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Abstract

The problem of constrained Markov decision
process is considered. An agent aims to max-
imize the expected accumulated discounted re-
ward subject to multiple constraints on its costs
(the number of constraints is relatively small). A
new dual approach is proposed with the integra-
tion of two ingredients: entropy-regularized pol-
icy optimizer and Vaidya’s dual optimizer, both
of which are critical to achieve faster conver-
gence. The finite-time error bound of the pro-
posed approach is provided. Despite the chal-
lenge of the nonconcave objective subject to non-
concave constraints, the proposed approach is
shown to converge (with linear rate) to the global
optimum. The complexity expressed in terms of
the optimality gap and the constraint violation
significantly improves upon the existing primal-
dual approaches.

1 INTRODUCTION

In this paper we consider γ-discounted infinite-horizon
constrained Markov decision process (CMDP) (Altman,
1999). Such problem arises in many practical applications,
such as autonomous driving (Fisac et al., 2018), robotics
(Ono et al., 2015) or systems where the agent must meet
safety constraints. An example of such a problem is an
energy-efficient wireless communication system that aims
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to consume minimum power without violating any con-
straint on quality service (Li et al., 2016). Such Rein-
forcement Learning (RL) problems are often formulated as
CMDP (Garcia and Fernandez, 2015).

Recently, Ying et al. (2022); Li et al. (2021); Liu et al.
(2021) proposed algorithms (under various assumptions)
that achieve Õ (1/ϵ)1 iteration complexity to find global
optimum, where ϵ characterizes optimality gap and con-
straint violation. Each iteration of the proposed methods
has the same complexity as an iteration of the Policy Gra-
dient (PG) methods.

Although the CMDP problem is nonconcave (CMDP prob-
lem is typically a maximization problem) in policy π (non-
concavity inherited from MDP problem, which is noncon-
cave even in the bandit case (Mei et al., 2020b)), the com-
plexity Õ (1/ϵ) fits lower bound for smooth concave prob-
lems with large number of constraints (Nemirovsky, 1992;
Ouyang and Xu, 2021). Despite that fact, if we have only a
few constraintsm— that is typical for most of the practical
applications — these results are not optimal and we may
expect Õ (m) iteration complexity for concave problems
with m constraints (Gasnikov et al., 2016a; Gladin et al.,
2020, 2021; Xu, 2020), which corresponds to lower bound
for small enough m (Nemirovsky and Yudin, 1979). In this
paper we are transferring Õ (m) iteration complexity result
to the nonconcave CMDP problem.

1.1 Related Work

There is a considerable interest in RL / MDP problems
(Sutton et al., 1999; Puterman, 2014; Bertsekas, 2019) and
CMDP problems (Altman, 1999). For the past ten years
there was a great theoretical progress in different direc-

1For clarity we skip the dependence on 1− γ and logarithmic
factors.
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tions. For example, given a generative model withjSj
states andjAj actions, we can �nd� -policy (� is a quality
in terms of cumulative reward) for
 -discounted in�nite-
horizon MDP problem with

~O
�

jSj � jAj
(1 � 
 )3� 2

�
(1)

samples (Sidford et al., 2018; Wainwright, 2019; Agarwal
et al., 2020) (analogously for CMDP, see arXiv version of
Jin and Sidford (2020)) that corresponds (up to logarithmic
factors) to the lower bound from the work by Azar et al.
(2012). Moreover, the dependence on� can be improved
to log (1=�) at the expense of dependence onjSj. Unfor-
tunately, in many practical applications these optimal algo-
rithms do not work at all due to the size ofjSj.

