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Abstract

In this paper, we propose a convergence accelera-
tion scheme for general Riemannian optimization
problems by extrapolating iterates on manifolds.
We show that when the iterates are generated
from the Riemannian gradient descent method,
the scheme achieves the optimal convergence rate
asymptotically and is computationally more fa-
vorable than the recently proposed Riemannian
Nesterov accelerated gradient methods. A salient
feature of our analysis is the convergence guar-
antees with respect to the use of general retrac-
tion and vector transport. Empirically, we verify
the practical benefits of the proposed accelera-
tion strategy, including robustness to the choice
of different averaging schemes on manifolds.

1 INTRODUCTION

In this paper, we consider the optimization problem

min
x∈M

f(x), (1)

where M is a Riemannian manifold and f : M −→ R
is a smooth, real-valued function. Optimization on a Rie-
mannian manifold naturally appears in various fields of
applications, including principal component analysis (Edel-
man et al., 1998; Zhang et al., 2016), tensor completion
and factorization (Keshavan and Oh, 2009; Vandereycken,
2013; Boumal and Absil, 2015; Jawanpuria and Mishra,
2018; Nimishakavi et al., 2018), learning representations
for hierarchical structures (Nickel and Kiela, 2017; Jawan-
puria et al., 2019), dictionary learning (Cherian and Sra,
2016; Harandi et al., 2013), cross-lingual translation (Jawan-
puria et al., 2020a,b, 2021), and optimal transport (Shi et al.,
2021; Jawanpuria et al., 2021; Mishra et al., 2021; Han
et al., 2022), to name a few. Riemannian optimization (Ab-
sil et al., 2009; Boumal, 2020) provides a universal and
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efficient framework for problem (1) that respects the intrin-
sic geometry of the constraint set.

The Riemannian gradient descent method (Udriste, 2013;
Zhang and Sra, 2016; Absil et al., 2009; Boumal, 2020)
generalizes the classical gradient descent method in the Eu-
clidean space with intrinsic updates on manifolds. Various
other approaches have also been explored for Riemannian
optimization such as stochastic methods (Bonnabel, 2013;
Zhang et al., 2016; Becigneul and Ganea, 2018; Kasai et al.,
2018, 2019; Han and Gao, 2021a,b), second-order methods
(Absil et al., 2007; Qi et al., 2010; Huang et al., 2015b;
Agarwal et al., 2021), among others.

Existing works have also explored generalizing Nesterov
acceleration (Nesterov, 1983) to Riemannian manifolds, in-
cluding (Liu et al., 2017; Ahn and Sra, 2020; Zhang and
Sra, 2018; Alimisis et al., 2020; Jin and Sra, 2022; Kim
and Yang, 2022; Criscitiello and Boumal, 2022a). However,
they primarily involve exponential map, inverse exponential
map, and parallel transport (formally defined in Section 2),
which are computationally expensive operations. In addi-
tion, the Nesterov acceleration based methods require the
knowledge of smoothness and strong convexity constants,
which are often unknown in practical settings. Furthermore,
recent studies (Hamilton and Moitra, 2021; Criscitiello and
Boumal, 2022b) show that global acceleration cannot be
achieved on manifolds in general.

In this paper, we focus on an extrapolation based strategy to
produce an accelerated sequence. The core idea is to com-
pute extrapolation as a linear combination of the iterates
where the weights depend nonlinearly on the iterates. Ex-
isting works (Aitken, 1927; Shanks, 1955; Brezinski et al.,
2018; Wynn, 1956; Sidi et al., 1986; Walker and Ni, 2011;
Scieur et al., 2020) have explored such strategy in the Eu-
clidean setting. Recently, it has been shown in Scieur et al.
(2020) that such nonlinear acceleration (Euclidean) scheme
achieves optimal convergence rates asymptotically without
knowing the function-specific constants.

A natural question is can such extrapolation idea be gen-
eralized to Riemannian manifolds so that we achieve ac-
celeration? The nonlinear structure of manifolds imposes
key technical challenges such as averaging on manifolds,
distortion due to varying metric, computationally expensive
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operations, like exponential map and parallel transport, to
name a few. Nevertheless, we answer the above question
affirmatively and our contributions are as follows.

• We propose an acceleration strategy for Riemannian op-
timization based on the idea of extrapolation, which we
call the Riemannian nonlinear acceleration (RiemNA)
strategy. We analyze several averaging schemes that
generalize weighted averaging in the Euclidean space
from various perspectives.

• When the iterates are generated by the Riemannian
gradient descent method, we show RiemNA achieves
the optimal asymptotic first-order convergence rate.
We show the convergence is robust to the choice of
different averaging schemes on manifolds.

• A salient feature is that convergence of RiemNA holds
under general retraction and vector transport. This is
in contrast to existing analyses for Riemannian acceler-
ated gradient methods which employ exponential map
and parallel transport (Liu et al., 2017; Zhang and Sra,
2018; Ahn and Sra, 2020; Kim and Yang, 2022).

• We empirically demonstrate the superiority of RiemNA
over state-of-the-art methods both in terms of conver-
gence speed and computational efficiency.

2 PRELIMINARIES AND RELATED
WORKS

Basic Riemannian Geometry A Riemannian manifold
M is a smooth manifold endowed with a smooth inner
product structure (Riemannian metric) on the tangent space
TxM, for all x ∈ M. The Riemannian inner product be-
tween any u, v ∈ TxM is written as ⟨u, v⟩x and the induced
norm of a tangent vector u is ∥u∥x =

√
⟨u, u⟩x. A ‘straight’

line on manifold is called a geodesic γ : [0, 1] −→ M,
which is a locally distance minimizing curve with zero ac-
celeration. Riemannian distance between x, y ∈ M is
d(x, y) = infγ

∫ 1

0
∥γ′(t)∥γ(t)dt where γ(0) = x, γ(1) = y.

Exponential map Expx : TxM −→ M maps a tangent vec-
tor u ∈ TxM to γ(1) with γ(0) = x, γ′(0) = u. If be-
tween x, y ∈ M, there exists a unique geodesic connecting
them, the exponential map has an inverse Exp−1

x (y) and the
distance can be computed as d(x, y) = ∥Exp−1

x (y)∥x =
∥Exp−1

y (x)∥y. In this work, we only consider a unique-
geodesic subset X of the manifold, which we explicitly
assume in Section 4. Parallel transport Γyx : TxM −→ TyM
allows tangent vectors to be transported along a geodesic
that connects x to y such that the induced vector fields are
in parallel. It is known that parallel transport is isometric,
i.e., ⟨Γyxu,Γyxv⟩y = ⟨u, v⟩x for any u, v ∈ TxM. In this pa-
per, we also consider the more general retraction and vector
transport that include exponential map and parallel transport
as special cases. A retraction, Retrx : TxM −→ M is a
first-order approximation to the exponential map and a vec-
tor transport T y

x : TxM −→ TyM is a linear map between

tangent spaces that approximates the parallel transport.

Function Classes on Riemannian Manifolds For a dif-
ferentiable, real-valued function f : M −→ R, its Rieman-
nian gradient at x, gradf(x) ∈ TxM is the unique tan-
gent vector that satisfies ⟨gradf(x), u⟩x = Df(x)[u] =
⟨∇f(x), u⟩2 for all u ∈ TxM, where Df(x)[u] represents
the directional derivative of f along u and ∇f(x) is the
Euclidean gradient and ⟨·, ·⟩2 represents the Euclidean in-
ner product. The Riemannian Hessian at x, Hessf(x) :
TxM −→ TxM is a self-adjoint operator, defined as the co-
variant derivative of the Riemannian gradient. On Rieman-
nian manifolds, one can extend the notion of gradient and
Hessian Lipschitzness in the Euclidean space to geodesic
Lipschitz gradient and Hessian associated with the expo-
nential map and parallel transport. Some equivalent char-
acterizations, including function smoothness and bounded
Hessian norm also exist for the Riemannian counterparts.
Furthermore, the notion of convexity can be similarly gener-
alized to geodesic convexity where the convex combination
is defined along the geodesics. Similar notions are also prop-
erly defined with respect to general retractions. The formal
definitions are deferred to Appendix D. See also Boumal
(2020) for a more thorough treatment.

Metric Distortion Due to the curved geometry of Rie-
mannian manifolds, many of the metric properties in the
linear space are lost. To perform convergence analysis, we
require the following geometric lemmas on manifolds that
provide bounds on the metric distortion.

Lemma 1 (Ahn and Sra (2020); Sun et al. (2019)). Con-
sider a compact subset X ⊆ M with unique geodesic.
Let x, y = Expx(u) ∈ X for some u ∈ TxM. Then for
any v ∈ TxM, we have d(Expx(u + v),Expy(Γ

y
xv)) ≤

min{∥u∥, ∥v∥}Cκ(∥u∥+ ∥v∥), where X has curvature up-
per bounded by κ in magnitude andCκ(r) := cosh(

√
κr)−

sinh(
√
κr)/(

√
κr).

Lemma 2 (Ahn and Sra (2020); Karcher (1977); Mangoubi
and Smith (2018); Sun et al. (2019)). For a compact sub-
set X ⊆ M with unique geodesic, there exists constants
C0 > 0, C1, C2 ≥ 1 that depend on the curvature and
diameter of X such that for all x, y, z ∈ X , u ∈ TxM we
have (1). ∥ΓzyΓyxu − Γzxu∥z ≤ C0d(x, y)d(y, z)∥u∥x. (2).
C−1

1 d(x, y) ≤ ∥Exp−1
z (x) − Exp−1

z (y)∥z ≤ C2d(x, y).
(3). d

(
Expx(u),Expy(Γ

y
xu)

)
≤ C3d(x, y).

Related Works on Riemannian Acceleration General-
izing Nesterov acceleration strategy (Nesterov, 1983) from
the Euclidean space to Riemannian manifolds for geodesic
(strongly) convex functions has been explored in Liu et al.
(2017); Zhang and Sra (2018); Ahn and Sra (2020); Kim
and Yang (2022); Jin and Sra (2022). Works such as Al-
imisis et al. (2020); Duruisseaux and Leok (2022) have
approached acceleration on manifolds inspired by the con-
tinuous dynamics formulation of the Nesterov acceleration
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in the Euclidean space (Su et al., 2014; Wibisono et al.,
2016). Lastly, acceleration has also been studied for spe-
cific manifolds, including sphere and hyperbolic manifolds
(Martı́nez-Rubio, 2022) and Stiefel manifold (Siegel, 2019).

In the next section, we explore Riemannian nonlinear ac-
celeration based on an extrapolation strategy for iterates
generated from a Riemannian solver. Since our convergence
analysis is local, the contributions can benefit both geodesic
(strongly) convex functions and many nonconvex functions.
Further, our convergence rates hold beyond the use of ex-
ponential map and parallel transport, which are the primary
focus of the aforementioned works.

3 RIEMANNIAN NONLINEAR
ACCELERATION

We generalize the nonlinear acceleration strategy for Rie-
mannian optimization via a weighted Riemannian averaging
on the manifold. For a set of weights {ci}ki=0 and points
{xi}ki=0 on the manifold, we define the weighted Rieman-
nian average x̄c,x as

x̄c,x = x̃k, x̃i = Expx̃i−1

( ci∑i
j=0 cj

Exp−1
x̃i−1

(
xi
))
,

(Avg.1)
for i = 0, ..., k and x̃−1 = x0. When M is the Eu-
clidean space, (Avg.1) recovers the weighted mean as
x̄c,x =

∑k
i=0 cixi (see Lemma 11 in Appendix C).

The coefficients {ci}ki=0 are determined by minimizing a
weighted combination of the residuals Exp−1

xi
(xi+1) ∈

TxiM, i = 0, ..., k. Specifically, we consider the following
optimization problem:

min
c∈Rk+1:c⊤1=1

∥
k∑
i=0

ciri∥2xk
+ λ∥c∥22, (2)

which is a linear system of dimension k + 1 and has a
simple closed-form solution (see Proposition 2 in Appendix
E). Here, ri = Γxk

xi
Exp−1

xi
(xi+1) ∈ Txk

M and Γxk
xi

is the
parallel transport from xi to xk.

Our Riemannian nonlinear acceleration (RiemNA) strategy
is presented in Algorithm 1, which takes a sequence of non-
diverging iterates from any solver as input and constructs
an extrapolation using coefficients {ci}ki=0 that solve (2).
The extrapolation is performed in parallel to the update of
the iterate sequence. Note that when the manifold M is the
Euclidean space, Algorithm 1 exactly recovers the nonlinear
acceleration algorithm in Scieur et al. (2020).

Algorithm 1 Riemannian nonlinear acceleration (RiemNA)

1: Input: Iterate sequence x0, ..., xk+1. Regularization
parameter λ.

2: Compute ri = Γxk
xi
Exp−1

xi
(xi+1), i = 0, ..., k.

3: Solve c∗ = argminc∈Rk+1:c⊤1=1 ∥
∑k
i=0 ciri∥2xk

+
λ∥c∥22.

4: Output: x̄c∗,x = x̃k computed from x̃i =

Expx̃i−1

(
c∗i∑i

j=0 c
∗
j

Exp−1
x̃i−1

(
xi
))

, with x̃−1 = x0.

4 CONVERGENCE ACCELERATION
FOR RIEMANNIAN GRADIENT
DESCENT

This section analyzes the convergence acceleration of
RiemNA (Algorithm 1) when the iterates are generated
by the Riemannian gradient descent (RGD) method (Absil
et al., 2009). In particular, we show that the extrapolated
point (output of Algorithm 1) is a good estimate of the opti-
mal solution and bound its distance to optimality. We start
by making the following assumption throughout the paper.

Assumption 1. Let x∗ ∈ M be a (strictly) local minimizer
of f . The iterates generated, i.e., x0, x1, . . . stay within a
neighbourhood X around x∗ with unique geodesic. Fur-
thermore, the sequence of iterates is non-divergent, i.e.,
d(xk, x

∗) = O(d(x0, x
∗)) for all k ≥ 0.

