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Abstract

The problem of constrained Markov decision
process is considered. An agent aims to max-
imize the expected accumulated discounted re-
ward subject to multiple constraints on its costs
(the number of constraints is relatively small). A
new dual approach is proposed with the integra-
tion of two ingredients: entropy-regularized pol-
icy optimizer and Vaidya’s dual optimizer, both
of which are critical to achieve faster conver-
gence. The finite-time error bound of the pro-
posed approach is provided. Despite the chal-
lenge of the nonconcave objective subject to non-
concave constraints, the proposed approach is
shown to converge (with linear rate) to the global
optimum. The complexity expressed in terms of
the optimality gap and the constraint violation
significantly improves upon the existing primal-
dual approaches.

1 INTRODUCTION

In this paper we consider γ-discounted infinite-horizon
constrained Markov decision process (CMDP) (Altman,
1999). Such problem arises in many practical applications,
such as autonomous driving (Fisac et al., 2018), robotics
(Ono et al., 2015) or systems where the agent must meet
safety constraints. An example of such a problem is an
energy-efficient wireless communication system that aims
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to consume minimum power without violating any con-
straint on quality service (Li et al., 2016). Such Rein-
forcement Learning (RL) problems are often formulated as
CMDP (Garcia and Fernandez, 2015).

Recently, Ying et al. (2022); Li et al. (2021); Liu et al.
(2021) proposed algorithms (under various assumptions)
that achieve Õ (1/ϵ)1 iteration complexity to find global
optimum, where ϵ characterizes optimality gap and con-
straint violation. Each iteration of the proposed methods
has the same complexity as an iteration of the Policy Gra-
dient (PG) methods.

Although the CMDP problem is nonconcave (CMDP prob-
lem is typically a maximization problem) in policy π (non-
concavity inherited from MDP problem, which is noncon-
cave even in the bandit case (Mei et al., 2020b)), the com-
plexity Õ (1/ϵ) fits lower bound for smooth concave prob-
lems with large number of constraints (Nemirovsky, 1992;
Ouyang and Xu, 2021). Despite that fact, if we have only a
few constraintsm— that is typical for most of the practical
applications — these results are not optimal and we may
expect Õ (m) iteration complexity for concave problems
with m constraints (Gasnikov et al., 2016a; Gladin et al.,
2020, 2021; Xu, 2020), which corresponds to lower bound
for small enough m (Nemirovsky and Yudin, 1979). In this
paper we are transferring Õ (m) iteration complexity result
to the nonconcave CMDP problem.

1.1 Related Work

There is a considerable interest in RL / MDP problems
(Sutton et al., 1999; Puterman, 2014; Bertsekas, 2019) and
CMDP problems (Altman, 1999). For the past ten years
there was a great theoretical progress in different direc-

1For clarity we skip the dependence on 1− γ and logarithmic
factors.
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tions. For example, given a generative model with |S|
states and |A| actions, we can find ϵ-policy (ϵ is a quality
in terms of cumulative reward) for γ-discounted infinite-
horizon MDP problem with

Õ
(
|S| · |A|

(1− γ)3ϵ2

)
(1)

samples (Sidford et al., 2018; Wainwright, 2019; Agarwal
et al., 2020) (analogously for CMDP, see arXiv version of
Jin and Sidford (2020)) that corresponds (up to logarithmic
factors) to the lower bound from the work by Azar et al.
(2012). Moreover, the dependence on ϵ can be improved
to log (1/ϵ) at the expense of dependence on |S|. Unfor-
tunately, in many practical applications these optimal algo-
rithms do not work at all due to the size of |S|.

A popular way to escape the curse of dimensionality is
to use PG methods (Mnih et al., 2015; Schulman et al.,
2015b; Mei et al., 2020b; Agarwal et al., 2021), where a
parameterized (for example by Deep Neural Networks (Li,
2017; Wang et al., 2020)) class of policies is considered.
In the core of PG-type methods for MDP problems lie
gradient-type methods (Mirror Descent (Lan, 2022; Zhan
et al., 2021), Natural Policy Gradient (NPG) (Khodadadian
et al., 2021; Cayci et al., 2021; Ding et al., 2020; Kakade,
2001; Cen et al., 2022), etc.) in the space of parame-
ters applied to a properly regularized (in proper proximal
setup) cumulative reward maximization problem. The gra-
dient is calculated by using policy gradient theorem (Sut-
ton et al., 1999), which reduces gradient calculation to
Q-function (value function V ) estimation. Under proper
choice of regularizers (proximal setups), these methods
require Õ

(
(1− γ)−1

)
iterations (the function value and

policy converge linearly) and are not sensitive to inexact-
ness δ of Q-value estimation (δ ∼ ϵ), see details in Cen
et al. (2022); Lan (2022); Zhan et al. (2021) and reference
therein. Given a generative model, it is possible to obtain
from these results (see Azar et al. (2012); Agarwal et al.
(2020)) analogs of formula (1) for sample complexity that
would be worse in terms of (1−γ) dependence (Cen et al.,
2022), but can be better in terms of |S|.

For CMDP problems, PG methods are also well-developed,
see, e.g., surveys in Li et al. (2021); Liu et al. (2021) and
references therein. The best (in terms of PG iterations)
known complexity bounds were obtained in these works
Li et al. (2021); Liu et al. (2021); Ying et al. (2022).

In Ying et al. (2022) with additional strong assumption
(initial state distribution covers the entire state space)
the complexity bound Õ

(
ϵ−1
)

was obtained for entropy-
regularized CMDP (for true CMDP – Õ

(
ϵ−2
)
). In Li et al.

(2021) the complexity bound Õ
(
ϵ−1
)

was obtained under
weaker additional assumption (Markov chain induced by
any stationary policy is ergodic) by using dual approach,
see Section 1.2 for the details. For both of these ap-
proaches, given a generative model, one can obtain analogs

of formula (1) for sample complexity that would be worse
not only in terms of (1 − γ) dependence but also in terms
of ϵ (but still can be better in terms of |S|).

In Liu et al. (2021) the complexity bound Õ
(
ϵ−1
)

was ob-
tained without additional assumptions. We summarize the
described results in the Table 1, where ϵ is the accuracy in
terms of optimality gap and constraint violation, ξ is the
Slater’s parameter (could be small), ζ is a numerical con-
stant (small ζ ≃ 10−7, usually much larger in practice ζ ≃
10−1) in Vaidya’s cutting-plane method, β is the mixing
time parameter (could be close to 1), Rmax ≤ rmax

√
m,

rmax is the parameter that bounds all the rewards.

1.2 Main Contributions

In the core of our approach lies the paper Li et al. (2021),
where the authors introduce entropy-regularized policy op-
timizer and solve regularized dual problem by proper ver-
sion of Nesterov’s accelerated gradient method. First of all,
they use the strong duality for CMDP problem, which can
be derived (Paternain et al., 2019) from the fact of com-
pactness and convexity of the set of occupation measures
(Borkar, 1988) or from Linear Programming representation
of CMDP problem in discounted state-action visitation dis-
tribution (Altman, 1999). The next important step is en-
tropy policy regularization. This regularization simultane-
ously solves several tasks at once. First of all, it allows
to estimate the gradient of the dual function using NPG
method that has a linear convergence rate of policy and is
robust to inexactness in Q-function evaluations (Cen et al.,
2022). This is crucial since the dual accelerated method
is sensitive to inexactness in gradient, which can be con-
trolled if policy converges fast. Secondly, this regulariza-
tion allows to prove smoothness (in the spirit of Nesterov
(2005) and with additional nice analysis of Mitrophanov’s
perturbation bounds (Mitrophanov, 2005; Zou et al., 2019)
for showing that visitation measure is Lipschitz w.r.t. the
policy) of the dual problem. The smoothness of the dual
problem allows to use Nesterov’s accelerated method to
solve it and to get an optimal rate. The last step is the regu-
larization of the dual problem to obtain a linear rate of con-
vergence for the dual accelerated method, which negates
the fact that we should solve the dual problem with higher
accuracy to obtain the desired accuracy for the primal prob-
lem and constraint violation (Devolder et al., 2012; Gas-
nikov et al., 2016b). An alternative approach, which has

2Samples estimate was obtained based on the results from Cen
et al. (2022); Zhan et al. (2021), where it was shown that ε (ac-
curacy of V π – output of NPG), determines the accuracy δ of
Q-function evaluation δ ∼ (1− γ)2ε. The sample complexity of
δ-value of Q-function is |S||A|(1 − γ)−3δ−2. So sample com-
plexity is [# NPG method iterations] · |S||A|(1− γ)−7ε−2. Note
that in such a way we obtain upper bound on samples complexity.
In practice such theoretical bounds turn out to be greatly overesti-
mated (they are far from being optimal in terms of (1−γ)), rather
than estimates for the number of NPG iterations.



Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina

Table 1: Complexities of State-of-the-art Methods for CMDP

Method β-Uniform Ergodicity
assumption # NPG method iterations Accuracy

of V π Samples2

AR-CPO (Li et al., 2021) ✓ Õ
(

Rmax
√
m

((1−β)ξ)1/2(1−γ)3ϵ

)
∼ ϵ2 ∼ ϵ−5

PMD-PD (Liu et al., 2021),
ARNPG (Zhou et al., 2022) ✗ Õ

(
1

(1−γ)3ϵ

[
m

(1−γ)2 + 1
ξ

])
∼ ϵ ∼ ϵ−3

This work ✓ Õ
(

m
(1−γ)ζ

)
∼ ϵ2 ∼ ϵ−4

not been realized yet, is related to the primal-dual analy-
sis of the method, which is used for the dual problem, see
Nemirovski et al. (2010) for convex problems. In this ap-
proach, it is sufficient to solve the dual problem with the
same accuracy as we wish to solve the primal one. This
primal-dual approach may conserve the dependence on ϵ−2

in (1) in the final sample complexity estimate if the method
we used for the dual problem does not accumulate an error
in gradient over iterations. From Nemirovski et al. (2010);
Gladin et al. (2020) it is known that the Ellipsoid method
is a primal-dual one and does not accumulate an error in
gradient.

Our contribution is to replace the dual accelerated method
in the approach described above with Vaidya’s cutting-
plane method (Vaidya, 1989, 1996). Vaidya’s method has
a linear rate of convergence (without any regularization)
and outperforms the accelerated method when dealing with
small dimension problems (Bubeck, 2015). Moreover,
Vaidya’s method does not accumulate an error in gradient
value (Gladin et al., 2021) and hence is more robust than
the accelerated method.

We build a new way for CMDP problems to estimate the
quality of the primal solution from the dual one. To the best
of our knowledge, the developed technique is also new for
standard convex (concave) inequalities constrained prob-
lems and quite different from the technique that was used
in Li et al. (2021). This technique can be applied to any lin-
ear convergent algorithms for the dual problem. Moreover,
we improve |A|-times the bound on the Lipschitz gradi-
ent constant of the dual function from Li et al. (2021). In
Lemma 7 Li et al. (2021) the authors formulate the correct
result, but in fact, they prove a |A|-times worse result than
it was formulated. We give accurate proof of Lemma 7 by
using the result from Appendix of Juditsky et al. (2005).

