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Abstract

Overparameterization is known to permit strong
generalization performance in neural networks.
In this work, we provide an initial theoretical
analysis of its effect on catastrophic forgetting
in a continual learning setup. We show experi-
mentally that in Permuted MNIST image classi-
fication tasks, the generalization performance of
multilayer perceptrons trained by vanilla stochas-
tic gradient descent can be improved by over-
parameterization, and the extent of the perfor-
mance increase achieved by overparameteriza-
tion is comparable to that of state-of-the-art con-
tinual learning algorithms. We provide a theoret-
ical explanation of this effect by studying a qual-
itatively similar two-task linear regression prob-
lem, where each task is related by a random or-
thogonal transformation. We show that when a
model is trained on the two tasks in sequence
without any additional regularization, the risk
gain on the first task is small if the model is suf-
ficiently overparameterized.

1 INTRODUCTION

Continual learning is the ability of a model to learn con-
tinuously from a stream of data, building on what was
previously learned and retaining previously learned skills
without the need for retraining. A major obstacle for neu-
ral networks to learn continually is the catastrophic for-
getting problem: the abrupt drop in performance on pre-
vious tasks upon learning new ones. Modern neural net-
works are typically trained to greedily minimize a loss ob-
jective on a training set, and without any regularization,
the model’s performance on a previously trained task may
degrade. Techniques for mitigating catastrophic forgetting
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fall under a wide family of groups (Delange et al., 2021).
In this paper, we focus on comparison to regularization
techniques. Generally, the goal of regularization methods
is to determine important parameters from previous tasks
and constrain them so that they do not get modified too
much while training subsequent tasks. Two common state-
of-the-art regularization methods are Synaptic Intelligence
(SI) (Zenke et al., 2017) and Elastic Weight Consolidation
(EWC) (Kirkpatrick et al., 2017). See Appendix A for a
detailed description of them.

It is well-known that strong generalization performance
for neural networks is typically obtained in the overpa-
rameterized regime, where the number of learnable pa-
rameters is greater than the number of training exam-
ples. Work on overparameterized machine learning has led
to research on the so-called double descent phenomenon,
where test error improves as model complexity increases
beyond the level needed to fit the training data, out-
performing all underparameterized versions of the model
(Belkin et al., 2019). One of the first observations of this
behavior in modern neural networks was in extremely wide
ResNet18 models that generalize better than their underpa-
rameterized counterparts on CIFAR-10 despite fitting to la-
bel noise (Nakkiran et al., 2021). This model-wise double
descent phenomenon has been demonstrated analytically in
a variety of machine learning models (Hastie et al., 2019,
Belkin et al., 2020, Bartlett et al., 2020), including some as
simple as linear regression. Such linear models will be the
basis of theoretical analysis in the present paper.

There exists work that shows that the catastrophic for-
getting of a multilayer perceptron (MLP) on the Rotated
MNIST benchmark can be reduced simply by increasing
the width of the architecture (Mirzadeh et al., 2022a). We
replicate this work in the setting of 10 Permuted MNIST
tasks, where each task has data given by random permuta-
tions of the original MNIST images (LeCun, 1998). We
train 2-layer MLPs with a variety of layer widths given
by [400w, 400w], where w = 1, 3, 5, 7, 9, using vanilla
stochastic gradient descent and the continual learning algo-
rithms, SI and EWC. We compare the average test accuracy
on all seen tasks. As expected, and as shown in Figure 1,
average accuracy with SGD drops significantly after learn-
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Figure 1: Results of Permuted MNIST experiment. Red
curves denote performance of SI, yellow curves denote
performance of EWC, blue curves denote performance of
Vanilla SGD. Bolder saturation of lines corresponds to
larger width parameters (more overparameterization). Spe-
cific hyperparameters are reported in Appendix B. Curves
for w = 7, 9 for EWC are omitted due to computational
constraints on Fisher matrix estimates.

ing multiple tasks, and that drop is mitigated by using SI
or EWC. Interestingly, we observe that a significant frac-
tion of the accuracy gain achieved by SI or EWC can be
obtained with vanilla SGD by simply overparameterizing
the model. This can be seen by comparing the w = 1 and
w = 9 curves with SGD to the curves with SI and EWC.
See Appendix B for more details on the experiments.

The goal of the present paper is to analytically illus-
trate the effect overparameterization can have on catas-
trophic forgetting. As with the latest illustrations
of double descent (Hastie et al., 2019, Belkin et al., 2020,
Bartlett et al., 2020), we choose to study the effect with a
linear regression problem for simplicity and mathematical
convenience. While the experiments above study the case
of tasks related by random permutations, our analysis will
instead study the qualitatively similar case where two tasks
are related by a random orthogonal transformation, which
results in simpler mathematical analysis, as we discuss in
Section 3. The relation given by the random orthogonal
transformation gives two data feature spaces corresponding

to each task that are approximately but not exactly orthogo-
nal. We construct two tasks, A and B. Let task A be defined
by data matrix XA ∈ Rn×p, with rows being p noisy ran-
dom projections of some low-dimensional latent features,
and responses y ∈ Rn that are noiseless and linear in the
latent features. Let O be a random p×p orthogonal matrix.
Then task B is defined by data XB = XAO

⊤ and the same
responses y. Learning tasks A and B involves estimating
a β ∈ Rp for the predictor fβ : x 7→ x⊤β to fit the data
(XA, y) and (XB , y), respectively.

We analyze the increase in statistical risk on task A between
an estimator trained on task A by minimizing square loss,
with initialization at zero, and one sequentially trained on
task A and then task B with no explicit regularization. Let
R(fβ) be the risk on task A of an estimator f with parame-
ters β. Let β̂A be the parameters of the model that is trained
on task A. Let β̂BA be the parameters of a model that is ini-
tialized at β̂A and then trained on task B. Our main result
is that if there are more training examples than the intrin-
sic (latent) dimensionality of the data and if there is not too
much noise in the observed features, then

R(fβ̂BA
)−R(fβ̂A

) ≲
√

n

p
(1)

with high probability. The result asserts that under our
linear model, the extent of catastrophic forgetting is arbi-
trarily small if the overparameterization ratio, p/n, is suf-
ficiently large. We thus see an analytical illustration that
catastrophic forgetting can be ameliorated by overparam-
etization in the case of a suitable linear model. The full
theorem is stated in Section 2.4 and its proof is provided in
Appendix F.

The contributions of this paper are:

• We provide a linear regression problem that exhibits
the effect that overparameterization can account for a
majority of the performance drop due to catastrophic
forgetting.

• We establish a non-asymptotic bound on the perfor-
mance drop of this linear model in an orthogonal
transformation task setting using results from random
matrix theory. This result provides a formal illustra-
tion that continual learning can in some cases be ame-
liorated by overparameterization.