The former condition in Assumption 1 ensures the exponen-
tial map is invertible and is standard for analyzing acceler-
ated gradient methods on manifolds (Ahn and Sra, 2020;
Jin and Sra, 2022; Kim and Yang, 2022). This condition is
satisfied for any non-positively curved manifolds, such as
symmetric positive definite (SPD) manifold with the affine-
invariant metric (Bhatia, 2009). In addition, this also holds
true for any sufficiently small subset X of any manifold.

Linear Iterates and Error Decomposition in the Eu-
clidean Space First, we recall that the convergence analy-
sis for Euclidean nonlinear acceleration (Scieur et al., 2020)
relies critically on a sequence of linear fixed-point iterates
that satisfy x̂i − x∗ = G(x̂i−1 − x∗) for some positive
semi-definite and contractive matrix G (with ∥G∥2 < 1).
The main idea is to show that the algorithm converges op-
timally on x̂i and then bound the deviation arising from
the nonlinearity. In particular, let {xi}ki=0 be the given it-
erates and {x̂i}ki=0 be the linear iterates. Consider c∗, ĉ∗

as the coefficients solving (2) in the Euclidean setup using
{xi}ki=0, {x̂i}ki=0 respectively. The convergence analysis in
Scieur et al. (2020) aims to bound each term from the error
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decomposition:

k∑
i=0

c∗i xi − x∗ (3)

=

k∑
i=0

ĉ∗i x̂i − x∗︸ ︷︷ ︸
Linear term

+

k∑
i=0

(c∗i − ĉ∗i )x̂i︸ ︷︷ ︸
Stability

+

k∑
i=0

c∗i (xi − x̂i)︸ ︷︷ ︸
Nonlinearity

.

From Linearized Iterates to Iterates on Manifolds On
general Riemannian manifolds, due to the curved geometry,
it becomes nontrivial to generalize the error decomposition
(3) to manifolds. Nevertheless, we start with identification
of linearized iterates on manifolds in the tangent space of x∗.
For notational convenience, we denote ∆x := Exp−1

x∗ (x)
for any x ∈ X . We now consider the linearized iterates x̂i
produced by the following progression as

∆x̂i
= G[∆x̂i−1

], (4)

for some G : Tx∗M −→ Tx∗M as a self-adjoint, positive
semi-definite operator with ∥G∥x∗ ≤ σ < 1, where we
denote ∥A∥x∗ as the operator norm for any linear operator
A on the tangent space Tx∗M. In fact, we show in Lemma 3
that the progression of iterates from the Riemannian gradient
descent method is locally linear on the tangent space of the
local minimizer x∗, thus satisfying (4) up to some error
term. This requires the following regularity assumption on
the objective function f .

Assumption 2. The function f has geodesic Lipschitz gra-
dient and Lipschitz Hessian.

Remark 1. Assumption 2 is used to ensure sufficient
smoothness of the function such that the Riemannian gradi-
ent and Hessian are bounded at optimality.

Lemma 3. Under Assumptions 1, 2, suppose the iterates
generated by the Riemannian gradient descent method are
xi+1 = Expxi

(−η gradf(xi)). Then, we have

∆xi
=

(
id− ηHessf(x∗)

)
[∆xi−1

] + εi

where id denotes the identity operator and ∥εi∥x∗ =
O(d2(xi, x

∗)) and ε0 = 0.

Lemma 3 suggests that it is reasonable to consider the
linearized iterates {x̂k} defined in (4) where G = id −
ηHessf(x∗). It is clear that for a strictly local minimizer x∗,
there exists µ,L > 0 such that µ id ⪯ Hessf(x∗) ⪯ L id.
This is irrespective of whether the function f is geodesic
strongly convex or has geodesic Lipschitz gradient. Thus,
for proper choices of η, we can always ensure G is positive
semi-definite and contractive.

In this paper, the convergence analysis focus on the case
whenG = id−ηHessf(x∗) and {xi} are given by Rieman-
nian gradient descent to simplify the bounds. However, we

highlight that most of the analysis holds for more general
and symmetric G.

Hence, the error in the manifold weighted average x̄c∗,x
computed from (Avg.1) leads to the decomposition (due to
triangle inequality of Riemannian distance):

d(x̄c∗,x, x
∗)

≤ d(x̄ĉ∗,x̂, x
∗)︸ ︷︷ ︸

Linear term

+ d(x̄ĉ∗,x̂, x̄c∗,x̂)︸ ︷︷ ︸
Stability

+ d(x̄c∗,x̂, x̄c∗,x)︸ ︷︷ ︸
Nonlinearity

,

where we denote ĉ∗ as the coefficients solving (2) with the
residuals r̂i = ∆x̂i+1

−∆x̂i
from the linearized iterates {x̂i}

in (4) and x̄ĉ∗,x̂, x̄c∗,x̂ as weighted average computed using
pairs {(ĉ∗i , x̂i)}ki=0 and {(c∗i , x̂i)}ki=0 respectively. Before
we bound each of the error term, we first present a lemma
relating the averaging on manifolds to averaging on the
tangent space.

Lemma 4. Under Assumption 1, for some coefficients
{ci}ki=0 with

∑k
i=0 ci = 1 and any iterate sequence

{xi}ki=0, consider x̄c,x computed from (Avg.1) via the given
coefficients and the iterates. Then, we have ∆x̄c,x

=∑k
i=0 ci∆xi

+ e, where ∥e∥x∗ = O(d3(x0, x
∗)).

Remark 2. Lemma 4 shows that the error between the av-
eraging on the manifold and averaging on the tangent space
is on the order of O(d3(x0, x

∗)). This relies heavily on the
metric distortion bound given in Lemma 1, 2, which only
holds for the case of exponential map and parallel transport.
Nevertheless, we highlight that when the general retraction
and vector transport are used, we can follow the idea of
(Tripuraneni et al., 2018, Lemma 12) to show the error is
on the order of O(d2(x0, x

∗)). Please see Proposition 3 in
Appendix F and Section 6 for more details where we discuss
convergence under a more general setup.

Error Bound From the Linear Term We show that ex-
trapolation using the linearized iterates converges in a near-
optimal rate, via the regularized Chebyshev polynomial.
This generalizes the development of Scieur et al. (2020) (in
the Euclidean setting) to manifolds.

Definition 1 (Regularized Chebyshev polynomial (Scieur
et al., 2020)). The regularized Chebyshev polynomial of
degree k, in the range of [0, σ] with a regularization pa-
rameter α, denoted as C [0,σ]

k,α (x) is defined as C [0,σ]
k,α (x) =

argminp∈P1
k
maxx∈[0,σ] p

2(x) + α∥p∥22, where we denote
P1
k := {p ∈ R[x] : deg(p) = k, p(1) = 1} as the

set of polynomials of degree k with coefficients summing
to 1 and ∥p∥2 is the Euclidean norm of the coefficients
of the polynomial p. We write the maximum valued as

S
[0,σ]
k,α :=

√
maxx∈[0,σ](C

[0,σ]
k,α (x))2 + α∥C [0,σ]

k,α (x)∥22.

In Lemma 5, we present the error bound coming from the
linear term, which follows from the definition of regular-
ized Chebyshev polynomial and Lemma 4. Due to the
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curvature of the manifold, we observe an additional error
term O(d3(x0, x

∗)) compared to the Euclidean counterpart,
which becomes insignificant as approaching optimality.

Lemma 5 (Error from the linear term). Un-
der Assumption 1, let x̄ĉ∗,x̂ be computed from
(Avg.1) using {(ĉ∗i , x̂i)}ki=0. Then, d(x̄ĉ∗,x̂, x

∗) ≤
d(x0,x

∗)
1−σ

√
(S

[0,σ]

k,λ̄
)2 − λ

d2(x0,x∗)∥ĉ∗∥
2
2 + ϵ1, where

λ̄ = λ/d2(x0, x
∗) and ϵ1 = O(d3(x0, x

∗)).

Error Bound From Coefficient Stability We now bound
the deviation between the optimal coefficients computed via
the Riemannian gradient descent iterates {xi} and the lin-
earized iterates {x̂i}. To this end, we require the following
result on the coefficients.

Lemma 6 (Bound on norm of coefficients). Under Assump-
tions 1, 2, let the coefficients c∗, ĉ∗ be solved from (2) us-
ing {xi}, {x̂i} respectively, where {xi} are given by the
Riemannian gradient descent and {x̂i} satisfy (4). Then,

we have ∥c∗∥2 ≤
√∑k

i=0 d
2(xi,xi+1)+λ

(k+1)λ and ∥c∗ − ĉ∗∥2 ≤
1
λ

(
2d(x0,x

∗)
1−σ ψ + (ψ)2

)
∥ĉ∗∥2 for some ψ = O(d2(x0, x

∗)).

It should be noted that in the Euclidean space, ψ =∑k
i=0 ∥∆xi −∆x̂i∥2 = ∥xi − x̂i∥2 and also can be shown

to have an order of O(d2(x0, x
∗)) under certain Lipschitz

conditions on the function (see Proposition 3.8 in Scieur
et al. (2020)). On manifolds, the term ψ suffers from addi-
tional distortion coming from the metric, which is also on
the order O(d2(x0, x

∗)).

Based on Lemma 6, the error from coefficient stability can
now be bounded as follows. The proof follows from lin-
earizing the weighted average on the tangent space Tx∗M
where we bound the deviation arising from the coefficients.
Hence, an extra error ϵ2 appears in the bound.

Lemma 7 (Error from coefficient estimation). Under
the same settings as in Lemma 6, let x̄ĉ∗,x̂, x̄c∗,x̂
be computed from (Avg.1) using {(ĉ∗i , x̂i)}ki=0 and
{(c∗i , x̂i)}ki=0 respectively. Then, d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤
C1

λ(1−σ)

(
2d2(x0,x

∗)
1−σ ψ+d(x0, x

∗)(ψ)2
)
∥ĉ∗∥2+ϵ2, for some

ψ = O(d2(x0, x
∗)), ϵ2 = O(d3(x0, x

∗)).

Error Bound From Nonlinearity Next, we show that
the nonlinearity term can be bounded in Lemma 8, which
follows a similar idea of linearization on a fixed tangent
space. Additional error ϵ3 is again due to the curvature of
the manifold, which vanishes when M is the Euclidean
space.

Lemma 8 (Error from the nonlinearity). Under the
same settings as in Lemma 6, we have d(x̄c∗,x̂, x̄c∗,x) ≤
C1

√∑k
i=0 d

2(xi,xi+1)+λ

(k+1)λ

(∑k
i=0

∑i
j=0 ∥εj∥x∗

)
+ ϵ3,

where ∥εj∥x∗ = O(d2(xj , x
∗)) is defined in Lemma 3 and

ϵ3 = O(d3(x0, x
∗)).

Finally, we combine Lemmas 5, 7, 8 to obtain the following
convergence result for Algorithm 1 when the iterates are
generated from the Riemannian gradient descent (RGD).
Theorem 1 (Convergence of RiemNA with RGD
iterates). Under Assumptions 1, 2, let {xi}ki=0 be
given by the Riemannian gradient descent method, i.e.,
xi+1 = Expxi

(−η gradf(xi)) and {x̂i}ki=0 be the
linearized iterates satisfying ∆x̂i

= G[∆x̂i−1
] with

G = id − ηHessf(x∗), satisfying ∥G∥x∗ ≤ σ < 1.
Then, Algorithm 1 with regularization parameter
λ produces x̄c∗,x∗ that satisfies d(x̄c∗,x, x

∗) ≤

d(x0, x
∗)
S

[0,σ]

k,λ̄

1−σ

√
1 +

C2
1d

2(x0,x∗)
(

2d(x0,x∗)
1−σ ψ+(ψ)2

)2

λ3 +

C1

√∑k
i=0 d

2(xi,xi+1)+λ

(k+1)λ

(∑k
i=0

∑i
j=0 ∥εj∥x∗

)
+ϵ1+ϵ2+

ϵ3, where ψ = O(d2(x0, x
∗)), ϵ1, ϵ2, ϵ3 = O(d3(x0, x

∗))
and εi = O(d2(xi, x

∗)) is defined in Lemma 3.

We prove that even with additional distortion from the
curved geometry of the manifold, the asymptotic optimal
convergence is still guaranteed. This is mainly due to the
fact that all errors incurred by the metric distortion, i.e.,
ϵ1, ϵ2, ϵ3 are on the order of at least O(d2(x0, x

∗)), which
is primarily attributed to Lemma 4.
Proposition 1 (Asymptotic optimal convergence rate of
RiemNA with RGD iterates). Under the same settings
as in Theorem 1, set λ = O(ds(x0, x

∗)) for s ∈ (2, 83 ).

Then, limd(x0,x∗)−→0
d(x̄c∗,x,x

∗)

d(x0,x∗) ≤ 1
1−σ

2
β−k+βk , where

β = 1−
√
1−σ

1+
√
1−σ .

Remark 3. The asymptotic optimal convergence rate holds
as long as ϵ1, ϵ2, ϵ3 are on the order of at leastO(d2(x0, x

∗))
such that limd(x0,x∗)−→0

1
d(x0,x∗) (ϵ1 + ϵ2 + ϵ3) = 0.

Remark 4. Suppose at a (strictly) local minimizer, we
have 0 ≺ µ id ⪯ Hessf(x∗) ⪯ L id. Then, by choosing
η = 1

L , we have σ = 1 − µ
L . This corresponds to the

optimal convergence rate obtained by Nesterov acceleration
(Nesterov, 2003) and its Riemannian extensions such as Liu
et al. (2017); Ahn and Sra (2020); Kim and Yang (2022) for
geodesic strongly convex functions.

Implementation and Complexity Algorithm 2 presents
an implementation for the proposed RiemNA strategy when
the iterates are given by Riemannian gradient descent (RGD)
method with fixed stepsize. Specifically, we run RGD to
produce the iterate sequence x0, . . . , xm−1, where m is the
memory depth. Then, we compute x̄c∗,x with these iterates
by Algorithm 1. We then restart Riemannian gradient de-
scent with x0 = x̄c∗,x for the next epoch. It should be noted
that in this case, we do not require the inverse exponential
map for computing the residuals.

