7(0.2)

75.8
74.9(0.3)

78.0
77.1(0.3)

GCA 64.9
64.0(0.3)

64.6
64.0(0.2)

76.2
75.4(0.3)

78.3
77.6(0.2)

SGCL 66.2
65.7(0.2)

65.6
65.1(0.2)

77.1
76.3(0.3)

79.1
78.7 (0.2)

Fine-tuned
Training mode MoCo E2E MoCo E2E

GraphCL 66.6
62.9(1.1)

67.5
65.6(0.7)

78.2
79.8(0.5)

79.5
77.9(0.5)

GRACE 65.1
62.8(0.8)

66.2
65.5(0.3)

78.6
77.5(0.4)

78.8
78.1(0.2)

MVGRL 66.8
66.1(0.2)

68.1
67.6(0.2)

79.7
79.4(0.1)

80.2
79.5(0.2)

CuCo 66.5
65.6(0.3)

68.0
67.3(0.3)

79.7
79.0(0.2)

80.2
79.8(0.1)

BYOV 67.4
66.5(0.3)

68.2
67.3(0.3)

80.5
80.0(0.2)

80.4
79.9(0.2)

InfoGCL 65.9
65.0(0.3)

67.6
66.7(0.3)

79.5
80.0(0.2)

79.9
79.0(0.3)

GCA 67.2
66.3(0.3)

67.9
67.3(0.2)

80.2
79.7(0.2)

80.2
79.5(0.3)

SGCL 67.6
67.4(0.1)

68.8
68.5(0.1)

81.0
80.7(0.1)

80.8
80.6(0.1)
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Table 13: Graph classification confidence bounds. Results indicate the upper confidence bound (95 percentile) and the lower (5th
percentile) and the standard deviation in brackets.

Datasets IMDB-B IMDB-M COLLAB RDT-B RDT-M

# graphs 1,000 1,500 5,000 2,000 5,000
# classes 2 3 3 2 5

Avg. # nodes 19.8 13.0 74.5 429.6 508.5

Frozen
Training mode MoCo E2E MoCo E2E MoCo E2E MoCo E2E MoCo E2E

GraphCL 72.8
71.5(0.5)

72.1
69.5(0.9)

50.1
48.5(0.2)

48.4
47.2(0.4)

77.5
76.8 (0.3) 74.7

73.5(0.4)
89.3
88.0(0.5)

87.7
86.3(0.5)

53.5
52.1(0.5)

52.8
50.7(0.7)

GRACE 72.2
71.1(0.4)

71.9
71.0(0.3)

49.7
48.8(0.3)

49.4
48.1(0.5)

78.5
78.0(0.2)

75.0
74.1(0.3)

89.5
89.0(0.2)

87.4
86.5(0.3)

53.8
52.9(0.3)

52.7
51.2(0.5)

CuCo 72.3
71.1(0.4)

71.9
70.7(0.4)

49.2
48.3(0.3)

48.9
48.0(0.3)

78.9
78.0(0.3)

74.6
73.7(0.3)

89.6
88.9(0.2)

88.1
87.6(0.2)

53.1
52.0(0.4)

52.1
51.0(0.4)

BYOV 72.6
72.0(0.2)

72.3
71.6(0.3)

49.1
48.0(0.4)

49.6
48.6(0.4)

79.1
77.7(0.5)

75.3
74.7(0.2)

89.9
89.2(0.2)

88.2
87.4(0.2)

53.9
53.2(0.2)

53.3
52.6(0.2)

MVGRL 72.7
72.1(0.2)

72.6
71.8(0.3)

49.5
49.0(0.2)

49.8
48.9(0.3)

78.8
78.3(0.2)

75.4
74.6(0.3)

89.9
89.2(0.2)

87.7
87.0(0.2)

53.6
53.1(0.2)

53.1
52.5(0.2)

InfoGCL 72.4
71.8(0.2)

71.3
70.7(0.2)

49.1
48.4(0.2)

48.5
47.8(0.2)

78.1
77.5(0.2)

75.1
74.2(0.3)

89.5
88.7(0.3)

87.6
86.8(0.3)

53.0
52.3(0.2)

52.6
51.9(0.2)

GCA 72.6
72.0(0.2)

72.2
71.6(0.2)

49.3
48.7(0.2)

49.0
48.3(0.2)

78.6
78.1(0.2)

74.7
74.1(0.2)

89.2
88.5(0.3)

87.7
87.2(0.2)

53.4
52.9(0.2)

52.7
52.0(0.3)

SGCL 73.8
73.1(0.3)

73.2
72.9(0.1)

50.2
49.9(0.1)

50.0
49.6(0.2)

79.9
79.6(0.1)

75.9
75.4(0.2)

90.8
90.5(0.1)

88.7
88.2(0.2)

54.4
54.1(0.1)

54.1
53.5(0.2)

Fine-tuned
Training mode MoCo E2E MoCo E2E MoCo E2E MoCo E2E MoCo E2E

GraphCL 74.1
73.0(0.4)

71.6
70.7(0.3)

50.4
49.5(0.3)

48.8
47.1(0.5)

81.1
80.2(0.3)

79.3
78.0(0.4)

87.7
86.4(0.5)

87.3
86.4(0.3)

52.7
51.0(0.5)

49.5
47.8(0.5)

GRACE 73.6
72.5(0.4)

71.7
71.0(0.2)

49.8
49.1(0.2)

47.7
47.2(0.2)

79.8
79.1(0.2)

77.9
77.2(0.2)

86.9
86.0(0.3)

87.1
86.0(0.4)

51.8
51.0(0.3)

48.7
47.9(0.3)

CuCo 73.1
72.2(0.3)

71.4
70.9(0.2)

49.5
48.8(0.2)

47.7
46.0(0.5)

78.4
77.7(0.2)

77.8
76.0(0.6)

87.5
86.1(0.5)

87.0
85.9(0.4)

51.6
50.9(0.2)

48.9
47.8(0.4)

BYOV 73.8
73.0(0.3)

72.6
72.1(0.2)

50.4
49.5(0.3)

49.9
49.2(0.2)

81.4
80.9(0.2)

79.7
79.0(0.2)

88.6
87.9(0.2)

87.4
86.5(0.3)

54.2
53.5(0.2)

50.5
49.8(0.2)

MVGRL 72.9
71.8(0.4)

72.6
71.5(0.4)

49.6
48.5(0.4)

49.9
48.8(0.4)

78.9
78.2(0.2)

77.8
76.9(0.3)

88.2
87.4(0.3)

87.2
86.3(0.3)

53.7
53.0(0.2)

50.2
49.3(0.3)

InfoGCL 73.8
73.5(0.1)

71.9
71.0(0.3)

50.2
49.7(0.2)

48.7
48.0(0.2)

80.5
79.8(0.3)

79.1
78.5(0.2)

87.9
87.0(0.3)

86.6
86.0(0.2)

52.7
52.0(0.2)

49.5
49.0(0.2)

GCA 73.3
72.8(0.2)

72.1
71.2(0.3)

49.8
49.2(0.2)

48.5
47.2(0.4)

80.2
79.4(0.3)

78.5
77.9(0.2)

88.2
87.7(0.2)

86.9
86.0(0.3)

52.5
51.6(0.3)

49.0
48.1(0.3)

SGCL 74.4
74.0(0.1)

73.4
72.5(0.3)

50.7
50.6(0.1)

50.2
49.9(0.1)

81.6
81.4(0.1)

80.3
79.4(0.2)

88.7
88.4(0.1)

87.6
87.1(0.2)

54.6
54.3(0.1)

51.4
50.3(0.4)

Table 14: Top-k similarity search (k = 20, 40), frozen cases only, 5-95 intervals with standard deviations in brackets.

KDD-ICDM SIGIR-CIKM SIGMOD-ICDE

|V | 2,867 2,607 2,851 3,548 2,616 2,559
|E| 7,637 4,774 6,354 7,076 8,304 6,668
# ground truth 697 874 898

k 20 40 20 40 20 40

GraphCL 0.1062
0.912 (0.0033) 0.1604

0.1546 (0.0016) 0.0622
0.0552 (0.0024) 0.1259

0.1167(0.0031) 0.0871
0.0714(0.0048)

0.1294
0.1142(0.0042)

GRACE 0.1085
0.967 (0.0037) 0.1587

0.1529 (0.0022) 0.0612
0.0508(0.0035)

0.1317
0.1109 (0.0041) 0.0955

0.078 (0.0057) 0.1287
0.1252 (0.0012)

MVGRL 0.1032
0.958 (0.0028) 0.1554

0.1418 (0.0041) 0.0582
0.0456 (0.0038) 0.1285

0.1089 (0.0058) 0.0875
0.0687 (0.0062) 0.1194

0.1128(0.0025)
CuCo 0.1091

0.1027 (0.0026) 0.1591
0.1497 (0.0031) 0.0634

0.0502 (0.0040) 0.1342
0.1209 (0.0038) 0.1028

0.0857 (0.0052) 0.1508
0.1226 (0.0081)

BYOV 0.1088
0.1015 (0.0019) 0.1612

0.1552(0.0028)
0.0649
0.0556(0.0029)

0.1338
0.1219(0.0038)

0.0978
0.0675(0.0102)

0.1417
0.1235(0.0068)

InfoGCL 0.1031
0.0928 (0.0038) 0.1592

0.1504(0.0032)
0.0628
0.0572(0.0026)

0.1286
0.1167(0.0047)

0.0847
0.0764(0.0035)

0.1292
0.1163(0.0043)

GCA 0.1056
0.0944(0.0034)

0.1592
0.1524(0.0027)

0.0587
0.0522(0.0025)

0.1254
0.1154(0.0035)

0.0916
0.0782(0.0048)

0.1383
0.1122(0.0092)

