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Abstract

The problem of constrained Markov decision
process is considered. An agent aims to max-
imize the expected accumulated discounted re-
ward subject to multiple constraints on its costs
(the number of constraints is relatively small). A
new dual approach is proposed with the integra-
tion of two ingredients: entropy-regularized pol-
icy optimizer and Vaidya’s dual optimizer, both
of which are critical to achieve faster conver-
gence. The finite-time error bound of the pro-
posed approach is provided. Despite the chal-
lenge of the nonconcave objective subject to non-
concave constraints, the proposed approach is
shown to converge (with linear rate) to the global
optimum. The complexity expressed in terms of
the optimality gap and the constraint violation
significantly improves upon the existing primal-
dual approaches.

1 INTRODUCTION

In this paper we consider ~-discounted infinite-horizon
constrained Markov decision process (CMDP) (Altman)
1999). Such problem arises in many practical applications,
such as autonomous driving (Fisac et al., [2018)), robotics
(Ono et al.| 20135) or systems where the agent must meet
safety constraints. An example of such a problem is an
energy-efficient wireless communication system that aims
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to consume minimum power without violating any con-
straint on quality service (Li et al., 2016). Such Rein-
forcement Learning (RL) problems are often formulated as
CMDP (Garcia and Fernandez, 2015)).

Recently, [Ying et al. (2022); [Li et al.| (2021); [Liu et al.
(2021) proposed algorithms (under various assumptions)
that achieve O (1/ e) iteration complexity to find global
optimum, where e characterizes optimality gap and con-
straint violation. Each iteration of the proposed methods
has the same complexity as an iteration of the Policy Gra-
dient (PG) methods.

Although the CMDP problem is nonconcave (CMDP prob-
lem is typically a maximization problem) in policy 7 (non-
concavity inherited from MDP problem, which is noncon-
cave even in the bandit case (Mei et al., [2020b)), the com-
plexity O (1/e) fits lower bound for smooth concave prob-
lems with large number of constraints (Nemirovsky, |1992;
Ouyang and Xul |2021)). Despite that fact, if we have only a
few constraints m — that is typical for most of the practical
applications — these results are not optimal and we may
expect 9] (m) iteration complexity for concave problems
with m constraints (Gasnikov et al.| 2016a; |Gladin et al.,
2020\, 2021} | Xy} |2020), which corresponds to lower bound
for small enough m (Nemirovsky and Yudin,|1979). In this
paper we are transferring O (m) iteration complexity result
to the nonconcave CMDP problem.

1.1 Related Work

There is a considerable interest in RL / MDP problems
(Sutton et al., |1999; |Puterman, 2014} [Bertsekas, [2019) and
CMDP problems (Altman, [1999). For the past ten years
there was a great theoretical progress in different direc-

"For clarity we skip the dependence on 1 — + and logarithmic
factors.
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tions. For example, given a generative model wij  of formula [1) for sample complexity that would be worse
states anglAj actions, we can nd -policy ( is a quality  not only in terms of1 ) dependence but also in terms
in terms of cumulative reward) for-discounted in nite-  of (but still can be better in terms {8j).

horizon MDP problem with InLiu et al, (2021) the complexity bour@ ! was ob-

iSi A tained without additional assumptions. We summarize the
(a )3 2 (1) described results in the Taljle 1, wheris the accuracy in
terms of optimality gap and constraint violationjs the
Slater's parameter (could be small)js a numerical con-
stant (small ' 10 7, usually much larger in practice'

%0 1) in Vaidya's cutting-plane method, is the n}'gdng
time parameter (could be close t0 Bmax Fmax M,
I'max iS the parameter that bounds all the rewards.