RGD+RiemNA requires T RGD updates and ⌈T/m⌉ calls
to RiemNA. Overall, Algorithm 2 needs T + ⌈T/m⌉m calls
to the exponential map and ⌈T/m⌉m calls each to the par-
allel transport and the inverse exponential map operations.
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Algorithm 2 RGD+RiemNA

1: Input: Initialization x0, stepsize η, regularization pa-
rameter λ, and memory depth m.

2: Set t = 0.
3: while t ≤ T do
4: for i = 1, ...,m do
5: xi = Expxi−1

(−η gradf(xi−1)).
6: t = t+ 1.
7: end for
8: ri = −η Γxm−1

xi gradf(xi), i = 0, ...,m− 1.
9: Solve c∗ = argminc∈Rm:c⊤1=1 ∥

∑k
i=0 ciri∥2xm−1

+

λ∥c∥22.
10: Set x̄c∗,x = x̃m−1 computed from x̃i =

Expx̃i−1

( c∗i∑i
j=0 c

∗
j

Exp−1
x̃i−1

(xi)
)
, with x̃−1 = x0.

11: Restart with x0 = x̄c∗,x.
12: end while

This is as efficient as the most practical implementation
of the Riemannian Nesterov accelerated gradient methods
(Zhang and Sra, 2018; Kim and Yang, 2022) (discussed in
Appendix A.2) that require 2T calls each to the exponential
and inverse exponential map operations.

5 ALTERNATIVE AVERAGING
SCHEMES

In this section, we propose alternative averaging schemes
on manifolds used for extrapolation. For the iterates ob-
tained from the Riemannian gradient descent method, we
show the schemes ensure the same asymptotically optimal
convergence rate obtained in Proposition 1.

The first scheme we consider is based on the follow-
ing equality in the Euclidean space for the weighted
mean, i.e.,

∑k
i=0 cixi = xk − (

∑k−1
i=0 ci)(xk − xk−1) −

(
∑k−2
i=0 ci)(xk−1−xk−2)−· · ·−c0(x1−x0). Accordingly,

let θi =
∑i
j=0 cj , i = 0, ..., k − 1. We define an alternative

weighted averaging as

x̄c,x = Expxk

(
−
k−1∑
i=0

θiΓ
xk
xi
Exp−1

xi
(xi+1)

)
. (Avg.2)

Based on the earlier analysis, to show the convergence of
x̄c,x defined in (Avg.2), we only require to show that Lemma
4 holds for the new scheme, with an error of order at least
O(d2(x0, x

∗)). We formalize this claim in the next lemma
and show the error is in fact on the order of O(d3(x0, x

∗)).

Lemma 9. Under Assumption 1, for some coefficients
{ci}ki=0 with

∑k
i=0 ci = 1 and iterates {xi}ki=0, con-

sider x̄c,x = Expxk

(
−

∑k−1
i=0 θiΓ

xk
xi
Exp−1

xi
(xi+1)

)
, θi =∑i

j=0 cj . Then, we have ∥∆x̄c,x
−

∑k
i=0 ci∆xi

∥x∗ =

O(d3(x0, x
∗)).

Lemma 9 allows convergence under the averaging scheme
(Avg.2) to be established exactly following the same steps as
before. This is sufficient to show that the same convergence
bounds hold, i.e., Theorem 1 and Proposition 1.

Weighted Fréchet Mean In addition, we discuss the
weighted Fréchet mean in Appendix B, which can also be
used in place of the two aforementioned averaging schemes.
We have provided similar error bounds as in Lemma 9 that
lead to similar convergence guarantees.

6 CONVERGENCE UNDER GENERAL
RETRACTION AND VECTOR
TRANSPORT

In this section, we generalize our convergence results for
RiemNA with general retraction and vector transport oper-
ations. To the best of our knowledge, Riemannian accel-
eration has not been studied under general retraction and
vector transport. To this end, we make the following stan-
dard assumptions, which include bounding the deviation
between retraction and exponential map as well as between
vector transport and parallel transport. In addition, we re-
quire the Lipschitz gradient and Hessian to be compatible
with retraction and vector transport.

Assumption 3. The neighbourhood X is totally retractive
where retraction has a smooth inverse. Function f has re-
traction Lipschitz gradient and Lipschitz Hessian.

Assumption 4. There exists constants a0, a1, a2, δa0,a1 > 0
such that for all x, y, z ∈ X , ∥Retr−1

x (y)∥x ≤ δa0,a1 , we
have (1). a0d(x, y) ≤ ∥Retr−1

x (y)∥x ≤ a1d(x, y) and (2).
∥Exp−1

x (z)− Retr−1
x (z)∥x ≤ a2∥Retr−1

x (z)∥2x.

Assumption 5. The vector transport T y
x is isometric and

there exists a constant a3 > 0 such that for all x, y ∈ X ,
∥T y
x u− Γyxu∥y ≤ a3∥Retr−1

x (y)∥x∥u∥x.

Assumptions 3-5 are commonly used for analyzing Rie-
mannian first-order algorithms with retraction and vector
transport (Ring and Wirth, 2012; Huang et al., 2015b; Sato
et al., 2019; Kasai et al., 2018; Han and Gao, 2021a).

In this section, we only show convergence under the recur-
sive weighted average computation for extrapolation, i.e.,

x̄c,x = x̃k, x̃i = Retrx̃i−1

( ci∑i
j=0 cj

Retr−1
x̃i−1

(xi)
)
.

(5)
Similar analysis can be also performed on the alternative
two averaging schemes discussed in Section 5.

The next theorem shows that asymptotic optimal conver-
gence rate can also be achieved using retraction and vector
transport. The proof is similar to the case for exponential
map and parallel transport and employs the Assumptions 4,
5. In particular, both these two assumptions ensure the devi-
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Figure 1: Comparing proposed RGD+RiemNA with existing approaches: RGD, RAGD, RNAG-C, and RNAG-SC. We
observe that RGD+RiemNA outperforms all the baselines.

ations between retraction and exponential map, vector trans-
port and parallel transport are on the order ofO(d2(x0, x

∗)).
Thus, the additional error terms ϵ1, ϵ2, ϵ3 = O(d2(x0, x

∗)).

Theorem 2 (Convergence under general retraction and vec-
tor transport). Under Assumptions 1, 3, 4, and 5, let {xi}ki=0

be given by Riemannian gradient descent via retraction, i.e.,
xi = Retrxi−1

(−η gradf(xi−1)) and {x̂i}ki=0 be the lin-
earized iterates satisfying Retr−1

x∗ (x̂i) = G[Retr−1
x∗ (x̂i−1)]

with G = id − ηHessf(x∗), satisfying ∥G∥x∗ ≤ σ < 1.
Then, using retraction and vector transport in Algorithm 1
and letting x̄c,x be computed from (5), the same asymptotic
optimal convergence rate (Proposition 1) holds under the
same choice of λ = O(ds(x0, x

∗)), s ∈ (2, 83 ).

Theorem 2 allows Algorithm 2 to be implemented with
general retraction and vector transport without affecting the
optimal convergence rate achieved asymptotically.

7 EXPERIMENTS

In this section, we evaluate the performance of our Rie-
mannian nonlinear acceleration (RiemNA) strategy on var-
ious applications. For RiemNA, we only consider the re-
cursive weighted average in (Avg.1) for the main experi-
ments. The codes can be found on https://github.
com/andyjm3/RiemNA.

Baselines We compare the proposed RGD+RiemNA (Al-
gorithm 2) with state-of-the-art Riemannian Nesterov ac-
celerated gradient (RNAG) methods (Kim and Yang, 2022).
We also include RAGD, a variant of Nesterov acceleration
on manifolds proposed in (Zhang and Sra, 2018), and RGD
as baselines. In particular, we compare with RNAG-C (Kim

and Yang, 2022) (designed for geodesic convex functions)
and RNAG-SC (Kim and Yang, 2022) and RAGD (Zhang
and Sra, 2018) (designed for geodesic strongly convex func-
tions) regardless of whether the objective is of the particular
class. More details of the algorithms are in Appendix A.2.

Parameters RNAG-C, RNAG-SC, and RAGD require the
knowledge of geodesic Lipschitz constant L (Kim and Yang,
2022). Further, RNAG-SC and RAGD require the geodesic
strong convexity parameter µ. In particular, the stepsize
of RNAG-C, RNAG-SC and RAGD should be set as 1/L.
If such constants are available, we set them accordingly.
Otherwise, we tune over the parameters L, µ for RNAG-
C, RNAG-SC to obtain the best results and set the same
parameters for RAGD for comparability. Following Kim
and Yang (2022), the additional parameters ξ, ζ are fixed to
be 1 for RNAG-C, RNAG-SC and β =

√
µ/L/5 for RAGD.

We set stepsize of RGD to be 1/L if available and tune the
stepsize otherwise. For the proposed RGD+RiemNA, we
fix λ = 10−8 and choose memory depth m ∈ {5, 10}. It
should be emphasized that RGD+RiemNA is agnostic to
function specific constants.

For fair comparisons, we use exponential map, inverse ex-
ponential map, and parallel transport for all the algorithms
whenever such operations are properly defined. For other
cases, we use retraction, inverse retraction, and vector trans-
port even though the baseline acceleration methods are not
analyzed under such general operations. We emphasize
that we maintain consistency in the use of these operations
across all the algorithms. The experiments are coded in
Matlab using Manopt (Boumal et al., 2014). The stopping
criterion for all the algorithms is gradient norm reaching
below 10−6.

https://github.com/andyjm3/RiemNA
https://github.com/andyjm3/RiemNA
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Figure 2: Comparing RGD+RiemNA with additional approaches: SIRNAG, RAGDsDR, and StAGD. SIRNAG (opt-1) and
(opt-2) represent SIRNAG with two update options. We observe that RGD-RiemNA maintains its superior performance.

Applications We consider four applications: leading
eigenvector computation (Absil et al., 2007), Fréchet mean
of symmetric positive definite (SPD) matrices with the
affine-invariant metric (Bhatia, 2009), orthogonal Pro-
crustes problem (Eldén and Park, 1999), and the nonlinear
eigenspace problem (Zhao et al., 2015). These applications
solve problems on sphere, SPD, Stiefel, and Grassmann
manifolds respectively. See Appendix A.1 for detailed intro-
duction of the manifolds, along with the relevant operations
required for the experiments. We highlight that except for
the task of Fréchet mean which is geodesic strongly convex,
other problems are in general nonconvex.

Leading Eigenvector Computation The problem com-
putes the leading eigenvector of a symmetric matrix A of
size d × d, by solving minx∈Sd−1{f(x) := − 1

2x
⊤Ax},

where Sd−1 := {x ∈ Rd : ∥x∥2 = 1} denotes the sphere
manifold of intrinsic dimension d− 1. For the experiment,
we generate a positive definite matrixA with condition num-
ber 103 and exponentially decaying eigenvalues in dimen-
sion d = 103. As shown in (Kim and Yang, 2022, Propo-
sition 7.1), the problem has geodesic L-Lipschitz gradient
with L to be the eigengap of matrix A, i.e., the difference
between maximum and minimum eigenvalues of A. The
optimal solution of the problem is given by − 1

2λmax(A),
where λmax extracts the largest eigenvalue of A.

The stepsize is thus set as 1/L for all methods. For RNAG-
SC and RAGD, we set µ = 10. For RiemNA, we set mem-
ory depth to be m = 10. We use exponential and inverse
exponential map as well as projection-type vector transport
for all algorithms including RGD+RiemNA.

Fréchet Mean of SPD Matrices We consider the prob-
lem of computing the Fréchet mean of symmetric pos-
itive definite (SPD) matrices {Ai}Ni=1 of size d × d
under the affine-invariant metric (Bhatia, 2009), i.e.,
minX∈Sd++

1
2N

∑N
i=1 ∥logm(X−1/2AiX

−1/2)∥2F. Here,
Sd++ is the set of SPD matrices of size d × d, ∥ · ∥F is
the Frobenius norm, and logm(·) is the matrix logarithm.
To trace the optimality gap, we compute the optimal solu-
tion of the problem by running R-LBFGS method (Huang
et al., 2016) until the gradient norm falls below 10−10.

For the experiments, we use exponential map and its inverse
as well as the parallel transport for all the algorithms. As
commented previously, the geometry is negatively curved,
and thus, the Fréchet mean problem is geodesic 1-strongly
convex (µ = 1). For this problem, we generate random
N = 100 SPD matrices of dimension d = 10. The stepsize
for all methods are tuned and set to be 0.5. For RiemNA,
we set memory depth m = 5.

Orthogonal Procrustes Problem We also consider the or-
thogonal Procrustes problem on the Stiefel manifold (Eldén
and Park, 1999). Suppose we are given A ∈ Rr×r, B ∈
Rp×r, the objective is minX∈St(p,r) ∥XA − B∥2F where
St(p, r) := {X ∈ Rp×r : X⊤X = I} is the set of column
orthonormal matrices, which forms the so-called Stiefel
manifold with the canonical metric. The optimal solution is
similarly computed by running R-LBFGS.

To implement the algorithms, we use QR-based retraction
and inverse retraction as well as projection-type vector trans-
port. We generate random matrices A,B where the entries
are normal distributed. We set p = 100, r = 5. For this
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problem, both L and µ are unknown. Hence, we tune and set
stepsize to be 1 for all methods. For RNAG-SC and RAGD,
we select µ = 0.005 and for RiemNA we set memory depth
m = 5.

Nonlinear Eigenspace Problem Finally, the problem
of computing nonlinear eigenspace arises as the to-
tal energy minimization on the Grassmann manifold
(Zhao et al., 2015), i.e., minX∈Gr(p,r)

1
2 tr(X

⊤LX) +
1
4ρ(X)⊤L−1ρ(X) where ρ(X) := diag(XX⊤) and L is a
discrete Laplacian operator. The optimal solution is simi-
larly computed by running R-LBFGS.