A popular way to escape the curse of dimensionality is
to use PG methods (Mnih et al., 2015; Schulman et al.,
2015b; Mei et al., 2020b; Agarwal et al., 2021), where a
parameterized (for example by Deep Neural Networks (Li,
2017; Wang et al., 2020)) class of policies is considered.
In the core of PG-type methods for MDP problems lie
gradient-type methods (Mirror Descent (Lan, 2022; Zhan
et al., 2021), Natural Policy Gradient (NPG) (Khodadadian
et al., 2021; Cayci et al., 2021; Ding et al., 2020; Kakade,
2001; Cen et al., 2022), etc.) in the space of parame-
ters applied to a properly regularized (in proper proximal
setup) cumulative reward maximization problem. The gra-
dient is calculated by using policy gradient theorem (Sut-
ton et al., 1999), which reduces gradient calculation to
Q-function (value functionV ) estimation. Under proper
choice of regularizers (proximal setups), these methods
require ~O

�
(1 � 
 ) � 1

�
iterations (the function value and

policy converge linearly) and are not sensitive to inexact-
ness� of Q-value estimation (� � � ), see details in Cen
et al. (2022); Lan (2022); Zhan et al. (2021) and reference
therein. Given a generative model, it is possible to obtain
from these results (see Azar et al. (2012); Agarwal et al.
(2020)) analogs of formula (1) for sample complexity that
would be worse in terms of(1 � 
 ) dependence (Cen et al.,
2022), but can be better in terms ofjSj.

For CMDP problems, PG methods are also well-developed,
see, e.g., surveys in Li et al. (2021); Liu et al. (2021) and
references therein. The best (in terms of PG iterations)
known complexity bounds were obtained in these works
Li et al. (2021); Liu et al. (2021); Ying et al. (2022).

In Ying et al. (2022) with additional strong assumption
(initial state distribution covers the entire state space)
the complexity bound~O

�
� � 1

�
was obtained for entropy-

regularized CMDP (for true CMDP –~O
�
� � 2

�
). In Li et al.

(2021) the complexity bound~O
�
� � 1

�
was obtained under

weaker additional assumption (Markov chain induced by
any stationary policy is ergodic) by using dual approach,
see Section 1.2 for the details. For both of these ap-
proaches, given a generative model, one can obtain analogs

of formula (1) for sample complexity that would be worse
not only in terms of(1 � 
 ) dependence but also in terms
of � (but still can be better in terms ofjSj).

In Liu et al. (2021) the complexity bound~O
�
� � 1

�
was ob-

tained without additional assumptions. We summarize the
described results in the Table 1, where� is the accuracy in
terms of optimality gap and constraint violation,� is the
Slater's parameter (could be small),� is a numerical con-
stant (small� ' 10� 7, usually much larger in practice� '
10� 1) in Vaidya's cutting-plane method,� is the mixing
time parameter (could be close to 1),Rmax � r max

p
m,

r max is the parameter that bounds all the rewards.

1.2 Main Contributions

In the core of our approach lies the paper Li et al. (2021),
where the authors introduce entropy-regularized policy op-
timizer and solve regularized dual problem by proper ver-
sion of Nesterov's accelerated gradient method. First of all,
they use the strong duality for CMDP problem, which can
be derived (Paternain et al., 2019) from the fact of com-
pactness and convexity of the set of occupation measures
(Borkar, 1988) or from Linear Programming representation
of CMDP problem in discounted state-action visitation dis-
tribution (Altman, 1999). The next important step is en-
tropy policy regularization. This regularization simultane-
ously solves several tasks at once. First of all, it allows
to estimate the gradient of the dual function using NPG
method that has a linear convergence rate of policy and is
robust to inexactness inQ-function evaluations (Cen et al.,
2022). This is crucial since the dual accelerated method
is sensitive to inexactness in gradient, which can be con-
trolled if policy converges fast. Secondly, this regulariza-
tion allows to prove smoothness (in the spirit of Nesterov
(2005) and with additional nice analysis of Mitrophanov's
perturbation bounds (Mitrophanov, 2005; Zou et al., 2019)
for showing that visitation measure is Lipschitz w.r.t. the
policy) of the dual problem. The smoothness of the dual
problem allows to use Nesterov's accelerated method to
solve it and to get an optimal rate. The last step is the regu-
larization of the dual problem to obtain a linear rate of con-
vergence for the dual accelerated method, which negates
the fact that we should solve the dual problem with higher
accuracy to obtain the desired accuracy for the primal prob-
lem and constraint violation (Devolder et al., 2012; Gas-
nikov et al., 2016b). An alternative approach, which has