o

samples|(Sidford et al., 20118; Wainwright, 2019; Agafwal
et al|, 2020) (analogously for CMDP, see arXiv version of
Jin and Sidford (2020)) that corresponds (up to logarithmi
factors) to the lower bound from the work py Azar ef al.
(2012). Moreover, the dependence onan be improved
to log (1=) at the expense of dependencejSi Unfor-
tunately, in many practical applications these optimal algo- ) o
rithms do not work at all due to the sizej&. 1.2 Main Contributions

A popular way to escape the curse of dimensionality isin the core of our approach lies the paper Li et/al. (2021),
to use PG method$ (Mnih etlal., 2015; Schulman et al.where the authors introduce entropy-regularized policy op-
2015h; Mei et al., 2020b; Agarwal et |dl., 2021), where atimizer and solve regularized dual problem by proper ver-
parameterized (for example by Deep Neural Netwdrks (Li,sion of Nesterov's accelerated gradient method. First of all,
2017;[Wang et &l], 2020)) class of policies is consideredthey use the strong duality for CMDP problem, which can
In the core of PG-type methods for MDP problems lie be derived|(Paternain etldl., 2019) from the fact of com-
gradient-type methods (Mirror Descent (Lan, 2022; Zhanpactness and convexity of the set of occupation measures
et al|, 2021), Natural Policy Gradient (NPG) (Khodadadian(Borkai,1988) or from Linear Programming representation
et al|[202]1; Cayci et al., 20R1; Ding et|al., 2DR20; Kakade of CMDP problem in discounted state-action visitation dis-
2001;/Cen et al., 2022), etc.) in the space of parametribution (Altman,[1999). The next important step is en-
ters applied to a properly regularized (in proper proximaltropy policy regularization. This regularization simultane-
setup) cumulative reward maximization problem. The gra-ously solves several tasks at once. First of all, it allows
dient is calculated by using policy gradient theorém (Sutto estimate the gradient of the dual function using NPG
ton et al.,| 1999), which reduces gradient calculation tomethod that has a linear convergence rate of policy and is
Q-function (value functiorv) estimation. Under proper robust to inexactness i@-function evaluationsg (Cen etal.,
choice of regularizers (proximal setups), these method2022). This is crucial since the dual accelerated method
requireO (1 ) ! iterations (the function value and is sensitive to inexactness in gradient, which can be con-
policy converge linearly) and are not sensitive to inexact-trolled if policy converges fast. Secondly, this regulariza-
ness of Q-value estimation ( ), see details in Cén tion allows to prove smoothness (in the spirif of Nesterov
et al| (2022); Lan[(2022); Zhan et|dl. (2021) and referencg2005) and with additional nice analysis of Mitrophanov's
therein. Given a generative model, it is possible to obtairperturbation bound$ (Mitrophanav, 2005; Zou €t[al., 2019)
from these results (se¢e Azar ef al. (2012); Agarwal ét alfor showing that visitation measure is Lipschitz w.r.t. the
(2020)) analogs of formulg(1) for sample complexity thatpolicy) of the dual problem. The smoothness of the dual
would be worseinterms @i ) dependence (Cen etjal., problem allows to use Nesterov's accelerated method to
2022), but can be better in terms;j8&f. solve it and to get an optimal rate. The last step is the regu-
For CMDP problems, PG methods are also welI-deveIopeJ?rization of the dual problem to obtain a linear rgte of con-
I B ‘ vergence for the dual accelerated method, which negates
see, e.g., surveys in Li etial. (2021); Liu et al. (2021) and o
references therein. The best (in terms of PG iterations he fact that we §hou|d sol_ve the dual problem W!th higher
) . . ccuracy to obtain the desired accuracy for the primal prob-
known complexity bounds were obtained in these Workﬁem and constraint violation (Devolder et|al., 2012; Gas-
Lietal] (2021){ Liu et a).[(2021); Ying et al. (2022). . . TSP P
: nikov et al., 2016b). An alternative approach, which has
In Ying et all (2022) with additional strong assumption ——
(initial state distribution covers the entire state space) 2Samples estimate was obtained based on the results from Cen