SGCL 0.1137
0.1073 (0.0024) 0.1675

0.1614 (0.0028) 0.0721
0.0587 (0.0042) 0.1426

0.1289 (0.0046) 0.1124
0.1046 (0.0028) 0.1615

0.1502 (0.0035)

MoCo
GraphCL 0.0877

0.0782 (0.0038) 0.1561
0.1467 (0.0031) 0.0656

0.0605(0.0018)
0.1198
0.1127 (0.0021) 0.0918

0.0836 (0.0021) 0.1479
0.1358 (0.0029)

GRACE 0.0895
0.0818 (0.0026) 0.1605

0.1421 (0.0051) 0.0702
0.0522(0.0046)

0.1258
0.1095(0.0042)

0.0982
0.0845(0.0049)

0.1552
0.1377(0.0058)

MVGRL 0.0874
0.0789 (0.0028) 0.1522

0.1395 (0.0037) 0.0622
0.0512(0.0036)

0.1286
0.1028(0.0074)

0.0902
0.0812(0.0036)

0.1437
0.1330(0.0037)

CuCo 0.0895
0.0831 (0.0019) 0.1582

0.1459 (0.0052) 0.0691
0.0547(0.0045)

0.1295
0.1113(0.0052)

0.0988
0.0792(0.0061)

0.1532
0.1296(0.0072)

BYOV 0.0962
0.0891 (0.0019) 0.1596

0.1502 (0.0027) 0.0688
0.0592(0.0027)

0.1269
0.1194(0.0020)

0.1022
0.0716(0.0082)

0.1559
0.1347(0.0058)

InfoGCL 0.0895
0.0783 (0.0047) 0.1582

0.1473 (0.0038) 0.0652
0.0583(0.0023)

0.1224
0.1130(0.0027)

0.0922
0.0835(0.0028)

0.1463
0.1362(0.0037)

GCA 0.0885
0.0803(0.0024)

0.1528
0.1475(0.0017)

0.0648
0.0552(0.0031)

0.1246
0.1140(0.0029)

0.0898
0.0826(0.0024)

0.1455
0.1392(0.0018)

SGCL 0.1058
0.0917 (0.0045) 0.1703

0.1568 (0.0041) 0.0816
0.0727 (0.0037) 0.1347

0.1264 (0.0029) 0.1093
0.1028 (0.0028) 0.1628

0.1549 (0.0031)
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12 AUXILIARY EXPERIMENTS ON OGB DATASETS, MNIST AND CIFAR-10

12.1 MNIST and CIFAR-10 Motivation - Implicit Assumptions for the Crop Augment

We now revisit the chain of reasoning that motivates the crop augmentation, enumerated below sequentially :

• Images are a very important, naturally occurring subclass of attributed grid graphs (products of line graphs). Indeed,
for any grid graph, assigning the nodes a 3-dimensional attribute corresponding to the RGB intensity assigns the colour
part of the image. For the spatial aspect, every grid graph is enumerable in the indices of its constituent line graphs that
it is a product of, i.e. we may denote a node of the grid graph as vij where 1 ≤ i ≤ m, 1 ≤ j ≤ n for a grid graph that
is the product of two line graphs with m,n nodes. Associate xi,j , yi,j with every such vij , with the condition that :

xi,j+1 − xi,j = xi,j − xi,j−1

yi+1,j − yi,j = yi,j − yi−1,j

Clearly, then, every image can be expressed as a grid graph, while the converse is not true. We assume that this
generalization is meaningful - after all, an image of shape (m,n) can equally be flattened and written as a 1-dimensional
sequence with its dimensions appended separately, yielding a length of mn + 2 per channel. Every image can be
expressed this way while not every 1d sequence of length mn + 2 can be formed into an image, making this a
generalization. We need to demonstrate that the grid graph form of generalizing what an image is, turns out to
be more meaningful via some metric than, for example, ad hoc flattening.

• The crop operation in images, when they are considered equivalent to grid graphs, is equivalent to a value-based
thresholding on nodes, depending on the values induced on them using the first two eigenvectors corresponding to the
first two nonzero eigenvalues of the Laplacian. This is indeed true, ignoring numerical errors in the eigendecomposition,
when the dimensions m,n with m > n of the image are such that 2n > m. However, the crop operation for images
happens to be functional even when 2n > m, which is not true for the eigenvector-based cropping we propose.

• The crop augment is known to be - practically and empirically - a runaway success among the candidate augmentations
in contrastive learning so far, when the representations to be learnt are to be evaluated for image classification.

• Clearly, if the image is to be thought of as a graph, the corresponding expectation is that our proposed graph-level crop
succeed for graph classification. Therefore, we investigate if value thresholding based on the two eigenvectors, which
is strictly a generalization of the crop operation, is a similar success on graphs in general.

What are the questionable steps taken above ? First, using the first two eigenvectors is one of infinitely many generalizations
possible of the crop augmentation. We cannot investigate all such generalizations, but we can instead check if this particular
generalization continues to hold when the domain (images) is perturbed.

Secondly, to what extent is an image actually a grid graph ? Does such a generalization remove key aspects of the image ?

We can see that for the latter assumption, a start would be to consider the image classification tasks such as the ubiquitous
tasks on MNIST and CIFAR-10, and turn them instead into graph classification tasks, after converting the images into grid
graphs. If this process makes the task hopeless, the assumption is assuredly more questionable.

In fact, such benchmarking (Dwivedi et al., 2020) on MNIST and CIFAR-10 has already been carried out with Graph neural
networks. The accuracy obtained is close to 100% for MNIST, and above 65% for CIFAR-10, which, while not exceptional,
clearly shows that some reasonable information is retained relevant to the class labels by converting images to a grid graph.

Importantly, given such a grid graph, the nodes i.e. the pixels are initialized with their positions for such a graph classification
task. We recall from our discussion of the spectra of grid graphs, that it is precisely the (x, y) positions that will be recovered
via the two relevant eigenvectors.

If our generalization is correct, then we expect that at the point of generalization - i.e. in the original domain, the
generalization and the specific operation it is generalizing (crop) will be identical operations. We now need to change the
domain as slightly as possible to the level where the generalization remains valid, but the specific operation can no longer be
performed.
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This is easily achievable by replacing images (grid graphs) with their subgraphs and assuming we have no clue how these
graphs came to be (an usual assumption made for graph datasets). Recall that the (x, y) positions to grid graphs were
assigned using the knowledge that they were images. However, if we do not know that they are images, we can only use
their adjacency matrices.

In the case of the complete grid graph, the adjacency matrix will be enough to recover the (x, y) co-ordinates of each pixel.
However, for a subgraph, the two eigenvectors induce different values that need not correlate to (x, y) co-ordinates.

Recall that we have claimed that the values induced by these eigenvectors are useful for segmenting (selecting subgraphs
from) graphs of arbitrary kinds for contrastive learning in the view creation process, using the images as an example. If they
are useful for arbitrary graphs as our graph classification benchmarks indicate, they must be useful for slightly perturbed
(transformed into subgraph) version of images. It should be understood that we are talking of usefulness solely in the
sense of learning optimal representations for downstream classification tasks. If they cannot even succeed at this, then our
reasoning is likely to be questionable.

Therefore, if the first two eigenvectors yield a positional encoding that is useful for the image classification task when the
images are transformed into grid graphs and then made subgraphs of, the results will be consistent with our assumptions.
Further, since the image has only meaningful co-ordinates upto 2 axes, we expect no benefits for increasing the dimensionality
of such spectral embeddings beyond 2.

(5,5) (?,?)
Label : 1 Label : 1 (unchanged)

Figure 1: The layout of the subgraph classification experiment, as designed for MNIST. The aim of positional encoding is to give the node
(red) a two-dimensional embedding that is as useful to find the label (1) as its initial (x, y) co-ordinate pairing of (5, 5) with 1-indexing.
If the first two eigenvectors suffice, they are valid replacements for the axes and yield meaningful embeddings even when the graph
is no longer a perfect grid, and this will be reflected in higher accuracy. We assume that for images, a meaningful embedding must at
least capture some positional information and thus eigenvector embeddings, if they work, will be validated in generalizing axis-based
co-ordinates.

Nature of Testing

We consider the following cases, on top of a previously investigated baseline scenario, where each image is converted to
a grid graph and each pixel to a node, with edges between adjacent pixels, and the node attribute is 1 or 3 dimensional
respectively for MNIST and CIFAR-10, to which 2 dimensions are added via the Laplacian decomposition’s eigenvectors
corresponding to first two nonzero eigenvalues, bringing the problem into a graph classification problem, where a GCN
(5-layer GIN of the same architecture for consistency) is used to process this grid graph, and the node-level representations
pooled.

The variants we investigate are :
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• Keeping every graph as-is

• Replacing each graph with a subgraph, which consists of the nodes visited by a random walk starting from the center of
each graph, taking 512 steps with a return probability of 0.1

• Performing the subgraph step with a random graph crop on top of each subgraph, to simulate our augment scenario.

• Change the positional embedding to either be absent, have only the first dimension, or have 5 dimensions.

In each of the following tables, namely tables 15, 16, 17, 18 for MNIST and 19, 20, 21, 22 for CIFAR-10, rows signify train
sets, and columns signify test sets in terms of the modifications performed on them. Overall, we see the same pattern. The
random walk, or the subsequent cropping, do not significantly harm the accuracy. There are large gains from going from
0-dimensional positional embeddings to 1, smaller ones from 1 to 2 and beyond 2, a significant drop at 5. This matches
what we expect and justifies our assumptions.

