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Abstract

Overparameterization is known to permit strong
generalization performance in neural networks.
In this work, we provide an initial theoretical
analysis of its effect on catastrophic forgetting
in a continual learning setup. We show experi-
mentally that in Permuted MNIST image classi-
fication tasks, the generalization performance of
multilayer perceptrons trained by vanilla stochas-
tic gradient descent can be improved by over-
parameterization, and the extent of the perfor-
mance increase achieved by overparameteriza-
tion is comparable to that of state-of-the-art con-
tinual learning algorithms. We provide a theoret-
ical explanation of this effect by studying a qual-
itatively similar two-task linear regression prob-
lem, where each task is related by a random or-
thogonal transformation. We show that when a
model is trained on the two tasks in sequence
without any additional regularization, the risk
gain on the first task is small if the model is suf-
ficiently overparameterized.

1 INTRODUCTION

Continual learning is the ability of a model to learn con-
tinuously from a stream of data, building on what was
previously learned and retaining previously learned skills
without the need for retraining. A major obstacle for neu-
ral networks to learn continually is the catastrophic for-
getting problem: the abrupt drop in performance on pre-
vious tasks upon learning new ones. Modern neural net-
works are typically trained to greedily minimize a loss ob-
jective on a training set, and without any regularization,
the model’s performance on a previously trained task may
degrade. Techniques for mitigating catastrophic forgetting
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fall under a wide family of groups (Delange et al., 2021).
In this paper, we focus on comparison to regularization
techniques. Generally, the goal of regularization methods
is to determine important parameters from previous tasks
and constrain them so that they do not get modified too
much while training subsequent tasks. Two common state-
of-the-art regularization methods are Synaptic Intelligence
(SI) (Zenke et al., 2017) and Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017). See Appendix A for a
detailed description of them.

It is well-known that strong generalization performance
for neural networks is typically obtained in the overpa-
rameterized regime, where the number of learnable pa-
rameters is greater than the number of training exam-
ples. Work on overparameterized machine learning has led
to research on the so-called double descent phenomenon,
where test error improves as model complexity increases
beyond the level needed to fit the training data, out-
performing all underparameterized versions of the model
(Belkin et al., 2019). One of the first observations of this
behavior in modern neural networks was in extremely wide
ResNet18 models that generalize better than their underpa-
rameterized counterparts on CIFAR-10 despite fitting to la-
bel noise (Nakkiran et al., 2021). This model-wise double
descent phenomenon has been demonstrated analytically in
a variety of machine learning models (Hastie et al., 2019,
Belkin et al., 2020, Bartlett et al., 2020), including some as
simple as linear regression. Such linear models will be the
basis of theoretical analysis in the present paper.

There exists work that shows that the catastrophic for-
getting of a multilayer perceptron (MLP) on the Rotated
MNIST benchmark can be reduced simply by increasing
the width of the architecture (Mirzadeh et al., 2022a). We
replicate this work in the setting of 10 Permuted MNIST
tasks, where each task has data given by random permuta-
tions of the original MNIST images (LeCun, 1998). We
train 2-layer MLPs with a variety of layer widths given
by [400w, 400w], where w = 1,3,5,7,9, using vanilla
stochastic gradient descent and the continual learning algo-
rithms, ST and EWC. We compare the average test accuracy
on all seen tasks. As expected, and as shown in Figure 1,
average accuracy with SGD drops significantly after learn-
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Figure 1: Results of Permuted MNIST experiment. Red
curves denote performance of SI, yellow curves denote
performance of EWC, blue curves denote performance of
Vanilla SGD. Bolder saturation of lines corresponds to
larger width parameters (more overparameterization). Spe-
cific hyperparameters are reported in Appendix B. Curves
for w = 7,9 for EWC are omitted due to computational
constraints on Fisher matrix estimates.

ing multiple tasks, and that drop is mitigated by using SI
or EWC. Interestingly, we observe that a significant frac-
tion of the accuracy gain achieved by SI or EWC can be
obtained with vanilla SGD by simply overparameterizing
the model. This can be seen by comparing the w = 1 and
w = 9 curves with SGD to the curves with SI and EWC.
See Appendix B for more details on the experiments.

The goal of the present paper is to analytically illus-
trate the effect overparameterization can have on catas-
trophic forgetting. As with the latest illustrations
of double descent (Hastie et al., 2019, Belkin et al., 2020,
Bartlett et al., 2020), we choose to study the effect with a
linear regression problem for simplicity and mathematical
convenience. While the experiments above study the case
of tasks related by random permutations, our analysis will
instead study the qualitatively similar case where two tasks
are related by a random orthogonal transformation, which
results in simpler mathematical analysis, as we discuss in
Section 3. The relation given by the random orthogonal
transformation gives two data feature spaces corresponding

to each task that are approximately but not exactly orthogo-
nal. We construct two tasks, A and B. Let task A be defined
by data matrix X 2 R™ P, with rows being p noisy ran-
dom projections of some low-dimensional latent features,
and responses y 2 R" that are noiseless and linear in the
latent features. Let O be arandom p  p orthogonal matrix.
Then task B is defined by data Xg = XA O~ and the same
responses y. Learning tasks A and B involves estimating
a 8 2 RP for the predictor f : x ® 2z~ f to fit the data
(Xa,y) and (Xg,y), respectively.