; 1 : _etal. (2022); Zhan et al. (2021), where it was shown théic-
the complexity boundy was obtained for entropy curacy ofV — output of NPG), determines the accuracyf

regularized CMDP (for true CMDPG 2 ). In|Lietall  Q-function evaluation (1 )2". The sample complexity of
(2021) the complexity boun@  * was obtained under ~-value ofQ-function isjSjjAj(1 ) * 2. Sosample com-
weaker additional assumption (Markov chain induced byP'€Xity is [# NPG method iterations]SjAj(1 ) - Note

tati licy | dic) b ina dual h that in such a way we obtain upper bound on samples complexity.
any stationary policy is ergodic) by using dual approac 'In practice such theoretical bounds turn out to be greatly overesti-

see Section 1]2 for the details. For both of these apmated (they are far from being optimal in termgdf ), rather
proaches, given a generative model, one can obtain analogisan estimates for the number of NPG iterations.
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Table 1: Complexities of State-of-the-art Methods for CMDP

-Uniform Ergodicity . . Accuracy
Method assumption # NPG method iterations of V Sample$
. p m
AR-CPO (Li etal., 2021) 3 O @ %=a 7 . 2 °
PMD-PD (Liu et al., 2021), ; o 1 w1 3
ARNPG (Zhou et al., 2022) @a )» a )2
This work 3 O g™y 2 4

not been realized yet, is related to the primal-dual analySimilarly to Li et al. (2021), our proposed method can be
sis of the method, which is used for the dual problem, se@pplied to a wider class of nonconvex/nonconcave con-
Nemirovski et al. (2010) for convex problems. In this ap- strained problems with strong duality (zero duality gap)
proach, it is suf cient to solve the dual problem with the and uniqueness of the solution of the auxiliary problem,
same accuracy as we wish to solve the primal one. Thisvhich relates the primal variables with the dual ones.

primal-dual approach may conserve the dependence®on _. . .
; . i : ; Finally, we demonstrate by numerical experiments that our
in (1) inthe nal sample complexity estimate if the method

we used for the dual problem does not accumulate an err(PrrOposed algorithm indeed outperforms AR-CPO from Li

in gradient over iterations. From Nemirovski et al. (2010); etal. (2021) whem is not too big.
Gladin et al. (2020) it is known that the Ellipsoid method

is a primal-dual one and does not accumulate an error i@ PRELIMINARIES
gradient.

Lo .1 Markov Decision Process
Our contribution is to replace the dual accelerated methog

in the approach (_Jlescribed above With_ Vaidya's cutting-a markov decision process (MDP) is determined by a ve-
pla_ne method (Vaidya, 1989, 1996). Vaidya's methOd_ha%ple(S;A; P;r; ), whereS is the state spacé is the

a linear rate of convergence (without any regularization);tion spaceP is the transition kernet, is the reward func-
and outperforms the accelerated method when dealing Withoy ang 2 (0; 1) is the discount factor. Assume th@t
small c'Jllmen5|on problems (Bubeck, 2015). Moreover,anga are nite with cardinalityjSj andjAj , respectively.
Vaidya's method does not accumulate an error in gradienihe njtial states, follows a distribution . At any time
value (Gladin et al., 2021) and hence is more robust thag 5 N, = an agent takes an actian 2 A at states; 2 S

the accelerated method. after which, according to the distributidh(s;+1 j St;a),

We build a new way for CMDP problems to estimate thethe environment transits to the next state and the agent re-
quality of the primal solution from the dual one. To the bestceives a reward (s; a;).

of our knowledge, the developed technique is also new fOl stationary policy maps a stag 2 S to a distribution
standard convex (concave) inequalities constrained prob-( ; &) gver A, which does not depend on tinte For a

lems and quite different from the technique that was Use%iven policy , its value function for any initial stae2 S
in Lietal. (2021). This technique can be applied to any lin-i5 ge ned as

ear convergent algorithms for the dual problem. Moreover, "
we improvejAj -times the bound on the Lipschitz gradi-