Original Random Walk Random Walk + Crop
Original 97.8 94.3 89.5
Random Walk 93.2 93.4 88.9
Random Walk + Crop 92.7 91.5 92.8

Table 15: MNIST, 2-dimensional embedding
Original Random Walk Random Walk + Crop

Original 94.2 87.4 85.6
Random Walk 86.5 85.1 83.5
Random Walk + Crop 83.2 81.2 85.9

Table 16: MNIST, 1-dimensional embedding
Original Random Walk Random Walk + Crop

Original 68.9 61.5 58.8
Random Walk 62.4 55.6 53.2
Random Walk + Crop 61.9 54.4 52.6

Table 17: MNIST, 0-dimensional embedding
Original Random Walk Random Walk + Crop

Original 95.6 93.2 87.2
Random Walk 91.5 84.2 84.5
Random Walk + Crop 91.9 86.5 83.8

Table 18: MNIST, 5-dimensional embedding
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Original Random Walk Random Walk + Crop
Original 59.5 56.8 55.9
Random Walk 56.2 53.7 53.9
Random Walk + Crop 54.6 52.9 54.3

Table 19: CIFAR-10, 2-dimensional embedding
Original Random Walk Random Walk + Crop

Original 55.4 49.7 52.3
Random Walk 54.2 51.2 50.8
Random Walk + Crop 53.2 47.8 53.2

Table 20: CIFAR-10, 1-dimensional embedding
Original Random Walk Random Walk + Crop

Original 46.9 41.5 43.2
Random Walk 39.8 39.6 40.5
Random Walk + Crop 43.7 38.8 40.2

Table 21: CIFAR-10, 0-dimensional embedding
Original Random Walk Random Walk + Crop

Original 52.7 51.0 53.5
Random Walk 52.4 49.6 51.0
Random Walk + Crop 51.3 50.5 50.2

Table 22: CIFAR-10, 5-dimensional embedding
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12.2 Results on OGB Datasets of Arxiv (Accuracy) and Molhiv (HIV) (ROC-AUC)

We also tested our pre-trained models on datasets associated with the Open Graph Benchmark aka OGB (Hu et al., 2020a).
Here, the entire test occurs in the fine-tuned setting. We observed some mild benefits associated with pre-training over the
common sense GIN benchmark, even when both networks had the advantage of utilizing the structural embedding (Recall,
of course, that only the structural embedding aspect can transfer between widely divergent datasets that share no attributes
otherwise). These results are summarized in table 23.

Arxiv HIV
GIN - Attr + Struct 72.1 77.0
GIN - Attr only 71.4 76.8
GIN - Attr and Struct - GCC E2E Finetuned 72.3 77.2
GIN - Attr and Struct - GCC MoCo Finetuned 72.3 77.5
GIN - Attr and Struct - SGCL E2E Finetuned 72.6 77.4
GIN - Attr and Struct - SGCL MoCo Finetuned 72.5 77.8

Table 23: Results on OGB datasets

12.3 Citeseer and Cora

We ran the frozen E2E transfer case for Citeseer and Cora datasets. When we transferred our structure-only models to these
datasets and did not use any node attributes, we observed 50.8 (1.6) and 68.7 (2.1) percent accuracy on Citeseer and Cora
respectively (standard deviations in brackets).

With node features included along with the frozen encoder, the performance rose to 71.5 (1.2) and 82.1 (1.6) respectively.
The fact that these values (50.8 and 68.7) are significantly higher than a random guess (approx. 14.3 and 16.7) indicates that
the structure-only encoder trained on a completely different pre-training corpus is still able to learn important topological
characteristics.
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13 LIMITATIONS, SOCIETAL IMPACT AND REPRODUCIBILITY

Limitations. Our paper is not without limitations. Currently, the pre-train datasets we use in our paper are mostly inherited
from established work focusing on GNN pre-training (Qiu et al., 2020; You et al., 2020). Even though they are sufficiently
large in terms of the scale of the graph, we believe our model can be further strengthened by more diverse graph datasets.
As a very recent paper GraphWorld (Palowitch et al., 2022) addressed, the commonly used datasets have graph statistics that
lie in a limited and sparsely-populated region in terms of metrics such as the clustering coefficient, degree distribution, or
Gini coefficient. Thus, to fully benefit from the power of pre-training techniques for graph data, it would be interesting and
important to extend the use of pre-train datasets to graphs with diverse structural properties.

Another limitation of our work is that the pre-training and transfer focuses exclusively on the graph structure information;
this is a common approach for cross-domain training (Qiu et al., 2020). We believe that there is value in further investigation
into techniques that can process the node feature information as well as the structure information during the pre-train stage.
This especially can be seen with the OGB datasets, which may share structural information between, for example, molecules
and citation networks, while sharing no attribute related information.

Potential societal impact. Graph neural network techniques have been commonly used for prediction tasks in social
networks and recommender systems. Our techniques, as a variant of graph neural networks, can be used in those scenarios
to further improve the model performance. However, having such an ability is a double-edged sword. On one hand, it can be
beneficial to improve user experience. On the other hand, if these techniques are used purely for a profit-driven or political
driven reason, they can aim to 1) monopolize user attention for as long as possible by seducing users into carrying out
actions that will make them happy on very short timescales and addictive to their product or even worse to 2) shape and
influence public opinion on the key matters of the time. Thus, researchers and service providers should pay vigilant attention
to ensure the research does end up being used positively for the social good.

Reproducibility. We have included the code and all hyperparameters, hardware details etc. to facilitate reproducibility.
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14 ADDITIONAL ABLATIONS

In this section, we present the variation of the model’s success with changes in train dataset, degree, the standard deviation
of the degree, and λ2 (the second eigenvalue of the Laplacian).

Table 24: Advantage of SGCL over GCC, with GCC performance in brackets, when the train set is restricted to particular graphs. The
graphs are listed in descending order of their sizes.

Advantage IMDB-M COLLAB RDT-B RDT-M
All 0.5(49.3) 0.9(74.7) 0.9(87.5) 1.2(52.6)
LiveJournal 0.4 (48.8) 0.9 (74.2) 1.0 (86.9) 1.1 (51.8)
Facebook 0.5 (49.0) 0.8 (74.0) 1.0 (86.7) 1.1 (51.6)
IMDB 0.6 (48.2) 1.1 (73.8) 1.1 (86.5) 1.2 (51.5)
DBLP 0.7 (49.1) 1.1 (74.3) 1.2 (86.4) 1.1 (51.9)
Academia 0.6 (48.1) 1.0 (74.5) 1.1 (86.2) 1.1 (51.2)

In the ablations against λ2, degree, and standard deviation of the degree we see a pronounced U-curve where the middle
quintiles perform best. This could be due to the hypothesized spectral gap effect that we derive. The results in degree
statistics could well be due to the fact that such statistics in turn depend greatly on the λ2 values, and cannot be considered
truly independent findings.

Table 25: Advantage of SGCL over GCC, with GCC performance in brackets, when the train set is restricted to particular graphs. The
rows represent rank quintiles of λ2.

Advantage IMDB-M COLLAB RDT-B RDT-M
Q1 0.3 (47.6) 0.6 (74.2) 0.8 (86.8) 0.9 (51.6)
Q2 0.3 (48.7) 0.9 (74.0) 0.8 (86.7) 1.0 (51.5)
Q3 0.7 (49.5) 1.1 (74.9) 1.2 (87.4) 1.5 (52.3)
Q4 0.9 (49.4) 1.2 (75.0) 1.2 (88.0) 1.4 (53.0)
Q5 0.3 (49.4) 0.6 (74.9) 0.7 (87.8) 1.0 (52.9)

Table 26: Advantage of SGCL over GCC, with GCC performance in brackets, when the train set is restricted to particular graphs. The
rows represent rank quintiles of average degree.

Advantage IMDB-M COLLAB RDT-B RDT-M
Q1 0.4 (48.6) 0.7 (74.3) 0.8 (87.4) 1.0 (52.4)
Q2 0.5 (49.2) 0.8 (74.5) 1.0 (87.6) 1.2 (52.5)
Q3 0.6 (49.0) 1.0 (74.8) 0.9 (87.2) 1.3 (52.2)
Q4 0.5 (49.4) 1.0 (74.6) 1.0 (87.3) 1.3 (52.4)
Q5 0.6 (49.3) 1.1 (74.2) 1.0 (87.6) 1.3 (52.5)
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Table 27: Advantage of SGCL over GCC, with GCC performance in brackets, when the train set is restricted to particular graphs. The
rows represent rank quintiles of the standard deviation of the degree.

Advantage IMDB-M COLLAB RDT-B RDT-M
Q1 0.5 (48.4) 0.8 (74.3) 0.8 (87.2) 1.2 (52.9)
Q2 0.6 (49.5) 0.9 (74.6) 1.1 (87.6) 1.3 (52.3)
Q3 0.6 (49.6) 1.0 (75.0) 1.2 (87.6) 1.3 (52.4)
Q4 0.6 (50.0) 1.1 (75.2) 1.2 (87.7) 1.3 (52.2)
Q5 0.3 (49.0) 0.6 (74.2) 0.7 (87.5) 1.0 (52.2)

Table 28: The behavior of SGCL, E2E, Frozen on spectrally splitting a train dataset(DBLP) into 5 quintiles along the rows, according to
the value of λ2, while testing on a similar split across the columns on COLLAB. Both diagonal and middle quintiles show elevated values.

SGCL Accuracy Q1 Q2 Q3 Q4 Q5
Q1 73.8 73.5 73.6 73.4 73.2
Q2 73.4 73.7 73.8 73.6 73.7
Q3 73.8 74.2 74.2 74.1 74.0
Q4 73.5 73.9 74.2 74.3 73.8
Q5 73.3 73.2 73.7 73.6 73.6
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15 THEOREMS UNDERLYING THE AUGMENTATIONS

15.1 Crop Augmentation

Let us derive a few key claims that will help us put the crop augment on a surer footing.

Denote by Pn the path-graph on n vertices, which has n−1 edges of form (i, i+ 1) for i = 1, . . . , n−1. This corresponds
to the line graph.