2Samples estimate was obtained based on the results from Cen
et al. (2022); Zhan et al. (2021), where it was shown that" (ac-
curacy ofV � – output of NPG), determines the accuracy� of
Q-function evaluation� � (1 � 
 )2" . The sample complexity of
� -value ofQ-function isjSjjAj(1 � 
 ) � 3 � � 2 . So sample com-
plexity is [# NPG method iterations]� jSjjAj(1 � 
 ) � 7" � 2 . Note
that in such a way we obtain upper bound on samples complexity.
In practice such theoretical bounds turn out to be greatly overesti-
mated (they are far from being optimal in terms of(1 � 
 )), rather
than estimates for the number of NPG iterations.
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Table 1: Complexities of State-of-the-art Methods for CMDP

Method � -Uniform Ergodicity
assumption # NPG method iterations Accuracy

of V � Samples2

AR-CPO (Li et al., 2021) 3 ~O
�

R max
p

m
((1 � � ) � )1= 2 (1 � 
 )3 �

�
� � 2 � � � 5

PMD-PD (Liu et al., 2021),
ARNPG (Zhou et al., 2022) 7 ~O

�
1

(1 � 
 )3 �

h
m

(1 � 
 )2 + 1
�

i�
� � � � � 3

This work 3 ~O
�

m
(1 � 
 ) �

�
� � 2 � � � 4

not been realized yet, is related to the primal-dual analy-
sis of the method, which is used for the dual problem, see
Nemirovski et al. (2010) for convex problems. In this ap-
proach, it is suf�cient to solve the dual problem with the
same accuracy as we wish to solve the primal one. This
primal-dual approach may conserve the dependence on� � 2

in (1) in the �nal sample complexity estimate if the method
we used for the dual problem does not accumulate an error
in gradient over iterations. From Nemirovski et al. (2010);
Gladin et al. (2020) it is known that the Ellipsoid method
is a primal-dual one and does not accumulate an error in
gradient.

Our contribution is to replace the dual accelerated method
in the approach described above with Vaidya's cutting-
plane method (Vaidya, 1989, 1996). Vaidya's method has
a linear rate of convergence (without any regularization)
and outperforms the accelerated method when dealing with
small dimension problems (Bubeck, 2015). Moreover,
Vaidya's method does not accumulate an error in gradient
value (Gladin et al., 2021) and hence is more robust than
the accelerated method.

We build a new way for CMDP problems to estimate the
quality of the primal solution from the dual one. To the best
of our knowledge, the developed technique is also new for
standard convex (concave) inequalities constrained prob-
lems and quite different from the technique that was used
in Li et al. (2021). This technique can be applied to any lin-
ear convergent algorithms for the dual problem. Moreover,
we improvejAj -times the bound on the Lipschitz gradi-
ent constant of the dual function from Li et al. (2021). In
Lemma 7 Li et al. (2021) the authors formulate the correct
result, but in fact, they prove ajAj -times worse result than
it was formulated. We give accurate proof of Lemma 7 by
using the result from Appendix of Juditsky et al. (2005).

Another important point is that our proposed method al-
lows to obtain the �nal policy in a straightforward way by
performing a call to the same policy optimizer which is
used on every iteration. By contrast, the algorithm from
Li et al. (2021) can obtain the �nal policy formally only in
the �nite setting, by calculating� �

� in jSjjAj calls to value
oracle (the notation is introduced below), which loses its
motivation with transition to continuous state spaces.