For experiment, we implement the algorithms with QR-
based retraction and inverse retraction as well as projection-
based vector transport similar to Stiefel manifold. We gen-
erate L as a tridiagonal matrix with main diagonal entries
to be 2 and sub- and super-diagonal entries to be −1. The
stepsize is tuned and set to be 0.1 for all methods and for
RNAG-SC, RAGD, µ = 5 and for RiemNA, m = 5.

Results In Figure 1, we plot optimality gap, f(xt)−f(x∗),
against both iteration number and runtime for all the algo-
rithms. We make the following observations:

• Proposed RGD+RiemNA consistently outperforms the
baselines in runtime across all the applications.

• In iteration counts as well, RGD+RiemNA is consis-
tently better than others in all the applications except in
the leading eigevector problem, where RGD+RiemNA
matches the performance of RAGD and RNAG-SC.

• In Figure 1a, RGD+RiemNA is faster than RAGD
and RNAG-SC even though the number of iterations
needed are similar. This implies that RGD+RiemNA
is computationally more efficient. This is in accor-
dance with RGD+RiemNA requiring fewer number of
calls to manifold operations like exponential map (or
retraction) and parallel transport (or vector transport).

• For the SPD Fréchet mean problem, which is geodesic
strongly convex, RGD+RiemNA consistently exhibits
faster convergence than others where the extrapolation
step leads to significant convergence acceleration.

• RGD+RiemNA does not necessarily ensure descent
in the objective for the initial iterations. Only in the
later phase the acceleration takes place. This is in
accordance with our local convergence analysis.

Comparison with Additional Baselines We also com-
pare with additional Riemannian acceleration methods in
Figure 2, including an ODE-based acceleration method SIR-
NAG (Alimisis et al., 2020), an adaptive momentum-based
acceleration method RAGDsDR (Alimisis et al., 2021), and
an acceleration method for the Stiefel manifold StAGD
(Siegel, 2019). We notice that the curvature parameter ζ ≥ 1
is required for both SIRNAG and RAGDsDR, which should
be set as 1 if the manifold is positively curved and ζ > 1
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Figure 3: Parameter sensitivity on the leading eigenvector
problem. Left: we vary λ by fixing m = 10. Right: we vary
m by fixing λ = 10−8. Our proposed RGD+RiemNA is
robust to parameter changes.

when the minimum curvature is negative. For the case of
leading eigenvector problem, which is on sphere, manifold
of positive curvature, we fix ζ = 1. Otherwise, we first
tune ζ for SIRNAG and RAGDsDR. Then the stepsize is
tuned accordingly. For StAGD, only the stepsize is tuned. In
Figure 2, we observe that RGD+RiemNA outperforms the
above baselines as well. Even in the Stiefel case, our general
RGD+RiemNA is faster than the specialized acceleration
method StAGD.

Ablation Studies In Figure 3, we test the sensitivity of
RGD+RiemNA to the choices of regularization parameter λ
(on the left with m = 10 fixed) and memory depth m (on
the right with λ = 10−8 fixed). The results demonstrate
robustness of RiemNA under various choices of regulariza-
tion parameter λ and memory depth m. Additionally, in
Appendix A.3, we also test on alternative averaging schemes
where we show that RGD+RiemNA with (Avg.2) performs
very similar to the strategy (Avg.1).

8 CONCLUSION

In this paper, we introduce a scheme for accelerating first-
order Riemannian optimization algorithms, based on the
idea of iterate extrapolation on the manifolds. The extrapola-
tion step is performed via novel intrinsic weighted averaging
schemes on manifolds. We show that Riemannian accelera-
tion achieves convergence with asymptotically optimal rates
irrespective of function classes. We also show our analy-
sis holds with computationally cheap retraction and vector
transport operations. Empirically, we see superior perfor-
mance of the proposed algorithm RGD+RiemNA against
many state-of-the-art Riemannian acceleration algorithms.

Even though the convergence analysis of our proposed ac-
celeration scheme is asymptotic, we empirically observe its
good performance against the baselines. It thus raises the
question whether non-asymptotic convergence rates can be
established. While we have focused on analyzing the RGD,
it is also interesting to see whether such an acceleration
scheme can be applied to other algorithm classes, such as
momentum-based and stochastic algorithms.
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A EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS

A.1 Geometry of Specific Riemannian Manifolds

Sphere Manifold The sphere manifold Sd−1 is an embedded submanifold of Rd with the tangent space identified as
TxSd−1 = {u ∈ Rd : x⊤u = 0}. The Riemannian metric is given by ⟨u, v⟩ = ⟨u, v⟩2 for u, v ∈ TxSd−1. We use the
exponential map derived as Expx(u) = cos(∥u∥2)x + sin(∥u∥2) u

∥u∥2
and the inverse exponential map as Exp−1

x (y) =

arccos(x⊤y) Projx(y−x)
∥Projx(y−x)∥2

where Projx(v) = v − (x⊤v)x is the orthogonal projection of any v ∈ Rd to the tangent space
TxSd−1. The vector transport is given by the projection operation, i.e., T y

x u = Projy(u).

Symmetric Positive Definite (SPD) Manifold The SPD manifold of dimension d is denoted as Sd++ := {X ∈ Rd×d :
X⊤ = X,X ≻ 0}. The tangent space TXM is the set of symmetric matrices. The affine-invariant Riemannian metric
is given by ⟨U, V ⟩X = tr(X−1UX−1V ) for any U, V ∈ TXSd++. We make use of the exponential map, which is
ExpX(U) = Xexpm(X−1U) where expm(·) is the matrix exponential. The inverse exponential map is derived as
Exp−1

X (Y ) = Xlogm(X−1Y ) for any X,Y ∈ Sd++. We consider the parallel transport given by ΓYXU = EUE⊤ with
E = (Y X−1)1/2.

Stiefel Manifold The Stiefel manifold of dimension p × r is written as St(p, r) := {X ∈ Rp×r : X⊤X = I}. The
Riemannian metric is the Euclidean inner product defined as ⟨U, V ⟩X = ⟨U, V ⟩2. We consider the QR-based retraction
RetrX(U) = qf(X + U) where qf(·) returns the Q-factor from the QR decomposition. The inverse retraction is derived
as for X,Y ∈ O(d) Retr−1

X (Y ) = Y R −X , where R is solved from the system X⊤Y R + R⊤Y ⊤X = 2I . The vector
transport is given by the orthogonal projection, which is T Y

X = U − Y {Y ⊤U}S where {A}S := (A+A⊤)/2.

Grassmann Manifold The Grassmann manifold of dimension p× r, denoted as Gr(p, r), is the set of all r dimensional
subspaces in Rp (p ≥ r). Each point on the Grassmann manifold can be identified as a column orthonormal matrices
X ∈ Rp×r, X⊤X = I and two pointsX,Y ∈ Gr(p, r) are equivalent ifX = Y O for someO ∈ O(r), the r×r orthogonal
matrix. Hence Grassmann manifold is a quotient manifold of the Stiefel manifold. We consider the popular QR-based
retraction, i.e. RX(U) = qf(X + U) where for simplicity, we let X to represent the equivalence class and U represents the
horizontal lift of the tangent vector. The inverse retraction is also based on QR factorization, i.e. R−1

X (Y ) = Y (X⊤Y )−1−X .
Vector transport is T Y

X U = U −XX⊤U .

A.2 Baseline Riemannian Acceleration Methods

Here, we include the implementation details of the Riemannian Nesterov accelerated gradient methods presented in (Zhang
and Sra, 2018; Kim and Yang, 2022; Alimisis et al., 2020, 2021; Siegel, 2019). It is worth noting that those algorithms
have been analyzed under the exponential map, inverse exponential map, and parallel transport. In contrast, the proposed
RGD+RiemNA works with general retraction and vector transport.

We first present the (constant-stepsize) RAGD method in (Zhang and Sra, 2018, Algorithm 2), which is included in Algorithm
3. We see the algorithm requires three times evaluation of the exponential map and two times the inverse exponential map at
every iteration.

Algorithm 3 RAGD (Zhang and Sra, 2018)

1: Input: Initialization x0, parameter β > 0, stepsize h ≤ 1
L , strong convexity parameter µ > 0.

2: Initialize v0 = x0.

3: Set α =

√
β2+4(1+β)µh−β

2 , γ =

√
β2+4(1+β)µh−β√
β2+4(1+β)µh+β

µ, γ̄ = (1 + β)γ.

4: for k = 0, ...,K − 1 do
5: Compute αk ∈ (0, 1) from the equation α2

k = hk((1− αk)γk + αkµ).
6: yk = Expxk

(
αγ

γ+αµExp
−1
xk

(vk)
)

7: xk+1 = Expyk(−h gradf(yk))
8: vk+1 = Expyk

( (1−α)γ
γ̄ Exp−1

yk
(vk)− α

γ̄ gradf(yk)
)

9: end for
10: Output: xK
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Below we present RNAG-C (Algorithm 4), which is designed for geodesic convex functions and RNAG-SC (Algorithm 5)
which is for geodesic strongly convex functions in (Kim and Yang, 2022). We observe the algorithms require two times
evaluation of the exponential map, inverse exponential map as well as parallel transport.

Algorithm 4 RNAG-C (Kim and Yang, 2022)

1: Input: Initialization x0, parameters ξ, T > 0, stepsize s ≤ 1
L .

2: Initialize v̄0 = 0 ∈ Tx0
M.

3: Set λk = k+2ξ+T
2 .

4: for k = 0, ...,K − 1 do
5: yk = Expxk

(
ξ

λk+ξ−1 v̄k
)

6: xk+1 = Expyk(−s gradf(yk))
7: vk = Γykxk

(
v̄k − Exp−1

xk
(yk)

)
8: ¯̄vk+1 = vk − sλk

ξ gradf(yk)

9: v̄k+1 = Γ
xk+1
yk

(
¯̄vk+1 − Exp−1

yk
(xk+1)

)
10: end for
11: Output: xK

Algorithm 5 RNAG-SC (Kim and Yang, 2022)

1: Input: Initialization x0, parameter ξ, stepsize s ≤ 1
L , strong convexity parameter µ.

2: Set q = µs.
3: for k = 0, ...,K − 1 do
4: yk = Expxk

( √
ξq

1+
√
ξq
v̄k
)

5: xk+1 = Expyk
(
− s gradf(yk))

6: vk = Γykxk

(
v̄k − Exp−1

xk
(yk)

)
7: ¯̄vk+1 =

(
1−

√
q
ξ

)
vk +

√
q
ξ

(
− 1

µgradf(yk)
)

8: v̄k+1 = Γ
xk+1
yk

(
¯̄vk+1 − Exp−1

yk
(xk+1)

)
9: end for

10: Output: xK

We also include SIRNAG (Alimisis et al., 2020), RAGDsDR (Alimisis et al., 2021) and StAGD (Siegel, 2019). We have
included the detailed steps in Algorithm 6 and 7 respectively. Specifically, SIRNAG is the discretization of an ODE on
manifolds that achieves acceleration. For the purpose of experiments, we only consider the version for geodesic convex
functions. This is because the version for geodesic strongly convex functions only differs in one parameter setting. SIRNAG
involves two update options, SIRNAG (opt-1) and SIRNAG (opt-2), which correspond to two strategies of discretization.

Algorithm 6 SIRNAG

1: Input: Initialization x0. Integration stepsize h. curvature parameter ζ.
2: for k = 0, ...,K − 1 do
3: βk = k−1

k+2ζ .
4: Option I: ak = βkvk − h gradf(xk).
5: Option II: ak = βkvk − h gradf

(
Expxk

(hβkvk)
)
.

6: xk+1 = Expxk
(h ak).

7: vk+1 = Γ
xk+1
xk ak.

8: end for
9: Output: xK .

RAGDsDR, accelerates the convergence for both geodesic convex and weakly-quasi-convex functions by exploiting
momentum. For experiments, we only consider the convex version. We follow the empirical choice of βk suggested in the
paper.

Finally, specifically for the orthogonal Procrustes problem, we include the acceleration method (Siegel, 2019) designed for
the Stiefel manifold as another baseline, which we call StAGD. In particular, we implement the version with function restart
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Algorithm 7 RAGDsDR

1: Input: Initialization x0. Smoothness parameter L. curvature parameter ζ.
2: v0 = x0, A0 = 0.
3: for k = 0, ...,K − 1 do
4: βk = k

k+2 .
5: yk = Expvk

(
βkExp

−1
vk

(xk)
)

6: xk+1 = Expyk(−
1
Lgradf(yk))

7: Solve ak+1 > 0 from the equation ζa2k+1

Ak+ak+1
= 1

L .
8: Ak+1 = Ak + ak+1.
9: vk+1 = Expvk(−ak+1Γ

vk
yk
gradf(yk)).

10: end for
11: Output: xK .

(Siegel, 2019, Algorithm 4.1) and without using linesearch for comparability. It is worth noticing that (Siegel, 2019) applies
the Cayley-based retraction and canonical Riemannian metric (Edelman et al., 1998) for the implementation.

A.3 Ablation Study: Use of Alternative Averaging Schemes

We next evaluate the numerical performance of RiemNA when using alternative averaging scheme, i.e. (Avg.2). Specifically,
the average is given by x̄c,x = Retrxk

(
−
∑k−1
i=0 θiΓ

xk
xi
Retr−1

xi
(xi+1)

)
= Retrxk

(
−
∑k−1
i=0 θiri

)
where we use the general

retraction. It is worth mentioning that (Avg.2) is more efficient by avoiding k times evaluation of inverse retraction map. We
compare the use of two averaging schemes in Figure 4 where we observe almost identical convergence behaviour when
measured against the iteration. For runtime, (Avg.2) can further reduce computational cost compared to (Avg.1), especially
for the Stiefel manifold and Grassmann manifold where the inverse retraction is expensive. Even though for SPD manifold,
the inverse exponential map is expensive, because the number of iteration to convergence is small, we do not observe a
significant reduction in runtime.