We analyze the increase in statistical risk on task A between
an estimator trained on task A by minimizing square loss,
with initialization at zero, and one sequentially trained on
task A and then task B with no explicit regularization. Let
R(f ) be the risk on task A of an estimator f with parame-
ters 3. Let BA be the parameters of the model that is trained
on task A. Let BB A be the parameters of a model that is ini-
tialized at BA and then trained on task B. Our main result
is that if there are more training examples than the intrin-
sic (latent) dimensionality of the data and if there is not too
much noise in the observed features, then

r

R(fr,,) R(f~) S (1

< |3

with high probability. The result asserts that under our
linear model, the extent of catastrophic forgetting is arbi-
trarily small if the overparameterization ratio, p/n, is suf-
ficiently large. We thus see an analytical illustration that
catastrophic forgetting can be ameliorated by overparam-
etization in the case of a suitable linear model. The full
theorem is stated in Section 2.4 and its proof is provided in
Appendix F.

The contributions of this paper are:

* We provide a linear regression problem that exhibits
the effect that overparameterization can account for a
majority of the performance drop due to catastrophic
forgetting.

* We establish a non-asymptotic bound on the perfor-
mance drop of this linear model in an orthogonal
transformation task setting using results from random
matrix theory. This result provides a formal illustra-
tion that continual learning can in some cases be ame-
liorated by overparameterization.

2 ANALYSIS OF CATASTROPHIC
FORGETTING IN A LINEAR MODEL

In this section, we present a latent space model for lin-
ear regression that we will analyze in order to illustrate
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that overparameterization can ameliorate catastrophic for-
getting. Our single task model is the latent space model
of Hastie et al. (2019) without label noise. Then, we
present the analogy between this linear model and neural
networks. Next, we empirically demonstrate that under this
model, overparameterization ameliorates catastrophic for-
getting. Finally, we present a theorem that establishes that
observation with high probability.

2.1 Latent Space Models for Two Linear Regression
tasks

Let Z = RY, which we call the latent feature space. Con-
sider data for regression generated by a noiseless linear re-
sponse to standard Gaussian latent features. That is, for
some 6 2 RY, let an example be given by

z N (0, Id)7 (2)
y=2z0. 3)
Let X = RP, which we call the observed feature space.

We consider the case where, for each example, we have
access only to p observed features, given by noisy random
projections of the latent features:

r=Wz+u (@)

where W 2 RP 9and u N (0,7p). We could take W
to have i.i.d. N(0,~) entries, but for mathematical con-
venience, we will instead study the idealization in which
W has columns that form a scaled orthonormal basis of a
random d-dimensional subspace of RP. Namely, W= W =
pylg. For large p, this idealization is approximately satis-
fied under the above Gaussian model for W.

We consider two tasks, A and B, both with n examples.
Task A has data (Xa,y) 2 R™ P R™ where each of the
n rows of Xa and entries of y are sampled independently
by (2) - (4). Let O be sampled uniformly from the set of
p  p orthogonal matrices. Task B has data (Xg,y) where
Xg = Xp0~.

We study estimators that are linear in the observed features
X

frix @ x>B, (5)

and we will sometimes refer to the parameters B as the es-
timator. We estimate the parameters of this model by gra-
dient descent with a square loss. We are interested in the
case of d < mn < p. As n < p, the solution to this prob-
lem depends on initialization and solves the following op-
timization problem:

arg min %kB Bok? s.t.y = X B, (6)

where [y is the initialization, and X is either Xa or Xg,
depending on the task being solved. To study the sequential
training of tasks A and B, we define the following estima-
tors:

. BA is the solution to task A when initialized at O,
. BB is the solution to task B when initialized at 0,

. BB A 1s the solution to task B when initialized at BA-

These parameters are found by solving the following opti-
mization problems:

BA = arg m,i\n %kﬁkz s.t.y = XAB, @)
BB = arg min %kﬁkz s.t.y = XBB, 3
. 1~ - A
BeA = arg 1n,i\n Qkﬂ ﬁAk2 s.t. y = Xgpg. C))

The optimization problem in (6) has the following closed
form solution when X has rank n:

B=po+X7(XX™) Yy XT(XX7) X8 (10)
=fo+X7(XX7) 1y Px-fo, an
where Py~ is the orthogonal projector onto the range of

X~. Asn < p, Xa and Xp have rank n with probability 1,
and this gives the following closed forms for Ba, Og, OBA:

Ba = XA (XaXZ) v, (12)
fe = Xg(XeX3) v (13)
Bea = Ba+ BB Px;BA 14)

We evaluate these estimators on task A. The risk on task A
of an estimator f with parameters (3 is given by

R(fr)=d?+ (B BB B (15)

where
S=WW~ +1, (16)
B=T+WW~) we 17)
o =07 (W"W +1I4) 6 (18)