2 ANALYSIS OF CATASTROPHIC
FORGETTING IN A LINEAR MODEL

In this section, we present a latent space model for lin-
ear regression that we will analyze in order to illustrate
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that overparameterization can ameliorate catastrophic for-
getting. Our single task model is the latent space model
of Hastie et al. (2019) without label noise. Then, we
present the analogy between this linear model and neural
networks. Next, we empirically demonstrate that under this
model, overparameterization ameliorates catastrophic for-
getting. Finally, we present a theorem that establishes that
observation with high probability.

2.1 Latent Space Models for Two Linear Regression
tasks

Let Z = Rd, which we call the latent feature space. Con-
sider data for regression generated by a noiseless linear re-
sponse to standard Gaussian latent features. That is, for
some θ ∈ Rd, let an example be given by

z ∼ N (0, Id), (2)

y = z⊤θ. (3)

Let X = Rp, which we call the observed feature space.
We consider the case where, for each example, we have
access only to p observed features, given by noisy random
projections of the latent features:

x = Wz + u (4)

where W ∈ Rp×d and u ∼ N (0, Ip). We could take W
to have i.i.d. N (0, γ) entries, but for mathematical con-
venience, we will instead study the idealization in which
W has columns that form a scaled orthonormal basis of a
random d-dimensional subspace of Rp. Namely, W⊤W =
pγId. For large p, this idealization is approximately satis-
fied under the above Gaussian model for W .

We consider two tasks, A and B, both with n examples.
Task A has data (XA, y) ∈ Rn×p × Rn where each of the
n rows of XA and entries of y are sampled independently
by (2) - (4). Let O be sampled uniformly from the set of
p× p orthogonal matrices. Task B has data (XB , y) where
XB = XAO

⊤.

We study estimators that are linear in the observed features
x:

fβ̂ : x 7→ x⊤β̂, (5)

and we will sometimes refer to the parameters β̂ as the es-
timator. We estimate the parameters of this model by gra-
dient descent with a square loss. We are interested in the
case of d < n < p. As n < p, the solution to this prob-
lem depends on initialization and solves the following op-
timization problem:

argmin
β̂

1

2
∥β̂ − β0∥2 s.t. y = Xβ̂, (6)

where β0 is the initialization, and X is either XA or XB ,
depending on the task being solved. To study the sequential
training of tasks A and B, we define the following estima-
tors:

• β̂A is the solution to task A when initialized at 0,

• β̂B is the solution to task B when initialized at 0,

• β̂BA is the solution to task B when initialized at β̂A.

These parameters are found by solving the following opti-
mization problems:

β̂A = argmin
β̂

1

2
∥β̂∥2 s.t. y = XAβ̂, (7)

β̂B = argmin
β̂

1

2
∥β̂∥2 s.t. y = XBβ̂, (8)

β̂BA = argmin
β̂

1

2
∥β̂ − β̂A∥2 s.t. y = XBβ̂. (9)

The optimization problem in (6) has the following closed
form solution when X has rank n:

β̂ = β0 +X⊤(XX⊤)−1y −X⊤(XX⊤)−1Xβ0 (10)

= β0 +X⊤(XX⊤)−1y − PX⊤β0, (11)

where PX⊤ is the orthogonal projector onto the range of
X⊤. As n < p, XA and XB have rank n with probability 1,
and this gives the following closed forms for β̂A, β̂B , β̂BA:

β̂A = X⊤
A (XAX

⊤
A )−1y, (12)

β̂B = X⊤
B (XBX

⊤
B )−1y, (13)

β̂BA = β̂A + β̂B − PX⊤
B
β̂A. (14)

We evaluate these estimators on task A. The risk on task A
of an estimator f with parameters β̂ is given by

R(fβ̂) = σ2 + (β̂ − β)⊤Σ(β̂ − β) (15)

where

Σ = WW⊤ + Ip (16)

β = (I +WW⊤)−1Wθ (17)

σ2 = θ⊤(W⊤W + Id)
−1θ (18)
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Figure 2: The solid black line depicts the span of W . The
true parameters corresponding to tasks A and B are given
by β ∈ W and Oβ. The gray lines depict the set of
solutions to XAβ = y and XBβ = y. The estimators
β̂A, β̂B , β̂BA are given by orthogonal projections of an ini-
tialization on the respective consistent solutions. The red
and blue ellipses depict lines of constant risk for tasks A
and B, respectively. Note that the grey line through β̂A is
nearly (but not exactly) orthogonal to W due to noise in
XA. Consequently, β does not lie exactly in this set and
the gray lines do not run precisely through the red and blue
ellipses.

See Appendix E for the derivation of (15)–(18). It follows
from showing that the latent space model described above
is equivalent to an anisotropic regression model where XA

has i.i.d. rows XAi ∼ N (0,Σ) and labels y = XAβ + ϵ
where ϵ ∼ N (0, σ2In).

We aim to bound R(fβ̂BA
) relative to R(fβ̂A

). Figure 2

illustrates the estimators β̂A, β̂B , β̂BA and curves of con-
stant risk. As depicted, if p is large enough, β̂BA has low
risk on Task A and Task B simultaneously.

2.2 Analogy of Linear Model to Neural Networks

The linear model we study is intended to be a mathemat-
ically tractable idealization of a neural network, and it is
meant to analytically illustrate that overparameteriation can
ameliorate catastrophic forgetting. The analogy of this lin-
ear model and neural network training on image data is as
follows:

Natural images in a neural network’s training distribution
can be (approximately) modeled as being on a nonlinear
manifold and having a low-dimensional latent representa-
tion. Instead of observing the latent representation of an
image, the neural network only sees a high-dimensional
representation either directly in pixel space or perhaps in a

representation computed from pixel space. Either of these
representations contain noise in the features used for pre-
diction. Responses can be approximated by a neural net-
work.

In our linear model, the low-dimensional representation of
an input image is in a d-dimensional latent feature lin-
ear space. The responses are linear in the latent features.
We assume the response is noiseless for the sake of sim-
plicity, though our results could be extended to the noisy
case. In our linear model, predictions are made off of a
p-dimensional model given by noisy random projections
of the latent features. We constrain W to have orthonor-
mal columns which is a mathematical idealization of Gaus-
sian measurements. We study two tasks with the same re-
sponses like in the permutation task setup, but for math-
ematical convenience we study tasks that are related by a
random orthogonal transformation instead.

2.3 Numerical Experiment

Before we establish our theoretical result about the system
described in Section 2.1, we provide empirical evidence
that the latent space linear regression model above exhibits
the phenomenon that overparameterization can ameliorate
catastrophic forgetting. Specifically, we provide empirical
evidence that R(fβ̂BA

)−R(fβ̂A
) decreases with p.

Let d = 20, n = 100, γ = 1, β0 = 0⃗, and θ ∼ N (0, Id).
We plot R(fβ̂BA

), R(fβ̂A
), R(fβ0

) as a function of p ∈
(n, 2000) averaged over 100 samplings of W,XA, O, u.

