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Abstract

The celebrated FedAvg algorithm of McMahan
et al. (2017) is based on three components: client
sampling (CS), data sampling (DS) and local train-
ing (LT). While the first two are reasonably well
understood, the third component, whose role is
to reduce the number of communication rounds
needed to train the model, resisted all attempts
at a satisfactory theoretical explanation. Mali-
novsky et al. (2022) identified four distinct gener-
ations of LT methods based on the quality of the
provided theoretical communication complexity
guarantees. Despite a lot of progress in this area,
none of the existing works were able to show that
it is theoretically better to employ multiple local
gradient-type steps (i.e., to engage in LT) than to
rely on a single local gradient-type step only in
the important heterogeneous data regime. In a
recent breakthrough embodied in their ProxSkip
method and its theoretical analysis, Mishchenko
et al. (2022) showed that LT indeed leads to prov-
able communication acceleration for arbitrarily
heterogeneous data, thus jump-starting the 5th

generation of LT methods. However, while these
latest generation LT methods are compatible with
DS, none of them support CS. We resolve this
open problem in the affirmative. In order to do so,
we had to base our algorithmic development on
new algorithmic and theoretical foundations.

1 INTRODUCTION

Federated learning (FL) is an emerging paradigm for the
training of supervised machine learning models over ge-
ographically distributed and often private datasets stored
across a potentially very large number of clients’ devices,
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such as mobile phones, edge devices and hospital servers.

The roots of this young field can be traced to four founda-
tional papers dealing with federated optimization (Konečný
et al., 2016a), communication compression (Konečný et al.,
2016b), federated averaging (McMahan et al., 2017) and
secure aggregation (Bonawitz et al., 2017)1.

Federated learning has grown massively since its inception—
in volume, depth and breadth alike—with many ad-
vances in theory, algorithms, systems and practical appli-
cations (Kairouz et al., 2019, Li et al., 2020a, Wang et al.,
2021).

In this work we study the standard optimization formulation
of federated learning, which has the form

min
x∈Rd

[
f(x) := 1

M

M∑
m=1

fm(x)

]
, (1)

where M is the number of clients/devices and each func-
tion fm(x) := Eξ∼Dm [`(x, ξ)] represents the average loss,
measured via the loss function `, of the model parameter-
ized by x ∈ Rd over the training data Dm owned by client
m ∈ [M ] := {1, . . . ,M}.

1.1 Federated averaging

Proposed by McMahan et al. (2017), federated averaging
(FedAvg) is an immensely popular method specifically de-
signed to solve problem (1) while being mindful of sev-
eral constraints characteristic of practical federated environ-
ments. In particular, FedAvg is based on gradient descent
(GD),

but introduces three modifications:

a) client sampling (CS),
b) data sampling (DS), and
c) local training (LT).

1The work of M. Grudzień was performed during a Summer
internship at KAUST in the Optimization & Machine Learning
Lab led by P. Richtárik. M. Grudzień is an undergraduate student
at the University of Oxford, UK.

1These four works are cited in the Google AI blog (McMahan
and Ramage, 2017) which originally announced FL to the general
public.
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Training via FedAvg proceeds in a number of communica-
tion rounds. Each round t starts with the selection of a sub-
set/cohort St ⊆ [M ] of the clients of size Ct = |St|; these
will participate in the training in this round. The aggregating
server then broadcasts the current version of the model, xt,
to all clients m ∈ St in the current cohort. Subsequently,
each client m ∈ St performs K iterations of SGD on its
local loss function fm, initiated with xt, using minibatches
Bk,tm ⊆ Dm of size bm = |Bk,tm | for k = 0, . . . ,K − 1.
Finally, all participating devices send their updated models
to the server for aggregation into a new model xt+1, and the
process is repeated.

All three modifications can be turned on or off, individually,
or in any combination. For example, if we set Ct = M for
all t, then all clients are participating in all rounds, i.e., CS
is turned off. Further, if we set bm = |Dm| for each client
m ∈ [M ], then all clients use all their data to compute the
local gradient estimator needed to perform each SGD step,
i.e., DS is turned off. Finally, if we set K = 1, then only
a single SGD step is taken by each participating client, i.e.,
LT is turned off. If all of these modifications are turned off,
FedAvg reduces to vanilla GD.

1.2 Client and data sampling

While McMahan et al. (2017) provided convincing empirical
evidence for the efficacy of FedAvg, their work did not
contain any theoretical results. Much progress in FL in
the last five years can be attributed to the efforts by the FL
community to understand, analyze, and improve upon these
mechanisms, often first in isolation, as this is easier when
deep understanding is desired.

Since unbiased client and data sampling mechanisms are
intimately linked to the stochastic approximation literature
dating back to the work of Robbins and Monro (1951), it
is not surprising that CS and DS are relatively well under-
stood. For example, variants of SGD supporting virtually
arbitrary unbiased CS and DS mechanisms have been ana-
lyzed by Gower et al. (2019a) in the smooth strongly convex
regime and by Khaled and Richtárik (2020), Chen et al.
(2022) in the smooth nonconvex regime. Oracle optimal2

(in the smooth nonconvex regime) variants of SGD support-
ing virtually arbitrary unbiased CS and DS mechanisms
were proposed and analyzed by Tyurin et al. (2022), who
built upon the previous works of Li et al. (2021), Fang et al.
(2018) and Nguyen et al. (2017).

However, all the works mentioned above analyze GD +
CS/DS only, with LT turned off. If LT is included in the
mix as well, or even considered in isolation as a single add-
on to vanilla GD, significant technical issues arise. These
issues have kept the FL community uneasy and therefore

2See also the earlier work of Horváth and Richtárik (2019), who
analyzed arbitrary sampling mechanisms in the smooth nonconvex
regime with suboptimnal variance-reduced methods.

busy and immensely productive for many years. Since, as
we shall see, this will be of crucial importance for us to
motivate the contributions of this paper, we will now outline
the development of the theoretical understanding of the LT
mechanism by the FL community over the last seven years.

1.3 Local training

Local training—the practice of requiring each participat-
ing client to perform multiple local optimization steps (as
opposed to performing a single step only) based on their
local data before communication-expensive parameter syn-
chronization is allowed to take place—is one of the most
practically useful algorithmic ingredients in the training of
FL models. In fact, LT is so central to the practical success
of FL, and so unique and novel within the trio (CS, DS and
LT) of techniques forming the FedAvg method, that many
authors attach the prefix “Fed” (meaning “federated”) to
any optimization method performing some version of LT,
whether CS and DS are present as well or not.

While LT was popularized by McMahan et al. (2017), it
was proposed in the same form before (Povey et al., 2015,
Moritz et al., 2016), also without any theoretical justifica-
tion3. However, until recently, the empirically observed and
often very significant communication-saving potential of
LT remained elusive, escaping all attempts at a satisfying
theoretical justification.

1.4 Five generations of local training methods

We shall now briefly review the development of the theo-
retical understanding of LT in the smooth strongly convex
regime. We follow the classification proposed by Mali-
novsky et al. (2022), who identified five distinct generations
of LT methods—1) heuristic, 2) homogeneous, 3) sublinear,
4) linear, and 5) accelerated—each new improving upon the
previous one in a certain important way.

1st generation of LT methods (heuristic). The 1st gener-
ation methods offer ample empirical evidence, but do not
come with any convergence rates (Povey et al., 2015, Moritz
et al., 2016, McMahan et al., 2017).

2nd generation of LT methods (homogeneous). The 2nd

generation LT methods do provide guarantees, but their
analysis crucially depends on one or another of the many
incarnations of data homogeneity assumptions, such as i)
bounded gradients, i.e., requiring ‖∇fm(x)‖ ≤ c for all
m ∈ [M ] and x ∈ Rd (Li et al., 2020b), or ii) bounded
gradient dissimilarity (a.k.a. strong growth), i.e., requiring

3However, the even earlier and closely related line of work
on the CoCoA framework, which is based on solving the dual
problem using arbitrary local solvers, comes with solid theoretical
justification (Jaggi et al., 2014, Ma et al., 2015, 2017). Finally, we
would be remiss if we did not mention that another related method
was proposed and studied more than 25 years ago by Mangasarian
(1995).
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1
M

∑M
m=1 ‖∇fm(x)‖2 ≤ c‖∇f(x)‖2 for all x ∈ Rd (Had-

dadpour and Mahdavi, 2019). This is problematic since
such assumptions are prohibitively restrictive; indeed, they
are typically not satisfied in real FL environments (Kairouz
et al., 2019, Wang et al., 2021).

3rd generation of LT methods (sublinear). The 3rd gen-
eration LT theory managed to succeed in disposing of the
problematic data homogeneity assumptions (Khaled et al.,
2019, 2020). Woodworth et al. (2020) and Glasgow et al.
(2022) subsequently provided lower bounds for LocalGD
with DS, showing that its communication complexity is not
better than that of minibatch SGD in the heterogeneous data
setting. Additionally, Malinovsky et al. (2020) analyzed LT
methods for general fixed point problems.

Unfortunately, these results suggest that LT-enhanced GD,
often called LocalGD, suffers from a sublinear convergence
rate, which is clearly inferior to the linear convergence rate
of vanilla GD. While removing the reliance on data homo-
geneity assumptions was clearly an important step forward,
this rather pessimistic theoretical result seems to suggest
that LT makes GD worse. However, this is at odds with the
empirical evidence, which maintains that LT enhances GD,
and often significantly so. For these reasons, theoreticians
continued to soldier on, with the quest to at least close the
theoretical gap between LT-based methods and vanilla GD.

4th generation of LT methods (linear). These efforts led
to the identification of the client drift phenomenon as the
culprit responsible for the gap, and to a solution based on
various techniques for the reduction of client drift. This
development marks the start of the 4th generation of LT
methods. The first4 method belonging to this generation,
called Scaffold, and due to Karimireddy et al. (2020), em-
ploys a SAGA-like variance reduction technique (Defazio
et al., 2014) to tame the client drift caused by LT. As a re-
sult, Scaffold has the same communication complexity as
GD. Gorbunov et al. (2021) subsequently proposed a unified
framework for designing and analyzing 3rd and 4th genera-
tion in a single theorem, including new 4th generation LT
methods such S-Local-GD and S-Local-SVRG. Finally, Mi-
tra et al. (2021) proposed the FedLin method, which can be
seen as a variant of one of the methods from Gorbunov et al.
(2021) allowing for the clients to take different number of
local steps (without this leading to any theoretical benefit).

5th generation of LT methods (accelerated). In a recent
breakthrough, Mishchenko et al. (2022) proved that a cer-
tain new and simple form of local training, embodied in
their ProxSkip method, leads to provable communication
acceleration in the smooth strongly convex regime, even in
the notoriously difficult heterogeneous data setting in which
the client data {Dm}Mm=1 is allowed to be arbitrarily differ-
ent. In particular, if each fm is L-smooth and µ-strongly

4If we do not count the closely related works belonging to the
CoCoA framework (Jaggi et al., 2014, Ma et al., 2015, 2017).

convex, then ProxSkip solves (1) in O(
√
L/µ log 1/ε) com-

munication rounds, which is a significant acceleration when
compared with the O(L/µ log 1/ε) complexity of GD. Ac-
cording to Scaman et al. (2019), this accelerated commu-
nication complexity is optimal. Mishchenko et al. (2022)
provided several extensions of their method. In particular,
ProxSkip was enhanced with a very flexible DS mechanism
which can capture virtually any form of (unbiased and non-
variance-reduced) data sampling scheme5. Motivated by
this progress, several other methods belonging to the 5th

generation of LT methods were recently proposed.

First, Malinovsky et al. (2022) extended the ProxSkip
method via the inclusion of virtually arbitrary variance-
reduced SGD methods (Gorbunov et al., 2020) in lieu of
simple SGD, inlcuding SVRG (Johnson and Zhang, 2013,
Konečný and Richtárik, 2017), SAGA (Defazio et al., 2014),
JacSketch (Gower et al., 2020), L-SVRG (Hofmann et al.,
2015, Kovalev et al., 2020a) or DIANA (Mishchenko et al.,
2019, Horváth et al., 2019).