0 200 400 600
Iterations

10-10

100

O
pt

im
al

ity
 g

ap

RGD
RiemNA-avg1
RiemNA-avg2

0 0.2 0.4 0.6 0.8
Time (s)

10-10

100

O
pt

im
al

ity
 g

ap

RGD
RiemNA-avg1
RiemNA-avg2

(a) Sphere: leading eigenvector

0 5 10 15 20
Iterations

10-10

100

O
pt

im
al

ity
 g

ap

RGD
RiemNA-avg1
RiemNA-avg2

0 1 2 3
Time (s)

10-10

100

O
pt

im
al

ity
 g

ap

RGD
RiemNA-avg1
RiemNA-avg2

(b) SPD: Fréchet mean
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Figure 4: Comparison of different averaging schemes, i.e., (Avg.1) (used in the main text) and (Avg.2). We observe almost
identical convergence in terms of iterations. (Avg.2) is more efficient, particularly for the case Stiefel and Grassmann
manifold where the inverse retraction is costly.
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A.4 Sensitivity to Data Generation and Initialization

Here, we provide additional independent experiment runs to test the model sensitivity to randomness in data generation
and initialization. Each column in Figure 5 corresponds to a run with a fixed random seed. From Figure 5, we observe the
proposed RGD+RiemNA maintains its outperformance against all baselines with good stability.
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Figure 5: Additional experiment runs with different data and initialization. Each column corresponds to an independent run.
We observe the better performance of RGD+RiemNA in all the runs.

B ALTERNATIVE AVERAGING SCHEME VIA WEIGHTED FRÉCHET MEAN

We also consider the weighted Fréchet mean for computing the weighted average on manifolds, defined as

x̄c,x = argmin
x∈X

k∑
i=0

cid
2(x, xi). (Avg.3)

Nevertheless, for general manifolds, it is not guaranteed the existence and uniqueness of the solution. In fact, one can ensure
the uniqueness of the solution when the function 1

2d
2(x, x′) is geodesic τ -strongly convex in x. From (Alimisis et al., 2020,
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Lemma 2), we see that the geodesic strong convexity of problem (Avg.3) holds for sufficiently small X on any manifold as
well as for any non-positively curved manifold. Specifically, when M is non-positively curved, we have τ = 1. While for
other manifolds, let D be the diameter of X and κ+ > 0 be the upper curvature bound. Then, geodesic strong convexity is
satisfied with τ < 1 when D < π

2
√
κ+

.

Lemma 10. Under Assumption 1, suppose x 7→ 1
2d

2(x, x′) is geodesic τ -strongly convex in x for any x′ ∈ X . Con-
sider x̄c,x = argminx∈X

∑k
i=0 cid

2(x, xi). Then d(x̄c,x, x∗) ≤ τ∥
∑k
i=0 ci∆xi

∥x∗ and ∥∆x̄c,x
−

∑k
i=0 ci∆xi

∥x∗ =
O(d3(x0, x

∗)).

Under the additional assumption of geodesic strong convexity, Lemma 10 shows an extra tighter bound on d(x̄c,x, x∗),
i.e., d(x̄c,x, x∗) ≤ τ∥

∑k
i=0 ci∆xi∥x∗ . Thus, we see the error from the linear term does not suffer from metric distortion

(ϵ1 = 0). The error bound from coefficient stability and nonlinearity terms however, still incur additional errors as the
previous two averaging schemes. Lemma 10 allows convergence under the two averaging schemes to be established by
exactly following the same steps as before. This is sufficient to show the same convergence bound holds (i.e., Theorem 1
and Proposition 1).

C FROM EUCLIDEAN AVERAGING TO RIEMANNIAN AVERAGING

To extend the idea of weighted average to manifolds, we first rewrite the weighted average on the Euclidean space as follows.

Lemma 11 (Weighted average recursion). Given a set of coefficients {ci}ki=0 with
∑k
i=0 ci = 1 and a set of iterates {xi}ki=0.

Let the streaming weighted average be defined as x̃i = x̃i−1 + γi(xi − x̃i−1) where γi = ci∑i
j=0 cj

for i = 0, ..., k and

x̃−1 = x0. Then x̃k =
∑k
i=0 cixi.

Proof. For some γ1, ..., γk, the streaming weighted average is defined as x̃i = x̃i−1 + γi(xi − x̃i−1) for i ∈ [k]. We first
show the streaming weighted average has the form

x̃i =

i∏
j=1

(1− γj)x0 + γ1

i∏
j=2

(1− γj)x1 + · · ·+ γixi, ∀i ∈ [k].

We prove such argument by induction. For i = 1, it is clear that x̃1 = (1− γ1)x0 + γ1x1 and satisfies the form. Suppose at
i = k′, the equality is satisfied, then for i = k′ + 1, we have

x̃k′+1 = x̃k′ + γk′+1(xk′+1 − x̃k′) = (1− γk′+1)x̃k′ + γk′+1xk′+1

which satisfies the equality. Hence this argument holds for all i ∈ [k]. Finally, at i = k, we see that the choice that
γi =

ci∑i
j=0 ci

leads to the matching coefficients.

D FUNCTION CLASSES ON RIEMANNIAN MANIFOLDS

This section briefly reviews various functions classes on Riemannian manifolds.

D.1 Geodesic Gradient Lipschitzness and Hessian Lipschitzness

First, we provide several equivalent characterizations for the gradient and Hessian Lipschitzness. For proof and more
detailed discussions, see (Boumal, 2020, Section 10.4).

Lemma 12 (Geodesic gradient Lipschitzness and function smoothness). A function f : M −→ R has geodesic L-Lipschitz
gradient in X ⊆ if for all x, y = Expx(u) ∈ X in the domain of the exponential map, we have

∥Γxγ(t)gradf(γ(t))− gradf(x)∥x ≤ L∥tu∥x,

for all t ∈ [0, 1] and γ(t) := Expx(tu). This is equivalent to function having bounded Hessian as ∥Hessf(x)∥x :=
maxu∈TxM:∥u∥x=1 ∥Hessf(x)[u]∥x ≤ L, where ∥Hessf(x)∥x denotes the operator norm of Riemannian Hessian. If
function f has geodesic L-Lipschitz gradient, then function f is geodesic L-smooth, which satisfies

|f(y)− f(x)− ⟨gradf(x), u⟩x| ≤
L

2
∥u∥2x.
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Lemma 13 (Geodesic Hessian Lipschitzness). A function f has geodesic ρ-Lipschitz Hessian in X ⊆ M if for all
x, y = Expx(u) ∈ X in the domain of the exponential map, we have

∥Γxγ(t) ◦Hessf(γ(t)) ◦ Γγ(t)x −Hessf(x)∥x ≤ ρ∥tu∥3x,

for all t ∈ [0, 1] and γ(t) := Expx(tu). If function f has geodesic ρ-Lipschitz Hessian, then function f satisfies

|f(y)− f(x)− ⟨gradf(x), u⟩x −
1

2
⟨u,Hessf(x)[u]⟩x| ≤

ρ

6
∥u∥3x

∥Γxygradf(y)− gradf(x)−Hessf(x)[u]∥x ≤ ρ

2
∥u∥2.

D.2 Retraction Gradient Lipschitzness and Hessian Lipschitzness

In this section, we define the gradient and Hessian Lipschitzness with respect to a retraction, which generalizes the definitions
in Section D.1.
Definition 2 (Retraction gradient Lipschitzness). A function f : M −→ R has retraction L-Lipschitz gradient in X ⊆ M if
for all x, y = Rx(u) ∈ X , we have

∥Γxc(t)gradf(c(t))− gradf(x)∥x ≤ L∥tu∥x

where we denote c(t) = Rx(tu).
Definition 3 (Retraction Hessian Lipschitzness). A function f : M −→ R has retraction ρ-Lipschitz Hessian in X ⊆ M if
for all x, y ∈ Rx(u) ∈ X in the domain of the retraction, we have

∥Γxc(t) ◦Hessf(c(t)) ◦ Γc(t)x −Hessf(x)∥x ≤ ρ∥tu∥3x,

where we denote c(t) = Rx(tu).

D.3 Geodesic Convexity and Strong Convexity

We start with the notion of geodesic convex set. A subset X ⊆ M is called geodesic convex if for any two points in the set,
there exists a geodesic joining them that lies entirely within the set.
Definition 4 (Geodesic (strong) convexity). A function f : X −→ R is geodesic convex in a geodesic convex set X if for
any geodesic γ : [0, 1] −→ X , we have f(γ(t)) ≤ (1 − t)f(x) + tf(y) where we let x = γ(0), y = γ(1). The function
is geodesic µ-strongly convex if (f ◦ γ)′′(t) ≥ µd2(x, y) for all t ∈ [0, 1]. This is equivalent to Hessf(x) ⪰ µ id for all
x ∈ X .

A similar notion of convexity with respect to retraction also exists by replacing the geodesic curve γ(t) with retraction curve
c(t) = Retrx(tu). See Huang et al. (2015b) for more details.

E MAIN PROOFS

Before we proceed with the proofs of the results in the paper, we introduce a lemma that is used often in the course of the
proof.
Lemma 14. Under Assumption 1, for any w, x, y, z ∈ X , we have ∥ΓxwΓwy Exp

−1
y (z) −

(
Exp−1

x (z) − Exp−1
x (y)

)
∥x ≤

C0d(y, w)d(w, x)d(y, z) + C2 min{d(y, z), d(x, y)}Cκ
(
d(y, z) + d(x, y)

)
.

Proof of Lemma 14.

∥ΓxwΓwy Exp
−1
y (z)−

(
Exp−1

x (z)− Exp−1
x (y)

)
∥x

≤ ∥ΓxwΓwy Exp
−1
y (z)− ΓxyExp

−1
y (z)∥x + ∥ΓxyExp

−1
y (z)−

(
Exp−1

x (z)− Exp−1
x (y)

)
∥x

≤ C0d(y, w)d(w, x)d(y, z) + C2d
(
Expx

(
ΓxyExp

−1
y (z) + Exp−1

x (y)
)
, z
)

≤ C0d(y, w)d(w, x)d(y, z) + C2d
(
Expx

(
ΓxyExp

−1
y (z) + Exp−1

x (y)
)
,Expy(Exp

−1
y (z))

)
≤ C0d(y, w)d(w, x)d(y, z) + C2 min{d(y, z), d(x, y)}Cκ

(
d(y, z) + d(x, y)

)
.

where we apply Lemma 1 and 2.
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E.1 Proof of Proposition 2

We show in Proposition 2 that the optimal coefficients c∗ has a closed-form solution.

Proposition 2. Let R = [⟨ri, rj⟩xk
]i,j ∈ R(k+1)×(k+1) collects all pairwise inner products. Then the solution c∗ =

argminc∈Rk+1:c⊤1=1 ∥
∑k
i=0 ciri∥2xk

+ λ∥c∥22 is explicitly derived as c∗ = (R+λI)−11
1⊤(R+λI)−11

.

Proof of Proposition 2. Let µ ∈ R be the dual variable. Then we have c∗, µ∗ satisfy the KKT system:[
2(R+ λI) 1

1⊤ 0

] [
c∗

µ∗

]
=

[
0
1

]
Solving the system yields the desired result.

E.2 Proof of Lemma 3

Proof of Lemma 3. First, we consider the pushforward operator Expyx : TxM −→ TyM for any x, y ∈ M, defined as
Expyx(u) := Exp−1

y (Expx(u)) for any u ∈ TxM. The differential of Expyx at 0 along u ∈ TxM is derived as

DExpyx(0)[u] = DExp−1
y (Expx(0))[DExpx(0)[u]] = DExp−1

y (x)[u] = [DExpy(Exp
−1
y (x))]−1[u]

= (T xy )
−1[u]

where we denote T yx (v) = DExpx(Exp
−1
x (y))[v] ∈ TyM for v ∈ TxM. The second equality is due to Expx(0) =

0,DExpx(0) = id and the third equality follows from the inverse function theorem. Then by Taylor’s theorem for Expx
∗

xi

around 0, we have

Exp−1
x∗

(xi+1) = Expx
∗

xi
(Exp−1

xi
(xi+1))

= Expx
∗

xi
(0) + DExpx

∗

xi
(0)[Exp−1

xi
(xi+1)] +

1

2
D2Expx

∗

xi
(ζi)[Exp

−1
xi

(xi+1),Exp
−1
xi

(xi+1)]

= Exp−1
x∗ (xi)− η(T xi

x∗ )−1[gradf(xi)] +
η2

2
D2Expx

∗

xi
(ζi)[gradf(xi), gradf(xi)]

= Exp−1
x∗ (xi)− η(T xi

x∗ )−1[gradf(xi)] +
η2

2
ϵi (6)

for some ζi = sExp−1
xi

(xi+1), s ∈ (0, 1). We let ϵi := D2Expx
∗

xi
(ζi)[gradf(xi), gradf(xi)] with ∥ϵi∥x∗ =

O
(
∥gradf(xi)∥2xi

)
. Then by Hessian Lipschitzness (Lemma 13), we have around x∗

ei := Γx
∗

xi
gradf(xi)−Hessf(x∗)[Exp−1

x∗ (xi)] ≤
ρ

2
∥Exp−1

x∗ (xi)∥2x∗ . (7)

Combining (6) with (7) yields

Exp−1
x∗

(xi+1)− Exp−1
x∗ (xi) = −η(Γx

∗

xi
T xi
x∗ )−1[Γx

∗

xi
gradf(xi)] +

η2

2
ϵi

= −η(Γx
∗

xi
T xi
x∗ )−1[Hessf(x∗)[Exp−1

x∗ (xi)] + ei] +
η2

2
ϵi. (8)

To show the desired result, it remains to show the operator (Γx
∗

xi
T xi
x∗ )−1 is locally identity. This is verified in (Tripuraneni

et al., 2018, Lemma 6) for general retraction. We restate here and adapt to the case of exponential map.