Figure 3: Result of simulated numerical experiment for
random orthogonal transformation tasks. Risk is plotted
as a function of model complexity p for model (2)–(14).
Dashed black line denotes null risk (corresponding to the
zero estimator), blue line denotes risk of estimator trained
on task A, orange line denotes risk of estimator trained on
task A then task B.

Figure 3 shows the results of the experiment. We first note
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that both β̂A and β̂BA outperform the null risk, given by
β = 0. The null risk, R(fβ0

), defines a baseline that any
reasonable model must beat. We also observe that R(fβ̂A

)

and R(fβ̂BA
) are decreasing with p in the overparameter-

ized regime, and that the difference between these risks is
decreasing in p as well. Due to the log-scale of the vertical-
axis, the latter observation is non-obvious. Appendix C
includes a plot of the difference between R(fβ̂BA

) and
R(fβ̂A

) to better illustrate the behavior. This provides evi-
dence that catastrophic forgetting is alleviated in the over-
parameterized regime in our two-task learning setup.

2.4 Main Result

Our main result is an upper bound on the performance drop,
defined as R(fβ̂BA

)−R(fβ̂A
), for the two-task latent space

linear regression model described above and inspired by the
double descent literature. As described in Section 2.1, we
consider (2)–(14), where W satisfies the following assump-
tion.

Assumption 2.1. All non-zero singular values of W are
equal. Namely, W⊤W = pγId.

We begin with a proposition that defines the unlearned
baseline for the problem.

Proposition 2.2. Fix θ ∈ Rd. Let W ∈ Rp×d satisfy As-
sumption 2.1. Then

R(f0) = ∥θ∥2. (19)

This risk calculation agrees with the numerical experiment
in Section 2.3 where ∥θ∥2 ≈ d = 20. The result is formally
stated and proven in Lemma F.3. For our main result, we
prove that if the number of examples exceeds the problem’s
latent dimensionality, if the number of parameters is suffi-
ciently large relative to the number of examples and relative
to the noise level of the observable features, then with high
probability, the performance drop is small.

Theorem 2.3. Fix θ ∈ Rd. Let tasks A,B be given by
(2)–(14). Let W ∈ Rp×d satisfy Assumption 2.1 and n ≥
d, p ≥ max(17n, 1/γ). Then there exists constant c > 0
such that with probability at least 1−10e−cd, the following
holds:

R(fβ̂BA
)−R(fβ̂A

) ≤
(
66

√
n

p
+

12

pγ

)
∥θ∥2 (20)

Theorem 2.3 provides an upper bound on the amount of
risk gained on task A after subsequential training on task B
given by two terms. The first term provides dependence on
the overparameterization ratio p/n and decreases as over-
parameterization becomes more extreme. The second term

is given by the signal to noise ratio of the noisy features.
This term dominates only when γ ≪ 1/

√
np. Based on the

theorem, we observe that the overparameterization needs
only to be linear in n to achieve a negligible performance
drop in unregularized sequential task training compared to
the baseline of ∥θ∥2 in Proposition 2.2. This shows that
catastrophic forgetting is ameliorated in the overparame-
terized regime. This result is formally stated in Lemma
F.11. A formal proof and supporting lemmas are supplied
in Appendix F. We provide a proof sketch here to outline
the techniques used.

2.5 Proof Sketch of Theorem 2.3

For readability, we write XA as A and XB as B. As shown
in Appendix E, the latent space model described above is
equivalent to an anisotropic regression model where A has
i.i.d. rows Ai ∼ N (0,Σ) and labels y = Aβ + ϵ where
ϵ ∼ N (0, σ2In).

Performance drop is given by

R(fβ̂BA
)−R(fβ̂A

) = (β̂BA − β)⊤Σ(β̂BA − β)

− (β̂A − β)⊤Σ(β̂A − β). (21)

After substituting the closed form solutions for β̂A, β̂BA,
distributing terms, and applying simple Cauchy-Schwarz
and triangle inequalities, we get the following bound:

R(fβ̂BA
)−R(fβ̂A

) ≤ 8
pγ

√
pγ

pγ + 1
∥θ∥∥PW β̂B∥

+ 14
√
pγ∥θ∥∥PB⊤ β̂A∥

+ 12
pγ

(pγ + 1)2
∥θ∥2 (22)

= I + II + III (23)

Lemmas F.5, F.6 establish results for orthogonal transfor-
mations to help bound ∥PW β̂B∥, ∥PB⊤ β̂A∥ respectively.
PW is a projection onto a d-dimensional space which
scales the norm in I by d/p. PB⊤ is a projection onto
an n-dimensional space which scales the norm in II by
n/p. As d ≤ n by assumption, II dominates I in the fi-
nal bound. Using these results and simplifying gives the
following bound with probability at least 1 − 10e−cd for
constant c > 0:

I + II ≤ 66

√
n

p
∥θ∥2 (24)

We directly obtain
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III ≤ 12

pγ
∥θ∥2 (25)

Combining these bounds completes the proof.

3 DISCUSSION

Overparameterization is a necessity for continual learning
so that there can exist an infinity of potential optima for
each task (Kirkpatrick et al., 2017). This makes it likely
that there exists an optimum for some task B that is close
to the solutions of some task A. We provide experimental
evidence that overparameterization can provide additional
benefits in combatting catastrophic forgetting for neural
networks solving permutation tasks. However, we are not
the first to observe an experimental relationship between
overparameterization and forgetting. Prior work has shown
that wide models can mitigate forgetting on a number
of continual learning benchmarks (Mirzadeh et al., 2022a,
Mirzadeh et al., 2022b, Ramasesh et al., 2021). We use a
linear model with clear analogies to neural networks in
order to study this behavior theoretically. In our analy-
sis of the linear model in the overparameterized regime,
non-asymptotic matrix estimates and results for orthogonal
transformations provide bounds on the performance drop.
Our main result shows that, under our model, catastrophic
forgetting is ameliorated for sufficiently large overparame-
terization. For the linear setting we study, the behavior we
observe can be explained geometrically: overparameteriza-
tion causes the random orthogonal transformation tasks to
live in approximately orthogonal subspaces, so training on
subsequent tasks does not interrupt performance on learned
tasks.

We view the present work as helping to establish initial re-
sults for continual learning theory. Before the field can rig-
orously understand machine learning algorithms in prac-
tice, the behavior of simple systems should be well un-
derstood. In particular, the behavior of linear systems
with only gradient descent is the most natural initial re-
sult. Our work remarks that future theory should establish
that continual learning algorithms beat not only a moder-
ately parameterized baseline, but also the performance of
extremely overparameterized models.

First we address the concern for using permutation
tasks as realistic benchmarks for continual learning
methods. Researchers believe that permutation tasks
only provide a best-case for real world scenarios
(Farquhar and Gal, 2018). Also, on a number of image
classification datasets, MLPs do not experience forget-
ting when only two permutation tasks are being learned
(Pfülb and Gepperth, 2019). Our experiments confirm this
effect while also showing that overparameterization mit-
igates the observable forgetting on 10 task Permuted

MNIST. Despite these critiques, we use permutation tasks
as a launching point for theory because each task is of the
same ‘difficulty’ and is amenable to mathematical analysis.