Second, Condat and Richtárik (2022) observed that the
Bernoulli-type randomness employed in the ProxSkip
method whose role is to avoid the computation of an ex-
pensive proximity operator is a special case of a more gen-
eral principle: the application of an unbiased compressor to
the proximity operator, combined with a bespoke variance
reduction mechanism to tame the variance introduced by
the compressor. Condat and Richtárik (2022) further gener-
alized the forward-backward setting used by Mishchenko
et al. (2022) to more complex splitting schemes involving
the sum of three operators (e.g., ADMM (Hestenes, 1969,
Powell, 1969) and PDDY (Davis and Yin, 2017, Salim et al.,
2022)), and besides analyzing the smooth strongly convex
regime, provided results in the convex regime as well.

Finally, Sadiev et al. (2022) pioneered an alternative ap-
proach, based on an LT-friendly modification of the cel-
ebrated Chambolle-Pock method (Chambolle and Pock,
2011). In their APDA-Inexact method, the accelerated com-
munication complexity is preserved, but compared to Prox-
Skip, the # of gradient-type LT steps in each communication
round is improved from O(κ1/2) to O(κ1/3) and O(κ1/4),
where κ = L/µ is the condition number. They further im-
prove on some results of Mishchenko et al. (2022) related
to the decentralized regime where communication happens
along the edges of a connected network.

2 CONTRIBUTIONS

Now that the FL community finally managed to show that
(appropriately designed) LT techniques, which as we have
seen are key behind the success of modern federated op-

5The ProxSkip method of Mishchenko et al. (2022) can in-
corporate all forms of DS strategies captured by the arbitrary
sampling approach of Gower et al. (2019b) which is enabled by
their expected smoothness inequality.
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Table 1: Comparison of all 5th generation local training (LT) methods. Our 5GCS method is the first that supports client
sampling (CS). Moreover, similarly to APDA-Inexact, our theory allows for the LT solver to be chosen virtually arbitrarily.

5th generation LT Method LT Solver Data Sampling Client Sampling Reference
ProxSkip GD, SGD 3(a) 7 Mishchenko et al. (2022)

ProxSkip-VR GD, SGD, VR-SGD 3(b) 7 Malinovsky et al. (2022)
APDA-Inexact any 7 7 Sadiev et al. (2022)

RandProx GD 7 7 Condat and Richtárik (2022)
5GCS any 3 3 this work

(a) Only supports non-variance reduced DS on clients.
(b) Supports non-variance reduced and variance-reduced DS on clients.

timization methods for solving (1), lead to provable com-
munication acceleration guarantees (in the smooth strongly
convex regime), we adopt the stance that further algorith-
mic and theoretical progress in FL should be focused on
advancing the 5th generation of LT methods.

To the best of our knowledge, there are only a handful of
papers providing methods and results that belong to this
latest generation of LT methods (Mishchenko et al., 2022,
Malinovsky et al., 2022, Sadiev et al., 2022, Condat and
Richtárik, 2022). A close examination of these works re-
veals that much is yet to be discovered.

2.1 The open problem we address in this work

The starting point of our work is the observation that
none of the 5th generation local training (LT) methods
support client sampling (CS). In other words, it is not
known whether it is possible to design a method that
would enjoy communication acceleration via LT and at
the same time also support CS.

The problem is harder than one may initially think. We have
talked to several people about this, including the authors of
the ProxSkip method. It turns out that they have tried—“very
hard” in their own words—but their efforts did not bear any
fruit. We have tried as well, and failed. The analysis of
ProxSkip is remarkably tight, and every adaptation towards
supporting CS seems to either lead to technical problems
during the proof construction, or to a loss of communication
acceleration. In fact, it is not even clear how should a CS
variant of ProxSkip look like. Our attempts at guessing what
such a method could look like failed as well, and the variants
we brainstormed diverged in our numerical experiments as
soon as CS was enabled.

Fortunately, it turns out that these negative results were
helpful to us after all. Indeed, they led us to the idea that we
should try to develop an entirely different method; one that
is not based on either ProxSkip nor APDA-Inexact. Once we
started to think outside the box created by our pre-conceived
solution path, we eventually managed to succeed.

2.2 Summary of contributions

We are now ready to outline the key insights and contribu-
tions of our work. Our main idea is to start our development
with the remarkable Point-SAGA method of Defazio (2016).
The key appealing property of this method is that it can solve
(1) with an accelerated rate in the smooth strongly convex
regime. However, Point-SAGA has two critical drawbacks:

(i) In each communication round, Point-SAGA samples
a single client only, uniformly at random, which means
it supports a very rudimentary and hence not practically
interesting form of CS only.

(ii) Point-SAGA requires a prox-oracle for each fm, where
m is the active client, i.e.,

prox 1
τ fm

(x) := arg min
u∈Rd

{
fm(u) + τ

2‖x− u‖
2
}

for some x ∈ Rd and τ > 0 in each communication round,
and do it exactly. This is problematic, since exact evaluation
of the proximity operator is rarely possible, and inexact
evaluation (with a small error) may be overly expensive,
imparting an excessive computational burden on the clients.

Our main contributions can be summarized as follows.

�We propose a new LT method for FL, which we call 5GCS
(Algorithm 1), which achieves accelerated communication
complexity, and also supports client sampling. To the best
of our knowledge, this is the first 5th generation LT method
which works with client sampling (see Table 1). Moreover,
according to Woodworth and Srebro (2016), the communi-
cation complexity of 5GCS is optimal.

� Our method supports arbitrary LT subroutines as long as
they satisfy a certain technical assumption (Assumption 2).
See Table 2 for a list of four variants of 5GCS depending
on what LT subroutine is applied, and the associated com-
munication complexities.

�When an infinity of GD steps is used as the LT subroutine,
our method 5GCS in each communication round evaluates
the prox of fm for all clients m in the cohort, and reduces
to a minibatch version of PointSAGA, which is new6. While

6There is one exception: this method was recently analyzed by
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Table 2: Variants of 5GCS (Algorithm 1) depending on the choice of the LT procedure run by clients m ∈ St in the current
cohort. M = number of clients; C = cohort size.

Algorithm Local Training via Subroutine A Communication Complexity Theorem
5GCS∞

(a) K =∞ steps of GD O
((

M
C

+
√

M
C
L
µ

)
log 1

ε

)
3.1

5GCSK K = O(
√

C
M

L
µ
) steps of GD O

((
M
C

+
√

M
C
L
µ

)
log 1

ε

)
3.3

5GCS0
(b) K = 0 steps of GD O

(
M
C
L
µ
log 1

ε

)
(c) 3.5

5GCSA any method A (as long as it satisfies Assumption 2) O
((

M
C

+
√

M
C
L
µ

)
log 1

ε

)
3.7

(a) This method can be found in the appendix as Algorithm 2.
(b) This method can be found in the appendix as Algorithm 3.
(c) Does not have accelerated communication complexity. Indeed, the communication complexity isO (L/µ log 1/ε) instead ofO

(√
L/µ log 1/ε

)
in the C = M regime.

this method enjoys accelerated communication complex-
ity, its reliance on a prox oracle puts a heavy computation
burden on the clients. On the other hand, when zero GD
steps are used as a subroutine, our method achieves linear
but nonaccelerated communication complexity only. Fortu-
nately, it is sufficient to apply a relatively small number of
GD steps as the LT subroutine while preserving the acceler-
ated communication complexity of minibatch PointSAGA.

� Several further contributions are mentioned in the remain-
ing text.

3 MAIN RESULTS

In this section we describe our new method, 5GCS (Algo-
rithm 1) for solving (1), and formulate our main conver-
gence results (see Table 2 for a summary).

3.1 Convexity and smoothness

In our analysis we focus on the regime when each fm is
L-smooth and µ-strongly convex, which are standard as-
sumptions in the convex optimization literature7.

Assumption 1. The functions fm are L-smooth and µ-
strongly convex for all m ∈ {1, . . . ,M}.

We shall use this assumption in what follows without ex-
plicitly mentioning this. Recall that a continuously dif-
ferentiable function φ : Rd → R is L-smooth if φ(x) −
φ(y) − 〈∇φ(y), x − y〉 ≤ L

2 ‖x − y‖
2 for all x, y ∈ Rd,

and µ-strongly convex if φ(x)− φ(y)− 〈∇φ(y), x− y〉 ≥
µ
2 ‖x− y‖

2 for all x, y ∈ Rd.

3.2 Problem reformulation and its dual

Our method applies to a certain reformulation of (1) which
we shall now describe. Let H : Rd → RMd be the linear op-

Condat and Richtárik (2022).
7While many practical FL models involve neural networks

which lead to nonconvex problems instead, in our work we focus
on resolving a certain key open problem in the foundations of FL
for which there is no answer even in the regime we consider.

erator which maps x ∈ Rd into the vector (x, . . . , x) ∈
RMd consisting of M copies of x. First, notice that
Fm(x) := 1

M (fm(x)− µ
2 ‖x‖

2
) is convex and LF -smooth

with LF := 1
M (L− µ). Further, define F : RMd → R via

F (x1, . . . , xM ) :=
∑M
m=1 Fm(xm).

Having established the necessary notation, we consider the
following reformulation of problem (1):

x? = arg min
x∈Rd

[
f(x) := F (Hx) + µ

2 ‖x‖
2
]
. (3)

It is straightforward to see that f from (1) and (3) are iden-
tical functions. The dual problem to (3) is

u? = arg max
u∈RMd

(
1
2µ

∥∥∥∥ M∑
m=1

um

∥∥∥∥2 +
M∑
m=1

F ∗m(um)

)
,

where F ∗m is the Fenchel conjugate of Fm, defined by
F ∗m(y) := supx∈Rd{〈x, y〉−Fm(x)}. Under Assumption 1,
the primal and dual problems have unique optimal solutions
x? and u?, respectively.

3.3 The 5GCS algorithm

Our proposed algorithm, 5GCS, is formalized as Algo-
rithm 1. The method produces a sequence of primal iterates
xt, and a sequence of dual iterates ut = (ut1, . . . , u

t
M ).

We have added several comments explaining the steps, and
believe that the method should be easy to parse without
additional commentary. In each communication round t,
the participating clients m ∈ St in parallel perform LT via
K steps of GD applied to minimizing function ψtm; see (2).
Below we outline four special variants of 5GCS, depending
on the choice of the LT subroutines {Am}Mm=1.

3.4 LT subroutine: GD with K = +∞ steps (i.e., prox)

The choice K = +∞ corresponds to exact minimization
of function ψtm defined in (2), i.e., to the evaluation of the
prox operator of Fm for all m ∈ St. In this case, 5GCS
reduces to Minibatch-Point-SAGA (see Algorithm 2), and its
convergence properties are described by the next result.
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Algorithm 1 5GCS
1: Input: initial primal iterates x0 ∈ Rd; initial dual iterates u0

1, . . . , u
0
M ∈ Rd; primal stepsize γ > 0; dual stepsize τ > 0; cohort size

C ∈ {1, . . . ,M}
2: Initialization: v0 :=

∑M
m=1 u

0
m � The server initiates v0 as the sum of the initial dual iterates

3: for communication round t = 0, 1, . . . do
4: Choose a cohort St ⊂ {1, . . . ,M} of clients of cardinality C, uniformly at random � CS step
5: Compute x̂t = 1

1+γµ

(
xt − γvt

)
and broadcast it to the clients in the cohort

6: for m ∈ St do
7: Find yK,tm as the final point after K iterations of some local optimization algorithm Am, initiated with y0m = x̂t, for solving the

optimization problem � Client m performs K LT steps

yK,tm ≈ argmin
y∈Rd

{
ψtm(y) := Fm(y) + τ

2

∥∥y − (x̂t + 1
τ
utm
)∥∥2} (2)

8: Compute ut+1
m = ∇Fm(yK,tm ) and send it to the server � Client m updates its dual iterate

9: end for
10: for m ∈ {1, . . . ,M}\St do
11: ut+1

m := utm � Non-participating clients do nothing
12: end for
13: vt+1 :=

∑M
m=1 u

t+1
m � The server maintains vt+1 as the sum of the dual iterates

14: xt+1 := x̂t − γM
C
(vt+1 − vt) � The server updates the primal iterate

15: end for

Theorem 3.1. Consider Algorithm 1 (5GCS) with the LT
solver being GD run for K = +∞ iterations (this is equiva-
lent to Algorithm 2; we shall also call the method 5GCS∞).
Let γ > 0, τ > 0 and γτ ≤ 1

M . Then for the Lyapunov
function

Ψt := 1
γ ‖x

t − x?‖2 + M
C

(
1
τ + 2 1

LF

)
‖ut − u?‖2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1 − ρ)TΨ0,

where ρ := min
(

γµ
1+γµ ,

C
M

2τ
LF+2τ

)
< 1.