— t . H — o H .
ent constant of the dual function from Li et al. (2021). In Vr (8):= E r(s;a)iso= s (Js);
Lemma 7 Li et al. (2021) the authors formulate the correct t=0 i
result, but in fact, they provejaj -times worse result than St+1 P( s a) :

it was formulated. We give accurate proof of Lemma 7 by
using the result from Appendix of Juditsky et al. (2005).  Next, the mathematical expectation is taken with respect to
the distribution of the initial state, the expected reward is

Another important point is that our proposed method al- . ; .
'mp point ! ur prop determined by following policy as

lows to obtain the nal policy in a straightforward way by
performing a call to the same policy optimizer which is V. ()=E V. (so)]:
used on every iteration. By contrast, the algorithm from ' B roAsod
Li et al. (2021) can obtain the nal policy formally only in - The goal is to solve the problem

the nite setting, by calculating in jSjjAj calls to value

oracle (the notation is introduced below), which loses its maxV, ( ):
motivation with transition to continuous state spaces.

The discounted state-action visitation distribution de ned
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as follows:

n
(s;a):=(1 ) 'Prosg=s;aa=ajsy
t=0

At (jst);st+t

0
P(jsua) ;

foranys 2 S;a 2 A. The value function thus can be

equivalently written as
P
(s;a)r(s;a) _ T sa

s2S ;a2A .
1 1 '

Vi ()=

2.3 Notation

Let I, denotem m identity matrix,1,, 2 R™ be a
vector of ones. The set of nonnegative real numbers is de-
noted byR. . Notationint P is used for the interior of a set

P R™. Given avectox 2 R™, letkxkp;p 2 [1;1 ]
denote thep-norm of x, [x]+ be dened by([x].), =

inner product is denoted By; yi or x> y. Given two func-
tionsf () andg( ), we writef ( ) = O(g( )) if there exists
some constan€ > O, suchthaf () Cg( ) for small

enough . O() meansO( ) up to logarithmic factor in a

whereh; isa denotes the inner product over the spacegmg|| power (usually 1 or 2). Bold symbol denotes the

S A byreshaping andr asjSj jAj -dimensional
vectors, and we omit the subscripts andlusé when there
is no confusion.

2.2 Constrained MDP

The difference between CMDP and MDP is that the reward

is an(m + 1) -dimensional vector:

Each reward functiom;; i = 0;1;:::;m is positive and
nite,

e, fri(siag

d 2

fori =0;1;:::;m; Rpax := i";l M max -

li: max =

Then the value function de ned with respect to théh
component of the reward vectoias follows
hx
Vi (s):=E ri(sia) so=sia  (js);
t=0 .
i

Stv1 P(Jsya)

andV; ()= Es, [V, (so)]; fori =0;1;:::;m. The

objective of the constrained MDP is to solve the following

constrained optimization problem:

maxV, ()
2 _ 2
stV () G; i=1;:::;m;
P
= 2 RISIA wn (@js)=1; (ajs) O,
8(s;a) 2 S Ag isthe set of all stationary policies.

Let
goal is to nd an -optimal policy de ned as follows.

De nition 2.1. A policy ~is -optimal if its corresponding
optimality gap and the constraint violation satisfy

Vo() V()

whereV, ( ) is the optimal value of (2),

;and ¢ V() , , ;

denote the optimal policy for the problem (2). The

constant ( = 3:1415:::) contrary to plain which indi-
cates policylog( ) is the natural logarithm. For two prob-
ability measure$® andQ de ned on a measurable space
( ;F),drv (P; Q) denotes the total variation distance, i.e.,

drv (P;Q) := sup jP(A) Q(A)j: ®3)
A2F

3 CUTTING-PLANE ALGORITHM FOR
CMDP

In this section, we introduce the cutting-plane algorithm for
CMDP which is presented in Algorithm 1. The algorithm
assumes access to:

1. Oracles, sufcent to run natural policy gradient al-
gorithm (see Appendix A), for our MDP with arbi-
trary rewards. For example, access to exact gradient
of value function w.r.t. softmax policy parametriza-
tion for any vector of rewards, and exact Fisher infor-
mation matrix for a softmax-parametrized policy. Or,
in our nite setting, also access to soft Q-functions is
enough.