Define also Rn, n ≥ 3, the ring graph on n vertices defined as Pn with an extra edge between 1 and n.

Recall the product graph : A product of two graphs A,B with vertex sets (vA, vB) and edge sets (eA, eB) is a graph A.B
where each v ∈ A.B can be identified with an ordered pair (i, j), i ∈ vA, j ∈ vB . Two nodes corresponding to (i, j), (i′, j′)
in A.B have an edge between them if and only if either i′ = i, (j, j′) ∈ vB or (i, i′) ∈ vA, j = j′. The product of two line
graphs of length M,N respectively can be represented as a planar rectangular grid of lengths M,N . Denote by Ga,b the
rectangular grid graph formed by the product Pa.Pb. Structurally, this graph represents an image with dimensions a× b.

For simplicity, we will prove our work for unweighted and undirected graphs, but the properties are general and do not
require these conditions.

Theorem 2 Let A be a graph with eigenvalues of the Laplacian as λ1, λ2, . . . , λN and corresponding eigenvectors
v1, . . . ,vN . Similarly consider B another graph with eigenvalues µ1, . . . µM and eigenvectors u1, . . .uM . Let the product
of graphs A,B be C. Then, identifying each node in C with an ordered pair (x, y), the Laplacian of C has an eigenvector
wij with eigenvalue λi + µj , such that

wij(x, y) = vi(x)× uj(y)

Proof : let the laplacian of C be LC . We need only compute the term

LC(wij(x, y))

This is equivalent to (with eA, eB being the edge set of A,B respectively) :

∑
(x,x′)∈eA

(wij(x, y)−wij(x
′, y)) +

∑
(y,y′)∈eB

(wij(x, y)−wij(x, y
′))

However, taking
∑

(x,x′)∈eA
(wij(x, y)−wij(x

′, y)), we observe that :

∑
(x,x′)∈eA

(wij(x, y)−wij(x
′, y))

becomes, applying the hypothesized wij = vi(x)× uj(y)

∑
(x,x′)∈eA

(vi(x)uj(y)− vi(x
′)uj(y))

Taking uj(y) in common, we recognize that
∑

(x,x′)∈eA
vi(x)−vi(x

′) will yield just vi scaled by λi as vi is the eigenvector
of the Laplacian.

Therefore this term becomes

∑
(x,x′)∈eA

uj(y)× vi(x)× λi

While the other term, i.e. ∑
(y,y′)∈eB

(wij(x, y)−wij(x, y
′))
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yields similarly

∑
(y,y′)∈eB

uj(y)× vi(x)× µj

Adding the two, we see that the final matrix-vector product is parallel to the original vector (thus an eigenvector) with
eigenvalue λi + µj .

Theorem 3 The eigenvectors of the (un-normalized) Laplacian of Pn, for n > k ≥ 0, are of the form:

xk(u) = cos(πku/n− πk/2n)

with eigenvalues λk

2− 2 cos(πk/n)

.

Proof : We will use the ring graph defined above. Let Pn be the path graph. R2n+2 is clearly the ring graph obtained by
having two copies of Pn with 2 additional links.

Now, Rn can be drawn on the plane with the vertex i located at (cos(αi), sin(αi)) where α = 2π
n . Observe that each vertex

i has a position in the plane which is parallel to the sum of the position vectors of i+ 1 and i− 1. From this, it naturally
follows (by the definition of the Laplacian operator which subtracts the value of the neighbour vectors from that at the node)
that the valid eigenvectors for Rn are :

xk(i) = cos(αki),yk(i) = sin(αki)

Regarding the eigenvalue, the node itself contributes 2 (as it appears in the sum twice) and each neighbour contributes
− cos(αk) with 2 neighbours, leading to an eigenvalue of 2− 2 cos(αk).

Now it is trivial to find the eigenvectors of Pn from R2n. Simply take any eigenvector of R2n which has the same value for
i, i+ n for i ≤ n. Then the restriction of this eigenvector to 1 ≤ i ≤ n defines a valid eigenvector for Pn with the same
eigenvalue. This is why the terms of the angles in the theorem are the same as path graphs with π taking the place of 2π as,
for example

2− 2 cos(
2π

2n
k) = 2− 2 cos(

π

n
k)

Which is the sought result.
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15.2 Reordering Augmentation

Theorem 4 Let A be the adjacency matrix of an undirected unweighted graph, D the degree matrix and P =
D−1/2AD−1/2 the normalized adjacency matrix. Let Dk be the k-th order normalized diffusion matrix :

Dk =

k∑
i=1

P k

Then, the j-th eigenvector (sorted in order of eigenvalues and ties broken consistently) is the same for all j for any odd k.
That is, for any odd k, Dk and P have eigenvectors ordered in the same sequence.

Proof : First, since the normalized Laplacian matrix L is related to P as L = I − P , and it has eigenvalues in the range
[0, 2], P has eigenvalues lying in the range [−1, 1].

Now, observe that P shares the same eigenvectors with P k for any k, however, eigenvalue λ changes to λk. It can be seen
that since the permutation is on the basis of sorting eigenvalues, the view for A+A2 + · · ·+Ak will coincide with A if
fk(x) = x+ x2 + · · ·+ xk is monotonic in the range [−1, 1], which is the range of allowed eigenvalues of the normalized
adjacency matrix. It is trivial to note that fk(x) is monotonically increasing for x ∈ [0, 1] for any k. Now, ignoring the
case |x| = 1, observe that 1 + fk(x) =

1−xk+1

1−x by the geometric progression formula. If k is odd, k + 1 is even, and thus
xk+1 is positive for x ∈ [−1, 0]. As we move x from −1 to 0 the numerator monotonically rises, and the denominator
monotonically falls from 2 to 1, meaning that overall the function is monotonic and the ordering will just mirror x. This
is not true when the sum terminates at an even power, for instance, x + x2 which is 0 at −1 and 0 but negative at −1/2,
indicating that it cannot be monotonic. The case where x is 1 or −1 is trivially true.

15.3 Alignment Closed Forms

Given a function of the following nature where Q is orthogonal

||XQ− Y ||2

Minimization of the above function can be done by noting that this is equivalent to working with :

||XQ||2 + ||Y ||2 − 2⟨XQ,Y ⟩

||XQ|| = ||X||, and we only have ⟨XQ,Y ⟩ to maximize. This is Y TXQ, which is equal to ⟨Q,XTY ⟩. Maximizing
this boils down to the projection of the matrix XTY on the set of orthogonal matrices under the square Frobenius norm. Let
the SVD of XTY be USV T , then we have ⟨Q,USV T ⟩ being minimized. This becomes ⟨UTQV ,S⟩, with UTQV
orthogonal and made to maximize inner product with diagonal S, implying that Q = UV T is the solution.
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16 PROOFS ON THE STOCHASTIC BLOCK MODEL

Usually, one divides graph contrastive learning and more generally all of contrastive learning into two categories :

• Supervised contrastive learning : There are unseen labels for each node. Our proofs will center on showing that with
high probability, augmentations either preserve these unseen labels or some straightforward function of them that are
made to suit the situation. For example, in a graph classification setting formed from the ego-graph of the nodes, the
graph can be given the label of the node it is formed as an ego-graph from or the majority label of the nodes it contains.
Our proofs in this case deal with the graph label and not the node label.

• Unsupervised graph contrastive learning : Each node is its own class (the classic setting of graph contrastive learning).
In this scenario, it is not possible to work with the node label. Since in our setting, the nodes also possess no node-
specific attributes beyond the structural information, our work here must focus on the structures obtained under spectral
augmentation only.

In both cases we assume contrastive learning in general to work. That is, we show that the process of generating positive
pairs etc. continues properly, but not anything about whether contrastive learning as a whole can generalize better or learn
better representations. We view such a proof as outside the scope of this paper.

In the paper, we have worked with six distinct augmentations , of which two modify the structures chosen : Crop and
Similar/Diverse. Three of them modify the attributes alone : Mask, reorder, and align. In general, nothing can be proven
about the latter three without assuming an easy function class such as linear classifiers, which we view as unrealistic. Hence,
our work focuses on the first two.

Secondly, we work with the stochastic block model and the two-cluster case where differing label of a node indicates a
different propensity to create edges. We only focus on the case where there are seen or unseen labels which are related to
the structure of graphs. This can be seen as a scenario intermediate between the supervised and unsupervised contrastive
learning case, and the block model a natural reification to study it, for it is well known (Rohe et al., 2011) that conditional
on the label of a node being known, the degree structure and density etc. strongly concentrate around their fixed values for
the stochastic block model. Indeed, no other parameter except the label which directly determines the edge density even
exists to provide information about the structure. Proving that nodes of similar (seen or unseen) labels are brought together
by our augmentations carries over to the unsupervised case fully as these parameters are the only ones directly determining
the structure.

By assuming that (unseen) labels exist, our proof is quite relevant to the actual use case of the paper. This is because in the
downstream usage, the classifier is used, zero-shot, to provide representations that are used to predict the label. In other
words, hidden latent labels are assumed to be predictable from the structure. Our case should be understood as a special case
of unsupervised representation learning that shares some conditions with the supervised scenario.

16.1 Proof Sketches and Overall Meaning

Our proofs center around the stochastic block model. In this setting the spectrum is well known and analyzed. We show that
in this case, the “crop" operation around a node v extracts a sub-graph of nodes which largely possess the same label as v
itself, where the label is considered to coincide with the cluster(block). Under the contrastive learning assumption, then,
“crop" recovers positive pairs.