The following corollary gives a bound on the number of
communication rounds needed to solve the problem.

Corollary 3.2. Choose any 0 < ε < 1. If we choose

γ =
√

2C
LFµM2 and τ =

√
LFµ
2C , then in order to guarantee

E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥
(
M
C +

√
M
C
L−µ
2µ

)
log 1

ε = Õ
(
M
C +

√
M
C
L
µ

)
communication rounds.

Note that the communication complexity improves as the co-
hort size C increases, and becomes Õ(

√
L/µ) for C = M .

This recovers the accelerated communication complexity of
existing 5th generation local training (LT) methods Prox-
Skip, ProxSkip-VR and APDA-Inexact in the regime when
GD is used as the LT method. However, unlike these
methods, 5GCS∞ supports client sampling (CS). In the
opposite extreme, i.e., when the cohort size is minimal
(C = 1), the communication complexity of 5GCS∞ be-
comes Õ(M +

√
ML/µ). If L/µ ≤M , which will typically

be the case in FL settings with a very large number of clients
(e.g., cross-device FL), the complexity simplifies to Õ(M),

Figure 1: The number of communication rounds of 5GCS
as a function of the number of GD steps forming the LT
subroutine A with L/µ = 104 and C/M = 0.1. The key

observation is that it is enough to choose K = O(
√

M
C
L
µ ),

which is at the left end-point of the “optimal zone”. More
steps do not lead to better communication complexity.

which says that we need as many communication rounds
as there are clients, which makes sense, since we do not as-
sume any form of data homogeneity, and this means that all
clients may contain valuable data. In general, as the cohort
size C increases, the communication complexity improves,
and interpolates between these two extreme cases.

3.5 LT subroutine: GD with K = O(
√

C
M

L
µ ) steps

The key drawback of 5GCS∞ is that the LT subroutine needs
to take an infinite number of GD steps, or equivalently,
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the method requires the exact evaluation of the prox of
Fm. We now show that it is possible to obtain the same
accelerated communication complexity as in the K = +∞
case with a finite, and in fact surprisingly small, number of
GD iterations.

Theorem 3.3. Consider Algorithm 1 (5GCS) with the LT
solver being GD run for K ≥

(
3
4

√
C
M

L
µ + 2

)
log
(

4Lµ

)
iterations. Let 0 < γ ≤ 3

16

√
C

LµM and τ = 1
2γM . Then for

the Lyapunov function

Ψt := 1
γ ‖x

t − x?‖2 + M
C

(
1
τ + 1

LF

)
‖ut − u?‖2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1 − ρ)TΨ0,

where ρ := min
{

γµ
1+γµ ,

C
M

τ
(LF+τ)

}
< 1.

Note that GD needs to be run for K = O
(√

C
M

L
µ

)
local

steps on each client in the cohort. This quantity depends on
the square root of the condition number only, and is smaller
for smaller cohort size C.

It turns out that this result can be improved using a finer
analysis. In particular, we can show that some clients can get
away with fewer LT steps than this, provided that their local
datasets are favorable8. To see this, assume that each fm is
Lm-smooth. Clearly, this implies that each fm is L-smooth
with L = maxm Lm, and Theorem 3.3 holds with this L.
However, recall that client m applies GD to (approximately)
minimize ψtm from (2), and this function happens to be(

1
M (Lm − µ) + τ

)
-smooth and τ -strongly convex. It can

be easily seen that τ ≥ 8
3

√
µL
MC , and hence the condition

number of ψtm is 1
M (Lm − µ) 1

τ + 1 ≤ 3
8

√
C
M

L2
m/L
µ + 1.

So, GD only needs Km = O
(√

C
M

L2
m/L
µ

)
iterations on

client m, which can be much smaller than the worst-case
bound K = O

(√
C
M

L
µ

)
.

The following corollary gives a bound on the number of
communication rounds needed to solve the problem.

Corollary 3.4. Choose any 0 < ε < 1 and γ = 3
16

√
C

LµM .

In order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max
{

1 + 16
3

√
M
C
L
µ ,

M
C + 3

8

√
M
C
L
µ

}
log 1

ε

= Õ
(
M
C +

√
M
C
L
µ

)
communication rounds.

This is the same expression as that from Corollary 3.2, and
hence the same comments we’ve made there apply here, too.

8To the best of our knowledge, a result of this type does not
exist in the FL literature.

3.6 LT subroutine: GD with K = 0 steps

Theorem 3.5. Consider Algorithm 1 (5GCS) with the LT
solver being GD run for K = 0 iterations (this is equivalent
to Algorithm 3; we shall also call the method 5GCS0). Let
0 < γ ≤ C

4LM . Then for the Lyapunov function

Ψt := C
M2γ2

(
1−

√
γMLF

2

)
‖xt − x?‖2 + ‖ut − u?‖2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1− ρ)

T
Ψ0,

where ρ := min
(

γµ
1+γµ ,

C
M+2γLFM2

)
< 1.

The following corollary gives a bound on the number of
communication rounds needed to solve the problem.

Corollary 3.6. Choose any 0 < ε < 1 and γ = C
4LM . In

order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max
{

1 + 4M
C

L
µ ,

M
C + LFM

L

}
log 1

ε = Õ
(
M
C
L
µ

)
communication rounds.

In this case, we do not obtain communication acceleration.
This is because LT with K = 0 is not extensive enough.

3.7 LT subroutine: any method A

Finally, we now show that 5GCS is not limited to exclusively
using GD as the LT solver. To the contrary, 5GCS works
with any subroutine A as long as it is possible to guarantee
that, after a sufficiently large number K of iterations, a
certain inequality holds.

Assumption 2. Let {A1, . . . ,AM} be any LT subroutines
for minimizing functions {ψt1, . . . , ψtM} defined in (2), ca-
pable of finding points {yK,t1 , . . . , yK,tM } in K steps, from
the starting point y0,tm = x̂t for all m ∈ {1, . . . ,M}, which
satisfy the inequality

M∑
m=1

4
τ2

µL2
F

3M

∥∥yK,tm − y?,tm
∥∥2 +

M∑
m=1

LF
τ2

∥∥∇ψtm(yK,tm )
∥∥2

≤
M∑
m=1

µ
6M ‖x̂

t − y?,tm ‖
2
,

where y?,tm is the unique minimizer of ψtm, and τ ≥ 8
3

√
Lµ
MC .

Our most general result follows:

Theorem 3.7. Consider Algorithm 1 (5GCS) with the LT
solvers {A1, . . . ,AM} satisfying Assumption 2. Let 0 <
γ and 0 < τ satisfy γ ≤ 1

τM

(
1− 4µ

3Mτ

)
. Then for the

Lyapunov function

Ψt := 1
γ ‖x

t − x?‖2 + M
C

(
1
τ + 1

LF

)
‖ut − u?‖2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1 − ρ)TΨ0,

where ρ := min
{

γµ
1+γµ ,

C
M

τ
(LF+τ)

}
< 1.
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Note that the convergence rate in this result is identical to
the convergence rate from Theorem 3.3. Therefore, the
same conclusions apply here as well.

3.8 Relation between the # of communication rounds
T on the # of local steps K

We now study the dependence of the # of communication
rounds T on the # of local steps K used by GD as the
LT subroutine. We first show in Theorem 3.8 that with
merely K = O

(
log L

µ

)
local GD steps we can improve the

communication complexity from T = Õ
(
M
C
L
µ

)
(provided

in Theorem 3.5) to T = Õ
(
M
C + L

µ

)
.

Theorem 3.8. Consider Algorithm 1 (5GCS) with the LT
solver being GD. Let γ = 3

16L and τ = 8L
3M . With these

stepsizes, if LT is performed via

K ≥
(
2 + 3MLF

4L

)
log
(

4Lµ

)
= O

(
log L

µ

)
steps of GD, then

T ≥ max
{

1 + 16
3
L
µ ,

M
C + 3M

8C
MLF
L

}
log 1

ε

= Õ
(
M
C + L

µ

)
communication rounds suffice to find an ε-solution.

In Theorem 3.3 we showed that an accelerated commu-
nication complexity can be achieved with merely K =

O
(√

C
M

L
µ log L

µ

)
local GD steps. However, the behavior

of T on the interval between K = O
(

log L
µ

)
(studied in

Theorem 3.8) and K = O
(√

C
M

L
µ log L

µ

)
was not studied

there. We shall do so now.

Theorem 3.9. Consider Algorithm 1 (5GCS) with the LT
solver being GD, which we run for

K ≥ K(α) := 2α log
(

4L
µ

)
(4)

iterations, where α is any constant satisfying

1 < α < 1 + 3
8

√
C
M

L
µ .

Let γ = 1
2Mτ and τ = max

{
L

M(α−1) ,
8
3

√
Lµ
MC

}
. Then

for the Lyapunov function

Ψt := 1
γ ‖x

t − x?‖2 + M
C

(
1
τ + 1

LF

)
‖ut − u?‖2 ,

the iterates of the method satisfy E
[
ΨT
]
≤ (1 − ρ)TΨ0,

where ρ := min
{

γµ
1+γµ ,

C
M

τ
(LF+τ)

}
< 1.

Corollary 3.10. Choose any 0 < ε < 1. In order to
guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max
{

1 + 2L
(α−1)µ ,

M
C α
}

log 1
ε .

Note that if α ≤ M+C
2M +

√
2LC
µM +

(
M−C
2M

)2
, then

T ≥ T (α) :=
(

1 + 2
α−1

L
µ

)
log 1

ε .

Theorem 3.9 and Corollary 3.10 imply that as long as K ≥
K(α) and T ≥ T (α), then E[ΨT ] ≤ εΨ0. By substituting
α = K(α)

2 log 4L
µ

(see (4)) to the expression for T (α), we get

T (α) =

(
1 +

4 log 4L
µ

K(α)−2 log 4L
µ

L
µ

)
log 1

ε = O( 1
K(α) ) log 1

ε .

This inverse dependence of T (α) on K(α) can be observed
empirically; see Figure 2 (right).

4 EXPERIMENTS

We consider `2-regularized logistic regression,

f(x) = 1
MN

M∑
m=1

N∑
i=1

log
(

1 + e(−bm,ia
>
m,ix)

)
+ λ

2 ‖x‖
2,

where am,i ∈ Rd and bm,i ∈ {−1,+1} are the data samples
and labels, M is the number of clients and N is the number
of data points per client. Following Malinovsky et al. (2022),
we set λ = 10−3L, where L is as in Assumption 1. We
chose to highlight a representative experiment on the a1a
dataset from the LibSVM library (Chang and Lin, 2011).
All algorithms were implemented in Python utilizing the
RAY package to simulate parallelization.