Similarly to Li et al. (2021), our proposed method can be
applied to a wider class of nonconvex/nonconcave con-
strained problems with strong duality (zero duality gap)
and uniqueness of the solution of the auxiliary problem,
which relates the primal variables with the dual ones.

Finally, we demonstrate by numerical experiments that our
proposed algorithm indeed outperforms AR-CPO from Li
et al. (2021) whenm is not too big.

2 PRELIMINARIES

2.1 Markov Decision Process

A Markov decision process (MDP) is determined by a �ve-
tuple (S; A ; P; r; 
 ), whereS is the state space,A is the
action space,P is the transition kernel,r is the reward func-
tion and
 2 (0; 1) is the discount factor. Assume thatS
andA are �nite with cardinalityjSj andjAj , respectively.
The initial states0 follows a distribution� . At any time
t 2 N+ , an agent takes an actionat 2 A at statest 2 S,
after which, according to the distributionP (st +1 j st ; at ),
the environment transits to the next state and the agent re-
ceives a rewardr (st ; at ).

A stationary policy maps a states 2 S to a distribution
� (� j s) over A , which does not depend on timet. For a
given policy� , its value function for any initial states 2 S
is de�ned as

V �
r (s) := E

"
1X

t =0


 t r (st ; at ) j s0 = s; at � � (� j st ) ;

st +1 � P (� j st ; at )
i
:

Next, the mathematical expectation is taken with respect to
the distribution of the initial state, the expected reward is
determined by following policy� as

V �
r (� ) := Es0 � � [V �

r (s0)] :

The goal is to solve the problem

max
�

V �
r (� ):

The discounted state-action visitation distribution de�ned
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� �
� as follows:

� �
� (s; a) := (1 � 
 )

1X

t =0


 t Pr
n

st = s; at = a j s0 � �;

at � � (� j st ) ; st +1 � P (� j st ; at )
o

;

for any s 2 S; a 2 A . The value function thus can be
equivalently written as

V �
r (� ) =

P
s2S ;a2A � �

� (s; a)r (s; a)

1 � 

=



� �

� ; r
�

S�A

1 � 

;

whereh�; �i S�A denotes the inner product over the space
S � A by reshaping� �

� and r as jSj � jAj -dimensional
vectors, and we omit the subscripts and useh�; �i when there
is no confusion.

2.2 Constrained MDP

The difference between CMDP and MDP is that the reward
is an(m + 1) -dimensional vector:

r (s; a) = [ r 0(s; a); r 1(s; a); : : : ; rm (s; a)]> :

Each reward functionr i ; i = 0 ; 1; : : : ; m is positive and
�nite,

r i; max := max
s2S ;a2A

f r i (s; a)g;

for i = 0 ; 1; : : : ; m; Rmax :=
q P m

i =1 r 2
i; max :

Then the value function de�ned with respect to thei -th
component of the reward vectorr as follows

V �
i (s) := E

h 1X

t =0


 t r i (st ; at )
�
� s0 = s; at � � (� j st ) ;

st +1 � P (� j st ; at )
i

andV �
i (� ) = Es0 � � [V �

i (s0)] ; for i = 0 ; 1; : : : ; m. The
objective of the constrained MDP is to solve the following
constrained optimization problem:

max
� 2 �

V �
0 (� )

s.t. V �
i (� ) � ci ; i = 1 ; : : : ; m;

(2)

� =
�

� 2 RjSjjAj :
P

a2A � (a j s) = 1 ; � (a j s) � 0,
8(s; a) 2 S � Ag is the set of all stationary policies.
Let � � denote the optimal policy for the problem (2). The
goal is to �nd an� -optimal policy de�ned as follows.