Another important point is that our proposed method al-
lows to obtain the final policy in a straightforward way by
performing a call to the same policy optimizer which is
used on every iteration. By contrast, the algorithm from
Li et al. (2021) can obtain the final policy formally only in
the finite setting, by calculating νπρ in |S||A| calls to value
oracle (the notation is introduced below), which loses its
motivation with transition to continuous state spaces.

Similarly to Li et al. (2021), our proposed method can be
applied to a wider class of nonconvex/nonconcave con-
strained problems with strong duality (zero duality gap)
and uniqueness of the solution of the auxiliary problem,
which relates the primal variables with the dual ones.

Finally, we demonstrate by numerical experiments that our
proposed algorithm indeed outperforms AR-CPO from Li
et al. (2021) when m is not too big.

2 PRELIMINARIES

2.1 Markov Decision Process

A Markov decision process (MDP) is determined by a five-
tuple (S,A,P, r, γ), where S is the state space, A is the
action space, P is the transition kernel, r is the reward func-
tion and γ ∈ (0, 1) is the discount factor. Assume that S
and A are finite with cardinality |S| and |A|, respectively.
The initial state s0 follows a distribution ρ. At any time
t ∈ N+, an agent takes an action at ∈ A at state st ∈ S,
after which, according to the distribution P (st+1 | st, at),
the environment transits to the next state and the agent re-
ceives a reward r (st, at).

A stationary policy maps a state s ∈ S to a distribution
π(· | s) over A, which does not depend on time t. For a
given policy π, its value function for any initial state s ∈ S
is defined as

V πr (s) := E

[ ∞∑
t=0

γtr (st, at) | s0 = s, at ∼ π (· | st) ,

st+1 ∼ P (· | st, at)
]
.

Next, the mathematical expectation is taken with respect to
the distribution of the initial state, the expected reward is
determined by following policy π as

V πr (ρ) := Es0∼ρ [V πr (s0)] .

The goal is to solve the problem

max
π

V πr (ρ).

The discounted state-action visitation distribution defined
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νπρ as follows:

νπρ (s, a) := (1− γ)
∞∑
t=0

γt Pr
{
st = s, at = a | s0 ∼ ρ,

at ∼ π (· | st) , st+1 ∼ P (· | st, at)
}
,

for any s ∈ S, a ∈ A. The value function thus can be
equivalently written as

V πr (ρ) =

∑
s∈S,a∈A ν

π
ρ (s, a)r(s, a)

1− γ
=

〈
νπρ , r

〉
S×A

1− γ
,

where ⟨·, ·⟩S×A denotes the inner product over the space
S × A by reshaping νπρ and r as |S| × |A|-dimensional
vectors, and we omit the subscripts and use ⟨·, ·⟩when there
is no confusion.

2.2 Constrained MDP

The difference between CMDP and MDP is that the reward
is an (m+ 1)-dimensional vector:

r(s, a) = [r0(s, a), r1(s, a), . . . , rm(s, a)]
⊤
.

Each reward function ri, i = 0, 1, . . . ,m is positive and
finite,

ri,max := max
s∈S,a∈A

{ri(s, a)} ,

for i = 0, 1, . . . ,m; Rmax :=
√∑m

i=1 r
2
i,max.

Then the value function defined with respect to the i-th
component of the reward vector r as follows

V πi (s) := E
[ ∞∑
t=0

γtri (st, at)
∣∣ s0 = s, at ∼ π (· | st) ,

st+1 ∼ P (· | st, at)
]

and V πi (ρ) = Es0∼ρ [V πi (s0)] , for i = 0, 1, . . . ,m. The
objective of the constrained MDP is to solve the following
constrained optimization problem:

max
π∈Π

V π0 (ρ)

s.t. V πi (ρ) ≥ ci, i = 1, . . . ,m,
(2)

Π =
{
π ∈ R|S||A| :

∑
a∈A π(a | s) = 1, π(a | s) ≥ 0 ,

∀(s, a) ∈ S ×A} is the set of all stationary policies.
Let π∗ denote the optimal policy for the problem (2). The
goal is to find an ϵ-optimal policy defined as follows.
Definition 2.1. A policy π̃ is ϵ-optimal if its corresponding
optimality gap and the constraint violation satisfy

V ∗
0 (ρ)− V π̃0 (ρ) ≤ ϵ; and

∥∥∥[c− V π̃(ρ)]
+

∥∥∥
2
≤ ϵ,

where V ∗
0 (ρ) is the optimal value of (2),

V π̃(ρ) :=
[
V π̃1 (ρ), . . . , V π̃m(ρ)

]⊤
and c := [c1, . . . , cm]

⊤
.

2.3 Notation

Let Im denote m × m identity matrix, 1m ∈ Rm be a
vector of ones. The set of nonnegative real numbers is de-
noted by R+. Notation intP is used for the interior of a set
P ⊆ Rm. Given a vector x ∈ Rm, let ∥x∥p, p ∈ [1,∞]
denote the p-norm of x, [x]+ be defined by ([x]+)i =
max{0, xi}, i = 1, . . . ,m. For two vectors x, y ∈ Rm,
inner product is denoted by ⟨x, y⟩ or x⊤y. Given two func-
tions f(ϵ) and g(ϵ), we write f(ϵ) = O(g(ϵ)) if there exists
some constant C > 0, such that f(ϵ) ≤ Cg(ϵ) for small
enough ϵ. Õ(·) means O(·) up to logarithmic factor in a
small power (usually 1 or 2). Bold symbol πππ denotes the
constant (πππ = 3.1415 . . .) contrary to plain π which indi-
cates policy. log(·) is the natural logarithm. For two prob-
ability measures P and Q defined on a measurable space
(Ω,F), dTV (P,Q) denotes the total variation distance, i.e.,

dTV (P,Q) := sup
A∈F
|P (A)−Q(A)|. (3)

3 CUTTING-PLANE ALGORITHM FOR
CMDP

In this section, we introduce the cutting-plane algorithm for
CMDP which is presented in Algorithm 1. The algorithm
assumes access to:

1. Oracles, sufficent to run natural policy gradient al-
gorithm (see Appendix A), for our MDP with arbi-
trary rewards. For example, access to exact gradient
of value function w.r.t. softmax policy parametriza-
tion for any vector of rewards, and exact Fisher infor-
mation matrix for a softmax-parametrized policy. Or,
in our finite setting, also access to soft Q-functions is
enough.

2. Exact value function of a policy w.r.t to constraints’
reward vectors r1, . . . , rm.

In the algorithm, policies may be stored as full
softmax parametrizations (19), or directly as vectors
π(a|s), ∀(s, a) ∈ S × A (both ways are equivalent and
can be calculated one from another).

The core idea is to consider the entropy-regularized La-
grange function

Lτ (π, λ) := V π0 (ρ) + ⟨λ, V π(ρ)− c⟩+ τH(π),

where λ ∈ Rm+ is the vector of dual variables,

V π(ρ) = [V π1 (ρ), . . . , V πm(ρ)]
⊤ and c = [c1, . . . , cm]

⊤

(4)
are respectively vectors of constraints and constraint
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thresholds,

H(π) = −E
[ ∞∑
t=0

γt log (π (at | st))
∣∣∣

s0 ∼ ρ, at ∼ π (· | st) , st+1 ∼ P (· | st, at)
]

is the discounted entropy of the policy π and τ > 0 is
the regularization coefficient. The proposed method is
based on two components: Vaidya’s cutting-plane method
(Vaidya, 1989, 1996) for solving the dual problem

min
λ∈Rm

+

{
dτ (λ) := max

π∈Π
Lτ (π, λ)

}
, (5)

and an entropy-regularized policy optimizer for solving the
inner problem maxπ∈Π Lτ (π, λ) on each iteration of the
outer loop. Below is the description of both components.

3.1 Entropy-regularized Policy Optimizer

To estimate the gradient of the dual function ∇dτ (λ), one
has to solve the problem maxπ∈Π Lτ (π, λ). Note that
this is equivalent to maximizing an entropy-regularized
value function corresponding to a reward function rλ :=
r0 +

∑m
i=1 λiri. As mentioned in the introduction, en-

tropy regularization enables the linear rate of convergence
of an NPG method. In what follows, NPG(rλ, τ, δ) repre-
sents a call to NPG procedure that learns the policy π̃τ,λ for
the entropy-regularized MDP with the regularization coef-
ficient τ and reward rλ up to δ-accuracy in terms of l∞
distance to the unique optimal regularized policy, i.e.,∥∥π∗

τ,λ − π̃τ,λ
∥∥
∞ < δ, (6)

where π∗
τ,λ := argmaxπ∈Π Lτ (π, λ) (existence and

uniqueness of such optimal policy is addressed below).
More details on entropy-regularized policy optimizers are
provided in Appendix A.

3.2 Vaidya’s Cutting-plane Method

Vaidya’s cutting-plane method (Vaidya, 1989, 1996) is an
algorithm for a convex optimization problem with com-
plexity O(m log m

ϵ ), which makes it a good choice for for-
mulations with a small or moderate dimensionality like the
dual problem (5). Moreover, it has been shown that the
method can be used with an inexact subgradient, and it does
not accumulate the error (Gladin et al., 2021). This makes
it very suitable for the problem (5), since the gradient of
the dual function is computed approximately.

We will now shortly list the necessary notions used in Al-
gorithm 1 for the problem (2). A more detailed descrip-
tion of those notions is placed in Appendix B. For a ma-
trix A ∈ Rk×m with rows a⊤i , i = 1, . . . , k, and a vector
b ∈ Rk, define the polytope

P (A, b) := {λ ∈ Rm : Aλ ≥ b},

the matrix

H(λ;A, b) :=

k∑
i=1

aia
⊤
i(

a⊤i λ− bi
)2 , (7)

the values

σi(λ;A, b) :=
a⊤i (H(λ;A, b))

−1
ai(

a⊤i λ− bi
)2 , 1 ≤ i ≤ k, (8)

the volumetric barrier of the polytope P (A, b)

V(λ;A, b) := 1

2
log (detH(λ;A, b)) ,

where detH(λ;A, b) denotes the determinant of
H(λ;A, b). Finally, define the volumetric center of
P (A, b) as

VolCenter(A, b) := argmin
λ∈intP (A,b)

V(λ;A, b). (9)

Since V is a self-concordant function of x, it can be effi-
ciently minimized with Newton-type methods. The algo-
rithm starts with a pair (A0, b0) ∈ Rk0×m×Rk0 , such that
the polytope P (A0, b0) contains the search space. We re-
fer the reader to Appendix B for more information on the
original Vaidya’s method and its parameters.