4.1 Full participation (C = M )

As a sanity check, we first perform an experiment in the full
participation regime C = M = 5, comparing our method
5GCS with LocalGD (3rd generation), Scaffold, SLocalGD
and FedLin (4th generation) and ProxSkip (5th generation).
We used theoretical stepsizes. For ProxSkip we used the
optimal communication probability parameter p = 1/

√
κ,

where κ = L/µ. In the case of all 4th generation LT meth-
ods and LocalGD, the theoretical rate does not depend on
number of local steps K. In our experiments we used the
same number of local steps K = 1/p =

√
κ for all com-

peting methods. Figure 2 (left) clearly shows that 5GCS
has accelerated communication complexity, outperforming
all 4th and 3rd generation LT methods by a large margin.
However, due to a small numerical constant for the step-
size in our theory (3/16), 5GCS converges more slowly than
ProxSkip, which shows excellent performance.
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Figure 2: Performance of our 5GCS method without (left) and with (middle) CS. The plot on the right shows that 5GCS
achieves optimal communication complexity with a (relatively) small number of local GD steps, as predicted by Theorem 3.3.

4.2 Client sampling (C < M )

Our key contribution is to bring client sampling (CS) to the
world of 5th generation LT methods. Once CS is required,
ProxSkip and APDA-Inexact fall out of the competition as
they do not support CS. We therefore compare our method
5GCS with 4th and 3rd generation LT methods supporting
CS: we have chosen Scaffold and LocalGD. We set M =
15 and C = 3 and used theoretical parameters. Figure 2
(middle) shows that ProxSkip diverges in the CS regime, as
expected. Moreover, 5GCS significantly outperforms the
competing methods.
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SUPPLEMENTARY MATERIAL
A BASIC INEQUALITIES

A.1 Young’s inequalities

For all x, y ∈ Rd and all a > 0, we have

〈x, y〉 ≤ a ‖x‖2

2
+
‖y‖2

2a
, (5)

‖x+ y‖2 ≤ 2 ‖x‖2 + 2 ‖y‖2 , (6)
1

2
‖x‖2 − ‖y‖2 ≤ ‖x+ y‖2 . (7)

A.2 Variance decomposition

For a random vector X ∈ Rd (with finite second moment) and any c ∈ Rd, the variance of X can be decomposed as

E
[
‖X− E[X]‖2

]
= E

[
‖X− c‖2

]
− ‖E[X]− c‖2 . (8)

A.3 Compressor variance

An unbiased randomized mapping C : Rd → Rd has conic variance if there exists ω ≥ 0 such that

E
[
‖C(x)− x‖2

]
≤ ω ‖x‖2 (9)

for all x ∈ Rd.

A.4 Convexity and L-smoothness

Suppose φ : Rd → R is L-smooth and convex. Then

1

L
‖∇φ(x)−∇φ(y)‖2 ≤ 〈∇φ(x)−∇φ(y), x− y〉 (10)

for all x, y ∈ Rd.

A.5 Client Sampling Operator

Definition 1 (Client Sampling Operator). The client sampling operator is the randomized mapping P : RMd → RMd

defined as follows. We choose a random subset S ⊆ {1, . . . ,M} of size C ∈ {1, . . . ,M} uniformly at random, and for
v = (v1, . . . , vM ) ∈ RMd, where vm ∈ Rd for all m, we define

P(v) := (P1(v1), . . . ,PM (vM )) ,

where

Pm(vm) :=

{
M
C vm ∈ Rd for m ∈ S,
0 ∈ Rd otherwise.

The client sampling operatoradmits the following identity:

E
[∥∥H> (P(v)− v)

∥∥2] =
M

C

M − C
M − 1

M∑
m=1

‖vm‖2 −
M − C

C (M − 1)

∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

, (11)

where H was defined in Section 3.2, and v = (v1, . . . , vM ) ∈ RMd and vm ∈ Rd.
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Proof. Let ES denote expectation with respect to the random set S. We can write

E
[∥∥H> (P(v)− v)

∥∥2] = E

∥∥∥∥∥
M∑
m=1

(Pm(vm)− vm)

∥∥∥∥∥
2
 = ES

∥∥∥∥∥∑
m∈S

M

C
vm −

M∑
m=1

vm

∥∥∥∥∥
2


=
M2

C2
ES

∥∥∥∥∥∑
m∈S

vm

∥∥∥∥∥
2
+

∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

− 2M

C
ES

[〈∑
m∈S

vm,

M∑
m=1

vm

〉]

=
M2

C2
ES

[∑
m∈S
‖vm‖2

]
+
M2

C2
ES

∑
m∈S

∑
m′∈S, 6=m

〈vm, vm′〉

− ∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

.

By computing the expectation on the right hand side, we get

E

∥∥∥∥∥
M∑
m=1

(Pm(vm)− vm)

∥∥∥∥∥
2
 =

M

C

∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

+
M

C

C − 1

M − 1

M∑
m=1

M∑
m′=1,6=m

〈vm, vm′〉 −

∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

=
M

C

(
1− C − 1

M − 1

)∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

+

(
M (C − 1)

C (M − 1)
− 1

)∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

=
M

C

(
M − C
M − 1

)∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

− M − C
C (M − 1)

∥∥∥∥∥
M∑
m=1

vm

∥∥∥∥∥
2

.

A.6 Dual Problem and Saddle-Point Reformulation

Then the saddle function reformulation of (3) is:

Find (x?, (u?m)Mm=1) ∈ arg min
x∈Rd

max
u∈RMd

(
µ

2
‖x‖2 +

M∑
m=1

〈x, um〉 −
M∑
m=1

F ∗m(um)

)
. (12)

To ensure well-posedness of these problems, we need to assume that there exists x? ∈ Rd s.t.:

0 = µx? +

M∑
m=1

∇Fm(x?). (13)

Which is equivalent to (1), having a solution, which it does (unique in fact) as each fm is µ-strongly convex. By first order
optimality condition x? and u? that are solution to (12), satisfy:{

0 = µx? +
∑M
m=1 u

?
m

Hx? ∈ ∂F ∗(u?) . (14)

Where the latter in (14) is equivalent to:
∇F (Hx?) = u?. (15)

Throughout, this section we will denote by Ft for all t ≥ 0 the σ-algebra generated by the collection of
(
Rd × RdM

)
-valued

random variables
(
x0, u0

)
, . . . , (xt, ut) .
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B ANALYSIS OF 5GCS∞

Algorithm 2 5GCS with∞ local GD steps (a.k.a. Minibatch Point-SAGA)
1: input: initial points x0 ∈ Rd, u0m ∈ Rd for all m = {1, . . . ,M};
2: stepsize γ > 0, τ > 0; C ∈ {1, . . . ,M}
3: v0 :=

∑M
m=1 u

0
m

4: for t = 0, 1, . . . do
5: x̂t := 1

1+γµ (xt − γvt)
6: Pick St ⊂ {1, . . . ,M} of size C uniformly at random
7: for m ∈ St do
8: ut+1

m := utm + τ x̂t − τprox 1
τ Fm

(
x̂t + 1

τ u
t
m

)
9: end for

10: for m ∈ {1, . . . ,M}\St do
11: ut+1

m := utm
12: end for
13: vt+1 :=

∑M
m=1 u

t+1
m

14: xt+1 := x̂t − γMC (vt+1 − vt)
15: end for

Theorem B.1. Consider Algorithm 1 (5GCS) with the LT solver being GD run for K = +∞ iterations (this is equivalent to
Algorithm 2; we shall also call the method 5GCS∞). Let γ > 0, τ > 0 and γτ ≤ 1

M . Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x?∥∥2 +
M

C

(
1

τ
+ 2

1

LF

)∥∥ut − u?∥∥2 ,
the iterates of the method satisfy E

[
ΨT
]
≤ (1− ρ)TΨ0, where ρ := min

(
γµ

1+γµ ,
C
M

2τ
LF+2τ

)
< 1.

Proof. Noting that updates for ut+1 and xt+1 can be written as

ut+1 := ut + 1
1+ωP

t
(
ût+1 − ut

)
, (16)

xt+1 = x̂t − γMC H
> (ut+1 − ut

)
(17)

wherePt is the client sampling operator, ω = M
C −1 and ût+1 = proxτF∗ (ut + τHx̂t). We can use variance decomposition

and Proposition 1 from Condat and Richtárik (2021) to write

E
[∥∥xt+1 − x?

∥∥2 | Ft] (8)
=

∥∥E[xt+1 | Ft
]
− x?

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
(17)
=

∥∥∥∥E[x̂t − γMC (vt+1 − vt) | Ft
]
− x?

∥∥∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
=

∥∥∥∥x̂t − x? − γMC E
[
H>

(
ut+1 − ut

)
| Ft

]∥∥∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
=

∥∥x̂t − x? − γH> (ût+1 − ut
)∥∥2 + E

[∥∥xt+1 − E
[
xt+1 | Ft

]∥∥2 | Ft]
(11)
=

∥∥x̂t − x? − γH> (ût+1 − ut
)∥∥2︸ ︷︷ ︸

X

+γ2ωran

∥∥ût+1 − ut
∥∥2

−γ2ζ
∥∥H> (ût+1 − ut

)∥∥2 . (18)

where

ωran =
M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Moreover, using (14) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH>ut, (19)

(1 + γµ)x? = x? − γH>u?. (20)
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Using (19) and (20) we obtain

X =
∥∥x̂t − x?∥∥2 + γ2

∥∥H> (ût+1 − ut
)∥∥2 − 2γ

〈
x̂t − x?, H>

(
ût+1 − ut

)〉
≤ (1 + γµ)

∥∥x̂t − x?∥∥2 + γ2
∥∥H> (ût+1 − ut

)∥∥2
−2γ

〈
x̂t − x?, H>

(
ût+1 − u?

)〉
+ 2γ

〈
x̂t − x?, H>

(
ut − u?

)〉
(19)+(20)

=
〈
xt − x? − γH>

(
ut − u?

)
, x̂t − x?

〉
+ γ2

∥∥H> (ût+1 − ut
)∥∥2

−2γ
〈
x̂t − x?, H>

(
ût+1 − u?

)〉
+
〈
x̂t − x?, 2γH>

(
ut − u?

)〉
=

〈
xt − x? + γH>

(
ut − u?

)
, x̂t − x?

〉
+ γ2

∥∥H> (ût+1 − ut
)∥∥2

−2γ
〈
x̂t − x?, H>

(
ût+1 − u?

)〉
(19)+(20)

=
1

1 + γµ

〈
xt − x? + γH>

(
ut − u?

)
, xt − x? − γH>

(
ut − u?

)〉
+γ2

∥∥H> (ût+1 − ut
)∥∥2 − 2γ

〈
x̂t − x?, H>

(
ût+1 − u?

)〉
=

1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H> (ut − u?)∥∥2
+γ2

∥∥H> (ût+1 − ut
)∥∥2 − 2γ

〈
x̂t − x?, H>

(
ût+1 − u?

)〉
. (21)

Combining (18) and (21)

E
[∥∥xt+1 − x?

∥∥2 | Ft] ≤ 1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H> (ut − u?)∥∥2
+γ2(1− ζ)

∥∥H> (ût+1 − ut
)∥∥2 − 2γ

〈
x̂t − x?, H>

(
ût+1 − u?

)〉
+γ2ωran

∥∥ût+1 − ut
∥∥2 . (22)

On the other hand using the variance decomposition and conic variance of Pt

E
[∥∥ut+1 − u?

∥∥2 | Ft] (8)+(9)

≤
∥∥∥∥ut − u? +

1

1 + ω

(
ût+1 − ut

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ût+1 − ut

∥∥2
=

∥∥∥∥ ω

1 + ω
(ut − u?) +

1

1 + ω

(
ût+1 − u?

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ût+1 − u? − (ut − u?)

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u?∥∥2 +

1

(1 + ω)2
∥∥ût+1 − u?

∥∥2
+

2ω

(1 + ω)2
〈
ut − u?, ût+1 − u?

〉
+

ω

(1 + ω)2
∥∥ût+1 − u?

∥∥2
+

ω

(1 + ω)2
∥∥ut − u?∥∥2 − 2ω

(1 + ω)2
〈
ut − u?, ût+1 − u?