Consider the function H(u) := (Γ
Expx(u)
x )−1T

Expx(u)
x : TxM −→ L(TxM), where L(TxM) denotes the set of linear maps

on TxM. Let γ(t) = Expx(tu). Then we have

d

dt
H(tu)|t=0 =

d

dt
(Γγ(t)x )−1T γ(t)x |t=0 =

(
(Γγ(t)x )−1D

dt
T γ(t)x

)
|t=0 =

(D
dt

DExpx(tu)
)
|t=0

=
D2

dt2
Expx(tu)|t=0 = 0.
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where the second equality is due to the property of parallel transport (see for example (Boumal, 2020, Proposition
10.37)). In addition, from (Waldmann, 2012, Theorem A.2.9), we see the second order derivative of H is given by
d2

dt2H(tu)|t=0 = 1
6Riemx(u, ·)u where we denote Riemx as the Riemann curvature tensor evaluated at x. We notice that

Riemx(u, ·)u : TxM −→ TxM is symmetric with respect to the Riemannian metric (see for example (Andrews and Hopper,
2010)).

For any v ∈ TxM, H(u)[v] ∈ TxM, we apply the Taylor’s theorem for H up to second order, which yields

H(u)[v] = v +
1

6
Riemx(u, v)u+O(∥u∥3),

Let x = x∗ and u = Exp−1
x∗ (xi) = ∆xi

. Then we obtain for any v ∈ Tx∗M, H(u)[v] ∈ Tx∗M

Γx
∗

xi
T xi
x∗ [v] = v +

1

6
Riemx∗

(
∆xi

, v
)
∆xi

+O(∥∆xi
∥3). (9)

It satisfies that (Γx
∗

xi
T xi
x∗ )−1 = id− 1

6Riemx∗
(
∆xi

, ·
)
∆xi

+O(∥∆xi
∥3). Substituting this result into (8), we obtain

∆xi+1
−∆xi

= −η
(
id− 1

6
Riemx∗

(
∆xi

, ·
)
∆xi

+O(∥∆xi
∥3)

)[
Hessf(x∗)[∆xi

] + ei
]
+
η2

2
ϵi

= −ηHessf(x∗)[∆xi
]− ηei +

η

6
Riemx∗(∆xi

,Hessf(x∗)[∆xi
] + ei)∆xi

+
η2

2
ϵi +O(∥∆xi

∥3).

Let εi = −ηei + η
6Riemx∗(∆xi ,Hessf(x∗)[∆xi ] + ei)∆xi +

η2

2 ϵi +O(∥∆xi∥3). We can bound the error term as follows.

∥εi∥2x∗ = O(∥ei∥2x∗ + ∥∆xi
∥4x∗∥gradf(xi)∥2xi

+ ∥ϵi∥2x∗ + ∥∆xi
∥6x∗) = O(∥∆xi

∥4),

where we use the bounds on ∥ei∥x∗ , ∥ϵi∥x∗ as well as Hessf(x∗)[∆xi ] + ei = Γx
∗

xi
gradf(xi) and geodesic gradient

Lipschitzness (Lemma 12) such that ∥gradf(xi)∥2 ≤ L∥∆i∥2x∗ .

E.3 Proof of Lemma 4

Proof of Lemma 4. The proof is by induction. Let γi = ci∑i
j=0 cj

and first we rewrite the averaging on tangent space as

following the recursion defined as ∆̃xi
= ∆̃xi−1

+γi(∆xi
− ∆̃xi−1

). As we have shown in Lemma 11,
∑k
i=0 ci∆xi

= ∆̃xk
.

To show the difference between ∆x̄c,x
, based on Lemma 2, it suffices to show the distance between x̃k = x̄c,x and

Expx∗(∆̃xk
) is bounded.

To this end, we first notice that x̃0 = x0 = Expx∗(∆̃x0
) and we consider bounding the difference between x̃1 and

Expx∗(∆̃x1). To derive the bound, we first observe that by Lemma 1,

d
(
Expx∗(∆̃x1

),Expx0

(
Γx0
x∗γ1(∆x1

− ∆̃x0
)
))

= d
(
Expx∗(∆̃x0

+ γ1(∆x1
− ∆̃x0

)),Expx0

(
Γx0
x∗γ1(∆x1

− ∆̃x0
)
))

≤ d(x0, x
∗)Cκ

(
∥∆̃x0

∥x∗ + γ1∥∆x1
− ∆̃x0

∥x∗

)
, (10)

where we see x0 = Expx∗(∆̃x0
) with ∆̃x0

= ∆x0
. In addition,

d
(
x̃1,Expx0

(
Γx0
x∗γ1(∆x1 − ∆̃x0)

))
= d

(
Expx0

(
γ1Exp

−1
x0

(x1)
)
,Expx0

(
Γx0
x∗γ1(∆x1 − ∆̃x0)

))
≤ γ1C1∥Exp−1

x0
(x1)− Γx0

x∗(∆x1 −∆x0)∥x0

≤ γ1C1C2d(x0, x
∗)Cκ

(
d(x0, x1) + d(x0, x

∗)
)
. (11)

where the last inequality is from the proof of Lemma 14. Thus combining (10), (11) leads to

d
(
x̃1,Expx∗(∆̃x1)

)
≤ d(x0, x

∗)Cκ

(
∥∆̃x0∥x∗ + γ1∥∆x1 − ∆̃x0∥x∗

)
+ γ1C1C2d(x0, x

∗)Cκ
(
d(x0, x1) + d(x0, x

∗)
)
.



Andi Han, Bamdev Mishra, Pratik Jawanpuria, Junbin Gao

By noticing Cκ(x) = O(x2), we see d(x̃1,Expx∗(∆̃x1)) = O(d3(x0, x
∗)).

Now suppose at i ≤ k − 1, we have d(x̃i,Expx∗(∆̃xi)) = O(d3(x0, x
∗)) and we wish to show d(x̃i+1,Expx∗(∆̃xi+1)) =

O(d3(x0, x
∗)). To this end, we first see Expx∗(∆̃xi+1

) = Expx∗

(
∆̃xi

+ γi+1(∆xi+1
− ∆̃xi

)
)

and by Lemma 1

d
(
Expx∗

(
∆̃xi

+ γi+1(∆xi+1
− ∆̃xi

)
)
,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

≤ ∥∆̃xi∥x∗Cκ
(
∥∆̃xi∥x∗ + γi+1∥∆xi+1

− ∆̃xi
∥x∗

)
= O(d3(x0, x

∗)),

where the order of O(d3(x0, x
∗)) is due to Cκ(x) = O(x2) and ∥∆̃xi

∥x∗ = O(d(x0, x
∗)), which can be shown by

induction.

Further, noticing x̃i+1 = Expx̃i

(
γi+1Exp

−1
x̃i

(xi+1)
)
, we can show

d
(
x̃i+1,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

≤ d
(
Expx̃i

(
γi+1Exp

−1
x̃i

(xi+1)
)
,Expx̃i

(
Γx̃i
x∗γi+1(∆xi+1

− ∆̃xi
)
))

+ d
(
Expx̃i

(
Γx̃i
x∗γi+1(∆xi+1

− ∆̃xi
)
)
,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))
. (12)

The first term on the right of (12) can be bounded as

d
(
Expx̃i

(
γi+1Exp

−1
x̃i

(xi+1)
)
,Expx̃i

(
Γx̃i
x∗γi+1(∆xi+1

− ∆̃xi
)
))

≤ γi+1∥Exp−1
x̃i

(xi+1)− Γx̃i
x∗(∆xi+1

− ∆̃xi
)∥x̃i

= γi+1∥Γx
∗

x̃i
Exp−1

x̃i
(xi+1)− (∆xi+1

−∆x̃i
) + (∆̃xi

−∆x̃i
)∥x∗

≤ γi+1∥Γx
∗

x̃i
Exp−1

x̃i
(xi+1)− (∆xi+1

−∆x̃i
)∥x∗ + γi+1∥∆̃xi

−∆x̃i
∥x∗

≤ γi+1C2d(x̃i, x
∗)Cκ

(
d(xi+1, x̃i) + d(x̃i, x

∗)
)
+ γi+1C2d(x̃i,Expx∗(∆̃xi

)), (13)

where we again use the result from the proof of Lemma 14. To see (13) is on the order of O(d3(x0, x
∗)), we only need

to show ∥∆x̃i∥2x∗ = d2(x̃i, x
∗) = O(d2(x0, x

∗)), which can be seen by a simple induction argument. First, it is clear that
∥∆x̃0

∥2x∗ = d2(x0, x
∗). Then suppose for any i < k, we have d(x̃i, x∗) = O(d(x0, x

∗)). Then from Lemma 2, we have

d(x̃i+1, x
∗) ≤ C1∥Exp−1

x̃i
(x̃i+1)− Exp−1

x̃i
(x∗)∥x̃i ≤

C1ci+1∑i+1
j=0 cj

d(x̃i, xi+1) + d(x̃i, x
∗)

≤
( C1ci+1∑i+1

j=0 cj
+ 1

)
d(x̃i, x

∗) + d(xi+1, x
∗) = O(d(x0, x

∗)).

Thus, using d(x̃i,Expx∗(∆̃xi)) = O(d3(x0, x
∗)), we see (13) is on the order of O(d3(x0, x

∗)).

Now we bound the second term on the right of (12). Particularly,

d
(
Expx̃i

(
Γx̃i
x∗γi+1(∆xi+1

− ∆̃xi
)
)
,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

≤ d
(
Expx̃i

(
Γx̃i
x∗γi+1(∆xi+1

− ∆̃xi
)
)
,Expx̃i

(
Γx̃i

Expx∗ (∆̃xi
)
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

+ d
(
Expx̃i

(
Γx̃i

Expx∗ (∆̃xi
)
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
),ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

≤ γi+1C1C0∥∆̃xi
∥x∗d(x̃i,Expx∗

(
∆̃xi

)
)
∥∆xi+1

− ∆̃xi
∥x∗ + C3d(x̃i,Expx∗(∆̃xi

))

= O(d3(x0, x
∗)),
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where we apply Lemma 2 multiple times. Combining the previous results, we see

d(x̃i+1,Expx∗(∆̃xi+1
))

≤ d
(
x̃i+1,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

+ d
(
Expx∗

(
∆̃xi

+ γi+1(∆xi+1
− ∆̃xi

)
)
,ExpExpx∗ (∆̃xi

)

(
Γ
Expx∗ (∆̃xi

)
x∗ γi+1(∆xi+1

− ∆̃xi
)
))

= O(d3(x0, x
∗))

Now applying Lemma 2, we obtain

∥∆x̃i+1
− ∆̃xi+1

∥x∗ ≤ C2d(x̃i+1,Expx∗(∆̃xi+1
)) = O(d3(x0, x

∗))

for all i ≤ k − 1. Let i = k − 1 we have ∥∆x̃k
− ∆̃xk

∥x∗ = ∥∆x̄c,x
−

∑k
i=0 ci∆xi

∥x∗ = O(d3(x0, x
∗)). Thus the proof

is complete.

E.4 Proof of Lemma 5

Proof of Lemma 5. Directly combining Lemma 15 and Lemma 4 gives the result.

Lemma 15 (Convergence of the linearized iterates). Consider the linearized iterates {x̂i}ki=0 satisfying (4) for some G ⪰ 0

with ∥G∥x∗ ≤ σ < 1. Let r̂i = ∆x̂i+1
−∆x̂i

, ĉ∗ = argminc⊤1=1 ∥
∑k
i=0 cir̂i∥2x∗ + λ∥c∥22. Then

∥
k∑
i=0

ĉ∗i∆x̂i
∥x∗ ≤ d(x0, x

∗)

1− σ

√
(S

[0,σ]

k,λ̄
)2 − λ

d2(x0, x∗)
∥ĉ∗∥22

Proof of Lemma 15. The proof follows from (Scieur et al., 2020, Proposition 3.4) and we include it here for completeness.
Denote P1

k := {p ∈ R[x] : deg(p) = k, p(1) = 1} as the set of polynomials of degree k with coefficients summing to 1.
Noticing that r̂i = ∆x̂i+1

−∆x̂i
=

(
G−id

)
[∆x̂i

] =
(
G−id

)
Gi[∆x0

], we have ∥
∑k
i=0 cir̂i∥2x∗ = ∥(G−id)p(G)[∆x0

]∥2x∗

where p ∈ P1
k and {ci}ki=0 are the corresponding coefficients. Then we obtain

min
p∈P1

k

{
∥(G− id)p(G)[∆x0 ]∥2x∗ + λ∥c∥22

}
≤ d2(x0, x

∗) min
p∈P1

k

{
∥p(G)∥2x∗ +

λ

d2(x0, x∗)
∥p∥22

}
≤ d2(x0, x

∗) min
p∈P1

k

max
M :0⪯M⪯σid

{
∥p(M)∥2x∗ +

λ

d2(x0, x∗)
∥p∥22

}
= d2(x0, x

∗) min
p∈P1

k

max
x∈[0,σ]

{
p2(x) +

λ

d2(x0, x∗)
∥p∥22

}
= (S

[0,σ]

k,λ̄
)2d2(x0, x

∗),

where λ̄ = λ/d2(x0, x
∗) and we use the fact that ∥G− id∥x∗ ≤ 1. Then

∥
k∑
i=0

ĉ∗i∆x̂i∥2x∗ = ∥
k∑
i=0

ĉ∗i (G− id)−1r̂i∥2x∗

≤ ∥(G− id)−1∥2x∗

(
∥

k∑
i=0

ĉ∗i r̂i∥2x∗ + λ∥ĉ∗∥22 − λ∥ĉ∗∥22
)

≤ d2(x0, x
∗)

(1− σ)2

(
(S

[0,σ]

k,λ̄
)2 − λ

d2(x0, x∗)
∥ĉ∗∥22

)
,

where we see that ∥(G− id)−1∥x∗ ≤ 1
1−σ .
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E.5 Proof of Lemma 6

Proof of Lemma 6. From Proposition 2 and following (Scieur et al., 2020, Proposition 3.2), we obtain

∥c∗∥ ≤

√
∥R∥2 + λ

(k + 1)λ
.