4 CONVERGENCE RESULTS FOR THE
PROPOSED ALGORITHM

First, we introduce technical assumptions on our CMDP in-
stance (S,A, P, γ, r0, r1, . . . , rm, ρ) that are widely used
in reinforcement learning literature, and state the regular-
ized optimal policy uniqueness.

Assumption 4.1 (Slater Condition). There exists a con-
stant ξ ∈ R+, and at least one policy πξ ∈ Π, such that
for all i = 1, . . . ,m, V

πξ

i (ρ) ≥ ci + ξ.

Slater condition asserts that there exists a strictly feasible
policy. Define the set

Λ := {λ ∈ Rm+ | ∥λ∥1 ≤ Bλ} with

Bλ :=
r0,max + log |A|

(1− γ)ξ
. (10)

Proposition 4.2 (Regularized optimal policy uniqueness).
For any τ > 0, λ ∈ Λ there exists exactly one optimal
policy for the problem:

max
π∈Π
Lτ (π, λ).

which we call π∗
τ,λ.

We refer the reader to the Appendix C.1 for the proof.
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Algorithm 1 Cutting-plane algorithm for CMDP

Input: number of outer iterations T , NPG accuracy δ (see (6)), pair (A0, b0) ∈ Rk0×m × Rk0 , algorithm parameters
η ≤ 10−4, ζ ≤ 10−3 · η.

1: for t = 0, . . . , T − 1 do
2: λt := VolCenter(At, bt)

3: Compute H−1
t := (H(λt;At, bt))

−1 and {σi(λt;At, bt)}kti=1

4: it := argmin
1≤i≤kt

σi(λt;At, bt)

5: if σit(λt;At, bt) < ζ then
6: Obtain (At+1, bt+1) by removing the it-th row from (At, bt),
7: kt+1 := kt − 1.
8: else
9: if λt ∈ Rm+ then

10: πt := NPG(r0 + ⟨λt, r⟩, τ, δ)
11: ∇̂t := c− V πt(ρ) (see notation in (4)),
12: else
13: Define ∇̂t as the vector with components

(∇̂t)i =

{
1, (λt)i < 0,

0, (λt)i ≥ 0,
i = 1, . . . ,m.

14: end if
15: Find such βt ∈ R that ∇̂⊤

t λt ≥ βt from the equation

∇̂⊤
t H

−1
t ∇̂t

(∇̂⊤
t λt − βt)2

=
1

2

√
ηζ,

16: At+1 :=

(
At
∇̂⊤
t

)
, bt+1 :=

(
bt
βt

)
, kt+1 = kt + 1.

17: end if
18: end for
19: λT = argmin

λ∈{λ0,...,λT−1}
dτ (λ)

20: πT := NPG(r0 + ⟨λT , r⟩, τ, δ)
Output: πT .

Assumption 4.3 (Uniform Ergodicity). For any λ ∈ Λ, the
Markov chain induced by the policy π∗

τ,λ and the Markov
transition kernel is uniformly ergodic, i.e., there exist con-
stants CM > 0 and 0 < β < 1 such that for all t ≥ 0,

sup
s∈S

dTV

(
P (st ∈ · | s0 = s) , χπ∗

τ,λ

)
≤ CMβt,

where χπ∗
τ,λ

is the stationary distribution of the MDP in-
duced by policy π∗

τ,λ, and dTV (·, ·) is the total variation
distance, see (3).

Convergence rate of Algorithm 1 in terms of the opti-
mality gap V ∗

0 (ρ) − V πT
0 (ρ) and the constraint violation

[c− V πT (ρ)]+ is described by the following theorem. The
proof can be found in Appendix D.

Theorem 4.4. Suppose Assumptions 4.1 and 4.3 hold, let

T ∈ N be fixed and ϵ denote the value

ϵ :=
2m2Bλ
ζ

(
ξ +

√
mRmax
1− γ

)
exp

(
logπππ − ζT

2m

)
,

(11)
where πππ denotes the constant (πππ = 3.1415 . . .). The
cutting-plane algorithm for CMDP (Algorithm 1) with pa-
rameters

k0 := m+ 1, A0 :=

[
−Im
1

]
,

b0 :=

[
Bλ1m
mBλ

]
, τ := min{1, 3

√
ϵ}, (12)

number of outer iterations T and NPG accuracy δ > 0 (see
(6)) provides the following convergence guarantee of the
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optimality gap and the constraint violation:

V ∗
0 (ρ)− V

πT
0 (ρ) ≤

BλRmax
√
2mLβ

1− γ
√
ϵ2/3 + 6γδ

(13)

+ 2ϵ+ 18γδ 3
√
ϵ+

log |A|
1− γ

3
√
ϵ

+
√
mBλ

Lβ |A|Rmax

(1− γ)
δ, (14)

∥∥[c− V πT (ρ)]+
∥∥
2
≤ 2R2

maxLβ
1− γ

(ϵ2/3 + 6γδ)

+
Lβ |A|Rmax

(1− γ)
δ, (15)

where

Lβ :=
⌈
logβ

(
C−1
M

)⌉
+ (1− β)−1 + 1.

The value ϵ in (11) reflects linear convergence of Algo-
rithm 1 in terms of the dual function. As it can be seen
from (13) and (15), this also implies linear convergence in
terms of value function and constraint violation, if NPG
provides appropriate accuracy. Thus, the algorithm results
in the following complexity bound

Corollary 4.5. Algorithm 1 outputs an ϵ-optimal policy
with respect to both the optimality gap and constraint vi-
olation after

T = O
(
m

ζ
log

m log |A|
(1− β)(1− γ)ζξϵ

)
(16)

steps. The total number of calls to the policy gradient ora-
cle made in all NPG calls is:

Noracle = O
(
T · 1

1− γ
log

m log |A|
(1− β)(1− γ)ξϵ

)
=

= O
(

m

(1− γ)ζ
· log m log |A|

(1− β)(1− γ)ξϵ
·

· log m log |A|
(1− β)(1− γ)ζξϵ

)
.

Proof of the corollary is in Appendix D.1.
Remark 1. From the proof of the Corollary 1 in Appendix
Li et al. (2021), the number of policy gradient method iter-
ations is

NAR-CPO =
Rmax

√
m

((1− β)ξ)1/2(1− γ)3ϵ
,

where we skip not only constants, but also log-factors,
which could be close to zero, R2

max ≤ r2maxm. Note that
for the concurrent paper Liu et al. (2021)

NPMD-PD =
1

(1− γ)ϵ

[
m

(1− γ)2
+

1

ξ

]

up to log-factors. For our approach,NVaidya =
m

(1−γ)ζ up to
log-factors (depending on ξ, β, γ, ϵ), ζ – small numerical
parameter of Vaidya’s algorithm. Thus, from these formu-
las we may conclude that up to a log-factor, our approach
is theoretically better when ϵ ≲ ζ · (1−γ)−2. But in reality
this log-factor might be significant.
Remark 2 (Dependence on the size of state-action space).
It can be shown that the total complexity estimate for the
proposed method is ∼ |S||A|, assuming β is fixed. How-
ever, if an appropriate policy gradient method is chosen, the
present analysis doesn’t require the state space to be finite.
Still, a finite action space is currently assumed.

4.1 Regularization of Dual Variables

The proposed approach can also be modified in the follow-
ing way: the dual problem writes as

max
λ∈Rm

+

dτ,µ(λ) := dτ (λ) +
µ

2
∥λ∥22, (17)

where µ > 0 is the regularization coefficient. In this case,
the vector ∇̂t in Line 11 of Algorithm 1 will be replaced
with

∇̂t := c− V πt(ρ)− µλt.

If µ is chosen sufficiently small, the result of Corollary 4.5
remains true, see Appendix E for details.

5 EXPERIMENTS

For our experiments we used Acrobot-v1, OpenAI Gym
Mei et al. (2020a) environment. This environment contains
two links connected linearly to form a chain, with one end
of the chain fixed. The joint between the two links is actu-
ated. The goal is to swing the end of the lower link up to a
given height. Two additional constraints are implemented
in order to have similar environment as in Li et al. (2021)
for comparison purpose.

In Figure 1 we compare the proposed cutting-plane algo-
rithm (VMDP) with the state-of-the-art primal-dual op-
timization (AR-CPO) method Li et al. (2021) and with
ARNGP-EPG method Zhou et al. (2022). For a fair com-
parison, the same neural softmax policy and the trust region
policy (Schulman et al., 2015a) optimization are used in all
the algorithms.

Similarly to Li et al. (2021) we picture the average over 10
random initialized seeds and translucent error bands have
the width of two standard deviations. The hyper parameters
of AR-CPO algorithm are optimal from Li et al. (2021) and
for ARNGP-EPG algorithm from Zhou et al. (2022). More
information about experiments and parameters settings can
be found in Appendix F.1 and F.2.

Figure 1a represents average total reward over episode,
while Figures 1b and 1c show constraints with dashed line
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Figure 1: Average performance for VMDP, AR-CPO and
ARNPG-EPD; the x-axis is training iteration.

as the constraint thresholds. We used total reward for a fair
comparison with existing state-of-the-art approach. More-
over, in some cases total reward is more important in prac-
tise.

We find that VMDP algorithm achieves higher total reward
with similar standard deviation. The speed of converge of
both algorithms is similar. Thus, the proposed algorithm
allows to achieve better performance with the same training
time for an MDP task with the small number of constraints.

0 250 500 750 1000 1250 1500 1750 2000
# of Episodes

0

2

4

6

8

10

12

14

A
c
c
u
m

u
la

te
d
 R

e
w

a
rd

(a)

0 250 500 750 1000 1250 1500 1750 2000
# of Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
c
c
u
m

u
la

te
d
 C

o
s
t

(b)

0 250 500 750 1000 1250 1500 1750 2000
# of Episodes

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
c
c
u
m

u
la

te
d
 C

o
s
t

(c)

Figure 2: Average performance of VMDP and AR-CPO in
case of discounted reward and costs; the x-axis is training
iteration.



Egor Gladin, Maksim Lavrik-Karmazin, Karina Zainullina

Discounted Reward Experiment Previously we consid-
ered experiments, where we calculated total reward and
costs. We will now briefly describe the results of the ex-
periments with discounted reward and costs. Considering
similar environment as before, we set thresholds of 5 to
the discounted costs. Figure 2 provides the comparison be-
tween AR-CPO with VMDP under their best tuned param-
eters provided in Appendix F.3.

In our experiment we used large number of policy opti-
mization steps in subroutine equal to 40 for VMDP. This
allowed the proposed algorithm to solve NPG subroutine
with high accuracy and, as a result, to converge faster. In
the same time, increasing the number of steps in subroutine
did not make AR-CPO converge faster. It showed the best
performance with this parameter equal to 1.

From Figure 2a, we observe that VMDP converges faster
than AR-CPO, which is consistent with theory.

Thus, VMDP algorithm is useful in both discounted and
total reward cases and shows better performance than AR-
CPO.