〉
=

1

1 + ω

∥∥ût+1 − u?
∥∥2 +

ω

1 + ω

∥∥ut − u?∥∥2 . (23)

Let (st+1
m )Mm=1 ∈ ∂F ∗(ût+1) be such that ût+1

m = utm + τ x̂t − τst+1
m ; st+1 exists and is unique. We also define s?m := x?;

we have s? ∈ ∂F ∗(u?). Therefore,∥∥ût+1 − u?
∥∥2 =

∥∥(ut − u?) + (ût+1 − ut)
∥∥2

=
∥∥ut − u?∥∥2 +

∥∥ût+1 − ut
∥∥2 + 2

〈
ut − u?, ût+1 − ut

〉
=

∥∥ut − u?∥∥2 + 2
〈
ût+1 − u?, ût+1 − ut

〉
−
∥∥ût+1 − ut

∥∥2
=

∥∥ut − u?∥∥2 − ∥∥ût+1 − ut
∥∥2 + 2τ

〈
H>

(
ût+1 − u?

)
, x̂t − x?

〉
−2τ

〈
ût+1 − u?, st+1 − s?

〉
. (24)
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Combining (23), (24) and (22) gives

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] +
1 + ω

τ
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 − γ

1 + γµ

∥∥H> (ut − u?)∥∥2
+γ(1− ζ)

∥∥H> (ût+1 − ut
)∥∥2 − 2

〈
x̂t − x?, H>

(
ût+1 − u?

)〉
+γωran

∥∥ût+1 − ut
∥∥2 +

1

τ

∥∥ut − u?∥∥2 − 1

τ

∥∥ût+1 − ut
∥∥2

+2
〈
H>

(
ût+1 − u?

)
, x̂t − x?

〉
− 2

〈
ût+1 − u?, st+1 − s?

〉
+
ω

τ

∥∥ut − u?∥∥2
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 − γ

1 + γµ

∥∥H> (ut − u?)∥∥2
+

1 + ω

τ

∥∥ut − u?∥∥2 +

(
γ ((1− ζ)M + ωran)− 1

τ

)∥∥ût+1 − ut
∥∥2

−2
〈
ût+1 − u?, st+1 − s?

〉
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 − γ

1 + γµ

∥∥H> (ut − u?)∥∥2
+

1 + ω

τ

∥∥ut − u?∥∥2 − 2
〈
ût+1 − u?, st+1 − s?

〉
.

By 1
LF

-strong monotonicity of ∂F ∗,
〈
ût+1 − u?, st+1 − s?

〉
≥ 1

LF

∥∥ût+1 − u?
∥∥2, and using (23),

〈
ût+1 − u?, st+1 − s?

〉
≥ 1

LF

(
(1 + ω)E

[∥∥ut+1 − u?
∥∥2 | Ft]− ω ∥∥ut − u?∥∥2) .

Hence,

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+ 2

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 +

(
1 + ω

τ
+ 2ω

1

LF

)∥∥ut − u?∥∥2
− γ

1 + γµ

∥∥H> (ut − u?)∥∥2 . (25)

Ignoring the last term in (25), we obtain

E
[
Ψt+1

]
≤ max

(
1

1 + γµ
, 1− 2τ

(1 + ω)(LF + 2τ)

)
E
[
Ψt
]
. (26)

B.1 Proof of Corollary 3.2

Corollary B.2. Choose any 0 < ε < 1. If we choose γ =
√

2C
LFµM2 and τ =

√
LFµ
2C , then in order to guarantee

E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥

(
M

C
+

√
M

C

L− µ
2µ

)
log

1

ε
= Õ

(
M

C
+

√
M

C

L

µ

)

communication rounds.
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Proof. Firstly, note that choosing γ =
√

2C
LFµM2 and τ =

√
LFµ
2C we satisfy γτ = 1

M , than that we get the contraction
constant from the proof to be equal to:

max

1−

√
2Cµ
LFM2

1 +
√

2Cµ
LFM2

, 1−

√
2Lhµ
C

M
C

(
LF +

√
2LFµ
C

)
 = max

1−
√

2Cµ

M
√
LF +

√
2Cµ

, 1−
√

2Cµ

M
√
LF +

√
2µM2

C


= 1−

√
2Cµ

M
√
LF +

√
2µM2

C

.

This gives a rate of

T = O

M√LF +
√

2µM2

C√
2Cµ

log
1

ε

 = O

((
M

C
+

√
(L− µ)M

2µC

)
log

1

ε

)
.
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C ANALYSIS OF 5GCS

Theorem C.1. Consider Algorithm 1 (5GCS) with the LT solver being GD run for

K ≥

(
3

4

√
C

M

L

µ
+ 2

)
log

(
4
L

µ

)

iterations. Let 0 < γ ≤ 3
16

√
C

LµM and τ = 1
2γM . Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x?∥∥2 +
M

C

(
1

τ
+

1

LF

)∥∥ut − u?∥∥2 ,
the iterates of the method satisfy

E
[
ΨT
]
≤ (1− ρ)TΨ0,

where ρ := max
{

γµ
1+γµ ,

C
M

τ
(LF+τ)

}
< 1.

Proof. Noting that updates for ut+1 and xt+1 can be written as

ut+1 := ut + 1
1+ωP

t
(
ūt+1 − ut

)
, (27)

xt+1 = x̂t − γ (ω + 1)H>
(
ut+1 − ut

)
(28)

where Pt is the client sampling operator, ω = M
C − 1 and ūt+1 = ∇F (yK,t). Then using variance decomposition and

Proposition 1 from (Condat and Richtárik, 2021), we obtain

E
[∥∥xt+1 − x?

∥∥2 | Ft] (8)
=

∥∥E[xt+1 | Ft
]
− x?

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
(46)+(11)

=
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2︸ ︷︷ ︸
X

+γ2ωran

∥∥ūt+1 − ut
∥∥2

−γ2ζ
∥∥H>(ūt+1 − ut)

∥∥2 , (29)

where

ωran =
M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Moreover, using (14) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH>ut, (30)

(1 + γµ)x? = x? − γH>u?. (31)

Using (48) and (49) we obtain

X =
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2
=

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − ut)

〉
= (1 + γµ)

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
+ 2γ

〈
x̂t − x?, H>(ut − u?)

〉
− γµ

∥∥x̂t − x?∥∥2
(48)+(49)

=
〈
xt − x? − γH>(ut − u?), x̂t − x?

〉
+ γ2

∥∥H>(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+
〈
x̂t − x?, 2γH>(ut − u?)

〉
− γµ

∥∥x̂t − x?∥∥2 .
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This leads to

X =
〈
xt − x? + γH>(ut − u?), x̂t − x?

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
− γµ

∥∥x̂t − x?∥∥2
(48)+(49)

=
1

1 + γµ

〈
xt − x? + γH>(ut − u?), xt − x? − γH>(ut − u?)

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
− γµ

∥∥x̂t − x?∥∥2
=

1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
− γµ

∥∥x̂t − x?∥∥2 . (32)

Combining (47) and (50), we get

E
[∥∥xt+1 − x?

∥∥2 | Ft] ≤ 1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+γ2ωran

∥∥ūt+1 − ut
∥∥2 − γµ

M

∥∥Hx̂t −Hx?∥∥2 .
Note that we can have the update rule for u as:

ut+1 := ut +
1

1 + ω
Pt
(
ūt+1 − ut

)
,

where Pt is client sampling operator with parameter ω = M
C − 1. Using conic variance formula (9) of Pt, we obtain

E
[∥∥ut+1 − u?

∥∥2 | Ft] (8)+(9)

≤
∥∥∥∥ut − u? +

1

1 + ω

(
ūt+1 − ut

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ūt+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u?∥∥2 +

1

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
+

ω

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

ω

(1 + ω)2
∥∥ut − u?∥∥2 − 2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
=

1

1 + ω

∥∥ūt+1 − u?
∥∥2 +

ω

1 + ω

∥∥ut − u?∥∥2 . (33)

Let us consider the first term in (51):

∥∥ūt+1 − u?
∥∥2 =

∥∥(ut − u?) + (ūt+1 − ut)
∥∥2

=
∥∥ut − u?∥∥2 +

∥∥ūt+1 − ut
∥∥2 + 2

〈
ut − u?, ūt+1 − ut

〉
=

∥∥ut − u?∥∥2 + 2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2 .
Combining the terms together, we get

E
[∥∥ut+1 − u?

∥∥2 | Ft] ≤ ∥∥ut − u?∥∥2 +
1

1 + ω

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
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Finally, we obtain

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] +
1 + ω

τ
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 − γ

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2
+γωran

∥∥ūt+1 − ut
∥∥2 − µ

M

∥∥Hx̂t −Hx?∥∥2
+

1 + ω

τ

∥∥ut − u?∥∥2 − 2
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+

1

τ

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
Ignoring − γ

1+γµ

∥∥H>(ut − u?)
∥∥2 and noting that

−
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+

1

τ

〈
ūt+1 − u?, ūt+1 − ut

〉
= −

〈
yK,t −Hx?, ūt+1 − u?

〉
+

1

τ

〈
∇ψt(yK,t), ūt+1 − u?

〉
(5)+(10)

≤ − 1

LF

∥∥ūt+1 − u?
∥∥2 +

a

2τ

∥∥∇ψt(yK,t)∥∥2 +
1

2aτ

∥∥ūt+1 − u?
∥∥2

= −
(

1

LF
− 1

2aτ

)∥∥ūt+1 − u?
∥∥2 +

a

2τ

∥∥∇ψt(yK,t)∥∥2
(51)

≤ −
(

1

LF
− 1

2aτ

)(
(1 + ω)E

[∥∥ut+1 − u?
∥∥2 | Ft]− ω ∥∥ut − u?∥∥2)

+
a

2τ

∥∥∇ψt(yK,t)∥∥2 ,
we get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

(
γ (1− ζ)M + γωran −

1

τ

)∥∥ūt+1 − ut
∥∥2

+
LF
τ2
∥∥∇ψt(yK,t)∥∥2 − µ

M

∥∥Hx̂t −Hx?∥∥2 .
Where we made the choice a = LF

τ . Using Young’s inequality we have

− µ

3M

∥∥Hx̂t − y?,t + y?,t −Hx?
∥∥2 (7)

≤ µ

3M

∥∥y?,t −Hx?∥∥2 − µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Noting the fact that y?,t = Hx̂t − 1

τ (ût+1 − ut), we have

µ

3M

∥∥y?,t −Hx?∥∥2 (6)

≤ 2
µ

3M

∥∥Hx̂t −Hx?∥∥2 +
2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2 .
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Combining those inequalities, we get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2

−
(

1

τ
− (γ (1− ζ)M + γωran)

)∥∥ūt+1 − ut
∥∥2

+
LF
τ2
∥∥∇ψt(yK,t)∥∥2 − µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Assuming γ and τ can be chosen so that 1

τ − (γ(1− ζ)M + γωran)) ≥ 4
τ2

µ
3M we obtain

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2

− µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Where the point yK,t is assumed to satisfy

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2 ≤ µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Thus

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2 .
By taking the expectation on both sides we get

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LF + M−C

C τ

LF + τ

}
E
[
Ψt
]
,

which finishes the proof. Note that our standard choice of constants is

ω =
M

C
− 1, ωran =

M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Using these parameters the requirement for stepsizes becomes:

1

τ
− γM ≥ 4µ

3Mτ2
.

This inequality is satisfied, when 0 < γ ≤ 3
16

√
C

LµM and τ = 1
2Mγ .
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C.1 Proof of Corollary 3.4

Corollary C.2. Choose any 0 < ε < 1 and γ = 3
16

√
C

LµM . In order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 +

16

3

√
M

C

L

µ
,
M

C
+

3

8

√
M

C

L

µ

}
log

1

ε
= Õ

(
M

C
+

√
M

C

L

µ

)

communication rounds.