Next we discuss our choice to study the problem with a
linear model. Linear regression is the simplest setting,
for which we know, that exhibits double descent. The
consensus of several works that study double descent in
linear models is that the risk of a model is monotoni-
cally decreasing in the overparameterized regime with re-
spect to number of parameters only if the data has low
effective dimension and high ambient dimension com-
pared to the number of training samples (Dar et al., 2021,
Bartlett et al., 2020, Hastie et al., 2019). In order to have
a model that has monotonically decreasing performance
drop for a particular continual learning problem, it is a ne-
cessity that it exhibits monotonically decreasing risk on a
single task. Additionally in recent work, connections have
been made between neural networks and linear models us-
ing the so-called neural tangent kernel (NTK) phenomenon
(Jacot et al., 2018). The parameterization of a neural net-
work can be so large that training only changes its param-
eters slightly from its initialization, resulting in functions
that can be accurately approximated linearly. Hence it is
reasonable that the analysis of linear models can explain
the behavior of neural networks.

We now remark at a technical level two choices in our anal-
ysis. The first is why we studied the case of random orthog-
onal transformation tasks instead of permutation tasks. The
empirical performance between orthogonal and permuta-
tion tasks is similar; they both create tasks that are equally
’difficult’ for an MLP to learn, which spares us from need-
ing to quantify problem difficulty. Appendix D provides
evidence that permutation and orthogonal transformation
tasks have the same difficulty in the linear setting. Also,
the mathematical analysis is easier when studying orthog-
onal transformation tasks. With random orthogonal trans-
formations, any subspace gets mapped to a random sub-
space, for which the values of coefficients are typically well
spread out. With random permutations, some subspaces
(e.g. those aligned with the standard basis elements) do
not exhibit the same spreading effect, making the techni-
cal analysis more involved. Secondly, we do not present a
bound on R(fβ̂A

), though it is expected to approach zero
for large p, as suggested by Figure 3. Whether or not this
risk goes to 0 in p, the performance drop goes to 0 in p
while the null estimator remains with constant risk. So the
regression problem is being solved arbitrarily well for suf-
ficiently large p.

With the growing popularity of continual learning, much
of recent work is focused on developing new algorithms to
mitigate catastrophic forgetting (Kirkpatrick et al., 2017,
Zenke et al., 2017, Shin et al., 2017, Li and Hoiem, 2017).
Only a few papers study the problem theoreti-
cally (Knoblauch et al., 2020, Bennani et al., 2020,
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Doan et al., 2021, Heckel, 2022, Benzing, 2022,
Lee et al., 2021, Evron et al., 2022). Knoblauch et al.
(2020) uses set theory to prove that, in general, continual
learning problems are NP-hard, explaining why generative
replay methods perform so well. Bennani et al. (2020)
uses the NTK regime to prove generalisation guarantees
for an existing continual learning method. Doan et al.
(2021) uses an NTK overlap matrix to define a notion
of task similarity and show that catastrophic forgetting
is more severe when tasks have high similarity. Heckel
(2022) studies a family of continual learning methods that
uses approximations of the Hessian to determine parameter
importance, presenting scenarios where continual learning
provably fails and succeeds. Benzing (2022) shows that
a number of regularization techniques that seem to be
derived from differing philosophies actually all study a
variation of the Fisher information matrix. Lee et al.
(2021) studies a teacher-student setup where they derive
the dynamics of test error to show that continual learning
is most difficult when tasks have intermediate similarity.
Evron et al. (2022) uses angle as a proxy for task similarity
to study the best and worst cases of forgetting on task
sequences. While this work is the most similar to our
analysis, Evron et al. evaluate forgetting using training
error. We believe that it is important to study statistical risk
(expected test error) since the going goal for analysis of
supervised models is to bound the performance on unseen
data.

A natural next step is to study the regimes in which catas-
trophic forgetting is most problematic. This includes the
setting where tasks do not have a nearly orthogonal rela-
tionship but also when data does not necessarily live on
a low-dimensional manifold. We are also interested in
understanding how the ideas of this paper generalize to
other continual learning benchmarks and for more gen-
eral neural network architectures. While our experiments
use networks that have been trained using SGD, our analy-
sis studies minimum-norm interpolators. Even when these
two methods are solving for the same objective, there may
be a gap in the resulting estimators (Zou et al., 2021). It
would be interesting to learn what implications this has
for our theory but we leave this for future work. Prior
work found experimental evidence that catastrophic for-
getting is most severe not when tasks are very dissimilar
but when they only have an intermediate level of similar-
ity (Ramasesh et al., 2020). Using orthogonality as a proxy
for task similarity, this agrees with our work that shows that
nearly orthogonal tasks are less prone to catastrophic for-
getting. An interesting future work would be to formalize
this notion of task similarity for our model. Moving for-
ward, one goal of theory in continual learning is to be able
to analytically compare algorithms. Our work provides a
foundation of understanding this behavior in a simple lin-
ear regression setting. In order to push this work forward,
either non-linear models need to be studied or tasks that are

related by something more complex than permutations.
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Table 1: Hyperparameters for the MNIST experiments
Hyperparameter SI EWC SGD

learning rate 0.1 0.01 0.1
batch size 64 128 64

epochs / dataset 5 20 5
c 0.1
ξ 0.1
λ 150

fisher sample size 1,000

A DESCRIPTION OF CONTINUAL LEARNING TECHNIQUES

Synaptic Intelligence (SI) is a regularization technique that assigns to each parameter of the network an estimate of im-
portance for learned tasks (Zenke et al., 2017). This weight is determined in an online manner by tracking the amount
that each parameter contributed to the decrease in loss during training. The weight is then used to penalize changes to the
network parameters during subsequent training in the form of a regularization term added to the loss function.

Elastic Weight Consolidation (EWC) is a regularization technique that determines the importance of network weights
using an estimation of the Fisher Information Matrix (Kirkpatrick et al., 2017). Near a minimum of the loss function, the
diagonals of the Fisher matrix act as an estimate of the second order derivative of the loss with respect to each parameter.
The magnitude of this derivative is used as a proxy for how sensitive the loss function is to fluctuation of the parameter.
Constraining parameters according to their corresponding Fisher diagonal entries shows as an effective way of retaining
the values of important weights from previous tasks while training on new ones.

B MNIST EXPERIMENTS

Table 1 reports the hyperparameters used in the MNIST experiments. All architectures used ReLU activation functions
for the hidden layers and softmax for the output layers. Weights were initialized as Unif(−1√

i
, 1√

i
) where i is the input

dimension of the given layer. We adopted the same hyperparameters for SI as in the original paper (Zenke et al., 2017).
To our surprise, EWC with default hyperparameters (Kirkpatrick et al., 2017) did not compete with SI. A basic grid search
gave us a model that was more competitive. Blank entries mean that the hyperparameter is not relevant for the particular
method. Curves for w = 7, 9 are omitted due to computational constraints in computing Fisher matrix estimates.