Now we bound ∥R∥2. First we see R can be rewritten as R⊤Gxk
R, where Gxk

∈ Rr×r is the positive definite metric tensor
at xk and R = [r⃗i] ∈ Rr×k is the collection of tangent vector in an orthonormal basis and r is the intrinsic dimension of the
manifold. Thus we can write Riemannian inner product as ⟨ri, rj⟩xk

= r⃗⊤i Gxk
r⃗j and

∥R∥2 = ∥G1/2
xk

R∥22 ≤ ∥G1/2
xk

R∥2F =

k∑
i=0

r⃗⊤i Gxk
r⃗i =

k∑
i=0

∥ri∥2xk
=

k∑
i=0

d2(xi, xi+1).

On the other hand, denote the perturbation matrix P = R− R̂. Then from Proposition 2 and following (Scieur et al., 2020,
Proposition 3.2), we have

∥δc∥2 ≤ ∥P∥2
λ

∥ĉ∗∥2.

Now we need to bound ∥P∥2. Let Ei = ∆xi −∆x̂i . Then we have

∥Γx
∗

xk
ri − r̂i∥x∗ = ∥Γx

∗

xk
ri − (∆xi+1

−∆xi
) + (∆xi+1

−∆xi
)− r̂i∥x∗

≤ ∥Γx
∗

xk
ri − (∆xi+1 −∆xi)∥x∗ + ∥(∆xi+1 −∆xi)− r̂i∥x∗

= ∥Γx
∗

xk
ri − (∆xi+1

−∆xi
)∥x∗ + ∥Ei+1 − Ei∥x∗ (14)

where we use Lemma 2. Now we respectively bound each of the two terms on the right. First we see from Lemma 14,

∥Γx
∗

xk
ri − (∆xi+1

−∆xi
)∥x∗ ≤ C0d(xi, xk)d(xk, x

∗)d(xi, xi+1) + C2d(xi, x
∗)Cκ

(
d(xi, x

∗) + d(xi, xi+1)
)

(15)

Further, we bound ∥Ei+1 − Ei∥x∗ . From Lemma 3, we have Ei = G[Ei−1] + εi, E0 = 0 and

∥Ei+1 − Ei∥x∗ = ∥(G− id)Ei + εi+1∥x∗ = ∥(G− id)

i∑
j=1

Gi−jεj + εi+1∥x∗ ≤
i+1∑
j=1

∥εj∥x∗ . (16)

Combining (16), (15), (14) leads to

∥Γx
∗

xk
ri − r̂i∥x∗ ≤ C0d(xi, xk)d(xk, x

∗)d(xi, xi+1) + C2d(xi, x
∗)Cκ

(
d(xi, x

∗) + d(xi, xi+1)
)
+

i+1∑
j=1

∥εj∥x∗ .

Finally, recall we can write R = R⊤Gxk
R and similarly for R̂ = R̂⊤Gx∗R̂ where R̂ = [⃗̂ri]. By isometry of parallel

transport, we have R = R⊤
x∗Gx∗Rx∗ where Rx∗ = [

−−→
Γx

∗

xk
ri]. Let E = G1/2

x∗ (Rx∗ − R̂). Then

∥P∥2 = ∥R⊤
x∗Gx∗Rx∗ − R̂⊤Gx∗R̂∥2 ≤ 2∥E∥2∥G1/2

x∗ R̂∥2 + ∥E∥22.

Notice that

∥G1/2
x∗ R̂∥2 ≤ ∥G1/2

x∗ R̂∥F ≤
k∑
i=0

∥r̂i∥x∗ ≤
k∑
i=0

∥(G− id)Gir̂0∥x∗ ≤
k∑
i=0

σi∥r̂0∥x∗ ≤ 1− σk+1

1− σ
d(x0, x

∗),

Also

∥E∥2 = ∥G1/2
x∗ (Rx∗ − R̂)∥2 ≤

k∑
i=0

∥Γx
∗

xk
ri − r̂i∥x∗

≤ d(xk, x
∗)C0

k∑
i=0

d(xi, xk)d(xi, xi+1) + C2

k∑
i=0

d(xi, x
∗)Cκ

(
d(xi, x

∗) + d(xi, xi+1)
)
+

k∑
i=0

i+1∑
j=1

∥εj∥x∗

= O(d2(x0, x
∗)),

where we notice that Cκ(d(xi, x∗) + d(xi, xi+1)) = O(d2(xi, x
∗)) and recall that ∥εj∥x∗ = O(d2(xj , x

∗)) =

O(d2(x0, x
∗)). Thus ∥P∥2 ≤ 2ψ 1−σk+1

1−σ d(x0, x
∗) + (ψ)2 where ψ = O(d2(x0, x

∗)).
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E.6 Proof of Lemma 7

Proof of Lemma 7. From Lemma 2, we first observe that d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤ C1∥∆x̄ĉ∗,x̂
− ∆x̄c∗,x̂

∥x∗ . Now we derive a
bound on the term ∥∆x̄ĉ∗,x̂

−∆x̄c∗,x̂
∥x∗ . Notice that from Lemma 4, we have

∥∆x̄ĉ∗,x̂
−∆x̄c∗,x̂

∥x∗ = ∥
k∑
i=0

(ĉ∗i − c∗i )∆x̂i + ϵ̂∥x∗ ≤ ∥δc∥2
( k∑
i=0

∥∆x̂i∥2x∗

)1/2
+ ∥ϵ̂∥x∗

≤ ∥δc∥2(
k∑
i=0

∥∆x̂i
∥x∗) + ∥ϵ̂∥x∗

≤ ∥δc∥2(
k∑
i=0

∥G∥i∥∆x0∥x∗) + ∥ϵ̂∥x∗

≤ 1− σk+1

1− σ
d(x0, x

∗)∥δc∥2 + ∥ϵ̂∥x∗

≤ 1

1− σ

d(x0, x
∗)

λ

( 1

1− σ
2ψd(x0, x

∗) + (ψ)2
)
∥ĉ∗∥2 + ∥ϵ̂∥x∗

for some ∥ϵ̂∥x∗ = O(d3(x0, x
∗)) and we denote δc = c∗ − ĉ∗. The bound on ∥δc∥2 is from Lemma 6.

E.7 Proof of Lemma 8

Proof of Lemma 8. Similarly to Lemma 7, we first see d(x̄c∗,x̂, x̄c∗,x) ≤ C1∥∆x̄c∗,x̂
−∆x̄c∗,x

∥x∗ due to Lemma 2. Again
using Lemma 4, we see

∥∆x̄c∗,x̂
−∆x̄c∗,x

∥x∗ = ∥
k∑
i=0

c∗i (∆xi −∆x̂i) + ϵ̂∥x∗ ≤ ∥c∗∥2(
k∑
i=0

∥Ei∥2x∗)1/2 + ∥ϵ̂∥x∗

≤ ∥c∗∥2(
k∑
i=0

∥Ei∥x∗) + ∥ϵ̂∥x∗

where ∥ϵ̂∥x∗ = O(d3(x0, x
∗)) and Ei = ∆xi

−∆x̂i
. From Lemma 3, we have Ei = G[Ei−1] + εi, E0 = 0. Thus we can

bound

∥Ei∥x∗ = ∥
i∑

j=1

Gi−jεj∥x∗ ≤
i∑

j=1

∥εj∥x∗ .

Then using Lemma 6 to bound ∥c∗∥2, we obtain

∥∆x̄c∗,x̂
−∆x̄c∗,x

∥x∗ ≤

√∑k
i=0 d

2(xi, xi+1) + λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ3,

where ϵ3 = O(d3(x0, x
∗)).

E.8 Proof of Theorem 1

Proof of Theorem 1. Following the decomposition of error, we show

d(x̄c∗,x, x
∗)

≤ d(x̄ĉ∗,x̂, x
∗) + d(x̄ĉ∗,x̂, x̄c∗,x̂) + d(x̄c∗,x̂, x̄c∗,x)

≤ d(x0, x
∗)

1− σ

√
(S

[0,σ]

k,λ̄
)2 − λ

d2(x0, x∗)
∥ĉ∗∥22 +

C1d(x0, x
∗)

λ(1− σ)

(2d(x0, x∗)
1− σ

ψ + (ψ)2
)
∥ĉ∗∥2

+ C1

√∑k
i=0 d

2(xi, xi+1) + λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ1 + ϵ2 + ϵ3.
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Now we maximize the bound over ∥ĉ∗∥. From (Scieur et al., 2020, Proposition A.1), we see the maximum of a function

g(x) = c
√
a− λ̄x2+bx is

√
a
√
c2 + b2

λ̄
where λ̄ = λ/d2(x0, x

∗). Let a = (S
[0,σ]

k,λ̄
)2, b = C1d(x0,x

∗)
λ(1−σ)

(
2d(x0,x

∗)
1−σ ψ+(ψ)2

)
,

c = d(x0,x
∗)

1−σ . We then obtain

d(x̄c∗,x, x
∗) ≤ S

[0,σ]

k,λ̄

√√√√d2(x0, x∗)

(1− σ)2
+
C2

1d
4(x0, x∗)

(
2d(x0,x∗)

1−σ ψ + (ψ)2
)2

λ3(1− σ)2

+ C1

√∑k
i=0 d

2(xi, xi+1) + λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ1 + ϵ2 + ϵ3,

which completes the proof.

E.9 Proof of Proposition 1

Proof of Proposition 1. Dividing the bound from Theorem 1 by d(x0, x∗) gives

d(x̄c∗,x, x
∗)

d(x0, x∗)
≤
S
[0,σ]

k,λ̄

1− σ

√
1 +O(d(2−3s)(x0, x∗)

(2d(x0, x∗)
1− σ

ψ + (ψ)2
)2

+ C1

√ ∑k
i=0 d

2(xi, xi+1)

(k + 1)O(ds(x0, x∗))
+

1

k + 1

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+

1

d(x0, x∗)

(
ϵ1 + ϵ2 + ϵ3

)
.

By ψ = O(d2(x0, x
∗)), the first term of the bound simplifies to

S
[0,σ]

k,λ̄

1−σ

√
1 +O(d(8−3s)(x0, x∗)), and similarly be-

cause d(xi, xi+1) = O(d(x0, x
∗)), ∥εj∥x∗ = O(d2(x0, x

∗)) under Assumption 1, the second term simplifies to
O(

√
d2(x0, x∗) + d(4−s)(x0, x∗)) and the last term reduces to O(d2(x0, x

∗)) as ϵ1, ϵ2, ϵ3 = O(d3(x0, x
∗)). Hence we

obtain

d(x̄c∗,x, x
∗)

d(x0, x∗)
≤
S
[0,σ]

k,λ̄

1− σ

√
1 +O(d(8−3s)(x0, x∗)) +O(

√
d2(x0, x∗) + d(4−s)(x0, x∗)) +O(d2(x0, x

∗)).

Finally we notice that the last two terms vanishes when d(x0, x∗) −→ 0 for the choice of s. For the first term, given that
when d(x0, x∗) −→ 0, λ̄ = O(d(s−2)(x0, x

∗)) −→ 0 and O(d(8−3s)(x0, x
∗)) −→ 0 for s ∈ (2, 83 ), then

lim
d(x0,x∗)−→0

S
[0,σ]

k,λ̄

1− σ

√
1 +O(d(2−3s)(x0, x∗)) =

S
[0,σ]
k,0

1− σ
=

1

1− σ

2

β−k + βk

where β = 1−
√
1−σ

1+
√
1−σ . This follows because without regularization, S[0,σ]

k,0 reduces to the rescaled and shifted Chebyshev
polynomial. See for example (d’Aspremont et al., 2021).

E.10 Proof of Lemma 9

Proof of Lemma 9. First, we write
k∑
i=0

ci∆xi = ∆xk
−
k−1∑
i=0

θi(∆xi+1 −∆xi).

By Lemma 1, we obtain

d
(
Expx∗

( k∑
i=0

ci∆xi

)
,Expxk

(
− Γxk

x∗

k−1∑
i=0

θi(∆xi+1
−∆xi

)
))

≤ d(xk, x
∗)Cκ

(
d(xk, x

∗) + ∥
k−1∑
i=0

θi(∆xi+1 −∆xi)∥x∗

)
≤ d(xk, x

∗)Cκ

(
d(xk, x

∗) +

k−1∑
i=0

θi(d(xi+1, x
∗) + d(xi, x

∗))
)
,
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where we use the fact that Cκ(x) is increasing for x > 0. In addition, from Lemma 2,

d
(
x̄c,x,Expxk

(
− Γxk

x∗

k−1∑
i=0

θi(∆xi+1 −∆xi)
))

≤ C1∥
k−1∑
i=0

θi
(
Γxk
x∗ (∆xi+1 −∆xi)− Γxk

xi
Exp−1

xi
(xi+1)

)
∥xk

≤ C1

k−1∑
i=0

θi∥∆xi+1
−∆xi

− Γx
∗

xk
Γxk
xi
Exp−1

xi
(xi+1)∥x∗ .

Using Lemma 14, we obtain

∥∆xi+1
−∆xi

− Γx
∗

xk
Γxk
xi
Exp−1

xi
(xi+1)∥x∗ ≤ C0d(xi, xk)d(xk, x

∗)d(xi, xi+1)

+ C2d(xi, x
∗)Cκ

(
d(xi, x

∗) + d(xi, xi+1)
)
.