Proof. Choosing the maximal γ = 3
16

√
C

LµM and a = LF
τ we have

max

{
1

1 + γµ
,

1
τ + M−C

M
1
LF

1
τ + 1

LF

}
= max

 1

1 + 3
16

√
µC
LM

,
1
τ + M−C

M
1
LF

1
τ + 1

LF


= max

 1

1 + 3
16

√
µC
LM

, 1−
8C

3MLF

√
Lµ
MC

1 + 8M
3MLF

√
Lµ
MC


≤ max

 1

1 + 3
16

√
µC
LM

, 1−
8
3

√
Cµ
ML

1 + 8
3

√
Mµ
LC

 .

Thus Algorithm 1 finds ε-solution in:

T ≥ O

(
max

{
1 +

16

3

√
LM

µC
,
M

C
+

3

8

√
LM

µC

}
log

1

ε

)

communications.
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D ANALYSIS OF 5GCS0

D.1 Proof of Theorem 3.5

Algorithm 3 5GCS with 0 local GD steps
1: input: initial points x0 ∈ Rd, u0m ∈ Rd for all m = {1, . . . ,M};
2: stepsize γ > 0, τ > 0
3: v0 :=

∑M
m=1 u

0
m

4: for t = 0, 1, . . . do
5: x̂t := 1

1+γµ (xt − γvt)
6: Pick St ⊂ {1, . . . ,M} of size C uniform at random
7: for m ∈ St do
8: ut+1

m := ∇Fm(x̂t) = 1
M (∇fm(x̂t)− µx̂t)

9: end for
10: for m ∈ {1, . . . ,M}\St do
11: ut+1

m := utm
12: end for
13: vt+1 :=

∑M
m=1 u

t+1
m

14: xt+1 := x̂t − γMC (vt+1 − vt)
15: end for

Theorem D.1. Consider Algorithm 1 (5GCS) with the LT solver being GD run for K = 0 iterations (this is equivalent to
Algorithm 3; we shall also call the method 5GCS0). Let 0 < γ ≤ C

4LM . Then for the Lyapunov function

Ψt :=
C

M2γ2

(
1−

√
γMLF

2

)∥∥xt − x?∥∥2 +
∥∥ut − u?∥∥2 ,

the iterates of the method satisfy
E
[
ΨT
]
≤ (1− ρ)

T
Ψ0,

where ρ := min
(

γµ
1+γµ ,

C
M+2γLFM2

)
< 1.

Proof. Noting that updates for ut+1 and xt+1 can be written as

ut+1 := ut + 1
1+ωP

t
(
ūt+1 − ut

)
, (34)

xt+1 = x̂t − γ (ω + 1)H>
(
ut+1 − ut

)
(35)

where Pt is a client sampling operator, ω = M
C − 1 and ūt+1 = ∇F (Hx̂t). Then using variance decomposition and

Proposition 1 from (Condat and Richtárik, 2021), we obtain

E
[∥∥xt+1 − x?

∥∥2 | Ft] (8)
=

∥∥E[xt+1 | Ft
]
− x?

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
(35)+(11)

=
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2︸ ︷︷ ︸
X

+γ2ωran

∥∥ūt+1 − ut
∥∥2

−γ2ζ
∥∥H>(ūt+1 − ut)

∥∥2 , (36)

where

ωran =
M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Moreover, using (14) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH>ut, (37)

(1 + γµ)x? = x? − γH>u?. (38)
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Using (37) and (38) we obtain

X =
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2
=

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x?, H>(ūt+1 − ut)

〉
≤ (1 + γµ)

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
+ 2γ

〈
x̂t − x?, H>(ut − u?)

〉
(37)+(38)

=
〈
xt − x? − γH>(ut − u?), x̂t − x?

〉
+ γ2

∥∥H>(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+
〈
x̂t − x?, 2γH>(ut − u?)

〉
=

〈
xt − x? + γH>(ut − u?), x̂t − x?

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
(37)+(38)

=
1

1 + γµ

〈
xt − x? + γH>(ut − u?), xt − x? − γH>(ut − u?)

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
=

1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
. (39)

Combining (36) and (39) we have

E
[∥∥xt+1 − x?

∥∥2 | Ft] ≤ 1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+γ2ωran

∥∥ūt+1 − ut
∥∥2 . (40)

On the other hand using the variance decomposition and conic variance of Pt

E
[∥∥ut+1 − u?

∥∥2 | Ft] (8)+(9)

≤
∥∥∥∥ut − u? +

1

1 + ω

(
ūt+1 − ut

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ūt+1 − ut

∥∥2
=

∥∥∥∥ ω

1 + ω
(ut − u?) +

1

1 + ω

(
ūt+1 − u?

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ūt+1 − u? − (ut − u?)

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u?∥∥2 +

1

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
+

ω

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

ω

(1 + ω)2
∥∥ut − u?∥∥2 − 2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
=

1

1 + ω

∥∥ūt+1 − u?
∥∥2 +

ω

1 + ω

∥∥ut − u?∥∥2 . (41)

Where ∥∥ūt+1 − u?
∥∥2 =

∥∥(ut − u?) + (ūt+1 − ut)
∥∥2

=
∥∥ut − u?∥∥2 +

∥∥ūt+1 − ut
∥∥2 + 2

〈
ut − u?, ūt+1 − ut

〉
=

∥∥ut − u?∥∥2 + 2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2 . (42)

Combining (41) and (42), we get

E
[∥∥ut+1 − u?

∥∥2 | Ft] ≤ ∥∥ut − u?∥∥2 +
1

1 + ω

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) . (43)
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Now let c > 0 and combine (40) with (43) to get

cE
[∥∥xt+1 − x?

∥∥2 | Ft] + E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ c

1 + γµ

∥∥xt − x?∥∥2 + cγ2(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2
−2cγ

〈
H(x̂t − x?), ūt+1 − u?

〉
+ cγ2ωran

∥∥ūt+1 − ut
∥∥2

+
∥∥ut − u?∥∥2 +

1

1 + ω

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2)
(5)

≤ c

1 + γµ

∥∥xt − x?∥∥2 + cγ2(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2
−2cγ

LF

∥∥ūt+1 − u?
∥∥2 + cγ2ωran

∥∥ūt+1 − ut
∥∥2

+
∥∥ut − u?∥∥2 +

1

1 + ω

(
a
∥∥ūt+1 − u?

∥∥2 +
1

a

∥∥ūt+1 − ut
∥∥2 − ∥∥ūt+1 − ut

∥∥2)
≤ c

1 + γµ

∥∥xt − x?∥∥2 +
∥∥ut − u?∥∥2

+

(
cγ2 (1− ζ)M + cγ2ωran +

1

1 + ω

(
1

a
− 1

))∥∥ūt+1 − ut
∥∥2

−
(

2cγ

LF
− 1

1 + ω
a

)∥∥ūt+1 − u?
∥∥2 .

Using (41) and assuming a,c and γ can be chosen so that 2cγ
LF
− 1

1+ωa ≥ 0

cE
[∥∥xt+1 − x?

∥∥2 | Ft] +

(
1 + (1 + ω)

2cγ

LF
− a
)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ c

1 + γµ

∥∥xt − x?∥∥2 +

(
1 + ω

(
2cγ

LF
− 1

1 + ω
a

))∥∥ut − u?∥∥2
+

(
cγ2 (1− ζ)M + cγ2ωran +

1

1 + ω

(
1

a
− 1

))∥∥ūt+1 − ut
∥∥2 .

In our case we have

ω =
M

C
− 1, ωran =

M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

, (44)

the term next to
∥∥ût+1 − ut

∥∥2 becomes

cγ2M +
C

M

(
1

a
− 1

)
,

to get rid of it, we set

c =
C
M

(
1− 1

a

)
γ2M

, a ≥ 1.

An a that maximizes the contration on E
[∥∥ut+1 − u?

∥∥2 | Ft] is given by a =
√

2
γMLF

, thus we need γ ≤ 2
MLF

and

1

γLFM
−
√

2

LF γM
> 0.

Thus we need γ < 1
2MLF

and we can write a contraction constant of Lyapunov function as

max

{
1

1 + γµ
,

1 + ω( 2cγ
LF
− 1

1+ωa)

1 + (1 + ω)( 2cγ
LF
− 1

1+ωa)

}
= max

 1

1 + γµ
,

1 + M−C
C

(
2C

γLFM2 − 2C
M

√
2

LF γM

)
1 + M

C

(
2C

γLFM2 − 2C
M

√
2

LF γM

)
 .
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D.2 Proof of Corollary 3.6

Corollary D.2. Choose any 0 < ε < 1 and γ = C
4LM . In order to guarantee E

[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max

{
1 +

4M

C

L

µ
,
M

C
+
LFM

L

}
log

1

ε
= Õ

(
M

C

L

µ

)
communication rounds.

Proof. If we let γ = C
4LFM2 θ, where θ = MLF

L then

max

 1

1 + γµ
,

1 + M−C
C

(
2C

γLFM2 − 2C
M

√
2

LF γM

)
1 + M

C

(
2C

γLFM2 − 2C
M

√
2

LF γM

)
 = max

 1

1 + C
4LFM2µ

,
1 + M−C

C

(
8 1
θ − 8

√
C

2Mθ

)
1 + M

C

(
8 1
θ − 8

√
C

2Mθ

)


≤ max

 1

1 + C
4LFM2µ

, 1−
8− 8

√
1
2

θ + M
C

(
8− 8

√
1
2

)
 ≤ max

{
1

1 + µC
4LM

, 1− 2C

2M + 2CMLF
L

}
≤ 1

1 +O
(
µC
LM

) .
Thus Algorithm 3 finds ε-solution in

T = O
(
ML

Cµ
log

1

ε

)
iterations.
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E ANALYSIS OF 5GCS FOR ARBITARY SOLVERS Am

In real-life applications we might be in a situation where we would want local solvers to be personalized to each client, one
such reason might be the amount of data or the type of software on a local machine. Thanks to the structure of the lifted
space, the inner problem is separable which allows us to use arbitrary solvers to minimize the local function. The general
local problem

arg min
y∈Rdn

{
ψt(y) := F (y) +

τ

2

∥∥∥∥y − (Hx̂t +
1

τ
ut
)∥∥∥∥2

}
,

can be separated into

arg min
y∈Rd

{
ψtm(y) := Fm(y) +

τ

2

∥∥∥∥y − (x̂t +
1

τ
utm

)∥∥∥∥2
}
,

for m ∈ {1, . . . ,M} as the vector components are independent. This means that the Algorithm A can be interpreted as
concatenation of solutions that Algorithms Am find to respective local problems ψtm. Noting that Assumption 3 implies
Assumption 2, we can note that since local problems are independent there is no constraint on what local solver each client
uses nor on a shared number of local steps that each method uses.

E.1 PROOF OF THEOREM 3.7

Theorem E.1. Consider Algorithm 1 (5GCS) with the LT solvers {A1, . . . ,AM} satisfying Assumption 2. Let 0 < γ ≤
3
16

√
C

LµM and τ = 1
2γM . Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x?∥∥2 +
M

C

(
1

τ
+

1

LF

)∥∥ut − u?∥∥2 ,
the iterates of the method satisfy E

[
ΨT
]
≤ (1− ρ)TΨ0, where ρ := max

{
γµ

1+γµ ,
C
M

τ
(LF+τ)

}
< 1.

Proof. Noting that updates for ut+1 and xt+1 can be written as

ut+1 := ut + 1
1+ωP

t
(
ūt+1 − ut

)
, (45)

xt+1 = x̂t − γ (ω + 1)H>
(
ut+1 − ut

)
, (46)

where Pt is the client sampling operator, ω = M
C − 1 and ūt+1 = ∇F (yK,t). Then using variance decomposition and

Proposition 1 from (Condat and Richtárik, 2021), we obtain

E
[∥∥xt+1 − x?

∥∥2 | Ft] (8)
=

∥∥E[xt+1 | Ft
]
− x?