6 CONCLUSION

In this paper we consider the constrained Markov decision
process, where an agent aims to maximize the expected ac-
cumulated discounted reward subject to a relatively small
numberm of constraints on its costs. The best known algo-
rithms achieve Õ (1/ϵ) iteration complexity to find global
optimum, where ϵ characterizes optimality gap and con-
straint violation. Each iteration of these algorithms has the
same complexity as an iteration of the Policy Gradient (PG)
methods. In this paper we improve (for m not too big)
iteration complexity bound and obtain linear convergence
Õ (m). Limitations of the method include the assumptions
that the number of constraints m is moderate, and the ac-
tion space is finite, see Remark 2.

One possible direction of improvement is to eliminate As-
sumption 4.3. Presumably, if Vaidya’s method is shown to
be primal-dual, the smoothness of the dual function (which
was used to restore the solution of the direct problem) will
no longer be required. Alternatively, Vaidya’s method can
be replaced with the ellipsoid method, which is known to
be primal-dual, but has a slightly worse dependence on the
number of constraints m.
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A NATURAL POLICY GRADIENT (NPG)

NPG is one of the algorithms that can efficently optimize a finite MDP with relative entropy regularization:

max
π∈Π

V πτ (ρ) = V π(ρ) + τH(π), (18)

assuming access to gradients of their soft value function and to a Fisher information matrix respective to its softmax
parametrization. Specifically, policies are parametrized as follows:

πθ(a|s) =
exp
(
eθs,a

)∑
a′ exp

(
eθs,a′

) , (19)

θ ∈ RS×A, (20)

and the NPG algorithm has access to functions:

G(θ) = ∇θV π
θ

τ (ρ), (21)

Fπρ (θ) := E
s∼dπθ

ρ ,a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
∇θ log πθ(a|s)

)⊤]
. (22)

This type of oracle is motivated by a possibility of estimating this gradient in high-dimension MDP’s in applications.

A.1 Algorithm and Convergence Rates

The algorithm looks as follows:

Algorithm 2 Natural policy gradient (NPG) algorithm

Input: learning rate η > 0, initialization parameters θ0 = 0.
1: for t = 0, 1, 2, . . . do
2: θ(t+1) ← θ(t) + η

(
Fθ(t)ρ

)†∇θV πθ(t)

τ (ρ)
3: end for

(M† is Moore-Penrose inverse function)

The update rule in line 2 of Algorithm 2 can be rewritten in terms of policies and soft Q-functions:

∀(s, a) ∈ S ×A : π(t+1)(a|s) = 1

Z(t)(s)

(
π(t)(a|s)

)1− ητ
1−γ exp

(ηQ(t)
τ (s, a)

1− γ

)
, (23)

where Z(t)(s) =
∑
a′∈A

(
π(t)(a′|s)

)1− ητ
1−γ exp

(ηQ(t)
τ (s,a′)
1−γ

)
is a normalizing coefficient, and soft Q-functions are defined

as follows:

∀(s, a) ∈ S ×A : Qπτ (s, a) = r(s, a) + γEs′∼P (·|s,a)
[
V πτ (s′)

]
, (24)

So, in our finite setting we can assume we are given an oracle of soft Q-functions instead of the earlier mentioned.

In Cen et al. (2022) the following theorem is proved (in setting with r(s, a) ∈ [0, 1]):

Theorem A.1 (Linear convergence of exact entropy-regularized NPG). For any learning rate 0 < η ≤ (1 − γ)/τ , the
entropy-regularized NPG updates (23) satisfy∥∥Q∗

τ −Q(t+1)
τ

∥∥
∞ ≤ C1γ(1− ητ)t, (25)∥∥log π∗

τ − log π(t+1)
∥∥
∞ ≤ 2C1τ

−1(1− ητ)t, (26)∥∥V ∗
τ − V (t+1)

τ

∥∥
∞ ≤ 3C1γ(1− ητ)t. (27)

for all t ≥ 0, where

C1 :=
∥∥Q∗

τ −Q(0)
τ

∥∥
∞ + 2τ

(
1− ητ

1− γ

)∥∥log π∗
τ − log π(0)

∥∥
∞. (28)
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We will use the algorithm with η = 1−γ
τ . In this case we have convergence rates:∥∥Q∗

τ −Q(t+1)
τ

∥∥
∞ ≤ C1γ

t+1, (29)∥∥π∗
τ − π(t+1)

τ

∥∥
∞ ≤

∥∥log π∗
τ − log π(t+1)

∥∥
∞ ≤ 2C1τ

−1γt, (30)∥∥V ∗
τ − V (t+1)

τ

∥∥
∞ ≤ 3C1γ

t+1, (31)

with C1 =
∥∥Q∗

τ −Q(0)
τ

∥∥
∞. (32)

A.2 Usage of NPG in Our Work

In our algorithm we need to solve auxiliary problems of the form:

max
π∈Π

V πτ,λ(ρ) := V π0 (ρ) +

m∑
i=1

λiV
π
i (ρ) + τH(π) (33)

with this procedure.

Since the objective is a τ -regularized value function for an MDP with rewards r0 + ⟨λ, r⟩, we can use the NPG procedure
to optimize it. However, we cannot pass our MDP with these rewards directly to this method, because it assumes r(s, a) ∈
[0, 1] in Cen et al. (2022). So, we will scale both r and τ to make rewards satisfy this condition, and run NPG with a higher
accuracy.

Specifically, we define a procedure NPG(r, τ, δ) as follows.

First, define R = max(maxs,a r(s, a), 1). Calculate r′(s, a) = r(s,a)
R .

Then, apply NPG algorithm to solve an MDP with rewards r′ and regularization coefficient τ
R with accuracy δ

R for the
policy. For that we need a number of iterations t+ 1 that satisfies:

2
C1

R

( τ
R

)−1

γt <
δ

R
, (34)

γt <
δτ

2C1R
, (35)

t >
log 2C1R+ log δ−1 + log τ−1

log γ−1
. (36)

By this we get a δ-optimal policy in terms of l∞ distance to the optimal policy, since it is the same after rescaling and
R ≥ 1. Also, by 34:

2C1τ
−1γt <

δ

R
, (37)

3C1γ
t+1 <

6τγ

R
δ, (38)∥∥V ∗

τ − V (t+1)
τ

∥∥
∞ ≤ 6τγδ. (39)

Finally, we get this statement:

Theorem A.2. Suppose δ, τ > 0, and we have a τ -regularized MDP. Let R = max(maxs,a r(s, a), 1). Then a number of
NPG iterations more than:

T =
log 2C1R+ log δ−1 + log τ−1

log γ−1
+ 1 (40)

is enough for our procedure to acquire a policy π̃ that satisfies:∥∥π∗
τ − π̃

∥∥
∞ < δ, (41)∥∥V ∗

τ − V π̃τ
∥∥
∞ ≤ 6τγδ. (42)
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B DESCRIPTION OF VAIDYA’S CUTTING-PLANE METHOD

Vaidya proposed a cutting-plane method from Vaidya (1989, 1996) for solving problems of the form

min
λ∈Λ

d(λ), (43)

where Λ is a compact convex set with non-empty interior, d(λ) is a continuous convex function. We will now introduce
the notation and describe the algorithm. Let P (A, b) denote the bounded full-dimensional polytope of the form

P (A, b) = {λ ∈ Rm : Aλ ≥ b} where A ∈ Rk×m and b ∈ Rk.

The logarithmic barrier for P is defined as

L(λ;A, b) := −
k∑
i=1

log
(
a⊤i λ− bi

)
,

where a⊤i is the ith row of A, i = 1, . . . , k. The Hessian of L(λ) is given by

H(λ;A, b) =

k∑
i=1

aia
⊤
i(

a⊤i λ− bi
)2 , (44)

and is positive definite for all λ in intP (interior of P ). The volumetric barrier for P (A, b) is defined as

V(λ;A, b) = 1

2
log (detH(λ;A, b)) ,

where detH(λ;A, b) denotes the determinant of H(λ;A, b). Let also σi(λ;A, b) denote the values

σi(λ;A, b) =
a⊤i (H(λ;A, b))

−1
ai(

a⊤i λ− bi
)2 , 1 ≤ i ≤ k. (45)

Volumetric center of P is defined as the point that minimizes V(λ;A, b) over the interior of P :

VolCenter(A, b) := argmin
λ∈intP (A,b)

V(λ;A, b). (46)

Volumetric barrier V is a self-concordant function and can therefore be efficiently minimized with the Newton-type meth-
ods. For more details and theoretical analysis, refer to Vaidya (1996, 1989). Consider the following version of inexact
subgradient.

Definition B.1. Vector ν ∈ Rm is called a δ-subgradient of a convex function f at z ∈ dom d (denoted ν ∈ ∂δd(z)), if

d(λ) ≥ d(z) + ν⊤(λ− z)− δ ∀λ ∈ dom d.

If δ = 0, this we get the usual definition of subgradient ∂δd(z) = ∂d(z).

It has been proved that one can use δ-subgradient instead of the exact subgradient in Vaidya’s method Gladin et al. (2021).
Algorithm 3 gives the version of the method using δ-subgradients. The method produces a sequence of pairs (At, bt) ∈
Rkt×m × Rkt , such that the corresponding polytopes contain a solution of the problem (43). A simplex containing the set
Λ is often taken as the initial polytope (A0, b0). For example, if ∥λ∥2 ≤ R for any λ ∈ Λ, then a possible choice of a
starting polytope is

P0 =
{
λ ∈ Rm : λj ⩾ −R, j = 1,m,

m∑
j=1

λj ⩽ mR
}
⊇ BR ⊇ Λ,

that is,

k0 = m+ 1, b0 = −R
[

1m
m

]
, A0 =

[
Im
−1⊤

m

]
.
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Algorithm 3 Vaidya’s cutting-plane method with δ-subgradient

Input: number of outer iterations T , pair (A0, b0) ∈ Rk0×m × Rk0 , algorithm parameters η ≤ 10−4, ζ ≤ 10−3 · η.
1: for t = 0, . . . , T − 1 do
2: λt := VolCenter(A, b)

3: Compute H−1
t := (H(λt;At, bt))

−1 and {σi(λt;At, bt)}kti=1

4: it := argmin
1≤i≤kt

σi(λt;At, bt)

5: if σit(λt;At, bt) < ζ then
6: Obtain (At+1, bt+1) by removing the it-th row from (At, bt),
7: kt+1 := kt − 1.
8: else
9: if λt ∈ Rm+ then

10: Take ∇̂t ∈ −∂δd(λt),
11: else
12: Take ∇̂t such that ∇̂⊤

t λ ≥ ∇̂⊤
t λt ∀λ ∈ Λ.

13: end if
14: Find such βt ∈ R that ∇̂⊤

t λt ≥ βt from the equation

∇̂⊤
t H

−1
t ∇̂t

(∇̂⊤
t λt − βt)2

=
1

2

√
ηζ,

15: At+1 :=

(
At
∇̂⊤
t

)
, bt+1 :=

(
bt
βt

)
, kt+1 = kt + 1.