C PLOT OF DIFFERENCE IN RISK FOR LINEAR MODEL

In our paper, we define performance drop to be R(fβ̂BA
) − R(fβ̂A

). This is the quantity that we analyze in our main
theoretical result. However, it is not obvious from Figure 3 that this difference is decreasing in p due to the log-scale of the
vertical-axis. Figure 4 plots this quantity directly (run independently from the experiment in Figure 3). We can observe the
monotonically decreasing behavior in the purple curve, which provides evidence that catastrophic forgetting is alleviated
in the overparameterized regime in our two-task learning setup.

D PERMUTED NUMERICAL EXPERIMENT

Figure 5 shows the result of the numerical experiment in Figure 3 but run independently with a random permutation matrix
instead of a random orthogonal matrix. We observe that the same behavior holds in this scenario.

E EQUIVALENCE OF MODELS AND DERIVATION OF RISK

Recall in Section 2.1 where we defined the LSM model for linear regression. In this section we show that LSM is equivalent
to an anisotropic regression model (ARM). We then use ARM to define the risk expression that we analyze theoretically.

We begin by defining ARM. Define data matrix X ∈ Rn×p and responses y = Xβ + ϵ where ϵ ∼ N (0, σ2In), σ2 =
θ⊤(W⊤W + Id)

−1θ, and β = (I + WW⊤)−1Wθ for some θ ∈ Rd,W ∈ Rp×d. Let rows Xi be independent random
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Figure 4: Result of simulated numerical experiment for orthogonal transformation tasks. Purple curve denotes the value of
performance drop as a function of model complexity p for model (2)–(14).

Figure 5: Result of simulated numerical experiment for random permutation tasks. Dotted black line denotes risk of null
estimator, blue line denotes risk of estimator trained on task A, orange line denotes risk of estimator trained on task A then
task B.

vectors in Rp with covariance Σ = WW⊤ + Ip. Then the model is defined by the distribution over (X, y).

Next we show that ARM is equivalent to LSM. First observe that for both models, (yi, x⊤
i ) ∈ Rp+1 are centered Gaussian

vectors. Thus to show that they induce the same distribution, it suffices to show that they have the same covariance.

Cov((yi, x
⊤
i )

⊤) = E(yi, x⊤
i )

⊤(yi, x
⊤
i ) = E

[
y2i yix

⊤
i

yixi xix
⊤
i

]
(26)

We then compute the covariance matrices for each model.

Under LSM, we have:

E[y2i ] = E(θ⊤zi)(z⊤i θ) = θ⊤Iθ (27)

E[yixi] = E(Wzi + ui)(z
⊤
i θ) = Wθ (28)

E[xix
⊤
i ] = E(Wxi + ui)(z

⊤
i W⊤ + ui) = WW⊤ + I (29)
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Plugging these quantities into (26) gives:

Cov((yi, x
⊤
i )

⊤) =

[
∥θ∥2 (Wθ)⊤

Wθ I +WW⊤

]
(30)

Under ARM, we have:

E[y2i ] = E(β⊤xi + ϵi)(x
⊤
i β + ϵi) = β⊤(I +WW⊤)β + σ2 (31)

E[yixi] = E(xi(x
⊤
i β + ϵi)) = E(xix

⊤
i β + xiϵi) = (I +WW⊤)β (32)

E[xix
⊤
i ] = I +WW⊤ (33)

Plugging these quantities into (26) gives:

Cov((yi, x
⊤
i )

⊤) =

[
β⊤(I +WW⊤)β + σ2 ((I +WW⊤)β)⊤

(I +WW⊤)β I +WW⊤

]
(34)

We now show equivalence of the covariance matrices. Recall that for ARM,
β = (I +WW⊤)−1Wθ and σ2 = θ⊤(I +W⊤W )−1θ. We first show equivalence of the first row, first column entries of
the covariance matrices:

β⊤(I +WW⊤)β + σ2 = θ⊤W⊤(I +WW⊤)−1Wθ + θ⊤(I +W⊤W )−1θ (35)

= θ⊤(W⊤(I +WW⊤)−1W + (I +W⊤W )−1)θ (36)

By Lemma F.12, (I +WW⊤)−1W = W (I +W⊤W )−1. This gives

β⊤(I +WW⊤)β + σ2 = θ⊤(W⊤W (I +W⊤W )−1 + (I +W⊤W )−1)θ (37)

= θ⊤(W⊤W + I)(I +W⊤W )−1θ (38)

= θ⊤θ = ∥θ∥2 (39)

Next we show equivalence of the second row, first column entries of the covariance matrices:

(I +WW⊤)β = (I +WW⊤)(I +WW⊤)−1Wθ = Wθ (40)

The equivalence of the first row, second column entries also follows from this equality. The equivalence of the second row,
second column entries is trivial.

Finally we derive the expression for the risk of ARM. By definition, the risk of an estimator f with parameters β̂ has the
following form:

R(fβ̂) = Ex,y∥β̂⊤x− y∥2 (41)

= Ex,ϵ∥β̂⊤x− β⊤x− ϵ∥2 (42)

= Ex∥β̂⊤x− β⊤x∥2 + Eϵ∥ϵ∥2 (43)

= Ex∥(β̂ − β)⊤x∥2 + Eϵ∥ϵ∥2 (44)

= Ex(β̂ − β)⊤xx⊤(β̂ − β) + Eϵ∥ϵ∥2 (45)

= (β̂ − β)⊤Σ(β̂ − β) + σ2 (46)
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where the third equality holds from independence of ϵ and the sixth equality holds by definition of covariance.

We choose to study ARM with a slightly different but equivalent expression for β. Using Lemma F.12, β = (I +
WW⊤)−1Wθ = W (W⊤W + I)−1θ.

F SUPPORTING LEMMAS

We begin with an assumption, inspired by Hastie et al. (2019), that all non-zero singular values of W are equal.
Assumption F.1. All non-zero singular values of W are equal. Namely, W⊤W = pγId.
Lemma F.2. Assume W ∈ Rp×d satisfies Assumption F.1. Then

WW⊤ = pγPW (47)

where PW is the orthogonal projection onto the range of W .

Proof. We have that

WW⊤ = WW⊤ pγ

pγ
= pγW

(
1

pγ
Ip

)
W⊤ (48)

By Assumption F.1, we have

WW⊤ = pγW (W⊤W )−1W⊤ (49)

W⊤W has full rank with probability 1, so W (W⊤W )−1W⊤ is given explicitly by PW , which completes the proof.