∥∥2 + E
[∥∥xt+1 − E

[
xt+1 | Ft

]∥∥2 | Ft]
(46)+(11)

=
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2︸ ︷︷ ︸
X

+γ2ωran

∥∥ūt+1 − ut
∥∥2

−γ2ζ
∥∥H>(ūt+1 − ut)

∥∥2 , (47)

where

ωran =
M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Moreover, using (14) and the definition of x̂t, we have

(1 + γµ)x̂t = xt − γH>ut, (48)

(1 + γµ)x? = x? − γH>u?. (49)



Michał Grudzień, Grigory Malinovsky, Peter Richtárik

Using (48) and (49) we obtain

X =
∥∥x̂t − x? − γH>(ūt+1 − ut)

∥∥2
=

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x?, H>(ūt+1 − ut)

〉
= (1 + γµ)

∥∥x̂t − x?∥∥2 + γ2
∥∥H>(ūt+1 − ut)

∥∥2
−2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
+ 2γ

〈
x̂t − x?, H>(ut − u?)

〉
−γµ

∥∥x̂t − x?∥∥2
(48)+(49)

=
〈
xt − x? − γH>(ut − u?), x̂t − x?

〉
+ γ2

∥∥H>(ūt+1 − ut)
∥∥2

−2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+
〈
x̂t − x?, 2γH>(ut − u?)

〉
−γµ

∥∥x̂t − x?∥∥2 .
It leads to

X =
〈
xt − x? + γH>(ut − u?), x̂t − x?

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
−γµ

∥∥x̂t − x?∥∥2
(48)+(49)

=
1

1 + γµ

〈
xt − x? + γH>(ut − u?), xt − x? − γH>(ut − u?)

〉
+γ2

∥∥H>(ūt+1 − ut)
∥∥2 − 2γ

〈
x̂t − x?, H>(ūt+1 − u?)

〉
−γµ

∥∥x̂t − x?∥∥2
=

1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
−γµ

∥∥x̂t − x?∥∥2 . (50)

Combining (47) and (50) we have

E
[∥∥xt+1 − x?

∥∥2 | Ft] ≤ 1

1 + γµ

∥∥xt − x?∥∥2 − γ2

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ2(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2 − 2γ
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+γ2ωran

∥∥ūt+1 − ut
∥∥2 − γµ

M

∥∥Hx̂t −Hx?∥∥2 .
Note that we can have the update rule for u as:

ut+1 := ut + 1
1+ωP

t
(
ūt+1 − ut

)
,

where Pt is the client sampling operator with parameter ω = M
C − 1. Using conic variance formula (9) of Pt we obtain

E
[∥∥ut+1 − u?

∥∥2 | Ft] (8)+(9)

≤
∥∥∥∥ut − u? +

1

1 + ω

(
ūt+1 − ut

)∥∥∥∥2 +
ω

(1 + ω)2
∥∥ūt+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u?∥∥2 +

1

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
+

ω

(1 + ω)2
∥∥ūt+1 − u?

∥∥2
+

ω

(1 + ω)2
∥∥ut − u?∥∥2 − 2ω

(1 + ω)2
〈
ut − u?, ūt+1 − u?

〉
=

1

1 + ω

∥∥ūt+1 − u?
∥∥2 +

ω

1 + ω

∥∥ut − u?∥∥2 . (51)
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Let us consider the first term in (51):∥∥ūt+1 − u?
∥∥2 =

∥∥(ut − u?) + (ūt+1 − ut)
∥∥2

=
∥∥ut − u?∥∥2 +

∥∥ūt+1 − ut
∥∥2 + 2

〈
ut − u?, ūt+1 − ut

〉
=

∥∥ut − u?∥∥2 + 2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2 .
Combining terms together we get

E
[∥∥ut+1 − u?

∥∥2 | Ft] ≤ ∥∥ut − u?∥∥2 +
1

1 + ω

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
Finally, we obtain

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] +
1 + ω

τ
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2 − γ

1 + γµ

∥∥H>(ut − u?)
∥∥2

+γ(1− ζ)
∥∥H>(ūt+1 − ut)

∥∥2
+γωran

∥∥ūt+1 − ut
∥∥2 − µ

M

∥∥Hx̂t −Hx?∥∥2
+

1 + ω

τ

∥∥ut − u?∥∥2 − 2
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+

1

τ

(
2
〈
ūt+1 − u?, ūt+1 − ut

〉
−
∥∥ūt+1 − ut

∥∥2) .
Ignoring − γ

1+γµ

∥∥H>(ut − u?)
∥∥2 and noting

−
〈
x̂t − x?, H>(ūt+1 − u?)

〉
+

1

τ

〈
ūt+1 − u?, ūt+1 − ut

〉
= −

〈
yK,t −Hx?, ūt+1 − u?

〉
+

1

τ

〈
∇ψt(yK,t), ūt+1 − u?

〉
(5)+(10)

≤ − 1

LF

∥∥ūt+1 − u?
∥∥2 +

a

2τ

∥∥∇ψt(yK,t)∥∥2 +
1

2aτ

∥∥ūt+1 − u?
∥∥2

= −
(

1

LF
− 1

2aτ

)∥∥ūt+1 − u?
∥∥2 +

a

2τ

∥∥∇ψt(yK,t)∥∥2
(51)

≤ −
(

1

LF
− 1

2aτ

)(
(1 + ω)E

[∥∥ut+1 − u?
∥∥2 | Ft]− ω ∥∥ut − u?∥∥2)

+
a

2τ

∥∥∇ψt(yK,t)∥∥2 ,
we get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

(
γ (1− ζ)M + γωran −

1

τ

)∥∥ūt+1 − ut
∥∥2

+
LF
τ2
∥∥∇ψt(yK,t)∥∥2 − µ

M

∥∥Hx̂t −Hx?∥∥2 .
Where we made the choice a = LF

τ . Using Young’s inequality we have

− µ

3M

∥∥Hx̂t − y?,t + y?,t −Hx?
∥∥2 (7)

≤ µ

3M

∥∥y?,t −Hx?∥∥2 − µ

6M

∥∥Hx̂t − y?,t∥∥2 .
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Noting the fact that y?,t = Hx̂t − 1
τ (ût+1 − ut), we have

µ

3M

∥∥y?,t −Hx?∥∥2 (6)

≤ 2
µ

3M

∥∥Hx̂t −Hx?∥∥2 +
2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2 .

Combining those inequalities we get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

2

τ2
µ

3M

∥∥ût+1 − ut
∥∥2

−
(

1

τ
− (γ (1− ζ)M + γωran)

)∥∥ūt+1 − ut
∥∥2

+
LF
τ2
∥∥∇ψt(yK,t)∥∥2 − µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Assuming γ and τ can be chosen so that 1

τ − (γ(1− ζ)M + γωran)) ≥ 4
τ2

µ
3M we obtain

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2

− µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Using Assumption 2, we have

M∑
m=1

4

τ2
µL2

F

3M

∥∥yK,tm − y?,tm
∥∥2 +

M∑
m=1

LF
τ2
∥∥∇ψtm(yK,tm )

∥∥2 ≤ M∑
m=1

µ

6M

∥∥x̂t − y?,tm ∥∥2 ,
This is enough to have similar bound in lifted space for the point yK,t:

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2 ≤ µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Thus

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2 .
By taking the expectation on both sides we get

E
[
Ψt+1

]
≤ max

{
1

1 + γµ
,
LF + M−C

C τ

LF + τ

}
E
[
Ψt
]
,
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which finishes the proof. Note that our standard choice of constants is

ω =
M

C
− 1, ωran =

M(M − C)

C(M − 1)
, ζ =

M − C
C(M − 1)

.

Using these parameters the requirement for stepsizes becomes:

1

τ
− γM ≥ 4µ

3Mτ2
.

This inequality is satisfied, when 0 < γ ≤ 3
16

√
C

LµM and τ = 1
2Mγ .

E.2 Reallocation of resources

Assumption 3. Let Am be an Algorithm that can find a point yK,tm after K local steps applied to the local function ψtm
from (2) and starting point y0,tm = x̂t, which satisfies

4

τ2
µL2

F

3M

∥∥yK,tm − y?,tm
∥∥2 +

LF
τ2
∥∥∇ψtm(yK,tm )

∥∥2 ≤ µ
6M ‖x̂

t − y?,tm ‖
2
,

where y?,tm is the unique minimizer of ψtm, and τ ≥ 8
3

√
Lµ
MC .

The general local problem is

arg min
y∈Rdn

{
ψt(y) := F (y) +

τ

2

∥∥∥∥y − (Hx̂t +
1

τ
ut
)∥∥∥∥2

}
, (52)

and the condition necessary for Theorem 3.7 is

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 + LF
τ2

∥∥∇ψt(yK,t)∥∥2 ≤ µ
6M ‖Hx̂

t − y?,t‖2 .

This is actually a restriction in Rdn (a dual/lifted space), which can be equivalently written as

M∑
m=1

4

τ2
µL2

F

3M

∥∥yK,tm − y?,tm
∥∥2 +

M∑
m=1

LF
τ2
∥∥∇ψtm(yK,tm )

∥∥2 ≤ M∑
m=1

µ

6M

∥∥x̂t − y?,tm ∥∥2 .
Assumption 2, which is necessary to hold for Theorem 3.7 arises due to the definition of the lifted space. The strength of
this condition is that it allows for provable convergence even in situations where some clients can not find the required by
Assumption 3 accuracy as long other clients compensate for it by doing more iterations.

E.3 Number of local steps in LT subroutine of 5GCS

In this section, we would like to present different guarantees that various Algorithms A can give us. Algorithm A is simply
taking current iterates x̂t and ut and applies AlgorithmsAm to the local problem (2) (at each clients)and finally concatenates
the result in y?,t. To guarantee convergence of Algorithm 1, we need to do locally K iterations of AlgorithmA which would
guarantee:

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
a

τ

∥∥∇ψt(yK,t)∥∥2 ≤
(

4µL2
F

3Mτ2
+
a(LF + τ)2

τ

)∥∥yK,t − y?,t∥∥2
≤ µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Thus, we need: ∥∥yK,t − y?,t∥∥2 ≤ δ ∥∥Hx̂t − y?,t∥∥2 . (53)

Where

δ =
µ

6M(
4µL2

F

3Mτ2 + a(LF+τ)2

τ

) .
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For a = LF
τ , the term that will appear in most of those analysis is

1

δ
=

(
4µL2

F

3Mτ2 + a(LF+τ)2

τ

)
µ

6M

≤ 8L2
F

τ2
+

12L3
FM

τ2µ
+

12LF
µ

.

Note that τ is smallest for the optimal choice of γ, thus

1

δ
≤ 9L2

FCM

8Lµ
+

108L3
FM

2C

64Lµ2
+

12LFM

µ
≤
(

4
L

µ

)2

,

where in the last inequality we used bounds such as M ≥ C, L ≥MLF and L
µ ≥ 1.

E.3.1 Gradient descent for local problem

GD with stepsize 1
LF+τ would need:

K ≥
(
LF + τ

τ

)
log

(
1

δ

)
.

Again noting that τ is smallest when we choose stepsizes optimally:

LF + τ

τ
≤ 3

8

√
LC

µM
+ 1.

Thus, if A is GD, then:

K ≥

(
3

4

√
LC

µM
+ 2

)
log

(
4
L

µ

)
.