16: end if
17: end for
18: λT = argmin

λ∈{λ0,...,λT−1}
dτ (λ)

Output: λT .

Theorem B.2. Let BRin
and BR be some Euclidean balls of radii Rin and R, respectively, such that BRin

⊆ Λ ⊆ BR,

and let a number B > 0 be such that |d(λ) − d(λ′)| ≤ B ∀λ, λ′ ∈ Λ. After T ≥ 2m
ζ log

(
m1.5R
γRin

)
+ 1

γ logπππ iterations
Vaidya’s method with δ-subgradient for the problem (43) returns a point λT such that

d(λT )−min
λ∈Λ

d(λ) ≤ Bm1.5R
ζRin

exp

(
logπππ − ζT

2m

)
+ δ, (47)

where ζ > 0 is the parameter of the algorithm.

Corollary B.3. Vaidya’s cutting-plane method with δ-subgradient achieves accuracy ϵ after

T =

⌈
2m

ζ
log

(
(ϵ− δ)−1Bm

1.5R
ζRin

)
+

logπππ

ζ

⌉
, (48)

provided that ϵ > δ and ϵ− δ ≤ B.

C SUPPORTING STATEMENTS

In the first part of this section, we establish the regularized optimal policy uniqueness (see Proposition 4.2). After that, we
prove several lemmas and propositions used in the proof of Theorem 4.4.

C.1 Regularized Optimal Policy Uniqueness

For a policy π ∈ Π, let us denote by Eπ the expectation with respect to the trajectory it generates, i.e., for some function
f(s, a), we write Eπ[f(s, a)] := E [

∑∞
t=0 γ

tf (st, at)], where s0 ∼ ρ, at ∼ π (· | st), and st+1 ∼ P (· | st, at) for t ≥ 0.
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Thus, we have

V πi (ρ) ≡ Eπ[ri(s, a)],
H(π) ≡ Eπ[− log π(a | s)].

We now present the proof of Proposition 4.2 inspired by Ho and Ermon (2016). Let us transform the optimization problem
over policies into a convex problem. For a policy π ∈ Π, define its occupancy measure pπ : S ×A → R as

pπ(s, a) = π(a | s)
∞∑
t=0

γtP (st = s | π) .

The occupancy measure allows us to write

V πi (ρ) ≡ Eπ[ri(s, a)] =
∑
s,a

pπ(s, a)ri(s, a).

A basic result (Puterman, 2014) is that the set of valid occupancy measures D ≜ {pπ : π ∈ Π} can be written as a feasible
set of affine constraints: if ρ(s) is the distribution of starting states and P (s′ | s, a) is the dynamics model, then

D =
{
p : p ≥ 0,

∑
a

p(s, a) = ρ(s) + γ
∑
s′,a

P (s | s′, a) p (s′, a)∀s ∈ S
}
.

Furthermore, there is a one-to-one correspondence between Π and D:

Proposition C.1 (Theorem 2 in Syed et al. (2008)). If p ∈ D, then p is the occupancy measure for πp(a | s) ≜
p(s, a)/

∑
a′ p (s, a

′), and πp is the only policy whose occupancy measure is p.

We are therefore justified in writing πp to denote the unique policy for an occupancy measure p. To show that the problem

max
π∈Π
Lτ (π, λ). (49)

is equivalent to a maximization problem with a strictly concave objective, we will need the following lemma:

Lemma C.2 (Lemma 3.1. in Ho and Ermon (2016)). Let

H̄(p) = −
∑
s,a

p(s, a) log
(
p(s, a)/

∑
a′

p (s, a′)
)
.

Then, H̄ is strictly concave, and for all π ∈ Π and p ∈ D, we haveH(π) = H̄ (pπ) and H̄(p) = H (πp).

Proposition C.1 and Lemma C.2 together allow us to switch between policies and occupancy measures. That is, if

L̄τ (p, λ) :=
∑
s,a

p(s, a)rλ(s, a)− ⟨λ, c⟩+ τH̄(p),

with rλ(s, a) := r0(s, a)+
∑m
i=1 λiri(s, a), thenLτ (π, λ) = L̄τ (pπ, λ) for all policies π ∈ Π, and L̄τ (pπ, λ) = Lτ (πp, λ)

for all occupancy measures p ∈ D. In other words, the problem (49) is equivalent to the problem

max
p∈D
L̄τ (p, λ), (50)

where D is a convex set and L̄τ (p, λ) is a strictly concave function of p. Thus, the solution p∗ to (50) is unique which
implies the uniqueness of the solution π∗ = πp∗ to (49).

C.2 Supporting Lemmas

From now on, we use notation introduced in Sections 2, 4. In particular, we are considering the dual problem

min
λ∈Rm

+

{
dτ (λ) := max

π∈Π
Lτ (π, λ)

}
. (51)

The first lemma establishes upper bound on the norm of a minimizer of the dual function.
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Lemma C.3 (see also Li et al. (2021)). Suppose Assumption 4.1 holds. Let λ∗τ be a solution of the dual problem (51). Then

∥λ∗τ∥1 ≤ Bλ :=
r0,max + log |A|

(1− γ)ξ
.

Proof. Note thatH(π) ≤ log |A|
1−γ ,

dτ (λ
∗
τ ) ≥ V

πξ

0 (ρ) + ⟨λ∗τ , V πξ(ρ)− c⟩+ τH(π) ≥ ξ∥λ∗τ∥1,

dτ (λ
∗
τ ) ≤ dτ (λ∗) ≤ d(λ∗) +

τ log |A|
1− γ

= V π
∗

0 (ρ) +
τ log |A|
1− γ

≤ r0,max + τ log |A|
1− γ

,

∥λ∗τ∥1 ≤
r0,max + τ log |A|

(1− γ)ξ
.

Recall that Λ is defined as the set
Λ := {λ ∈ Rm+ | ∥λ∥1 ≤ Bλ}. (52)

The second lemma gives an example of two Euclidean ball, one of which is contained in Λ and the other one contains Λ.
Lemma C.4. Let R := Bλ, Rin := Bλ

m+
√
m

, then BRin ⊆ Λ ⊆ BR, with BRin being the Euclidean ball of radius Rin
centered at the point λin := Rin · 1m, BR being the Euclidean ball of radiusR centered at the origin.

Proof. To prove the first inclusion, observe that for any λ ∈ BRin
it holds λ ∈ Rm+ , which implies ∥λ∥1 =

∑m
i=1 λi.

Maximization of this sum subject to constraint ∥λ − λin∥22 ≤ R2
in yields optimal point λ(1) := λin + Rin√

m
1m. Thus, for

any λ ∈ BRin
we have λ ∈ Rm+ , ∥λ∥1 ≤ ∥λ(1)∥1 = Bλ ⇒ λ ∈ Λ. The second inclusion follows from the inequality

∥ · ∥1 ≤ ∥ · ∥2.

The following lemma bounds the range of dτ (λ) on Λ.
Lemma C.5. The dual function dτ (λ) on the set Λ satisfies

0 ≤ dτ (λ) ≤ Bd :=
r0,max +

√
mBλRmax + τ log |A|

1− γ
. (53)

Proof.

0 ≤ dτ (λ) = max
π∈Π

V π0 (ρ) + ⟨λ, V π(ρ)− c⟩+ τH(π)

≤ r0,max
1− γ

+
1

1− γ
∥λ∥2 ·Rmax +

τ log |A|
1− γ

.

Now we establish the fact that the dual function dτ (λ) is differentiable on Λ, and state what its gradient is.
Proposition C.6. The function dτ (λ) is differentiable for all λ ∈ Λ, and

∇dτ (λ) = V π
∗
τ,λ(ρ)− c, (54)

where π∗
τ,λ := argmaxπ∈Π Lτ (π, λ).

Proof. We will apply Danskin’s theorem from Bertsekas (1991) (Proposition B.25, (a)) to Lτ (π, λ), which is defined on
Π×Rm. Note that Π is compact, Lτ (·, ·) is continuous, and Lτ (π, ·) is linear (and hence convex and differentiable) for all
π ∈ Π. Then, according to Proposition 4.2, for λ ∈ Λ, we also have that the maximizer for

dτ (λ) = max
π
Lτ (π, λ) (55)

is unique and equal to π∗
τ,λ. From Danskin’s theorem it then follows, that dτ (λ) is differentiable for all λ ∈ Λ, and

∇dτ (λ) = ∇λLτ (π∗
τ,λ, λ) = V π

∗
τ,λ(ρ)− c. (56)
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The following two lemmas are required to prove that dτ (λ) is smooth, that is, its gradient is Lipschitz continuous.

Lemma C.7. Set any τ > 0. Define the following regularized softmax function for x ∈ Rn:

Sτ (x)i =
exp(xi/τ)∑n
j=1 exp(xj/τ)

. (57)

Then for any x, x′ ∈ Rn it holds that:

∥Sτ (x)− Sτ (x′)∥1 ≤
1

τ
∥x− x′∥∞. (58)

Proof. First notice that Sτ = ∇Hτ , where:

Hτ (x) = τ log

(
n∑
i=1

exi/τ

)
. (59)

So we can write:

∥Sτ (x)− Sτ (x′)∥1 = ∥∇Hτ (x)−∇Hτ (x
′)∥1

(i)

≤ sup
z∈Rn

∥∥∇2Hτ (z)(x
′ − x)

∥∥
1
= (60)

= sup
z∈Rn,

u∈Rn,∥u∥∞=1

u⊤∇2Hτ (z)(x
′ − x) ≤ (61)

≤ ∥x′ − x∥∞ · sup
z∈Rn,

u∈Rn,∥u∥∞=1
v∈Rn,∥v∥∞=1

u⊤∇2Hτ (z)v, (62)

where (i) can be obtained by considering a function W (t) = ∇Hτ (x(1− t)+ yt) and applying Lagrange mean inequality
for it with l1-norm.

Calculate∇2Hτ (z):

∂2H

∂zi∂zj
=

1
τ exp(zi/τ)δij

(
∑n
k=1 exp(zk)/τ)

−
1
τ exp(xi/τ) exp(zj/τ)

(
∑n
k=1 exp(zk)/τ)

2
. (63)

Fix some z ∈ Rn. Let ai =
exp(zi/τ)∑n

k=1 exp(zk/τ)
. Note that

∑n
k=1 ak = 1, and:

∇2Hτ (z)ij =
1

τ
aiδij −

1

τ
aiaj . (64)

Under the supremum, knowing ∥u∥∞ = ∥v∥∞ = 1, we have:

u⊤∇2Hτ (z)v =
1

τ

∑
i=1

aiuivi −
n∑
i=1

n∑
j=1

aiajuivj

 = (65)

=
1

τ

 n∑
i=1

aiui

vi − n∑
j=1

ajvj

 =
1

τ

 n∑
i=1

aiui

 n∑
j=1
j ̸=i

aj(vi − vj)


 ≤ (66)

≤ 1

τ

n∑
i=1

n∑
j=1
j ̸=i

aiaj |vi − vj | ≤
1

τ
. (67)

Using this in 60, we finally get:

∥Sτ (x)− Sτ (x′)∥1 ≤
1

τ
∥x′ − x∥∞. (68)
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The next result is a corrected and enhanced version of Lemma 7 from Li et al. (2021) with a bound improved in a factor of
two.