De�nition 2.1. A policy ~� is � -optimal if its corresponding
optimality gap and the constraint violation satisfy

V �
0 (� ) � V ~�

0 (� ) � � ; and






�
c � V ~� (� )

�
+








2
� �;

whereV �
0 (� ) is the optimal value of (2),

V ~� (� ) :=
�
V ~�

1 (� ); : : : ; V ~�
m (� )

� >

andc := [ c1; : : : ; cm ]> :

2.3 Notation

Let I m denotem � m identity matrix, 1m 2 Rm be a
vector of ones. The set of nonnegative real numbers is de-
noted byR+ . Notationint P is used for the interior of a set
P � Rm . Given a vectorx 2 Rm , let kxkp; p 2 [1; 1 ]
denote thep-norm of x, [x]+ be de�ned by ([x]+ ) i =
maxf 0; x i g; i = 1 ; : : : ; m. For two vectorsx; y 2 Rm ,
inner product is denoted byhx; yi or x> y. Given two func-
tionsf (� ) andg(� ), we writef (� ) = O(g(� )) if there exists
some constantC > 0, such thatf (� ) � Cg(� ) for small
enough� . ~O(�) meansO(�) up to logarithmic factor in a
small power (usually 1 or 2). Bold symbol��� denotes the
constant (��� = 3 :1415: : :) contrary to plain� which indi-
cates policy.log(�) is the natural logarithm. For two prob-
ability measuresP andQ de�ned on a measurable space
(
 ; F ), dT V (P; Q) denotes the total variation distance, i.e.,

dT V (P; Q) := sup
A 2F

jP(A) � Q(A)j: (3)

3 CUTTING-PLANE ALGORITHM FOR
CMDP

In this section, we introduce the cutting-plane algorithm for
CMDP which is presented in Algorithm 1. The algorithm
assumes access to:

1. Oracles, suf�cent to run natural policy gradient al-
gorithm (see Appendix A), for our MDP with arbi-
trary rewards. For example, access to exact gradient
of value function w.r.t. softmax policy parametriza-
tion for any vector of rewards, and exact Fisher infor-
mation matrix for a softmax-parametrized policy. Or,
in our �nite setting, also access to soft Q-functions is
enough.

2. Exact value function of a policy w.r.t to constraints'
reward vectorsr 1; : : : ; rm .

In the algorithm, policies may be stored as full
softmax parametrizations (19), or directly as vectors
� (ajs); 8(s; a) 2 S � A (both ways are equivalent and
can be calculated one from another).

The core idea is to consider the entropy-regularized La-
grange function

L � (�; � ) := V �
0 (� ) + h�; V � (� ) � ci + � H (� );

where� 2 Rm
+ is the vector of dual variables,

V � (� ) = [ V �
1 (� ); : : : ; V �

m (� )]> and c = [ c1; : : : ; cm ]>

(4)
are respectively vectors of constraints and constraint
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thresholds,

H(� ) = � E
� 1X

t =0


 t log (� (at j st ))
�
�
�

s0 � �; a t � � (� j st ) ; st +1 � P (� j st ; at )
�

is the discounted entropy of the policy� and � > 0 is
the regularization coef�cient. The proposed method is
based on two components: Vaidya's cutting-plane method
(Vaidya, 1989, 1996) for solving the dual problem

min
� 2 Rm

+

�
d� (� ) := max

� 2 �
L � (�; � )

	
; (5)

and an entropy-regularized policy optimizer for solving the
inner problemmax� 2 � L � (�; � ) on each iteration of the
outer loop. Below is the description of both components.

3.1 Entropy-regularized Policy Optimizer

To estimate the gradient of the dual functionr d� (� ), one
has to solve the problemmax� 2 � L � (�; � ). Note that
this is equivalent to maximizing an entropy-regularized
value function corresponding to a reward functionr � :=
r 0 +

P m
i =1 � i r i . As mentioned in the introduction, en-

tropy regularization enables the linear rate of convergence
of an NPG method. In what follows,NPG (r � ; �; � ) repre-
sents a call to NPG procedure that learns the policy~� �;� for
the entropy-regularized MDP with the regularization coef-
�cient � and rewardr � up to � -accuracy in terms ofl1
distance to the unique optimal regularized policy, i.e.,




 � �

�;� � ~� �;�





1 < �; (6)

where � �
�;� := arg max � 2 � L � (�; � ) (existence and

uniqueness of such optimal policy is addressed below).
More details on entropy-regularized policy optimizers are
provided in Appendix A.