We also show that common embedding methods such as LINE, DeepWalk etc. are meaningful in terms of establishing
“similar" and “diverse" views in the stochastic block model and that “similar" filtering would indeed yield a pathway to
setting positive pairs apart. This is done by re-using our analysis for the supervised case which looks at the spectrum, and
re-using the results from NETMF (Qiu et al., 2018) which connects the spectral results to embeddings obtained by random
walks. In short, random walks and corresponding embeddings on stochastic block models can be seen, in the limit, as
spectral decompositions of a block model with parameters that depend on the original block model. After this, we can
recognize that the analysis for “crop", which essentially shows that the spectral embeddings form a meaningful metric of
closeness in terms of label, cluster etc. on the original model, fully carries over with transformed parameters.
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16.2 Supervised Contrastive Learning Derivation

We define our stochastic block model (Rohe et al., 2011) as follows in keeping with conventions of the field. We will
consider one with two components.

• There are N0 nodes generated with label 0, and N1 with label 1. Denote the group generated with label 0 as C0 and the
other as C1. For simplicity, set N0 = N1 = N

• An edge occurs with probability p among two nodes of label 0, with probability q between two nodes of label 1, and
with z among two nodes of different labels. z < min(p, q) is a common assumption. Without loss of generality we
can take p > q > z. We also consider the self-edges to be valid.

Note that in the setting of GCC, different local structures encode different labels. Hence p ̸= q, as if they were equal it
would imply the same structural generation process gives rise to two different labels.

Let A be the adjacency matrix of the stochastic block model and L the laplacian. Let λn(v) be the function that assigns to a
node v its value under the n-th eigenvector of the Laplacian. Let Cϵ(v) be the cropped local neighbourhood around any
node v defined as {v′ : ||λ(v′)− λ(v)|| ≤ ϵ} where λ(v) = [λ2(v), λ3(v)].

16.3 Factorizing the Adjacency Matrix

The overall matrix A is of shape 2N × 2N . Recall that we have allowed self-edges and diagonal entries of A are not zero.
Consider the matrix :

[
p z
z q

]
Let W be a 2N × 2 matrix formed by repeating the row vector

[
1 0

]
N times and then the row vector

[
0 1

]
N times.

W denotes the membership matrix. The first N rows of W denote that first N nodes belong to label 0 (and hence their
zero-th entry is 1) and the next N rows likewise have a 1 on their 2-nd column signifying that they have label 1.

Now, we can see that if we multiply W

[
p z
z q

]
, the first N rows of the resulting 2N × 2 matrix will be

[
p z

]
and the next

N will be
[
z q

]
. Consider now multiplying from the right side with WT i.e. forming, overall,W

[
p z
z q

]
WT . This matrix

will be of shape 2N × 2N and it can be seen that it has a block structure of form :

[
p(1N1TN ) z(1N1TN )
z(1N1TN ) q(1N1TN )

]
Where, 1N is the N × 1 vector of all 1-s, and 1N1TN the N ×N matrix of all 1-s. So, it can be seen that the above matrix is
nothing but the expectation of the stochastic block model’s adjacency matrix.

Now, can we avoid analyzing this matrix and instead settle for analyzing the comparatively simpler
[
p z
z q

]
? Let v be an

eigenvector of
[
p z
z q

]
with eigenvalue λ. Let v have entries

[
x
y

]
. By hypothesis,

[
p z
z q

]
v = λv. Then, if we have the

vector v′ of shape 2N × 1 with first N entries as x, and the next N as y

[
p(1N1TN ) z(1N1TN )
z(1N1TN ) q(1N1TN )

]
v′ = (λN)v′

.

It can be seen that v′ is parallel to an eigenvector of the expectation of the adjacency matrix and the corresponding eigenvalue
is λN . However, we always assume eigenvectors are of unit norm, i.e. x2 + y2 = 1. So, v′ is going to be not x repeated N
times, but x√

N
N times and then y√

N
N times. This makes ∥v′∥ = 1 = ∥v∥. Therefore, for every pair λ, v in the spectra of

the 2× 2 matrix, there is a corresponding λN, v′ in the spectra of the expectation of the adjacency matrix. Next, note that
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the rank of the expectation of the adjacency is ≤ Rank(

[
p z
z q

]
) ≤ 2. So if the 2× 2 matrix has a full rank, there can be no

extra eigenvalue-eigenvector pairs for the corresponding expectation of the adjacency matrix. All the nonzero eigenvalues
and corresponding eigenvectors of the expectation of the adjacency are derivable from the 2× 2 matrix’s spectra. In short,
to understand the spectrum of the expectation of adjacency, we can just study the 2× 2 matrix, as there is a one to
one relationship between the nonzero eigenvalues and corresponding eigenvectors.

16.4 Crop Augmentation

Notation of probability. In proofs involving convergence, it is customary to provide a guarantee that a statement holds with
probability ≥ 1− F (N) where F (N) tends to zero as N goes to infinity. We will somewhat abuse the notation and say
the probability → 1 as N → ∞ to denote this. We do not distinguish between things such as convergence in probability,
convergence in distribution, almost surely convergence etc. and provide a largely concentration-inequality based proof
overview.

We can state our proof for the crop augmentation as follows. All of the following statements hold with high probability (i.e.
hold with a probability that → 1 as N → ∞.)

Theorem 5 Let the number of samples N → ∞. Let v be chosen uniformly at random from the nodes. The following
statements hold with a probability that → 1 as N → ∞ :

• Proposition 1 : The majority label in Cϵ(v) is the label of v.

• Proposition 2 : Two nodes v, v′ of different labels generate non-isomorphic cropped subgraphs Cϵ(v), Cϵ(v
′), if v′ is

chosen uniformly at random as well.

• Proposition 3 : For any v and Cϵ(v), there is no differently labeled v′ and Cϵ(v
′) which is isomorphic to Cϵ(v) for a

high enough ϵ, if both are chosen uniformly at random.

Note that in the main text, we state a slightly different version of the theorem (Theorem 1 of the main text) involving ego
networks as well, which we restate here :

Theorem 6 Let node v be chosen uniformly at random from G, a 2N -node graph generated according to the SBM described
above. With probability ≥ 1− f(N) for a function f(N) → 0 as N → ∞, ∃ϵ ∈ R+, kmax ∈ N such that :

∀k ∈ N ≤ kmax, Y (Ek,v(G)) = Y (Cϵ(v)) = Y (v) (7)

Terming kmax used above as kcrit, we can see that this is adding an extra part that agrees with the node label, namely the
majority label of an ego network. However, the majority label for the k ego network when k ≤ kcrit is trivially equal to the
node’s label for at least some values of kcrit allowing k beyond 0 (i.e. the node itself is the ego network). To see this, take
k = kcrit = 1. The expected number of nodes of the same label - considering label 0 for simplicity - in its ego network
is p(N − 1) + 1, and the ones of a different label are of expected number zN . By Hoeffding’s inequality, both quantities
with high probability i.e. with probability ≥ 1−O(exp(−δ2)) have deviations of only O(δ

√
N) from their expectations

which are terms of O(N). Therefore, the majority label agrees with the node’s own label with high probability (note that
this requires p, q > z). We assume this step to hold with high probability and focus now on proving the equality of the
cropped subgraph’s majority label and the node label. We discuss ego networks other than the 1-ego network at the end of
the section. It can be easily checked that at least for the 1-ego network, our proof involving mostly the vertex label case
requires no changes.

To prove this, consider the random matrix A. We can denote the expectation of A as A∗. We can see the rank of A∗ is 2 as it
has exactly 2 possible types of columns in it. It remains to find the corresponding two eigenvectors and eigenvalues. Clearly,
by the structure of the matrix, the eigenvectors are of the form of repeating one value c N times and then another value c′ N
times, and we can WLOG set c = 1 and replace c′ with c. Then it remains to solve

[
p z
z q

] [
1
c

]
Which becomes, by the definition of eigenvector,
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z + qc

p+ zc
= c

or, simplifying :

zc2 + (p− q)c− z = 0

Therefore, by the quadratic formula :

c =
(q − p)±

√
(p− q)2 + 4z2

2z

The eigenvalue for a corresponding c is p+ zc. Since p, z ≥ 0 the larger eigenvalue λ1 corresponds always to the larger
value of c. Therefore, λ2 takes the value gained by plugging in the negative root above, for c. This yields the unnormalized
eigenvector, the actual entries assigned under the eigendecomposition are respectively 1√

1+c2
, c√

1+c2
when a vertex v is

assigned its value under the eigenvector.

We re-use previous results in random matrix theory (Vu, 2007) (theorem 1.4) that imply that with a probability → 1,
||A−A ∗ ||op ≤

√
18pN , when p is Ω(logN)4/N . Since the lower bound on p → 0 as N → ∞ we can assume it to hold

for large N . The ∥ · ∥op notation denotes operator norm.

Explanation of the order through Hoeffding and RIP property. To intuitively understand the above result, we can
consider each entry of A−A∗. This is a random variable (blockwise) that takes one among the following set of values :
−p, 1−p (among the N ×N entries of label 0), −z, 1− z (among the 2×N ×N entries between labels 0, 1) and −q, 1− q
(among label 1). Now, only the upper triangle and diagonal are independent as the edges are symmetric, and the matrix is
symmetric about the diagonal. We can write that :

||A−A ∗ ||2F = 2||A−A ∗ ||2F,UT + ||A−A ∗ ||2F,D

Where, F denotes Frobenius norm, and UT,D respectively denote summing over upper triangular and diagonal indices.