Lemma C.8 (Lemma 7 from Li et al. (2021), corrected and enhanced). The optimal policy for regularized MDP is smooth
with respect to λ, i.e., for all λ, λ′ ∈ Rm+ , we have:

max
s∈S

∥∥π∗
τ,λ(·|s)− π∗

τ,λ′(·|s)
∥∥
1
≤ Rmax

(1− γ)τ
∥λ− λ′∥2. (69)

Proof. Proof goes same as in Li et al. (2021), except we bound the promised l1-norm on the left hand side, instead of l∞
norm.

As was proved in Nachum et al. (2017), the regularized optimal policy can be expressed in terms of its soft Q-function:

π∗
τ,λ(a|s) =

exp
(
Q∗
τ,λ(s, a)/τ

)
∑
a′∈A exp

(
Q∗
τ,λ(s, a

′)/τ
) . (70)

Fix some s ∈ S. Using C.7 for x = Q∗
τ,λ(s|·), x′ = Q∗

τ,λ′(s|·) and τ , we get:

∥∥π∗
τ,λ(·|s)− π∗

τ,λ′(·|s)
∥∥
1
≤ 1

τ

∥∥Q∗
τ,λ(s|·)−Q∗

τ,λ′(s|·)
∥∥
∞ ≤

1

τ

∥∥Q∗
τ,λ −Q∗

τ,λ′

∥∥
∞. (71)

Furthermore, ∥∥Q∗
τ,λ −Q∗

τ,λ′

∥∥
∞ ≤ max

s∈S,a∈A

∥∥Q∗
τ,λ(s, a)−Q∗

τ,λ′(s, a)
∥∥
∞ ≤ (72)

≤ max
s∈S,a∈A

max
π∈Π

∣∣Qπτ,λ(s, a)−Qπτ,λ′(s, a)
∣∣ (i)≤ (73)

≤ Rmax

1− γ
∥λ− λ′∥2, (74)

where (i) is due to∣∣Qπτ,λ(s, a)−Qπτ,λ′(s, a)
∣∣ ≤ |rλ(s, a)− rλ′(s, a)|+ γEs′∼P (·|s,a)

[∣∣V πτ,λ(s′)− V πτ,λ′(s′)
∣∣] ≤ (75)

≤ Rmax∥λ− λ′∥2 + γ · 1

1− γ
Rmax∥λ− λ′∥2 = (76)

=
Rmax∥λ− λ′∥2

1− γ
. (77)

Substituting 74 into 71, we get the desired result.

The next proposition specifies the smoothness coefficient for dτ .

Proposition C.9. Suppose assumption 4.3 holds, then dτ (λ) is Ld-smooth:

∥∇dτ (λ)−∇dτ (λ′)∥2 ≤ Ld ∥λ− λ
′∥2 , ∀λ, λ′ ∈ Λ,

where Ld =
R2

maxLβ

(1−γ)2τ , Lβ :=
⌈
logβ

(
C−1
M

)⌉
+ (1− β)−1 + 1.

Proof. See proof in Li et al. (2021) (Proposition 1), with µ = 0. Instead of Lemma 7 in it, our version C.8 can be used,
making sure the needed inequality is correct and improving Ld by a factor of 2.

The following two lemmas provide a bound on optimality gap and constraint violation in terms of the dual function.

Lemma C.10. Let λ ∈ Λ, then

V ∗
0 (ρ)− V

π∗
τ,λ

0 (ρ) ≤
〈
λ,∇dτ (λ)

〉
+ τH

(
π∗
τ,λ

)
, (78)∥∥[c− V π∗

τ,λ(ρ)]+
∥∥
2
=
∥∥[−∇dτ (λ)]+∥∥2. (79)
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Proof.

V
π∗
τ,λ

0 (ρ) +
〈
λ, V π

∗
τ,λ(ρ)− c

〉
+ τH(π∗

τ,λ) = max
π∈Π
Lτ (π, λ)

≥ Lτ (π∗, λ) = V ∗
0 (ρ) +

〈
λ, V π

∗
(ρ)− c

〉
+ τH(π∗).

The inequalitiesH(π∗) ≥ 0, V π
∗
(ρ) ≥ c, λ ∈ Rm+ imply Lτ (π∗, λ) ≥ V ∗

0 (ρ), hence

V ∗
0 (ρ)− V

π∗
τ,λ

0 (ρ) ≤
〈
λ, V π

∗
τ,λ(ρ)− c

〉
+ τH(π∗

τ,λ).

Using the result of Proposition C.6, we get
∇dτ (λ) = V π

∗
τ,λ(ρ)− c,

which finishes the proof.

Lemma C.11. Let λ ∈ Λ, then ∥∥[−∇dτ (λ)]+∥∥22 ≤ 2Ld(dτ (λ)− d∗τ ), (80)〈
λ,∇dτ (λ)

〉
≤ Bλ

√
2mLd(dτ (λ)− d∗τ ) + 2(dτ (λ)− d∗τ ), (81)

where d∗τ is the optimal value in the dual problem (51), Ld is the smoothness constant of dτ .

Proof. Denote a := ∇dτ (λ) and

N := {1, . . . , n}, I := {i ∈ N : ai ≥ 0}, I ′ := N \ I.

Moreover, for any vector b ∈ Rm, define bI to be the vector with components

(bI)i :=

{
bi if i ∈ I,
0 otherwise.

Smoothness implies for any λ′ ∈ Λ

⟨a, λ− λ′⟩ − Ld
2
∥λ− λ′∥22 ≤ dτ (λ)− dτ (λ′). (82)

Pick λ′ :=
[
λ− 1

Ld
a
]
+

, then it’s sufficient to prove that

1

2Ld

∥∥[−a]+∥∥22 ≤ ⟨a, λ− λ′⟩ − Ld
2
∥λ− λ′∥22, (83)

and the first result of the lemma will follow from (82). Using the notation introduced above, we write

a = aI + aI′ with aI , (−aI′) ∈ Rm+ , λ = λI + λI′ .

The vector λ′ can now be expressed as

λ′ =
[
λI + λI′ − 1

Ld
aI − 1

Ld
aI′
]
+
=
[
λI − 1

Ld
aI

]
+
+ λI′ −

1

Ld
aI′ ,

because I ∩ I ′ = ∅ and λI′ − 1
Ld
aI′ ∈ Rm+ . The value λ− λ′ writes as

λ− λ′ = λI −
[
λI − 1

Ld
aI

]
+
+

1

Ld
aI′ .

The two terms in the right-hand side of (83) are equal to

⟨a, λ− λ′⟩ =
〈
aI , λI −

[
λI − 1

Ld
aI

]
+

〉
+

1

Ld
∥aI′∥22,
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and
Ld
2
∥λ− λ′∥22 =

Ld
2

∥∥λI − [λI − 1
Ld
aI

]
+

∥∥2
2
+

1

2Ld
∥aI′∥22.

Thus, the right-hand side of (83) writes as

1

2Ld
∥aI′∥22 +

〈
aI , λI −

[
λI − 1

Ld
aI

]
+

〉
− Ld

2

∥∥λI − [λI − 1
Ld
aI

]
+

∥∥2
2︸ ︷︷ ︸

=:ψ

.

To observe that ψ ≥ 0, consider the sets

J :=
{
i ∈ I : λi ≥ 1

Ld
ai

}
, J ′ := I \ J,

then [
λI − 1

Ld
aI

]
+
= λJ −

1

Ld
aJ and λI −

[
λI − 1

Ld
aI

]
+
= λJ′ +

1

Ld
aJ .

Thus,

ψ =
〈
aI − Ld

2

(
λJ′ + 1

Ld
aJ

)
, λJ′ + 1

Ld
aJ

〉
=

1

2

〈
aI + Ld

(
1
Ld
aJ′ − λJ′

)
, λJ′ + 1

Ld
aJ

〉
,

which is a nonnegative value as a scalar product of vectors with nonnegative components. To sum up,

⟨a, λ− λ′⟩ − Ld
2
∥λ′ − λ∥22 =

1

2Ld
∥aI′∥22 + ψ ≥ 1

2Ld
∥aI′∥22,

and the first result of the lemma follows from (82) since dτ (λ′) ≥ d∗τ .

The left-hand side of the inequality (81) equals

⟨λ, a⟩ = ⟨λJ , aJ⟩+ ⟨λJ′ , aJ′⟩+ ⟨λI′ , aI′⟩. (84)

The last term is non-positive. Let us bound the first two. Put λ′ := λ − 1
Ld
aJ and observe that λ′ ∈ Rm+ due to the

definition of J . Moreover, λ′ ∈ Λ since ∥λ′∥1 ≤ ∥λ∥1. The right-hand side of (82) writes as

⟨a, λ− λ′⟩ − Ld
2
∥λ− λ′∥22 =

〈
a, 1

Ld
aJ
〉
− 1

2Ld
∥aJ∥22 =

1

2Ld
∥aJ∥22. (85)

Relations (82) and (85) yield

∥aJ∥2 ≤
√

2Ld(dτ (λ)− dτ (λ′)) ≤
√
2Ld(dτ (λ)− d∗τ ). (86)

Cauchy–Bunyakovsky–Schwarz inequality, condition ∥λ∥2 ≤
√
m∥λ∥1 ≤

√
mBλ and bound (86) imply

⟨λJ , aJ⟩ ≤ ∥λJ∥2 · ∥aJ∥2 ≤ Bλ
√

2mLd(dτ (λ)− d∗τ ). (87)

The bound for the second term in the right-hand side of (84) can be obtained by putting λ′ := λ− λJ′ . Indeed,

⟨a, λ− λ′⟩ − Ld
2
∥λ− λ′∥22 = ⟨a, λJ′⟩ − Ld

2
∥λJ′∥22 =

1

2
⟨aJ′ , λJ′⟩+ Ld

2

(
1

Ld
⟨aJ′ , λJ′⟩ − ∥λJ′∥22

)
=

1

2
⟨aJ′ , λJ′⟩+ Ld

2

〈
1
Ld
aJ′ − λJ′ , λJ′

〉
≥ 1

2
⟨aJ′ , λJ′⟩,

where the last inequality is due to the definition of J ′. Thus,

⟨aJ′ , λJ′⟩ ≤ 2(dτ (λ)− d∗τ ), (88)

and the second result of the Lemma follows from (84), (87) and (88).
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D PROOF OF THEOREM 4.4

In this section, we will write for the shortness of notation V π0 := V π0 (ρ), V π := V π(ρ), and so on, still taking the
dependence on ρ into account. Recall that πT is the output of the Algorithm 1 after T iterations, V ∗

0 and d∗τ are optimal
values in the primal (2) and dual (5) problems, respectively, and the following notation is used

V πτ,λ := V π0 +

m∑
i=1

λiV
π
i + τH(π),

V ∗
τ,λ := max

π∈Π
V πτ,λ,

π∗
τ,λ := argmax

π∈Π
Lτ (π, λ) ≡ argmax

π∈Π
V πτ,λ. (89)

Plan of the proof is as follows.