Lemma F.3. Let Σ = WW⊤ + Ip where W ∈ Rp×d satisfies Assumption F.1. For some θ ∈ Rd, let β = W (W⊤W +
Id)

−1θ. Then

R(f0⃗) = ∥θ∥2 (50)

Proof. We have that

R(f0⃗) = (⃗0− β)⊤Σ(⃗0− β) + σ2 (51)

= β⊤Σβ + σ2 (52)

By Lemma F.2, Σ = pγPW + Ip where PW is the orthogonal projection onto the range of W , which gives

R(f0⃗) = β⊤(pγPW + Ip)β + σ2 (53)

Since β ∈ range(W ),

R(f0⃗) = (pγ + 1)∥β∥2 + σ2 (54)

= (pγ + 1)θ⊤(W⊤W + Id)
−1W⊤W (W⊤W + Id)

−1θ + θ⊤(W⊤W + Id)
−1θ (55)

= (pγ + 1)θ⊤((pγ + 1)Id)
−1pγId((pγ + 1)Id)

−1θ + θ⊤((pγ + 1)Id)
−1θ (56)

=

(
pγ

pγ + 1
+

1

pγ + 1

)
∥θ∥2 = ∥θ∥2 (57)
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Lemma F.4. Let x ∼ N (0, Id), and ϵ ≤ 1, then

P
(
d(1− ϵ) ≤ ∥x∥22 ≤ d(1 + ϵ)

)
≥ 1− e−cϵ2d

where c > 0 is an absolute constant.

Proof. This statement follows from Corollary 5.17 in Vershynin (2010), concerning concentration of sub-exponential ran-
dom variables.

Lemma F.5. Assume W ∈ Rp×d satisfies Assumption F.1. Let O be a random p× p orthogonal matrix. Fix v ∈ Rp. Then,
with probability at least 1− 2e−c1d,

∥PWOv∥2 ≤ 2d

p
∥v∥2, (58)

for some universal constant c1 > 0.

Proof. Let x = Ov, and note that ∥x∥ = ∥v∥, ∥x∥ > 0 with probability 1 and x
∥x∥ ∼ Uniform(Sp−1). Letting z ∼

N (0, Ip), we have that

∥PWOv∥ ≤
∥∥∥PW

x

∥x∥

∥∥∥∥v∥ d
=

∥∥∥PW
z

∥z∥

∥∥∥∥v∥ (59)

where the symbol d
= means equality in distribution. Applying Lemma F.4 twice, we get that for any ϵ < 1, with probability

at least 1− e−cϵ2p − e−cϵ2d,

∥PW
z

∥z∥
∥∥v∥ ≤ ∥PW z∥

√
p
√
1− ϵ

∥v∥ ≤
√
d
√
1 + ϵ

√
p
√
1− ϵ

∥v∥ (60)

for some universal constant c > 0. By choosing suitable ϵ, we obtain that for c1 = cϵ2, with probability at least 1−2e−c1d,
∥PWOv∥2 ≤ 2d

p ∥v∥2.

Lemma F.6. Define A ∈ Rn×p with rows Ai as independent random vectors in Rp with covariance Σ = WW⊤ + Ip
where W ∈ Rp×d satisfies Assumption F.1. Let O be a random p× p orthogonal matrix. Fix v ∈ range(A⊤). Then with
probability at least 1− 2e−c1n

∥POA⊤v∥2 ≤ 2n

p
∥v∥2 (61)

for some universal constant c1 > 0.

Proof. We have that

∥POA⊤PA⊤v∥ = ∥OPA⊤O⊤PA⊤v∥ = ∥PA⊤O⊤PA⊤v∥ (62)

= ∥PA⊤
O⊤PA⊤v

∥O⊤PA⊤v∥
∥∥O⊤PA⊤v∥ (63)

≤ ∥PA⊤
O⊤PA⊤v

∥O⊤PA⊤v∥
∥∥v∥ (64)

d
= ∥PA⊤

z

∥z∥
∥∥v∥ (65)

where z ∼ N (0, Ip) and the last equality follows from the rotational invariance of O. Applying Lemma F.4 twice, we get
that for any ϵ < 1, with probability at least 1− e−cϵ2p − e−cϵ2n,

∥PA⊤
z

∥z∥
∥∥v∥ ≤ ∥PA⊤z∥

√
p
√
1− ϵ

∥v∥ ≤
√
n
√
1 + ϵ

√
p
√
1− ϵ

∥v∥ (66)

for some universal constant c > 0. By choosing suitable ϵ, we obtain that for c1 = cϵ2, with probability at least 1−2e−c1n,
∥POA⊤v∥2 ≤ 2n

p ∥v∥2.
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Lemma F.7. Let a ∈ Rp be generated by N (0,Σ), Σ = WW⊤ + Ip where W ∈ Rp×d satisfies Assumption F.1. Then

E∥a∥22 = dpγ + p (67)

Proof. It holds that E∥a∥22 = ∥Σ1/2∥2F (Vershynin, 2010).

∥Σ1/2∥2F = ∥Σ∥∗ (68)

where ∥∥∗ denotes the nuclear norm. By Lemma F.2, Σ = pγPW + Ip, which has d singular values of pγ + 1 and p − d
singular values of 1. So

∥Σ∥∗ = d(pγ + 1) + p− d = dpγ + p (69)

Lemma F.8. Define A ∈ Rn×p with rows Ai independent random vectors in Rp with covariance Σ = pγPW + Ip where
W ∈ Rp×d satisfies Assumption F.1. Then with probability at least 1− 2e−n,

σmin(A)2 ≥ (
√
p− d− 2

√
n)2 (70)

Proof. WLOG let range(W ) = span(e1, ..., ed). Then we can decompose A into two pieces: A(1) ∈ Rn×d with i.i.d.
N (0, pγ + 1) entries and A(2) ∈ Rn×p−d with i.i.d. N (0, 1) entries. This gives

σmin(A)2 = σmin(AA⊤) = σmin(A(1)A
⊤
(1) +A(2)A

⊤
(2)) (71)

≥ σmin(A(2)A
⊤
(2)) = σmin(A(2))

2 = σmin(A
⊤
(2))

2 (72)

By Theorem 5.39 in Vershynin (2010), σmin(A
⊤
(2))

2 ≥ (
√
p− d− 2

√
n)2 with probability at least 1− 2e−n.