Therefore, if each entry of A−A∗ be denoted as ∆i, enumerated in any order over the diagonal and upper triangle of the
2N × 2N matrix (1 ≤ i ≤ N(2N + 1)), ∆i,∆j are independent r.v.s for any i ̸= j. Further, −1 ≤ ∆i ≤ 1. Therefore,
0 ≤ ∆2

i ≤ 1. Further, ||A−A ∗ ||F ≤
√∑

2∆2
i .∑

∆2
i is a sum of independent random variables in a fixed, finite range of size 1. Therefore, Hoeffding’s inequality applies,

which yields that with probability ≥ 1−O(1/N) :

E(
∑

∆2
i )−

√
N(N + 1/2) log(N) ≤

∑
∆2

i ≤ E(
∑

∆2
i ) +

√
N(N + 1/2) log(N)

E(
∑

∆2
i ) is the sum of the variances of random variables ∆i over N(2N + 1) entries, bounded above by 1. Hence, it

follows that ||A−A ∗ ||2F is O(N2) with probability ≥ 1−O(1/N), therefore, ||A−A ∗ ||F is O(N).

Further, we can see that A−A∗ has the following structure :

[
J K
K L

]
Where, J, L are symmetric matrices with each upper triangular and diagonal entry as i.i.d random variables Z satisfying :

Z = a with probability p else Z = b, E(Z) = 0

In addition, K is a matrix (not necessarily symmetric) which has every entry as i.i.d realizations of such Z. Then, such a

matrix
[
J K
K L

]
by Restricted Isometry Property (Vu, 2014) has the property that, with high probability, there is a constant

K ′ independent of N :
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max
i

λi(A−A∗) ≈

√√√√K ′

N

N∑
i=1

λ2
i [(A−A∗)]

The left hand side is the maximum eigenvalue, which we recognize as ∥A−A ∗ ∥op i.e. the operator norm.

Now, using the relation between eigenvalues and the Frobenius norm :

N∑
i=1

λ2
i [(A−A∗)] = ||A−A ∗ ||2F = O(N2)

The RHS comes from plugging in the Frobenius norm bound from the Hoeffding’s inequality step. Finally, this yields :

||A−A ∗ ||op = O(
√
N)

The result of Vu’s we state above is merely a formalization of this sketch with constants, the order is the same i.e.
√
N .

Now consider the second eigenvector i.e. the λ2 function from A against the calculated λ2 above for A∗. We need to use the
Davis Kahan theorem (Demmel, 1997) (theorem 5.4) which states that if the angle between these is θ, then

sin 2θ ≤ 2||A−A ∗ ||op
2N ∗min(|µ1 − µ2|, µ2)

As both eigenvectors are unit vectors, we can use the property that if two unit vectors have angle θ between them, the norm
of their difference is bounded above by

√
2sin2θ. Ignoring constants, we end up with the result that for some constant c0,

and denoting vM,i the i-th eigenvector of the Laplacian formed from some adjacency matrix M

||vA,2 − vA∗,2|| ≤ c0

√
pN

N ∗min(|µ1 − µ2|, µ2)

The LHS however works with the eigenvector of the overall adjacency matrix formed by the multiplication by W we have
discussed above. Recall that we have already noted the adjacency matrix and the 2× 2 matrix share eigenvalues upto scaling
in N . Their eigenvectors are also likewise related, and since eigenvectors are always of unit norm, an eigenvector of the
2 × 2 matrix is first repeated in its entries and then normalized by a factor of 1√

N
by virtue of being an eigenvector, to

become an eigenvector of the overall adjacency matrix.

By substituting the eigenvectors we found earlier, i.e. 1√
1+c2

[1, c]T into the LHS, scaling by this
√
N factor cancels the

extra
√
N on the RHS. Recalling that

c = q1 =
(q − p)−

√
(p− q)2 + 4z2

2z

Let :

S1 : {x : vA∗,2(x) =
1√

1 + q21
, vA,2(x) ≤

1 + q1

2
√

1 + q21
+

ϵ

2
}

S2 : {x : vA∗,2(x) =
q1√
1 + q21

, vA,2(x) ≥
1 + q1

2
√

1 + q21
− ϵ

2
}

Let v1, v2 be any pair of nodes that satisfy the conditions of :

• Labels of v1, v2 are different. WLOG, let v1 have label 0, v2 label 1.
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• Cϵ(v1) contains v2 (and by symmetry, Cϵ(v2) contains v1)

Clearly, we can see that either v1 ∈ S1 or v2 ∈ S2. Let K1 = |S1|,K2 = |S2|. Summing only over S1 :

K(
1− q1

2
√
1 + q21

− ϵ/2)2 ≤ p(c0)
2

min((µ1 − µ2)2, µ2
2)

This yields a bound on K1, which we can term K1,max = p(c0)
2

(
1−q1

2
√

1+q21

−ϵ/2)2×min((µ1−µ2)2,µ2
2)

. Similarly, we can consider K2

to get K2,max as : p(c0)
2

(
1−q1

2
√

1+q21

−ϵ/2)2×min((µ1−µ2)2,µ2
2)

. Set ϵ = 1−q1

2
√

1+q21
to get :

K1,max +K2,max ≤ 2p(c0)
2

( 1−q1

4
√

1+q21
)2 ×min((µ1 − µ2)2, µ2

2)

Since K1,max = K2,max we can term it Kmax. Simultaneously, consider :

S3 : {x : vA∗,2(x) =
1√

1 + q21
, vA,2(x) ≥

1 + q1

2
√

1 + q21
+

3ϵ

2
}, ϵ = 1− q1

2
√

1 + q21

1 + q1

2
√
1 + q21

+
3ϵ

2
=

5
4 − q1

4√
1 + q21

≥ 1√
1 + q21

+
1

4
√
1 + q21

Last inequality is by the property q1 < 0. By a similar argument as for S1, S2, S3 is of constant size and S3

N → 0 as
N → ∞. Let the maximum size of S3 be K3,max. Now, if we pick a vertex v of label 0 at random, with probability
≥ 1− K3,max+Kmax

N , v /∈ S1, v /∈ S3. If both these conditions hold, in Cϵ(v) any v′ which does not have the same label
must have v′ ∈ S2. (Because any such pair must have at least one element in S1, S2 and v /∈ S1). Simultaneously, Cϵ(v)
contains at least all vertices of label 0 not in S1

⋃
S3 i.e. has vertices of label 0 ≥ N −K3,max −Kmax. Noting that K

values are all constants and N → ∞ implies that majority label in Cϵ(v) will agree with v as Kmax/N → 0 completes the
proof. The only aspect of the proof which required high probability was the norm of ||A−A ∗ ||op varying as

√
N , this step

may be assumed to be true with probability ≥ 1−O(1/N3) (tighter bounds are possible but this suffices). This concludes
the proof of proposition 1.

Tightness of operator norm. Consider the statement that :

||A−A ∗ ||2F = O(N2)

Recall that we showed :

E(
∑

∆2
i )−

√
N(N + 1/2) log(N) ≤

∑
∆2

i ≤ E(
∑

∆2
i ) +

√
N(N + 1/2) log(N)

With high probability. We used the bound of the RHS, but the bound of the LHS is also true. Hence, ||A−A ∗ ||2F = Θ(N2).

Next, we used :

max
i

λi(A−A∗) ≈

√√√√K ′

N

N∑
i=1

λ2
i [(A−A∗)]

However :

max
i

λi(A−A∗) ≥

√√√√ 1

N

N∑
i=1

λ2
i [(A−A∗)]
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Therefore, maxi λi(A−A∗) = ||A−A ∗ ||op = O(
√
N).

In short, every step till we apply the Davis-Kahan bound, i.e. :

||vA,2 − vA∗,2|| ≤ c0

√
pN

N ∗min(|µ1 − µ2|, µ2)

Is as tight as possible.

Tightness of Davis-Kahan bound. The Davis-Kahan upper bound is sharp. That is, ∃S,H , S = ST , H = HT ,
with µ1 ≥ µ2 ≥ . . . ..µN the eigenvalues of S, v1, v2, . . . , vN the corresponding eigenvectors of S, v′1, v

′
2, . . . , vN the

eigenvectors of S +H , θi the angle between vi, v
′
i satisfying :

sin(2θi) = c′
2||H||op

minj ̸=i |µi − µj |

Where c′ is a constant ≤ 1 that does not depend on N. And at the same time, ∀S,H, µi, vi, v
′
i :

sin(2θi) ≤
2||H||op

minj ̸=i |µi − µj |

However, in our case, S is not arbitrary, but S = A∗. When we take ∃S, it allows taking e.g. S =

[
0.6 0.8
0.8 0.7

]
. But this

cannot be A∗ with N = 1, as it violates all our assumptions for A∗, here p = 0.6, q = 0.7, z = 0.8 violating p > q > z
assumptions. We need to show that ∃S,N,H such that H = HT and :

S = WS′WT , S′ =

[
p z
z q

]
, 0 ≤ z ≤ q ≤ p ≤ 1

with W of shape 2N × 2 such that first N rows of W are [1, 0], next N are [1, 0]. This makes S = ST and we already
constrain H = HT . With µ1 ≥ µ2 ≥ . . . ..µ2N as eigenvalues of S, v1, v2, . . . , v2N ,v′1, v

′
2, . . . , v2N corresponding

eigenvectors of S, S +H we must show ∃i

sin(2θi) = c”
2||H||op

minj ̸=i |µi − µj |

Where c” is constant, not a function of N . This is reached at :

S′ =

[
0.6 0
0 0.4

]
, H ′ =

[
−0.1 0.1
0.1 0.1

]

S = WS′WT , H = WH ′WT

Where W is as specified and of shape 2N × 2.

Proof of proposition two.

Recall that by the proof of proposition one, Cϵ(v) contains M nodes of label 0, where if v is selected randomly over all
nodes with label 0, with probability → 1, M

N → 1. This step is with probability ≥ 1−O(1/N3).

Let E0 be the set of all edges (vi, vj) with vi, vj having label both labels 0. Let M(0, v) be the set of all edges (vi, vj) s.t.
(vi, vj) ∈ E0, vi, vj ∈ Cϵ(v). Clearly, M0,v ⊆ E0, and since M

N → 1, |M0,v|
|E0| → 1.