E.4 Local speed up due to personalized condition number of each client

Dependence of the local condition number on τ and how can we use this dependence to control the speed of local convergence
is described in Section E.3. Here we would like to focus on the case where each function has a different smoothness
parameter. Suppose each fm is Lm-smooth and µ-convex. If we let L = maxm Lm then we can note that each fm is
L-smooth, thus we have that LF = 1

M (L− µ) and we recover the whole communication result for our Algorithm. However,
locally we can note that each clients needs to find δ-solution to the local problem (2), which is

(
1
M (Lm − µ) + τ

)
-smooth

and τ -convex. Remembering τ ≥ 8
3

√
µL
MC , GD needs

2

(
1

M
(Lm − µ)

1

τ
+ 1

)
log

(
4
L

µ

)
≤ 2

(
3

8

√
LmC

µM
+ 1

)
log

(
4
L

µ

)
,

iterations. Which is better, then if we were using the upper bound maxm Lm on each Lm. To illustrate this we can formulate
the following Corollary E.2 to the general Theorem 3.3

Corollary E.2. Consider Algorithm 1 with LT solver being GD. In the new personalized setting with L = maxm Lm, we

can run the LT for K ≥ 2
(

3
8

√
LmC
µM + 1

)
log
(

4Lµ

)
and still accomplish guarantees of Theorem 3.3.
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E.5 Local solvers Am may be stochastic

Until now we assumed that Algorithms Am were deterministic(in a sense that they do not introduce any randomness to the
system). However, with a small change in the analysis from Section C, we can allow for local solvers to be stochastic, we
can present a more general condition which includes stochastic local solvers. To analyze the stochastic local solvers we need
to modify Assumption 2 with respect to stochasticity. We introduce a new assumption, where the inequality appearing in
Assumption 2 should be satisfied in expectation.

Assumption 4. Let A be stochastic Algorithm that can find a point yK,t in K local steps applied to the local function ψt

from (2) and starting point y0,tm = x̂t, which satisfies

E

[
M∑
m=1

4

τ2
µL2

F

3M

∥∥yK,tm − y?,tm
∥∥2 +

M∑
m=1

LF
τ2
∥∥∇ψtm(yK,tm )

∥∥2 | Ft] ≤ M∑
m=1

µ

6M

∥∥x̂t − y?,tm ∥∥2 ,

where y?,tm is the unique minimizer of ψtm, and τ ≥ 8
3

√
Lµ
MC .

The conditioning on F t simply means that x̂t is not treated as a random vector and the only randomness comes from the
local . Let us consider E[X | A], which represents the expectation of a random variable X condition on the randomness
accumulated due to local solvers being stochastic. Then conditioning on both At and F t, we can get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft ∪At] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft ∪At]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2

− µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Taking expectation condition on F t on both sides we get

1

γ
E
[∥∥xt+1 − x?

∥∥2 | Ft] + (1 + ω)

(
1

τ
+

1

LF

)
E
[∥∥ut+1 − u?

∥∥2 | Ft]
≤ 1

γ(1 + γµ)

∥∥xt − x?∥∥2
+ (1 + ω)

(
1

τ
+

ω

1 + ω

1

LF

)∥∥ut − u?∥∥2
+E
[

4

τ2
µL2

F

3M

∥∥yK,t − y?,t∥∥2 +
LF
τ2
∥∥∇ψt(yK,t)∥∥2 | Ft]

− µ

6M

∥∥Hx̂t − y?,t∥∥2 .
Crucial practical benefit comes from the expected improvement in gradient calculation, when each local function has a finite
sum structure, which is common in practice.
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E.5.1 L-SVRG for local problem

Algorithm 4 L-SVRG

1: input: initial points x0 ∈ Rd, y0 = x0, gradient estimator g;
2: stepsize γ > 0
3: for k = 0, 1, . . . do
4: gk = g(xk)− g(yk) +∇f(yk)
5: xk+1 = xk − γgk

6: yk+1 =

{
xk with probability p
yk with probability 1− p

7: end for

In this section we consider L-SVRG (Kovalev et al., 2020b) method as local stochastic solver with variance reduction
mechanism. Our analysis is based on general expected smoothness assumption (Gower et al., 2019b).
Assumption 5. The gradient estimator g is unbiased, and satisfies the expected smoothness bound

E[g(x)] = ∇f(x),

E
[
‖g(x)− g(x?)‖2

]
≤ 2A′′Df (x, x?).

We apply convergence guarantees of L-SVRG for the subproblem in Algorithm 1 for a gradient estimator g satisfying
Assumption 5 and stepsize γ2 = 1

6A′′ . We obtain the following bound:

E
[∥∥yK,t − y?,t∥∥2] ≤ (1−min

{
γ2τ,

p

2

})T (
1 + 2γ22

LF + τ

p

)∥∥Hx̂t − y?,t∥∥2 .
This means that Algorithm 4 with p = 2τγ2 finds δ-solution to the local problem of Algorithm 1 in

K =
6A′′

τ
log

(
τ + (LF + τ) γ2

τ

1

δ

)
local steps. Particularly interesting and practical example of g in the Algorithm 4 is mini-batch gradient estimator. Thus, we
assume the finite sum structure:

fm(x) =
1

nm

nm∑
i=1

fm,i(x),

where each fm,i is convex and Li smooth. Than ψtm can be put in the finite sum structure, by writing

ψtm(y) =
1

nm

nm∑
i=1

gi(y),

where

gi(y) =
1

M

(
fm,i(y)− µ

2
‖y‖2

)
+
τ

2

∥∥∥∥y − (x̂t +
1

τ
utm)

∥∥∥∥2 .
Since τ ≥ 4µ

3M , gi is
(

1
M (Li − µ) + τ

)
-smooth and

(
τ − µ

M

)
-convex. Fix a mini-batch size bm ∈ {1, 2, . . . ,Mm} and let

Sm be a random subset of {1, . . . ,Mm} of size C, chosen uniformly at random, then the mini-batch gradient estimator is

g(y) =
1

bm

∑
i∈Sm

∇gi(y).

For this gradient estimator

A′′ =
nm − bm

bm (nm − 1)
max
i
Lgi +

nm (bm − 1)

bm (nm − 1)
(LF + τ) ,

where Lgi = 1
M (Li − µ) + τ .
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F RELATION BETWEEN THE # OF COMMUNICATION ROUNDS T ON THE # OF
LOCAL STEPS K

F.1 Proof of Theorem 3.8

Theorem F.1. Consider Algorithm 1 (5GCS) with the LT solver being GD. Let γ = 3
16L and τ = 8L

3M . With such chosen
stepsizes, it is enough to run GD for

K ≥
(
2 + 3MLF

4L

)
log
(

4Lµ

)
= O

(
log L

µ

)
.

Whereas, the number of communication rounds to reach ε-solution is

T ≥ max
{

1 + 16
3
L
µ ,

M
C + 3M

8C
MLF
L

}
log 1

ε = Õ
(
M
C + L

µ

)
.

Proof. Note that by choosing τ = 8L
3M and γ = 3

16L stepsizes satisfy the condition from Theorem 3.7 and the number of
local iterations of GD to guarantee convergence is:

K ≥ 2
LF + 8L

3M
8L
3M

log

(
4
L

µ

)
=

(
2 +

3MLF
4L

)
log

(
4
L

µ

)
= O

(
log

L

µ

)
.

Whereas, the number of communication rounds to reach ε-solution is:

max

{
1 +

16

3

L

µ
,
M

C
+

3M

8C

MLF
L

}
log

1

ε
= O

((
M

C
+
L

µ

)
log

1

ε

)
.

F.2 Proof of Theorem 3.9

Theorem F.2. Consider Algorithm 1 (5GCS) with the LT solver being GD run for K ≥ K(α) := 2α log (4L/µ) iterations,

where 1 < α < 1 + 3
8

√
LC
µM . Let γ = 1

2Mτ and τ = max

{
L

M(α−1) ,
8
3

√
Lµ
MC

}
. Then for the Lyapunov function

Ψt :=
1

γ

∥∥xt − x?∥∥2 +
M

C

(
1

τ
+

1

LF

)∥∥ut − u?∥∥2 ,
the iterates of the method satisfy E

[
ΨT
]
≤ (1− ρ)TΨ0, where ρ := max

{
γµ

1+γµ ,
C
M

τ
(LF+τ)

}
< 1.

Proof. Firstly, we can note that at each step we need to find δ-solution to the local problem (2). Here, noting that we can

restrict ourself to τ ≥ 8
3

√
Lµ
MC since for this choice we get optimal number of communication rounds, thus we can note:

6Lµ ≤
1
δ ≤

(
4Lµ

)2
log
(

6Lµ

)
≤ log 1

δ ≤ 2 log
(

4Lµ

)
.

Thus, the speed of local convergence depends fully on the condition number of the local problem
(
i.e., on LF+τ

τ

)
. For

general result we can ask for the guarantee such that

K ≥ K(α) := α

(
2 log

(
4
L

µ

))
, α > 1.

For that we would need:
LF + τ

τ
≤

L
M + τ

τ
≤ α =⇒ τ ≥

L
M

α− 1
.

We use the choice

γ ≤ 1

Mτ

(
1− 4µ

3Mτ

)
.
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Thus if τ ≥ 8µ
3M , then we can choose γ = 1

2Mτ . Thus, let us take τ = max

{
L
M

α−1 ,
8
3

√
Lµ
MC

}
, so that we can choose

γ = 1
2Mτ . With K GD local iterations and this stepsize choice the contraction of the Lyapunov function follows from

Theorem 3.7.

F.3 Proof of Corollary 3.10

Corollary F.3. Choose any 0 < ε < 1. In order to guarantee E
[
ΨT
]
≤ εΨ0, it suffices to take

T ≥ max
{

1 + 2L
(α−1)µ ,

M
C α
}

log 1
ε .

We can note that when α ≤ M+C
2M +

√
2LC
µM +

(
M−C
2M

)2
, then

T ≥ T (α) :=
(

1 + 2
α−1

L
µ

)
log 1

ε .

Proof. To satsify Assumption 2, assume that the Local Solver is GD run for

K ≥ K(α) := α

(
2 log

(
4
L

µ

))
, α > 1.

To ensure that choose τ = max

{
L
M

α−1 ,
8
3

√
Lµ
MC

}
and γ = 1

2Mτ . Than the communication complexity is:

max

{
1 +

1

γµ
,
M

C
+
M

C

LF
τ

}
≤ max

{
max

{
1 +

2L

(α− 1)µ
, 1 +

16

3

√
LM

µC

}
,
M

C
min

{
α, 1 +

3

8

√
LC

µM

}}
.

For α ≤ 1 + 3
8

√
LC
µM , this simplifies to:

T ≥ max

{
1 +

2L

(α− 1)µ
,
M

C
α

}
log

1

ε
.

We can note that when α ≤ M+C
2M +

√
2LC
µM +

(
M−C
2M

)2
, then:

T ≥ max

{
1 +

2L

(α− 1)µ
,
M

C
α

}
log

1

ε
=

(
1 +

2L

(α− 1)µ

)
log

1

ε
.

Thus, we get a relation between the number of local steps and communication rounds.
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G IMPLEMENTATION-FRIENDLY VERSION OF ALGORITHM 1

We now present Algorithm 5, which is Algorithm 1 written in a memory-efficient manner. We use the fact that we do not
need any information on specific utm and that not all utm are updated in each communication round.

Algorithm 5 Client sampling with a new update for u and memory-efficient update for v [new]
1: input: initial points x0 ∈ Rd, u0m ∈ Rd for all m = {1, . . . ,M};
2: stepsize γ > 0, τ > 0; C ∈ {1, . . . ,M}
3: v0 :=

∑M
m=1 u

0
m

4: for t = 0, 1, . . . do
5: x̂t := 1

1+γµ (xt − γvt)
6: Pick St ⊂ {1, . . . ,M} of size C uniformly at random
7: for m ∈ St do
8: Find yK,tm as a final point of K iteration of some Algorithm Am starting with y0m = x̂t for following problem:

yK,tm ≈ arg min
y∈Rd

{
ψtm(y) = Fm(y) +

τ

2

∥∥∥∥y − (x̂t +
1

τ
utm

)∥∥∥∥2
}

(54)

9: ut+1
m = ∇Fm(yK,tm )

10: ∆ut+1
m = ut+1

m − utm
11: end for
12: for m ∈ {1, . . . ,M}\St do
13: ut+1

m := utm
14: end for
15: ∆vt+1 :=

∑
m∈St ∆ut+1

m

16: xt+1 := x̂t − γMC ∆vt+1

17: vt+1 = vt + ∆vt+1

18: end for