Lemma F.9. Define A ∈ Rn×p with rows Ai independent random vectors in Rp with covariance Σ = WW⊤ + Ip where
W ∈ Rp×d satisfies Assumption F.1. Let ϵ ∼ N (0, σ2In) and σ2 = θ⊤(W⊤W + Id)

−1θ for some θ ∈ Rd. Then with
probability at least 1− 2e−n,

∥A⊤(AA⊤)−1ϵ∥2 ≤ n∥θ∥2

pγ(
√
p− d− 2

√
n)2

, (73)

Proof. We have that

∥A⊤(AA⊤)−1ϵ∥2 ≤ ∥A⊤(AA⊤)−1∥2∥ϵ∥2 (74)

We have that ∥ϵ∥2 = nσ2 = nθ⊤(W⊤W + Id)
−1θ. Under Assumption F.1, this gives ∥ϵ∥2 = n∥θ∥2

pγ+1 ,

∥A⊤(AA⊤)−1ϵ∥2 ≤ ∥A⊤(AA⊤)−1∥2 n∥θ∥
2

pγ + 1
(75)
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It holds that ∥A⊤(AA⊤)−1∥ = 1/σmin(A
⊤) where σmin(A

⊤) is the smallest singular value of A⊤. By Lemma F.8,
σmin(A) ≥

√
p− d− 2

√
n with probability at least 1− 2e−n. This gives

∥A⊤(AA⊤)−1ϵ∥2 ≤ 1

(
√
p− d− 2

√
n)2

· n∥θ∥
2

pγ + 1
≤ n∥θ∥2

pγ(
√
p− d− 2

√
n)2

(76)

Lemma F.10. Suppose W ∈ Rp×d satisfies Assumption F.1. Let β = W (W⊤W + Id)
−1θ for some θ ∈ Rd. If p ≥ 1/γ

and p ≥ 16n+ d, then

√
n∥θ∥

√
pγ(

√
p− d− 2

√
n)

≤ ∥β∥ (77)

Proof. We have that ∥β∥2 = θ⊤(W⊤W+Id)
−1W⊤W (W⊤W+Id)θ. Using Assumption F.1, this gives ∥β∥ =

√
pγ

pγ+1∥θ∥.

Suppose p ≥ 1/γ, then we have that ∥β∥ ≥ 1
2
√
pγ ∥θ∥. When p ≥ 16n+ d,

√
n√

p−d−2
√
n
≤ 1

2 , which gives

√
n∥θ∥

√
pγ(

√
p− d− 2

√
n)

≤ 1

2
√
pγ

∥θ∥ ≤ ∥β∥ (78)

Theorem F.11. Suppose W ∈ Rp×d follows Assumption F.1. Define data matrix A ∈ Rn×p and responses y = Aβ + ϵ
where ϵ ∼ N (0, σ2In), σ2 = θ⊤(W⊤W + Id)

−1θ, and β = W (W⊤W + Id)
−1θ for some θ ∈ Rd. Let rows Ai be

independent random vectors in Rp with covariance Σ = WW⊤ + Ip and n ≥ d, p ≥ max(17n, 1/γ). Let O be a random
p× p orthogonal matrix and B = AO⊤. Let β̂A be the parameters of the minimum norm estimator on A, and β̂BA be the
parameters of the estimator on B using β̂A as initialization as defined in Section 2.1. Let R(fβ̂) be the risk on task A of an

estimator with parameters β̂. Then there exists constant c > 0 such that with probability at least 1− 10e−cd, the following
holds:

R(fβ̂BA
)−R(fβ̂A

) ≤
(
66
√
n

√
p

+
12

pγ

)
∥θ∥2 (79)

Proof. We have that

R(fβ̂BA
)−R(fβ̂A

) = (β̂BA − β)⊤Σ(β̂BA − β)− (β̂A − β)⊤Σ(β̂A − β) (80)

= (β̂A + β̂B − PB⊤ β̂A − β)⊤Σ(β̂A + β̂B − PB⊤ β̂A − β)

− (β̂A − β)⊤Σ(β̂A − β) (81)

Distributing terms with β̂B and PB⊤ β̂A gives

R(fβ̂BA
)−R(fβ̂A

) = (β̂A − β)⊤Σ(β̂A − β)− (β̂A − β)⊤Σ(β̂A − β) + 2β̂⊤
AΣβ̂B − 2β̂⊤

BΣβ

+ β̂⊤
BΣβ̂B − 2β̂⊤

AΣPB⊤ β̂A − 2β̂⊤
BΣPB⊤ β̂A + 2β⊤ΣPB⊤ β̂A

+ (PB⊤ β̂A)
⊤ΣPB⊤ β̂A (82)

= 2β̂⊤
AΣβ̂B − 2β̂⊤

BΣβ + β̂⊤
BΣβ̂B − 2β̂⊤

AΣPB⊤ β̂A − 2β̂⊤
BΣPB⊤ β̂A

+ 2β⊤ΣPB⊤ β̂A + (PB⊤ β̂A)
⊤ΣPB⊤ β̂A (83)
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By Lemma F.2, Σ = pγPW + Ip where PW is the orthogonal projection onto the range of W . This implies that ∥Σ∥ =
pγ + 1, giving

R(fβ̂BA
)−R(fβ̂A

) = 2β̂⊤
A (pγPW + Ip)β̂B − 2β̂⊤

B (pγPW + Ip)β + β̂⊤
B (pγPW + Ip)β̂B

+ (PB⊤ β̂A)
⊤(pγPW + Ip)(PB⊤ β̂A − 2β̂A − 2β̂B + 2β) (84)

≤ 2pγβ̂⊤
APW β̂B + 2β̂⊤

A β̂B − 2pγβ̂⊤
BPWβ − 2β̂⊤

Bβ + pγβ̂⊤
BPW β̂B + β̂⊤

B β̂B

+ (pγ + 1)∥PB⊤ β̂A∥∥PB⊤ β̂A − 2β̂A − 2β̂B + 2β∥ (85)

Applying Cauchy-Schwarz and triangle inequality gives the following bound:

R(fβ̂BA
)−R(fβ̂A

) ≤ 2pγ∥β̂A∥∥PW β̂B∥+ 2∥β̂A∥∥β̂B∥+ 2pγ∥β∥∥PW β̂B∥+ 2∥β̂B∥∥β∥

+ pγ∥β̂B∥∥PW β̂B∥+ ∥β̂B∥2

+ (pγ + 1)∥PB⊤ β̂A∥(∥PB⊤ β̂A∥+ 2∥β̂A∥+ 2∥β̂B∥+ 2∥β∥) (86)

By definition in Section 2, β̂A = PA⊤β+A⊤(AA⊤)−1ϵ and β̂B = OPA⊤β+OA⊤(AA⊤)−1ϵ and it holds that ∥PA⊤β∥ ≤
∥β∥. By Lemma F.9, ∥A⊤(AA⊤)−1ϵ∥ ≤

√
n∥θ∥√

pγ(
√
p−d−2

√
n)

with probability at least 1 − 2e−n (call this Event E). So by

Lemma F.10 if p ≥ max(17n, 1/γ), then ∥β̂A∥ ≤ 2∥β∥ and ∥β̂B∥ ≤ 2∥β∥, which gives

R(fβ̂BA
)−R(fβ̂A

) ≤ 8pγ∥β∥∥PW β̂B∥+ 14(pγ + 1)∥β∥∥PB⊤ β̂A∥+ 12∥β∥2 (87)

We have that ∥β∥2 = θ⊤(W⊤W + Id)
−1W⊤W (W⊤W + Id)θ. Using Assumption F.1, this gives ∥β∥ =

√
pγ

pγ+1∥θ∥,

R(fβ̂BA
)−R(fβ̂A

) ≤ 8
pγ

√
pγ

pγ + 1
∥θ∥∥PW β̂B∥+ 14

√
pγ∥θ∥∥PB⊤ β̂A∥+ 12

pγ

(pγ + 1)2
∥θ∥2 (88)