By a similar argument, let M1,v′ , E1 be the corresponding edge sets for Cϵ(v
′) with label of v′ being 1, |M1,v′ |

|E1| → 1.

E0, E1 are, denoting Bw(p) as an independent Bernoulli random variable of bias p :
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E0 =

N(N+1)/2∑
w=1

Bw(p), E0 =

N(N+1)/2∑
w=1

Bw(q)

Via Hoeffding’s inequality, E0 = (pN(N+1)/2)+O(N
√
logN), E1 = (qN(N+1)/2)+O(N

√
logN) with probability

≥ 1−O(1/N3). Therefore, with probability ≥ 1−O(1/N3), Cϵ(v), Cϵ(v
′) are not isomorphic. This proves proposition

two. Applying the union bound over all choices of (v, v′) proves proposition three, because number of possible pairs is
O(N2) and the property holds with ≥ 1−O(1/N3), leading to overall probability ≥ 1−O(1/N).

Note that the step of the 1 ego-network’s majority label agreeing with the node’s label was derived by Hoeffding’s inequality
and does not affect any order used so far. Hence, this completes the proof of propositions 1, 2, 3.

16.5 Embedding-based Similarity

First, we remind the reader that usually, each node embedding method such as LINE (Tang et al., 2015) always normalizes
its embedding per node. That is, each node v receives some vector ev with ∥ev∥ = 1. But that, in turn implies that given
two distinct embeddings ev, ev′ ,

⟨ev, ev′⟩
∥ev∥∥ev′∥

= ⟨ev, ev′⟩

∥ev − ev′∥2 = ∥ev∥2 + ∥ev′∥2 − 2⟨ev, ev′⟩ = 2− 2⟨ev, ev′⟩

That is, selecting on the more similar cosine distance (similar filtering) is equivalent to selecting on lower values of ∥ev−ev′∥
- the type of proximity analyzed in crop. This simplifies our analysis, allowing re-use of crop results.

In the context of embeddings, let us analyze two in particular : DeepWalk (Perozzi et al., 2014) and LINE (Tang et al., 2015).
It is known previously from the analysis of NETMF (Qiu et al., 2018) that these methods replicate matrix factorization.
Specifically, let A,D be the adjacency matrices and degree matrices, then :

Pr =
1

T
(

T∑
r=1

(D−1A)r)D−1

Let the volume of a graph G V (G) be the sum of the number of edges, then log(V (G)Pr)− log b where b is the negative
sampling rate is a matrix Zr. Under the framing above, DeepWalk factors any Zr, while LINE factors Z1, i.e. LINE is a
special case of DeepWalk. This log is taken per element.

Now, we are ready to state our theorems for similarity. Let E(v) be the embedding assigned to a node v. Let p, q, z be as
before.

Theorem 7 Let the number of samples N → ∞, p
q ̸= ∞, ∃ϵcrit such that ∀v, let {Sv : v′, label(v′) = label(v), ∥E(v)−

E(v′)∥ ≤ ϵcrit }, then, |Sv|
N → 1 and Cϵcrit(v) satisfies the three propositions of theorem 1, when v is chosen uniformly at

random.

Our proof for this will first translate the graph adjacency to familiar matrix forms. Note that V (G) is equal to, in expectation
and allowing self-loops, as :

2N2(p/2 + q/2 + z)

Further, we can set b = 1 to remove it from consideration. Set r = 1 to recreate the case of LINE. Now, by a similar
argument as for the cropping analysis for SBM where the matrix W generates the A∗ matrix using a 2× 2 matrix, we can
examine the 2× 2 matrix which is :

[
p

(p+z)2
z

(p+z)(q+z)
z

(p+z)(q+z)
q

(q+z)2

]
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Now, let us apply the logarithm to get our new values of p′, q′, z′ which will be fed back to crop analysis and behave
equivalently to the original parameters (as before in the crop case, the N2 term in V (G) can be ignored while reducing to
the 2× 2 case) :

p′ = log p− 2 log(p+ z) + log(p+ q + 2z)

q′ = log q − 2 log(q + z) + log(p+ q + 2z)

z′ = log z − log(p+ z)− log(q + z) + log(p+ q + 2z)

Note that p > q implies p′ < q′, as :

p′ − q′ = log p− log q + 2 log(q + z)− 2 log(p+ z)

p(q + z)2 − q(p+ z)2 = pq2 + pz2 − qp2 − qz2 = (p− q)(z2 − pq) < 0

And, p > z implies p′ > z′, as :

p′ − z′ = log p− log(p+ z) + log(q + z)− log z

p(q + z)− z(p+ z) = pq − z2 > 0

Therefore, the analysis from the crop case carries over, except we swap the order of p, q. This is equivalent to swapping the
labels of the nodes, and makes no difference. Recall that the error rate for the spectral analysis in the crop section depends
on p′ (numerator) and min(µ2, |µ1 − µ2|) (denominator) =⇒ : the error will remain bounded above iff : |p′|, |q′| are
bounded above and min(µ2, |µ1 − µ2|) are bounded below.

Cases of issues in p′, q′. Can be ruled out as follows :

• p′ = log p− 2 log(p+ z) + log(p+ q + 2z) ≤ log p− 2 log p+ log 4p = log 4.

• q′ ≤ log q − 2 log q + log(4p) = log 4 + log(p/q) < ∞ by hypothesis p/q ̸= ∞.

Case of eigenvalue issues, i.e. : min(µ2, |µ1 − µ2|) → 0 =⇒ µ2 → 0, µ1 − µ2 → 0. From the analysis of crop, the
eigenvalues are of the form p′ + z′c′ where :

c′ =
(q′ − p′)±

√
(p′ − q′)2 + 4z′2

2z′

Note that z′ is < 0. To see this, observe that :

(p+ q + 2z)z = 2z2 + pz + qz = (p+ z)(q + z)− pq + z2 < (p+ z)(q + z)

Simultaneously, p′ > 0, as :

p(p+ q + 2z)− (p+ z)2 = pq − z2

So the eigenvalues are :
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µ1 =
(q′ + p′) +

√
(p′ − q′)2 + 4z′2

2
, µ2 =

(q′ + p′)−
√
(p′ − q′)2 + 4z′2

2

minµ2, |µ2 − µ1| = 0 ⇐⇒ z′ → 0

0 > z′ = log(pz + qz + 2z2)− log(pq + pz + qz + z2) = log(1− pq − z2

pq + z2 + pz + qz
)

Since p > q > z, pq − z2 > 0, z′ → 0 is not possible, and we are done. We simply need to adjust for the final step of
vertex-wise normalization. Since in this case, µ1 and its corresponding eigenvector is also utilized, we have that all elements
of cluster 0 receive embeddings of form (recall q1, q2 are the roots of the quadratic for c) [ 1√

N(1+q21)
, 1√

N(1+q22)
] pre-

normalization, and upon vertex-wise normalization this becomes [
√

1+q22√
2+q21+q22

,

√
1+q21√

2+q21+q22
]. For cluster 2, the corresponding

post-normalization embeddings are [
q1
√

1+q22√
q21+q22+2q21q

2
2

,
q2
√

1+q21√
q21+q22+2q21q

2
2

]. These are both on expectation and all the gaps in

expectation remain O(N) with deviations of O(
√
N). Re-applying the results from the crop section, we get that there is

ϵcrit such that with probability ≥ 1 − O(1/N3) with a fixed v, a fraction v′ → 1 sharing the label of v lies within ϵcrit,
while at most O(1) (the Kmax terms derived earlier) do not fall within this ϵcrit or are v′′ not sharing the label of v but lying
within ϵcrit. Most importantly, q1, q2 differ in sign, making the inner product consist of two positive terms between nodes
of same label with high probability and one positive and one negative term between nodes of differing labels - the inner
product is now a meaningful similarity metric ! For an easy example, we can see that setting p = q leads to (in expectation)
embeddings [ 1√

2
, 1√

2
] for one label/cluster and [ 1√

2
, −1√

2
] for the other. This means nodes of two differing labels have ≈ 0

inner product and two of the same have inner product ≈ 1 with high probability.

Clearly, in the SBM case, similar filtering is the correct course of action with the threshold being this ϵcrit. It is plausible
that in other generative graph cases, this would not be the case. However, in our experiments, similar was always superior
to diverse filtering, possibly reflecting that real life graphs are well-modeled by SBMs in this aspect. Note also that our
graphs such as LiveJournal, FaceBook etc. arrive from communities in social networks which may be expected to display
a clustered / stochastic block model type of pattern. Note that the factorization under the transformed parameters is not
necessarily a descending algebraic decomposition, but one where we perform the decomposition in order of magnitude.

16.6 Ignorable Perturbation Effect from Third Eigenvector

In both the proofs, we have examined only 2-component SBMs. In these cases, µ3 and its corresponding eigenvector plays
no role and indeed we have proven everything in terms of µ2, λ2 alone. This is because in the expected adjacency matrix,
µ3 = 0.

The proof fully extends to the case where λ3 is added. For simplicity, we did not add it, and the only change required is that
for every node, we instead use µ2λ2 instead of λ2, and µ3λ3 instead of λ3. Since µ3 in the original expected adjacency (A∗)
is zero, it is solely from A−A∗ that µ3 arises. By Weyl’s eigenvalue perturbation theorem (Weyl, 1912),

λ3(A−A∗) ≤ µ3 ≤ λ1(A−A∗)

We know, however, that A−A∗ is a RIP matrix (Vu, 2014) and thus µ3 ≈
√
N . This is with respect to the full matrix, i.e.

W

[
p z
z q

]
WT being A. This has µ2 as O(N), making µ3 and thus µ3v3 only 1√

N
relative to the other terms, and thus

ignorable in the final embedding.