3.2 Vaidya's Cutting-plane Method

Vaidya's cutting-plane method (Vaidya, 1989, 1996) is an
algorithm for a convex optimization problem with com-
plexity O(m log m

� ), which makes it a good choice for for-
mulations with a small or moderate dimensionality like the
dual problem (5). Moreover, it has been shown that the
method can be used with an inexact subgradient, and it does
not accumulate the error (Gladin et al., 2021). This makes
it very suitable for the problem (5), since the gradient of
the dual function is computed approximately.

We will now shortly list the necessary notions used in Al-
gorithm 1 for the problem (2). A more detailed descrip-
tion of those notions is placed in Appendix B. For a ma-
trix A 2 Rk � m with rows a>

i ; i = 1 ; : : : ; k, and a vector
b 2 Rk , de�ne the polytope

P(A; b) := f � 2 Rm : A� � bg;

the matrix

H (� ; A; b) :=
kX

i =1

ai a>
i�

a>
i � � bi

� 2 ; (7)

the values

� i (� ; A; b) :=
a>

i (H (� ; A; b)) � 1 ai
�
a>

i � � bi
� 2 ; 1 � i � k; (8)

the volumetric barrier of the polytopeP(A; b)

V(� ; A; b) :=
1
2

log (det H (� ; A; b)) ;

where det H (� ; A; b) denotes the determinant of
H (� ; A; b). Finally, de�ne the volumetric center of
P(A; b) as

VolCenter(A; b) := arg min
� 2 int P (A;b )

V(� ; A; b): (9)

SinceV is a self-concordant function ofx, it can be ef�-
ciently minimized with Newton-type methods. The algo-
rithm starts with a pair(A0; b0) 2 Rk0 � m � Rk0 , such that
the polytopeP(A0; b0) contains the search space. We re-
fer the reader to Appendix B for more information on the
original Vaidya's method and its parameters.

4 CONVERGENCE RESULTS FOR THE
PROPOSED ALGORITHM

First, we introduce technical assumptions on our CMDP in-
stance(S; A ; P; 
; r 0; r 1; : : : ; rm ; � ) that are widely used
in reinforcement learning literature, and state the regular-
ized optimal policy uniqueness.

Assumption 4.1 (Slater Condition). There exists a con-
stant� 2 R+ , and at least one policy� � 2 � , such that
for all i = 1 ; : : : ; m; V � �

i (� ) � ci + � .

Slater condition asserts that there exists a strictly feasible
policy. De�ne the set

� := f � 2 Rm
+ j k� k1 � B � g with

B � :=
r 0;max + log jAj

(1 � 
 )�
: (10)

Proposition 4.2(Regularized optimal policy uniqueness).
For any � > 0; � 2 � there exists exactly one optimal
policy for the problem:

max
� 2 �

L � (�; � ):

which we call� �
�;� .

We refer the reader to the Appendix C.1 for the proof.
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Algorithm 1 Cutting-plane algorithm for CMDP

Input: number of outer iterationsT, NPG accuracy� (see (6)), pair(A0; b0) 2 Rk0 � m � Rk0 , algorithm parameters
� � 10� 4, � � 10� 3 � � .