= I + II + III (89)

We will bound each of these terms separately, starting with I:

Substituting β̂B = B⊤(BB⊤)−1y into this expression and distributing accordingly, we get that PW β̂B = PWOPA⊤β +
PWOA⊤(AA⊤)−1ϵ,

I = 8
pγ

√
pγ

pγ + 1
∥θ∥∥PWOPA⊤β + PWOA⊤(AA⊤)−1ϵ∥ (90)

≤ 8
pγ

√
pγ

pγ + 1
∥θ∥∥PWOPA⊤β∥+ 8

pγ
√
pγ

pγ + 1
∥θ∥∥PWOA⊤(AA⊤)−1ϵ∥ (91)

By Lemma F.5, there exists constant c1 > 0 such that ∥PWOPA⊤β∥ ≤ 1.5
√

d
p∥β∥ and ∥PWOA⊤(AA⊤)−1ϵ∥ ≤

1.5
√

d
p∥A

⊤(AA⊤)−1ϵ∥ with probability at least 1 − 2e−c1d each. By Lemma F.9, ∥A⊤(AA⊤)−1ϵ∥ ≤
√
n∥θ∥√

pγ(
√
p−d−2

√
n)

(failure probability already accounted for on Event E). This gives the following bound with probability at least 1− 4e−c1d:

I ≤ 12
pγ

√
dγ

pγ + 1
∥θ∥∥β∥+ 12

γ
√
ndp

(pγ + 1)(
√
p− d− 2

√
n)

∥θ∥2 (92)
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Substituting ∥β∥ =
√
pγ

pγ+1∥θ∥ gives

I ≤ 12
pγ2

√
dp

(pγ + 1)2
∥θ∥2 + 12

γ
√
ndp

(pγ + 1)(
√
p− d− 2

√
n)

∥θ∥2 (93)

Using pγ + 1 > pγ gives

I ≤ 12

√
d

√
p
∥θ∥2 + 12

√
nd

√
p(
√
p− d− 2

√
n)

∥θ∥2 (94)

Now we bound term II:

Substituting β̂A = A⊤(AA⊤)−1y into this expression and distributing accordingly, we get that PB⊤ β̂A = PB⊤PA⊤β +
PB⊤A⊤(AA⊤)−1ϵ. This gives the following bound:

II = 14
√
pγ∥θ∥∥PB⊤PA⊤β + PB⊤A⊤(AA⊤)−1ϵ∥ (95)

≤ 14
√
pγ∥θ∥∥PB⊤PA⊤β∥+ 14

√
pγ∥θ∥∥PB⊤A⊤(AA⊤)−1ϵ∥ (96)

By Lemma F.6, there exists constant c2 > 0 such that ∥PB⊤PA⊤β∥ ≤ 1.5
√

n
p ∥β∥ and ∥PB⊤A⊤(AA⊤)−1ϵ∥ ≤

1.5
√

n
p ∥A

⊤(AA⊤)−1ϵ∥ with probability at least 1 − 2e−c2n each. By Lemma F.9, ∥A⊤(AA⊤)−1ϵ∥ ≤
√
n∥θ∥√

pγ(
√
p−d−2

√
n)

(failure probability already accounted for on Event E). This gives the following bound with probability 1− 4e−c2n:

II ≤ 21
√
nγ∥θ∥∥β∥+ 21

n
√
p(
√
p− d− 2

√
n)

∥θ∥2 (97)

Substituting ∥β∥ =
√
pγ

pγ+1∥θ∥ gives

II ≤ 21
γ
√
np

pγ + 1
∥θ∥2 + 21

n
√
p(
√
p− d− 2

√
n)

∥θ∥2 (98)

Using pγ + 1 > pγ gives

II ≤ 21

√
n

√
p
∥θ∥2 + 21

n
√
p(
√
p− d− 2

√
n)

∥θ∥2 (99)

Lastly we bound term III . Using pγ + 1 > pγ gives the following bound:

III ≤ 12

pγ
∥θ∥2 (100)

Putting all three terms together gives the following bound with probability 1− 10e−cd where c = min(c1, c2):
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R(fβ̂BA
)−R(fβ̂A

) ≤ 12

√
d

√
p
∥θ∥2 + 12

√
nd

√
p(
√
p− d− 2

√
n)

∥θ∥2 + 21

√
n

√
p
∥θ∥2 (101)

+ 21
n

√
p(
√
p− d− 2

√
n)

∥θ∥2 + 12

pγ
∥θ∥2 (102)

=
12
√
d+ 21

√
n

√
p

∥θ∥2 + 12
√
nd+ 21n

√
p(
√
p− d− 2

√
n)

∥θ∥2 + 12

pγ
∥θ∥2 (103)

Using d ≤ n gives the following bound:

R(fβ̂BA
)−R(fβ̂A

) ≤
(
33
√
n

√
p

+
33n

√
p(
√
p− n− 2

√
n)

+
12

pγ

)
∥θ∥2 (104)

By assumption, p ≥ 17n, so n√
p(

√
p−n−2

√
n)

≤
√
n√
p , which gives the following bound:

R(fβ̂BA
)−R(fβ̂A

) ≤
(
66
√
n

√
p

+
12

pγ

)
∥θ∥2 (105)

Lemma F.12. Let W ∈ Rp×d. Then

(I +WW⊤)−1W = W (W⊤W + I)−1 (106)

Proof. Let W = USV be the SVD of W where U ∈ Rp×d, S ∈ Rd×d, V ∈ Rd×d. Then we have

(I +WW⊤)−1W = (I + USV V ⊤SU⊤)−1USV (107)

= (I + US2U⊤)−1USV (108)

Let Ũ ∈ Rp×p have the first d columns be U and the last p− d columns be the rest of the orthonormal basis. Then we have

(I +WW⊤)−1W = (Ũ Ũ⊤ + US2U⊤)−1USV (109)

= (Ũ Ũ⊤ + Ũ

[
S2 0
0 0

]
Ũ⊤)−1USV (110)

=

(
Ũ

[
I + S2 0

0 I

]
Ũ⊤

)−1

USV (111)

= Ũ

([
I + S2 0

0 I

])−1

Ũ⊤USV (112)

= Ũ

([
I + S2 0

0 I

])−1

(Id, 0)
⊤SV (113)

= Ũ((I + S2)−1, 0)⊤SV (114)

= U(I + S2)−1SV (115)

= US(I + S2)−1V (116)

= USV V ⊤(I + S2)−1V (117)

= W (I +W⊤W )−1 (118)
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G SOCIETAL IMPACT

We are interested in studying theory so that we can better understand existing methods in practice. This allows for a
more thorough understanding of the limitations and failure modes for computational systems that learn throughout their
lifetimes. Thus we believe that theoretical works of artificial intelligence are positive for society and help in the goal of
developing safer and more ethical technology.