1. We describe how to apply Theorem B.2 about convergence of Vaidya’s method with δ-subgradient (Algorithm 3) to
our proposed Algorithm 1 for the dual problem.

2. We express the values V ∗
0 −V

π∗
τ,λT

0 and
∥∥[c−V π∗

τ,λT ]+
∥∥
2

through the optimality gap of the dual problem dτ (λT )−d∗τ .
That is, we estimate the optimality gap and constraint violation as if the NPG could solve the problem (89) exactly
for the last iterate λT .

3. We estimate the values V ∗
0 − V

πT
0 and

∥∥[c − V πT ]+
∥∥
2

using the results from the previous step and the convergence
rate of Vaidya’s algorithm.

To begin part 1 of the proof, observe that the proposed Algorithm 1 is a special case of Vaidya’s method with δ-subgradient
(Algorithm 3) if the value −∇̂t := V πt − c from line 11 of Algorithm 1 is a δ̃-subgradient (Definition B.1) for some δ̃ > 0
which depends on the parameter δ of NPG. This is the case due to the lemma from page 132 of Polyak (1987) which we
give below keeping notation consistent with the rest of the paper.
Lemma D.1. Let

dτ (λ) := max
π∈Π
Lτ (π, λ),

where Π is a compact set, Lτ (π, λ) is continuous in π, λ and convex in λ. Let π̃ satisfy for a fixed λ the inequality
d(λ)− Lτ (π, λ) ≤ δ̃, then ∂λLτ (π̂, λ) ∈ ∂δ̃dτ (λ).

The given lemma shows that δ̃-optimal policy (in terms of optimality gap of regularized Lagrangian Lτ ) gives us a δ̃-
subgradient for the dual function dτ (λ). According to Theorem A.2, the call NPG(r0 + ⟨λt, r⟩, τ, δ) in line 10 of Algo-
rithm 1 ensures accuracy δ̃ = 6τγδ. Additionally, note that the vector ∇̂t from line 13 of the Algorithm 1 satisfies the
inequality from line 12 of the Algorithm 3. Indeed, the value ∇̂⊤

t λt is negative as the sum of negative components of λt,
while ∇̂⊤

t λ is nonnegative for all λ ∈ Λ as a scalar product of two vectors with nonnegative elements.

Before we can apply Theorem B.2 to the proposed algorithm, we need to replace the dual problem minλ∈Rm
+
dτ (λ) with

the equivalent one, but on a compact set. This is possible due to Lemma C.3 which states that the solution λ∗τ of the dual
problem satisfies

∥λ∗τ∥1 ≤ Bλ :=
r0,max + log |A|

(1− γ)ξ
. (90)

Thus, the equivalent formulation is

min
λ∈Λ

dτ (λ) with Λ := {λ ∈ Rm+ | ∥λ∥1 ≤ Bλ}. (91)

The only thing left to do is to find the valuesR,Rin andBd such that BRin
⊆ Λ ⊆ BR and |dτ (λ)−dτ (λ′)| ≤ Bd ∀λ, λ′ ∈

Λ. Such values are given by Lemmas C.4 and C.5:

R := Bλ, (92)

Rin :=
Bλ

m+
√
m
, (93)

Bd :=
r0,max +

√
mBλRmax + τ log |A|

1− γ
(90)
≤
(
ξ +

√
mRmax
1− γ

)
Bλ. (94)
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We can put

A0 :=

[
−Im
1

]
, b0 :=

[
Bλ1m
mBλ

]
,

which will correspond to the initial simplex

P (A0, b0) =
{
λ ∈ Rm : λj ⩾ −R, j = 1, . . . ,m,

m∑
j=1

λj ⩽ mR
}
⊇ BR.

Thus, Theorem B.2 applied to the proposed algorithm yields the following convergence estimate for the dual problem (91):

dτ (λT )− d∗τ ≤
m2(1 +

√
m)Bλ

ζ

(
ξ +

√
mRmax
1− γ

)
exp

(
logπππ − ζT

2m

)
+ 6τγδ (95)

=: ϵ+ 6τγδ, (96)

where ϵ denotes the first term of the estimate (95).

Part 2 of the proof goes as follows. First, we use Proposition C.9 to state that dτ (λ) is Ld-smooth with

Ld =
R2

maxLβ
(1− γ)2τ

, where Lβ :=
⌈
logβ

(
C−1
M

)⌉
+ (1− β)−1 + 1. (97)

Second, we refer to Lemmas C.10 and C.11 which provide the following bounds:

V ∗
0 − V

π∗
τ,λT

0 ≤
〈
λT ,∇dτ (λT )

〉
+ τH(π∗

τ,λT
) (98)

≤ Bλ
√

2mLd(ϵ+ 6τγδ) + 2(ϵ+ 6τγδ) + τH(π∗
τ,λT

), (99)∥∥[c− V π∗
τ,λT ]+

∥∥
2
=
∥∥[−∇dτ (λT )]+∥∥2 ≤ 2Ld(ϵ+ 6τγδ). (100)

Let us begin part 3 of the proof. First, we bound the value V
π∗
τ,λT

0 − V πT
0 . Recall that πT := NPG (r0 + ⟨λT , r⟩, τ, δ).

Therefore, according to Theorem A.2, πT satisfies

V ∗
τ,λT
− V πT

τ,λT
≤ 6τγδ. (101)

Furthermore,

V
π∗
τ,λT

0 − V πT
0 = V

π∗
τ,λT

0 +
〈
λT , V

π∗
τ,λT

〉
+ τH(π∗

τ,λT
)︸ ︷︷ ︸

V ∗
τ,λT

−
(
V πT
0 +

〈
λT , V

πT
〉
+ τH(πT )

)︸ ︷︷ ︸
V

πT
τ,λT

+
〈
λT , V

πT − V π
∗
τ,λT

〉
+ τ

(
H(πT )−H(π∗

τ,λT
)
)

(101)
≤ 6τγδ +

〈
λT , V

πT − V π
∗
τ,λT

〉
+ τ

(
H(πT )−H(π∗

τ,λT
)
)
. (102)

The scalar product is bounded by〈
λT , V

πT − V π
∗
τ,λT

〉
≤ ∥λT ∥2 ·

∥∥∥V πT − V π
∗
τ,λT

∥∥∥
2
≤
√
mBλ∥δ̂∥2.

where δ̂ := V πT (ρ)− V π
∗
τ,λT (ρ) is a value controlled by the NPG parameter δ. Now, the optimality gap can be estimated

as follows:

V ∗
0 − V

πT
0 =V ∗

0 − V
π∗
τ,λT

0 + V
π∗
τ,λT

0 − V πT
0

(99)
≤Bλ

√
2mLd(ϵ+ 6τγδ) + 2(ϵ+ 6τγδ) + τH(π∗

τ,λT
) + V

π∗
τ,λT

0 − V πT
0

(102)
≤ Bλ

√
2mLd(ϵ+ 6τγδ) + 2(ϵ+ 9τγδ) + τH(πT ) +

√
mBλ∥δ̂∥2

(97)
=
BλRmax

√
2mLβ

1− γ
√
ϵ/τ + 6γδ + 2(ϵ+ 9τγδ) + τH(πT ) +

√
mBλ∥δ̂∥2.
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Note that H(πT ) ≤ log |A|
1−γ . It is reasonable to balance the terms that are proportional to

√
ϵ/τ and τ by taking τ :=

min(1, 3
√
ϵ).

Also, we can bound
∥∥∥δ̂∥∥∥

2
via knowing that NPG approximated π∗

τ,λT
by πT with accuracy δ, as stated in A.2:

∥∥πT − π∗
τ,λT

∥∥
∞ < δ. (103)

By Lemma 6 from Li et al. (2021), which can be proved for any two policies, we have:∥∥∥νπT
ρ − ν

π∗
τ,λT

ρ

∥∥∥
1
≤ Lβ max

s∈S

∥∥πT (·|s)− π∗
τ,λT

(·|s)
∥∥
1
≤ Lβ |A|δ. (104)

Now, we can rewrite ∥δ̂∥2:

∥δ̂∥22 =
∥∥∥V πT (ρ)− V π

∗
τ,λT (ρ)

∥∥∥2
2
=

m∑
i=1

(
1

1− γ
⟨ri, νπT

ρ ⟩ −
1

1− γ
⟨ri, ν

π∗
τ,λT

ρ ⟩
)2

≤ (105)

≤ 1

(1− γ)2
m∑
i=1

⟨ri, νπT
ρ − ν

π∗
τ,λT

ρ ⟩2 ≤ 1

(1− γ)2
m∑
i=1

(
ri,max

∥∥∥νπT
ρ − ν

π∗
τ,λT

ρ

∥∥∥
1

)2
= (106)

=

∥∥∥νπT
ρ − ν

π∗
τ,λT

ρ

∥∥∥2
1

(1− γ)2
R2

max. (107)

So, we get:

∥δ̂∥2 ≤

∥∥∥νπT
ρ − ν

π∗
τ,λT

ρ

∥∥∥
1

(1− γ)
Rmax ≤

Lβ |A|Rmax

(1− γ)
δ. (108)

Plugging this estimate and the choice of τ = min(1, 3
√
ϵ). into (97), we get the desired result for optimality gap 13.

The second part of the result, 15, we achieve as follows:

c− V πT = c− V π
∗
τ,λT + V π

∗
τ,λT − V πT ,

≤
∥∥[c− V π∗

τ,λT ]+
∥∥
2
+
∥∥V πT − V π

∗
τ,λT

∥∥
2

(100)
≤ 2Ld(ϵ+ 6τγδ) + ∥δ̂∥2

(97)
=

2RmaxLβ
1− γ

(ϵ2/3 + 6γδ) + ∥δ̂∥2 ≤

≤ 2RmaxLβ
1− γ

(ϵ2/3 + 6γδ) +
Lβ |A|Rmax

(1− γ)
δ.

where ∥δ̂∥2 is bounded in the same way as earlier.

Having achieved both bounds 13, 15, we conclude the proof.