2. Exact value function of a policy w.r.t to constraints'

In the algorithm, policies may be stored as full
softmax parametrizations (19), or directly as vectors
(ajs); 8(s;a) 2 S A (both ways are equivalent and

can be calculated one from another).

The core idea is to consider the entropy-regularized La-
grange function

L )=VO)+hVv () cd+ H(C)

where 2 RT is the vector of dual variables,

are respectively vectors of constraints and constraint
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thresholds, the matrix
* t ' X aa’
H()= E log ( (& j st)) H( ;Ab):= et @)
t=0 i=1 ai> h
So ;A (is)ista P(]sta) the values
is the discounted entropy of the policyand > O0is (A= & (H(;AD) "a 10 k (8
the regularization coefcient. The proposed method is '~ '~ " & b’ '
based on two components: Vaidya's cutting-plane method
(Vaidya, 1989, 1996) for solving the dual problem the volumetric barrier of the polytoge(A; b)
min d =max L (; ; 5 1
2R} ) 2 G ®) V( ;A;b):= éIog(detH( A D)) ;

and an entropy-regularized policy optimizer for solving the o .

inner problemmax , L (; ) on each iteration of the where .detH( 5Ab) denotes the determinant of

outer loop. Below is the description of both components. H( ;A;b).  Finally, dene the volumetric center of
P(A;b) as

3.1 Entropy-regularized Policy Optimizer VolCenter(A:b) := argmin  V( ;A;b): ©)

2int P (Ab
To estimate the gradient of the dual functio ( ), one int PAD)

has to solve the problemmax , L (; ). Note that SjnceV is a self-concordant function of, it can be ef -
this is equivalent to maximizing an entropy-regularizedciently minimized with Newton-type methods. The algo-
valuedunction corresponding to a reward function := rithm starts with a paifAo; ) 2 Rk ™ Rke such that
ro+ [, iri. As mentioned in the introduction, en- the polytopeP (Ao; by) contains the search space. We re-
tropy regularization enables the linear rate of convergenceer the reader to Appendix B for more information on the

of an NPG method. In what followdJPG (r ; ; ) repre-  original Vaidya's method and its parameters.
sents a call to NPG procedure that learns the peticy for

the entropy-regularized MDP with the regularization coef-

cient and rewardr up to -accuracy in terms of; 4 CONVERGENCE RESULTS FOR THE

distance to the unique optimal regularized policy, i.e., PROPOSED ALGORITHM
~op < (6) First, we introduce technical assumptions on our CMDP in-
where . = argmax , L (; ) (existence and stance(S;A;P; ;ro;r1;:::;rm; ) that are widely used

uniqueness of such optimal policy is addressed below)i.” reinforcement learning literature, and state the regular-
More details on entropy-regularized policy optimizers are'2€d optimal policy uniqueness.

provided in Appendix A. Assumption 4.1 (Slater Condition) There exists a con-
stant 2 R., and at least one policy 2 , such that
3.2 Vaidya's Cutting-plane Method foralli=1;:::;m; Vv, () ¢+