16.7 The Case of DeepWalk

We sketch here the proof extension of the LINE case to DeepWalk. In DeepWalk, the matrix D−1A is replaced with the
average over the first T powers, that is :
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1

T

T∑
r=1

(D−1A)r

First note a few things. A is the adjacency matrix which we know to be of form (in expectation) as WBWT where B is
2× 2. A2 is WBWTWBWT . But, WTW is a scaled identity matrix. Thus A2 in expectation is WB2WT (times factors
purely in N ). Ergo, the analysis can still be carried out in terms of B, only this time using B2. Next, note that replacing A
with any sum of powers of K does not change the eigenvectors, it only changes the eigenvalues, because :

M = USUT → M +M2 . . .MK = U(S + S2 · · ·+ SK)UT

The final right multiplication with D−1 does not affect this conclusion, since right multiplication with any diagonal matrix
simply changes eigenvectors by inverse of the said matrix. Since the eigenvectors remain the same, all the steps crop onward
to filtering continue to function, but the scaling factors might change due to eigenvalue changes. Since the eigenvalue change
does not change finitely large quantities to infinitely small quantities and we only use this step to rule out noise from the
third eigenvector, which after normalization contributes a term of order O( 1√

N
) relative to the other terms, all the steps

continue to work.

Caveats and extensions. In the following subsections, we check some alternate scenarios of other ways to do NETMF,
≥ 3 components, and most importantly how random walk augmentations and ego networks of distances ≥ 2 may shift our
analysis. These subsections should be considered as extensions of the main proof and mostly expository.

16.8 NETMF Rounding vs No Rounding.

In the NETMF implementation, terms < 1 before taking the log can be rounded up to 1 in an alternate usage. This case either
results in no off diagonal entries after the log (making the analysis trivial as it is the adjacency matrix of two disconnected
blocks) or a zero matrix making it nonsensical. Thus, we did not analyze this case, as in this case our augmentations either
trivially work or no sensible embedding is produced at all due to a matrix of all zeroes.

16.9 Extension to 3 and Greater Components

In the cases of ≥ 3 component SBMs, the eigenvectors are significantly more complicated than for a 2× 2 case. However,
the consistency of spectral clustering under the L2 norm - which is, as one might recognize, what we have shown here with
some modifications - is proven in alternate ways, and convergence is guaranteed so long as the number of eigenvectors used
is k and equal to the number of components. However, these proofs carry over to the case where the eigenvalues after 3
satisfy magnitude constraints (Rohe et al., 2011; Sarkar and Bickel, 2015; Von Luxburg, 2007b), and also for product graphs
such as the grid graph (shown in main text). Therefore, using eigenvectors upto λ3 would suffice in these low rank cases
even if the overall number of components was high.

16.10 Notes on the Random Walk Augmentation in the SBM Scenario

The random walk step in GCC (Qiu et al., 2020) is essential for the purposes of scaling Graph Contrastive methods. This
is because in most cases, the ego-networks obtained by taking the simple neighbours within d steps of a node v are too
large (over 1000) whereas a random walk on these ego networks, and then collecting the nodes visited, yields much smaller
graphs (≤ 256 for our implementation, with averages much lower, < 100). This naturally leads us to ask if this step is only
required for scalability - does it also have other desirable properties ?

In the stochastic block model, at least, it does. Consider the adjacency matrix of a 2-component SBM as A, with N nodes
each of two classes. Let a node be v, and keep inter-connection probabilities as p, q, z.

For any p, q, z which are not arbitrarily low, i.e. do not → 0 as N → 1, it can be seen that any k-ego network of v for k ≥ 2
covers a fraction of nodes → 1 of the entire SBM. This can be understood by considering any node v′ ̸= v. There will be no
path v′ → z → v (and in the other direction - we are dealing with undirected graphs) with z ̸= v, v′ iff ∀z there is either no
edge (z, v) or no edge (z, v′).

The probability of such a path existing for a particular z is ≥ pmin = min{p2, q2, z2, pz, qz, pq}. Therefore, any z will not
have such a path with a probability ≤ 1− pmin. And, since there are O(N) independent choices of z, such a path will not
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exist between v, v′ through such a z with a probability
∏O(N)

i=1 (1− pmin). Thus, with probability → 1 as N → ∞, all such
v, v′ have a path between them of length 2. This implies all but 1-ego networks are unsuitable as they will include such
paths and cover almost the entire graph.

The probability of a random walk, on the other hand, should be analyzed as follows. While it is tempting to consider the
transition matrix (the adjacency matrix normalized by degree) for analysis and take its limit (as it enjoys well-understood
properties), the random walks utilized in practice have a very high return probability to the origin (0.8). This implies, in
turn, that we should only consider the random walk lengths of low step number, as the probability of visiting a node even at
distance 3 is 0.2× 0.2 = 0.04. Over a typical random walk of transition length 256, only 10 nodes at distance ≥ 3 occur.

With this in mind, consider a random walk starting WLOG from a node of class 0. Now :

• At walk length 1, the random walk has as neighbours, on expectation, p(N − 1) nodes of class 0 and zN nodes of
class 1.

• At the beginning of walk step 2, there is a roughly ≈ p
p+z probability the random walk is at label 0, and z

p+z that it is at

label 1. The corresponding probabilities at the end are : p2

(p+z)2 + z2

(z+q)(p+z) for class 0 and zq
(z+q)(p+z) +

pz
(p+z)2 for

class 1.

Compared to blindly taking the 2-ego network, this can be seen to notably bias the the network in favor of the first class, by
a ratio equal to :

p2(z + q) + z2(p+ z)

zq(p+ z) + pz(z + q)
=

p2z + p2q + z2p+ z3

pqz + z2q + pz2 + pqz

To see the numerator is greater, observe that p2z + z3 ≥ 2pz2 ≥ pz2 + qz2 (AM-GM). This leaves us with proving that
p2q + z2p ≥ 2pqz. However, p2q + z2p ≥ pq2 + z2p ≥ 2pqz (AM-GM). Therefore, unlike the 2-ego network case which
virtually has the same number of nodes of either class with high probability, the random walk slants the node label ratio,
as desired, in the 2-nd step (it trivially does so in the first step simply due to the 1-ego network case and this case has no
interesting differences between the random walk and directly taking the ego network).

Ergo, the random walk may help offset nonsense nodes included in the ego-network, at least in the block model setting. The
fact it is run with a high return probability aids this - were it allowed to run longer, it would approach its mixing time and be
closer to uniform in its probability of being found over nodes of either class.

16.11 Larger Ego Networks

In this section, we have implicitly considered 1-ego networks when taking the full ego network into consideration. It is clear
from our analysis in the random walk section that 2-ego networks or higher can only become feasible as at least one of
p, q, z go to zero as N goes to infinity. Clearly, we cannot have z remain finitely large while p, q go to zero (as this violates
our assumptions) and so either :

• all of p, q, z go to zero

• p, q stay finite, and z goes to zero.

Case 1 is much harder to tackle. For instance, our argument re : the Frobenius deviation in the adjacency matrix assumes
that the expected adjacency matrix has a Frobenius norm of order O(N2). This may not be true when p, q, z are allowed to
be infinitely small.

Instead, let p, q remain finite and z → 0 as N → ∞. Assume that the graph remains connected with high probability. This
is true when, for instance, z = 1/N . The number of edges on expectation cross cluster is still O(N). Observe that the crop
proof we have used continues to work assuming no numerical problems. This is because the eigenvalues use p+ zc, and
c inversely varies as z. There are no infinities incurred as a result of z except for c itself. The value of c → ∞, implying
that post-normalization of eigenvectors, the cluster of label 0 receives embeddings which approach [0, 0], and the cluster
of label 1 receives embeddings which approach [1,−1]. The result also thus carries over to the similar embedding proof,
which re-uses the crop result. In this particular case, 2 and higher ego networks are viable, and depend on the value of z. For
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example, if z = O(1/N), each node v in the cluster of label 0 has O(1) neighbours in cluster 2, and qN ∗O(1) neighbours
at distance 2 of label 1, allowing 2-ego networks (3-ego networks fail in this case). We did not analyze such scenarios in
depth, but we put the kmax in our theorem to allow such cases.
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18 NEGATIVE TRANSFER EFFECTS

In some of our datasets, there is a noted negative transfer effect. What we mean by this is that further training actually
decreases the performance on the dataset. One should be wary of this when looking at result pairs where, for instance, the
pre-trained model performs worse than a non pre-trained model or a fresh model.

We repeat that the goal of pre-training is to come up with a general model that is trying to excel at all tasks, simultaneously -
it is optimizing an average over all tasks. Optimizing such an average may come at the cost of a particular task. We illustrate
this effect with IMDB-BINARY. We show 3 consecutive results on this dataset, E2E Frozen, at 5, 10, 20 epochs of training
on DBLP. The results actually progressively worsen.

Figure 6: Performance on IMDB-Binary, 5 epochs

Figure 7: Performance on IMDB-Binary, 10 epochs

Figure 8: Performance on IMDB-Binary, 20 epochs
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Figure 9: Alignment process overall

19 VISUALIZATIONS OF NEED FOR ALIGNMENT

Here, we provide two illustrative figures 9, 10 we make that respectively demonstrate:

• The case where the global graph, after a random walk, can yield two views, which after Laplacian eigendecomposition
end up with inconsistent embeddings for the same node, and thus requires alignment.

• The Wasserstein-Procrustes alignment process which is used as a subprocess to correct the inconsistent embeddings.
Representative papers that explain the Wasserstein Procrustes method include CONE-ALIGN (Chen et al., 2020c)-
especially in figures 1 and 2 and section 4.2 of the main text of the CONE-ALIGN paper, as well as REGAL (Heimann
et al., 2018) and G-CREWE (Qin et al., 2020).
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Figure 10: Alignment process detailed, with subprocess
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