D.1 Proof of Corollary 4.5

Suppose we need the resulting accuracy to be κ > 0:

V ∗
0 (ρ)− V

πT
0 (ρ) ≤ κ, (109)∥∥[c− V πT (ρ)]+

∥∥
2
≤ κ. (110)

We will find some T, δ to use for the algorithm, so that by setting other parameters as in 4.4, we will get κ-optimal solution
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by its results. It is enough to satisfy these inequalities:

BλRmax
√
2mLβ

1− γ
√
ϵ2/3 + 6γδ < κ/5, (111)

2ϵ < κ/5, (112)

18γδ 3
√
ϵ < κ/5, (113)

log |A|
1− γ

3
√
ϵ < κ/5, (114)

√
mBλ

Lβ |A|Rmax

1− γ
δ < κ/5, (115)

2R2
maxLβ
1− γ

(ϵ2/3 + 6γδ) < κ/2, (116)

Lβ |A|Rmax

(1− γ)
δ < κ/2. (117)

To satisfy them, it is enough to satisfy these:

ϵ2/3 + 6γδ <
(1− γ)2κ2

50B2
λR

2
maxmLβ

, (118)

ϵ < κ/10, (119)

δ 3
√
ϵ < κ/(90γ), (120)

ϵ <
κ3(1− γ)3

125 log3 |A|
, (121)

δ <
κ(1− γ)

5
√
mBλLβ |A|Rmax

, (122)

ϵ2/3 + 6γδ <
κ(1− γ)
4R2

maxLβ
, (123)

δ <
(1− γ)κ

2Lβ |A|Rmax
. (124)

To satisfy them, it is enough to satisfy these:

ϵ <
(1− γ)3κ3

1000B3
λR

3
maxm

3/2L
3/2
β

, (125)

δ <
(1− γ)2κ2

600γB2
λR

2
maxmLβ

, (126)

ϵ < κ/10, (127)

δ < κ2/3/(90γ)2/3, (128)
ϵ < κ/(90γ), (129)

ϵ <
κ3(1− γ)3

125 log3 |A|
, (130)

δ <
κ(1− γ)

5
√
mBλLβ |A|Rmax

, (131)

ϵ <
κ3/2(1− γ)3/2

16
√
2R3

maxL
3/2
β

, (132)

δ <
κ(1− γ)

48γR2
maxLβ

, (133)

δ <
(1− γ)κ

2Lβ |A|Rmax
. (134)
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Or, rewritten shorter,

ϵ < min

(
κ3(1− γ)3

1000B3
λR

3
maxm

3/2L
3/2
β

,
κ

10
,
κ

90γ
,
κ3(1− γ)3

125 log3 |A|
,
κ3/2(1− γ)3/2

16
√
2R3

maxL
3/2
β

)
=: Cϵ, (135)

δ < min

(
κ2(1− γ)2

600γB2
λR

2
maxmLβ

,
κ2/3

(90γ)2/3
,

κ(1− γ)
5
√
mBλLβ |A|Rmax

,
κ(1− γ)

48γR2
maxLβ

,
κ(1− γ)

2Lβ |A|Rmax

)
=: Cδ. (136)

Now, knowing that ϵ depends on T as in 11, we need to choose T , such that ϵ < Cϵ:

ϵ =
2m2Bλ
ζ

(
ξ +

√
mRmax
1− γ

)
exp

(
logπππ − ζT

2m

)
< Cϵ, (137)

exp

(
logπππ − ζT

2m

)
<

ζCϵ

2m2Bλ

(
ξ +

√
mRmax

1−γ

) , (138)

logπππ − ζT
2m

< log

 ζCϵ

2m2Bλ

(
ξ +

√
mRmax

1−γ

)
, (139)

T >
logπππ

ζ
+

2m

ζ
log

2m2Bλ

(
ξ +

√
mRmax

1−γ

)
ζCϵ

. (140)

And a sufficient number of NPG iterations needed to achieve Cδ accuracy of each NPG call can be determined using A.2:

NNPG ≈
log 2C1R+ logC−1

δ +max( 13 logC
−1
ϵ , 0)

log γ−1
, (141)

whereC1 ≥
∥∥Q∗

τ (ρ)−Q
(0)
τ (ρ)

∥∥
∞, R ≥ maxs,a r(s, a) for any MDP on which NPG might be called throughout execution

of the algorithm.

It can be seen that asymptotic is

T = O
(
m

ζ
log

(
m log |A|

ζξ(1− γ)(1− β)κ

))
, (142)

NNPG = O
(

1

1− γ
log

(
m log |A|

(1− γ)ξ(1− β)κ

))
, (143)

which gives us the result (accuracy κ is ϵ in the statement).

E LEMMAS FOR THE CASE OF REGULARIZED DUAL VARIABLES

Consider the regularized dual problem:

max
λ∈Rm

+

dτ,µ(λ) := dτ (λ) +
µ

2
∥λ∥22. (144)

The objective is Ld,µ-smooth with Ld,µ := Ld + µ. The proof of the convergence mimics the proof from Appendix D but
with a better bounds on the value ⟨∇dτ (λ), λ⟩ and on the norm of dual variable derived below.

Lemma E.1. It holds

1

2Ld,µ

∑
i:λi>

1
Ld,µ

∂dτ,µ
∂λi

(
∂dτ,µ
∂λi

)2

+
1

2

∑
i:λi≤ 1

Ld,µ

∂dτ,µ
∂λi

∂dτ,µ
∂λi

λi ≤ dτ,µ(λ)− dτ,µ(λ∗).

Proof. Define λ̃ :=
[
λ− 1

Ld,µ
∇dτ,µ(λ)

]
+

. Since dτ,µ has a Lipschitz continuous gradient on Λ, the following implica-
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tions hold:
dτ,µ(λ̃) ≤ dτ,µ(λ) +

〈
∇dτ,µ, λ̃− λ

〉
+
Ld,µ
2

∥∥∥λ̃− λ∥∥∥2
2
=

= dτ,µ(λ)−
∑

i:λi>
1

Ld,µ

∂dτ,µ
∂λi

∂dτ,µ
∂λi

1

Ld,µ

∂dτ,µ
∂λi

−
∑

i:λi≤ 1
Ld,µ

∂dτ,µ
∂λi

∂dτ,µ
∂λi

λi+

+
∑

i:λi>
1

Ld,µ

∂dτ,µ
∂λi

Ld,µ
2

(
1

Ld,µ

∂dτ,µ
∂λi

)2

+
∑

i:λi≤ 1
Ld,µ

∂dτ,µ
∂λi

Ld,µ
2

λ2i

≤ dτ,µ(λ)−
1

2Ld,µ

∑
i:λi>

1
Ld,µ

∂dτ,µ
∂λi

(
∂dτ,µ
∂λi

)2

− 1

2

∑
i:λi≤ 1

Ld,µ

∂dτ,µ
∂λi

∂dτ,µ
∂λi

λi.

(145)

The statement now follows from dτ,µ(λ̃) ≥ dτ,µ(λ∗).

Lemma E.2.
⟨λ,∇dτ (λ)⟩ ≤

Ld,µ
µ

(dτ,µ(λ)− dτ,µ(λ∗)). (146)

Proof. From (145) we have:

dτ,µ(λ)− dτ,µ(λ∗) ≥
1

2Ld,µ

∑
i:λi>

1
Ld,µ

∂dτ,µ
∂λi

(
∂dτ,µ
∂λi

)2

+
1

2

∑
i:λi≤ 1

Ld,µ

∂dτ,µ
∂λi

∂dτ,µ
∂λi

λi. (147)

Note that (
∂dτ,µ
∂λi

)2

=

(
∂dτ
∂λi

+ µλi

)2

≥ 2µ
∂dτ,µ
∂λi

λi, (148)

∂dτ,µ
∂λi

λi ≥
∂d

∂λi
λi, λi ≥ 0. (149)

Then, from (148),(149)

dτ,µ(λ)− dτ,µ(λ∗) ≥
2µ

2Ld,µ

∑
i:λi>

1
Ld,µ

∂dτ,µ
∂λi

∂d

∂λi
λi +

1

2

∑
i:λi≤ 1

Ld,µ

∂dµ,τ
∂λi

∂d

∂λi
λi ≥

µ

Ld,µ
⟨∇dτ (λ), λ⟩ , (150)

and we get:

⟨∇dτ (λ), λ⟩ ≤
Ld,µ
µ

(dτ,µ(λ)− dτ,µ(λ∗)). (151)

Regularization by µ:

Lemma E.3.
∥λµ∗∥

2
2 ⩽

2

µ
(dτ (0)− dτ (λ∗)) , (152)

where λµ∗ is the solution of (144).

Proof. From µ
2 ∥λ− λ∗∥

2
2 ≤ dτ (λ)− dτ (λ∗), we get

dτ,µ (λ
µ
∗ ) = dτ (λ

µ
∗ ) +

µ

2
∥λµ∗∥

2
2 ⩾ dτ (λ∗) +

µ

2
∥λµ∗∥

2
2 ⩾ dτ (λ∗) . (153)

Then
µ

2

∥∥λ∗µ∥∥22 =
µ

2

∥∥0− λ∗µ∥∥22 ⩽ dτ,µ(0)− dτ,µ (λµ∗ ) ⩽ dτ (0)− dτ (λ∗) , (154)

where we used that dτ,µ(0) = dτ (0).
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F EXPERIMENTAL PARAMETERS

F.1 Environment

The reward and cost functions in our environment are the same as in Li et al. (2021). The agent receives a reward +1 for
the end of the lower link being at a height of 0.5 and cost one of 1 when the first link swings at a anticlockwise direction
and the agent applies a +1 torque to the actuating joint; it also receives a cost two of 1 when the second link swings at
a anticlockwise direction with respect to the first link and the agent applies a +1 torque to the actuating joint. The cost
thresholds are 50.

F.2 Algorithm Parameters

The policy networks for all experiments have two hidden layers of sizes 128 with ReLu activation function. We also
have value networks with the same architecture and activation functions as the policy networks. Table 2 summarizes the
hyperparameters used in our experiments.

Table 2: Hyperparameters in total reward case.

Hyperparameter VMDP AR-CPO
Batch size 5100 5100
Discount γ 0.98 0.98
Maximum episode length 500 500
Learning rate 1 1
The number of policy optimization steps in NPG subroutine 4 1
max KL: the parameter that controls the NPG updates 0.01 0.01
η: the parameter in the update of λ from Li et al. (2021) N/A 0.0003
s from Li et al. (2021) N/A 1
H from Li et al. (2021) N/A 45
Entropy regularisation constant τ 0.01 0
Regularization coefficient µ 0 0
Optimization set radius for λ 1 N/A
η from Algorithm 1 1000 N/A
ζ from Algorithm 1 10−1 N/A

F.3 Algorithm Parameters for Discounted Case

The most of the parameters are similar to according ones in Table 2. Values, which differ, are represented in Table 3.

Table 3: Changed hyperparameters in discounted case.

Hyperparameter VMDP AR-CPO
The number of policy optimization steps in NPG subroutine 40 1
max KL: the parameter that controls the NPG updates 0.01 0.001
Entropy regularisation constant τ 0.001 0
Regularization coefficient µ 0.01 0.001
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