Vaidya's cutting-plane method (Vaidya, 1989, 1996) is anSlater condition asserts that there exists a strictly feasible
algorithm for a convex optimization problem with com- policy. De ne the set
plexity O(m log ™), which makes it a good choice for for-

mulations with a small or moderate dimensionality likethe = f 2 RT jk k; B g with
dual problem (5). Moreover, it has been shown that the Fo:max +10g jA]
method can be used with an inexact subgradient, and it does B = W (10)

not accumulate the error (Gladin et al., 2021). This makes
it very suitable for the problem (5), since the gradient of proposition 4.2 (Regularized optimal policy uniqueness)
the dual function is computed approximately. Forany > 0; 2 there exists exactly one optimal

We will now shortly list the necessary notions used in Al- Policy for the problem:

gorithm 1 for the problem (2). A more detailed descrip-

tion of those notions is placed in Appendix B. For a ma- maxL (; ):
trix A 2 R* ™ with rowsa ;i = 1;:::;k, and a vector )
b2 R¥, de ne the polytope which we call . .

P(A;b):=f 2R™: A bg; We refer the reader to the Appendix C.1 for the proof.
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Algorithm 1 Cutting-plane algorithm for CMDP

Input: number of outer iteration, NPG accuracy (see (6)), pai(Ag;kp) 2 R ™  Rko algorithm parameters
10 4, 103 .
cfort=0;:::;T 1do

1
2: t :=VolCenter( A; hy)
3. ComputeH, *:=(H( ;A;h) "andf ( A;B)gGY,
4: it :=argmin i ;A R)
1 i k¢
5: if i,( ;A R) < then
6: Obtain(A¢+1 ; +1 ) by removing the-th row from(A¢; k),
7. kt+1 = kt 1
8: else
9: if {2 RY then
10: t =NPG(ro+ hy;ri; ;)
11: Pi=c Vv t( ) (see notation in (4)),
12: else
13: De ne rbt as the vector with components
(
(Ibt)iz 1) (I)i<01 |=1,,m
0 (i O
14: end if
15: Find such ; 2 Rthatrbt> t ¢ from the equation
PZH P 1P —
oy ¢ 02 2
A
16: Aty = lbi ;b = . ;o ke = ke + 1.
t t
17: end if
18: end for
190 1= argmin d ()

2t ori T 10
20: 1 :=NPG(ro+ ht;ri;; )
Output: 7.

Assumption 4.3(Uniform Ergodicity) Forany 2 ,the T 2 Nbe xed and denote the value
Markov chain induced by the policy. and the Markov
transition kernel is uniformly ergodic, i.e., there exist con-

stantsCy > Oand0< < 1suchthatforalt O, ._ 2m*B N P R ma exp log T
' 1 2m '
(11)
supdry P(st2 jso=79); . Cm where denotes the constant (= 3:1415:::). The
s25 Y cutting-plane algorithm for CMDP (Algorithm 1) with pa-
rameters
where  is the stationary distribution of the MDP in-
duced by policy . , anddry (; ) is the total variation
distance, see (3). ko:=m+1; Ag:= Ilm :
Convergence rate of Algorithm 1 in terms of the opti- by = B'ln . _infr Efg. (12)
mality gapVo () Vo 7 ( ) and the constraint violation mB o Y

[c V T()], isdescribed by the following theorem. The

proof can be found in Appendix D. i i
number of outer iterations T and NPG accuracy 0 (see

Theorem 4.4. Suppose Assumptions 4.1 and 4.3 hold, let(6)) provides the following convergence guarantee of the
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optimality gap and the constraint violation: up tolog-factors. For our approachvaigya = % up to
p__ log-factors (depending on, , , ), —small numerical
Vo() Vy7() B Rmax 2mL P 2316 parameter of Vaidya's algorithm. Thus, from these formu-
0 0 1 las we may conclude that up td@g-factor, our approach
(13) istheoretically betterwhen. (1 ) 2. Butin reality
R- . logjAj R - thislog-factor might be signi cant.
+2 +18 + — . .
1 Remark2 (Dependence on the size of state-action space)
P L jAjRmax It can be shown that the total complexity estimate for the
+ mB ﬁ; (14)  proposed method isjSjjAj , assuming is xed. How-
) ever, if an appropriate policy gradient method is chosen, the
c vV Ol , M( 2846 ) present analysis doesn't require the state space to be nite.
1 Still, a nite action space is currently assumed.
L jAIR
+ = A Rmax (15) o .
@ ) 4.1 Regularization of Dual Variables
where The proposed approach can also be modi ed in the follow-
L = log C,5 +( ) Le1: ing way: the dual problem writes as

maxd. ():=d ( )+ =k Kk (17)