1: for t = 0 ; : : : ; T � 1 do
2: � t := VolCenter( A t ; bt )
3: ComputeH � 1

t := ( H (� t ; A t ; bt ))
� 1 andf � i (� t ; A t ; bt )g

k t
i =1

4: i t := arg min
1� i � k t

� i (� t ; A t ; bt )

5: if � i t (� t ; A t ; bt ) < � then
6: Obtain(A t +1 ; bt +1 ) by removing thei t -th row from(A t ; bt ),
7: kt +1 := kt � 1:
8: else
9: if � t 2 Rm

+ then
10: � t := NPG ( r 0 + h� t ; r i ; �; � )
11: br t := c � V � t (� ) (see notation in (4)),
12: else
13: De�ne br t as the vector with components

( br t ) i =

(
1; (� t ) i < 0;
0; (� t ) i � 0;

i = 1 ; : : : ; m:

14: end if
15: Find such� t 2 R that br >

t � t � � t from the equation

br >
t H � 1

t
br t

( br >
t � t � � t )2

=
1
2

p
��;

16: A t +1 :=
�

A t
br >

t

�
; bt +1 :=

�
bt

� t

�
; kt +1 = kt + 1 .

17: end if
18: end for
19: � T = arg min

� 2f � 0 ;:::;� T � 1 g
d� (� )

20: � T := NPG ( r 0 + h� T ; r i ; �; � )
Output: � T .

Assumption 4.3(Uniform Ergodicity). For any� 2 � , the
Markov chain induced by the policy� �

�;� and the Markov
transition kernel is uniformly ergodic, i.e., there exist con-
stantsCM > 0 and0 < � < 1 such that for allt � 0,

sup
s2S

dT V

�
P(st 2 � j s0 = s) ; � � �

�;�

�
� CM � t ;

where� � �
�;�

is the stationary distribution of the MDP in-
duced by policy� �

�;� , anddT V (�; �) is the total variation
distance, see (3).

Convergence rate of Algorithm 1 in terms of the opti-
mality gapV �

0 (� ) � V � T
0 (� ) and the constraint violation

[c � V � T (� )]+ is described by the following theorem. The
proof can be found in Appendix D.

Theorem 4.4. Suppose Assumptions 4.1 and 4.3 hold, let

T 2 N be �xed and� denote the value

� :=
2m2B �

�

�
� +

p
mRmax

1 � 


�
exp

�
log��� � �T

2m

�
;

(11)
where ��� denotes the constant (��� = 3 :1415: : :). The
cutting-plane algorithm for CMDP (Algorithm 1) with pa-
rameters

k0 := m + 1 ; A0 :=
�

� I m

1

�
;

b0 :=
�

B � 1m

mB �

�
; � := min f 1; 3

p
� g; (12)

number of outer iterations T and NPG accuracy� > 0 (see
(6)) provides the following convergence guarantee of the
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optimality gap and the constraint violation:

V �
0 (� ) � V � T

0 (� ) �
B � Rmax

p
2mL �

1 � 


p
� 2=3 + 6 
�

(13)

+ 2 � + 18
� 3
p

� +
log jAj
1 � 


3
p

�

+
p

mB �
L � jAj Rmax

(1 � 
 )
�; (14)




 [c � V � T (� )]+






2 �
2R2

max L �

1 � 

(� 2=3 + 6 
� )

+
L � jAj Rmax

(1 � 
 )
�; (15)

where

L � :=
�
log�

�
C � 1

M

��
+ (1 � � ) � 1 + 1 :

The value� in (11) re�ects linear convergence of Algo-
rithm 1 in terms of the dual function. As it can be seen
from (13) and (15), this also implies linear convergence in
terms of value function and constraint violation, if NPG
provides appropriate accuracy. Thus, the algorithm results
in the following complexity bound

Corollary 4.5. Algorithm 1 outputs an� -optimal policy
with respect to both the optimality gap and constraint vi-
olation after

T = O
�

m
�

log
m log jAj

(1 � � )(1 � 
 )���

�
(16)

steps. The total number of calls to the policy gradient ora-
cle made in all NPG calls is:

Noracle = O
�

T �
1

1 � 

log

m log jAj
(1 � � )(1 � 
 )��

�
=

= O
�

m
(1 � 
 )�

� log
m log jAj

(1 � � )(1 � 
 )��
�

� log
m log jAj

(1 � � )(1 � 
 )���

�
:

Proof of the corollary is in Appendix D.1.
Remark1. From the proof of the Corollary 1 in Appendix
Li et al. (2021), the number of policy gradient method iter-
ations is

NAR-CPO =
Rmax

p
m

((1 � � )� )1=2(1 � 
 )3�
;

where we skip not only constants, but alsolog-factors,
which could be close to zero,R2

max � r 2
max m. Note that

for the concurrent paper Liu et al. (2021)

NPMD-PD =
1

(1 � 
 )�

�
m

(1 � 
 )2 +
1
�

�

up tolog-factors. For our approach,NVaidya = m
(1 � 
 ) � up to

log-factors (depending on� , � , 
 , � ), � – small numerical
parameter of Vaidya's algorithm. Thus, from these formu-
las we may conclude that up to alog-factor, our approach
is theoretically better when� . � � (1 � 
 ) � 2. But in reality
this log-factor might be signi�cant.
Remark2 (Dependence on the size of state-action space).
It can be shown that the total complexity estimate for the
proposed method is� jSjjAj , assuming� is �xed. How-
ever, if an appropriate policy gradient method is chosen, the
present analysis doesn't require the state space to be �nite.
Still, a �nite action space is currently assumed.

4.1 Regularization of Dual Variables

The proposed approach can also be modi�ed in the follow-
ing way: the dual problem writes as

max
� 2 Rm

+

d�;� (� ) := d� (� ) +
�
2

k� k2
2; (17)

where� > 0 is the regularization coef�cient. In this case,
the vectorbr t in Line 11 of Algorithm 1 will be replaced
with

br t := c � V � t (� ) � �� t :

If � is chosen suf�ciently small, the result of Corollary 4.5
remains true, see Appendix E for details.

5 EXPERIMENTS

For our experiments we used Acrobot-v1, OpenAI Gym
Mei et al. (2020a) environment. This environment contains
two links connected linearly to form a chain, with one end
of the chain �xed. The joint between the two links is actu-
ated. The goal is to swing the end of the lower link up to a
given height. Two additional constraints are implemented
in order to have similar environment as in Li et al. (2021)
for comparison purpose.

In Figure 1 we compare the proposed cutting-plane algo-
rithm (VMDP) with the state-of-the-art primal-dual op-
timization (AR-CPO) method Li et al. (2021) and with
ARNGP-EPG method Zhou et al. (2022). For a fair com-
parison, the same neural softmax policy and the trust region
policy (Schulman et al., 2015a) optimization are used in all
the algorithms.

Similarly to Li et al. (2021) we picture the average over 10
random initialized seeds and translucent error bands have
the width of two standard deviations. The hyper parameters
of AR-CPO algorithm are optimal from Li et al. (2021) and
for ARNGP-EPG algorithm from Zhou et al. (2022). More
information about experiments and parameters settings can
be found in Appendix F.1 and F.2.

Figure 1a represents average total reward over episode,
while Figures 1b and 1c show constraints with dashed line
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(a)

(b)

(c)

Figure 1: Average performance for VMDP, AR-CPO and
ARNPG-EPD; thex-axis is training iteration.

as the constraint thresholds. We used total reward for a fair
comparison with existing state-of-the-art approach. More-
over, in some cases total reward is more important in prac-
tise.

We �nd that VMDP algorithm achieves higher total reward
with similar standard deviation. The speed of converge of
both algorithms is similar. Thus, the proposed algorithm
allows to achieve better performance with the same training
time for an MDP task with the small number of constraints.

(a)

(b)

(c)

Figure 2: Average performance of VMDP and AR-CPO in
case of discounted reward and costs; thex-axis is training
iteration.
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