The value in (11) re ects linear convergence of Algo- 2RY 2

rithm 1 in terms of th.e dual .func.'uon_. As It can be S€€N\vhere > 0Ois the regularization coef cient. In this case,
from (13) and (15), thls also implies Illnea_r CONVETgence iy, o vector®, in Line 11 of Algorithm 1 will be replaced
terms of value function and constraint violation, if NPG _ .
provides appropriate accuracy. Thus, the algorithm results b =¢c v () .
in the following complexity bound b t
If is chosen suf ciently small, the result of Corollary 4.5

Corollary 4.5. Algorithm 1 outputs an-optimal policy remains true, see Appendix E for details

with respect to both the optimality gap and constraint vi-
olation after

o 5 EXPERIMENTS
T=0 mIog mI0gjA]

(16)
@ H ) For our experiments we used Acrobot-vl, OpenAl Gym
Mei et al. (2020a) environment. This environment contains
two links connected linearly to form a chain, with one end
of the chain xed. The joint between the two links is actu-
1 m logjAj afted. Thg goal is to sw_iljg the end of.the Iowe_r link up to a
Norace = O T 1 | @ )1 ) = given height. Two additional constraints are implemented
in order to have similar environment as in Li et al. (2021)
for comparison purpose.

steps. The total number of calls to the policy gradient ora-
cle made in all NPG calls is:

m m log jAj
= |
C @y YT a

In Figure 1 we compare the proposed cutting-plane algo-

log mlogjAj rithm (VMDP) with the state-of-the-art primal-dual op-
@a Ha ) timization (AR-CPO) method Li et al. (2021) and with
ARNGP-EPG method Zhou et al. (2022). For a fair com-
Proof of the corollary is in Appendix D.1. parison, the same neural softmax policy and the trust region

Remarkl. From the proof of the Corollary 1 in Appendix policy (Schulman et al., 2015a) optimization are used in all
Li et al. (2021), the number of policy gradient method iter- the algorithms.

ations is D Similarly to Li et al. (2021) we picture the average over 10
N : Rmax M ] random initialized seeds and translucent error bands have
ARCPO™ (@ )2 )3 the width of two standard deviations. The hyper parameters

of AR-CPO algorithm are optimal from Li et al. (2021) and
where we skip not only constants, but aleg-factors, for ARNGP-EPG algorithm from Zhou et al. (2022). More
which could be close to zer®7,,  r'yaxM. Note that  information about experiments and parameters settings can
for the concurrent paper Liu et al. (2021) be found in Appendix F.1 and F.2.

1 m 1 Figure la represents average total reward over episode,

Npwmp-pp = @ ) @ )2 * - while Figures 1b and 1c show constraints with dashed line
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@)
@)
(b)
(b)
(€)
Figure 1. Average performance for VMDP, AR-CPO and
ARNPG-EPD; thex-axis is training iteration.
(€)

as the constraint thresholds. We used total reward for a faigg%gifzai':‘zg;ﬁg dpfer\fl\?;?;a;:g g;gg?&ig?ﬁgggo n
comparison with existing state-of-the-art approach. More-iteration ' 9
over, in some cases total reward is more important in prac- '

tise.

We nd that VMDP algorithm achieves higher total reward
with similar standard deviation. The speed of converge of
both algorithms is similar. Thus, the proposed algorithm
allows to achieve better performance with the same training
time for an MDP task with the small number of constraints.
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