Let e = ∆x̄c,x
−

∑k
i=0 ci∆xi

. Now combining the above results gives

∥e∥x∗ = ∥∆x̄c,x
−

k∑
i=0

ci∆xi
∥x∗

≤ C2d
(
x̄c,x,Expx∗

( k∑
i=0

ci∆xi

))
≤ C2d

(
x̄c,x,Expxk

(
− Γxk

x∗

k−1∑
i=0

θi(∆xi+1
−∆xi

)
))

+ C2d
(
Expx∗

( k∑
i=0

ci∆xi

)
,Expxk

(
− Γxk

x∗

k−1∑
i=0

θi(∆xi+1
−∆xi

)
))

≤ C2C1

k−1∑
i=0

θi

(
C0d(xi, xk)d(xk, x

∗)d(xi, xi+1) + C2d(xi, x
∗)Cκ

(
d(xi, x

∗) + d(xi, xi+1)
)

+ C2d(xk, x
∗)Cκ

(
d(xk, x

∗) +

k−1∑
i=0

θi(d(xi+1, x
∗) + d(xi, x

∗))
)
.

Under Assumption 1 and Cκ(x) = O(x2), we see ∥e∥x∗ = O(d3(x0, x
∗)).

E.11 Proof of Lemma 10

Proof of Lemma 10. Let D(x) := 1
2

∑k
i=0 cid

2(x, xi). Then we can show gradD(x) = −
∑k
i=0 ciExp

−1
x (xi). See for

example (Alimisis et al., 2020). By the first-order stationarity,

gradD(x̄c,x) = −
k∑
i=0

ciExp
−1
x̄c,x

(xi) = 0

and gradD(x∗) = −
∑k
i=0 ciExp

−1
x∗ (xi).

The first claim that d(x̄c,x, x∗) ≤ ∥
∑k
i=0 ci∆xi

∥x∗ follows from Lemma (Tripuraneni et al., 2018, Lemma 10) and
we include here for completeness. Define a real-valued function g(t) := D

(
Expx∗(tη)

)
with η =

∆x̄c,x

∥∆x̄c,x∥x∗ . Under
the assumption and definition of geodesic µ-strongly convex, we see g(t) is µ-strongly convex in t. Thus, we have
g′(t0) − g′(0) ≥ µt0 for any t0. Let t0 = ∥∆x̄c,x

∥x∗ and denote the geodesic γ(t) := Expx∗(tη). We derive that
g′(t) = ⟨gradD(Expx∗(tη)), γ′(t)⟩ by chain rule. Then we have g′(t0) = ⟨gradD(x̄c,x), γ

′(t0)⟩x̄c,x
= 0 and g′(0) =

⟨gradD(x∗), η⟩. Finally, we see

∥gradD(x∗)∥2x∗ ≥ (g′(0))2 = (g′(t0)− g′(0))2 ≥ µ2t20 = µ2∥∆x̄c,x
∥2x∗ ,

where the first inequality is due to Cauchy–Schwarz inequality. The first claim is proved by noticing ∥gradD(x∗)∥x∗ =

∥
∑k
i=0 ci∆xi

∥x∗ and ∥∆x̄c,x
∥x∗ = d(x̄c,x, x

∗).
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For the second claim, we first observe from the proof of Lemma 14 that

∥Exp−1
x̄c,x

(xi)− Γ
x̄c,x

x∗

(
Exp−1

x∗ (xi)− Exp−1
x∗ (x̄c,x)

)
∥x̄c,x

≤ C2d(x̄c,x, x
∗)Cκ

(
d(x̄c,x, x

∗) + d(x̄c,x, xi)
)

= O(d3(x0, x
∗)),

where the order can be seen due to that d(x̄c,x, x∗) ≤ 1
µ

∑k
i=0 cid(xi, x

∗) = O(x0, x
∗) from the first claim. Thus let

ε̄ := Exp−1
x̄c,x

(xi)−Γ
x̄c,x

x∗

(
Exp−1

x∗ (xi)−Exp−1
x∗ (x̄c,x)

)
, we have ∥ε̄∥x̄c,x = O(d3(x0, x

∗)). From the first order stationarity,
we see

0 =

k∑
i=0

ciExp
−1
x̄c,x

(xi) =

k∑
i=0

ci

(
Γ
x̄c,x

x∗

(
Exp−1

x∗ (xi)− Exp−1
x∗ (x̄c,x)

)
+ ε̄

)
= Γ

x̄c,x

x∗

( k∑
i=0

ci∆xi
−∆x̄c,x

)
+ ε̄.

Taking the norm and using the isometry of parallel transport, we obtain the desired result.

F PROOFS UNDER GENERAL RETRACTION AND VECTOR TRANSPORT

Discussions on the Assumptions Before we prove the results, we discuss the assumptions made for the general setup.
In particular, Assumption 4 is required to bound the deviation from the retraction to the exponential map, which can be
considered natural given retraction approximates the exponential map to the first-order. In fact, Assumption 4 has been
commonly used in Sato et al. (2019); Kasai et al. (2018); Han and Gao (2021a) for analyzing Riemannian first-order
algorithms using retraction and can be satisfied for a sufficiently small neighbourhood (see for example Ring and Wirth
(2012); Huang et al. (2015a)). Similarly, Assumption 5 is used to bound the deviation between the vector transport to
parallel transport, which is also standard in Huang et al. (2015b); Kasai et al. (2018); Han and Gao (2021a). One can follow
the procedures in Huang et al. (2015b) to construct isometric vector transport that satisfies such condition for common
manifolds like SPD manifold (Huang et al., 2015b), Stiefel and Grassmann manifold (Huang, 2013).

Here we show that when we use general retraction Retr in place of the exponential map Exp, thus avoiding the lemma on
metric distortion (Lemma 1, 2), we can still show a similar result as Lemma 4 but with an error on the order of O(d2(x0, x

∗))
instead of O(d3(x0, x

∗)) as for the case of exponential map. The main idea of proof follows from Tripuraneni et al. (2018).
The next proposition formalizes such claim. For this section, we denote ∆x = Retr−1

x∗ (x) for any x ∈ X where the
retraction has a smooth inverse. For general retraction, the deviation is on the order of O(∥∆x0∥2x∗) = O(d2(x0, x

∗)) where
we use the fact that retraction approximates the exponential map to the first order.

Proposition 3. Suppose all iterates xi ∈ X , a neighbourhood where retraction has a smooth inverse. Consider the weighted
average x̄c,x = x̃k given by (Avg.1) with retraction. Assume the sequence of iterates is non-divergent in retraction, i.e.
∥∆xi

∥x∗ , ∥∆x̃i
∥x∗ = O(∥∆x0

∥x∗). Then we have ∆x̄c,x
=

∑k
i=0 ci∆xi

+ e, with ∥e∥x∗ = O(∥∆x0
∥2x∗),

Proof. The proof generalize the proof of (Tripuraneni et al., 2018, Lemma 12). First denote Retryx := Retr−1
y ◦ Retrx and

we notice that

∆x̃i+1
= Retr−1

x∗ (x̃i+1) = Retr−1
x∗

(
Retrx̃i

(
γi+1Retr

−1
x̃i

(
xi+1

)))
= Retrx

∗

x̃i

(
γi+1Retr

−1
x̃i

(
Retrx∗(∆xi+1

)
))

= Retrx
∗

x̃i

(
γi+1

(
Retrx

∗

x̃i

)−1
(∆xi+1

)
)

= F (∆xi+1),

where we denote γi = ci∑i
j=0 cj

and F : Tx∗M −→ Tx∗M defined as F (u) = Retrx
∗

x̃i

(
γi+1

(
Retrx

∗

x̃i

)−1
(u)

)
. In addition, it

can be verified that F (∆x̃i
) = ∆x̃i

.
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Now by chain rule, we have

DF (u) = DRetrx
∗

x̃i

(
γi+1(Retr

x∗

x̃i
)−1(u)

)[
Dγi+1(Retr

x∗

x̃i
)−1(u)

]
= γi+1D

( 1

γi+1
Retrx

∗

x̃i

)(
γi+1(Retr

x∗

x̃i
)−1(u)

)[
Dγi+1(Retr

x∗

x̃i
)−1(u)

]
= γi+1

(
Dγi+1(Retr

x∗

x̃i
)−1(u)

)−1[
Dγi+1(Retr

x∗

x̃i
)−1(u)

]
= γi+1id,

where the third inequality uses the inverse function theorem. Hence the Taylor expansion of F at ∆x̃i
up to second order

gives

∆x̃i+1
= F (∆xi+1

) = F (∆x̃i
) + γi+1(∆xi+1

−∆x̃i
) + ϵ̃i

= (1− γi+1)∆x̃i
+ γi+1∆xi+1

+ ϵ̃i.

where we let ϵ̃i = O(∥∆xi+1
−∆x̃i

∥2x∗). From the expansion, it follows that ∆x̃i+1
=

∑i
j=0 ci∑i+1
j=0 cj

∆x̃i
+ ci+1∑i+1

j=0 cj
∆xi+1

+ ϵ̃i,

which yields

(
i+1∑
j=0

cj)∆x̃i+1
= (

i∑
j=0

cj)∆x̃i
+ ci+1∆xi+1

+ (

i∑
j=0

cj)ϵ̃i =

i+1∑
j=0

cj∆xj
+

i∑
j=0

(

j∑
ℓ=0

cℓ)ϵ̃j ,

where the second equality follows by expanding the first equality. Let i = k − 1, this leads to

∆x̄c,x = ∆x̃k
=

k∑
j=0

cj∆xj + e,

where we let e =
∑k−1
j=0 (

∑j
ℓ=0 cℓ)ϵ̃j = O

(∑k−1
j=0 (

∑j
ℓ=0 cℓ)(∥∆xj+1

∥2x∗ + ∥∆x̃j
∥2x∗)

)
. We observe that ∥∆xi+1

∥2x∗ =

O(∥∆x0∥2x∗) and ∥∆x̃j∥2x∗ = O(∥∆x0∥2x∗) due to the non-divergent assumption. The proof is complete.

F.1 Proof of Theorem 2

Theorem 2 (Restatement). Under Assumption 1, 3, 4 and 5, let {xi}ki=0 be given by Riemannian gradient descent
via retraction, i.e., xi = Retrxi−1(−η gradf(xi−1)) and {x̂i}ki=0 be the linearized iterates satisfying Retr−1

x∗ (x̂i) =

G[Retr−1
x∗ (x̂i−1)] with G = id− ηHessf(x∗), satisfying ∥G∥x∗ ≤ σ < 1. Then, using retraction and vector transport in

Algorithm 1 and letting x̄c,x be computed from (5), it satisfies that

d(x̄c∗,x, x
∗) ≤ ∥Retr−1

x∗ (x0)∥x∗

S
[0,σ]

k,λ̄

1− σ

√√√√ 1

a20
+
C2

1∥Retr
−1
x∗ (x0)∥2x∗

(
2ψ
1−σ∥Retr

−1
x∗ (x0)∥x∗ + ψ2

)2
λ3

+ C1

√∑k
i=0 ∥Retr

−1
xi

(xi+1)∥2xi
+ λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ1 + ϵ2 + ϵ3,

where ψ = O(d2(x0, x
∗)), ϵ1, ϵ2, ϵ3 = O(d2(x0, x

∗)) and εi = O(d2(xi, x
∗)). Under the same choice of λ =

O(ds(x0, x
∗)), s ∈ (2, 83 ), the same asymptotic optimal convergence rate (Proposition 1) holds.

Proof of Theorem 2. Here we only provide a sketch of proof because the main idea is exactly the same as the case of
exponential map.

Under general retraction and vector transport, an analogue of Lemma 3 holds. That is,

Retr−1
x∗ (xi) = (id− ηHessf(x∗))[Retr−1

x∗ (xi−1)] + εi, (17)

where ∥εi∥x∗ = O(d2(xi, x
∗)). To show (17), we follow the exact same steps as the proof for Lemma 3 where we replace

exponential map with retraction. The only difference is that the second order derivative is no longer the Riemann curvature
tensor. In addition, we have shown in Proposition 3 that for retraction, we also have

Retr−1
x∗ (x̄c,x) =

k∑
i=0

ciRetr
−1
x∗ (xi) + e (18)
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with ∥e∥x∗ = O(d2(x0, x
∗)).

Further, we still consider the same error bound decomposition, i.e.,

d(x̄c∗,x, x
∗) ≤ d(x̄ĉ∗,x̂, x

∗) + d(x̄ĉ∗,x̂, x̄c∗,x̂) + d(x̄c∗,x̂, x̄c∗,x).

(I). For the linear term d(x̄ĉ∗,x̂, x
∗), we first see the linearized iterates x̂i enjoys the same convergence as in Lemma 15 that

∥
k∑
i=0

ĉ∗iRetr
−1
x∗ (x̂i)∥x∗ ≤ ∥Retr−1

x∗ (x0)∥x∗

1− σ

√
(S

[0,σ]

k,λ̄
)2 − λ

∥Retr−1
x∗ (x0)∥2x∗

∥ĉ∗∥22, (19)

where λ̄ := λ/∥Retr−1
x∗ (x0)∥2x∗ and we use Assumption 4. Combining (19) with (18) yields

d(x̄ĉ∗,x̂, x
∗) ≤ 1

a0
∥Retr−1

x∗ (x̄ĉ∗,x̂)∥x∗ ≤ ∥
k∑
i=0

ĉ∗iRetr
−1
x∗ (x̂i)∥x∗ + ϵ1,

≤ ∥Retr−1
x∗ (x0)∥x∗

a0(1− σ)

√
(S

[0,σ]

k,λ̄
)2 − λ

∥Retr−1
x∗ (x0)∥2x∗

∥ĉ∗∥22 + ϵ1,

with ϵ1 = O(d2(x0, x
∗)).

(II). For the stability term d(x̄ĉ∗,x̂, x̄c∗,x̂), we first use Assumption 4 to show

∥∆x̄ĉ∗,x̂
−∆x̄c∗,x̂

−
(
Retr−1

x∗ (x̄ĉ∗,x̂)− Retr−1
x∗ (x̄c∗,x̂)

)
∥x∗ ≤ a2∥Retr−1

x∗ (x̄ĉ∗,x̂)∥2x∗ + a2∥Retr−1
x∗ (x̄c∗,x̂)

)
∥2x∗

≤ a2a
2
1

(
d2(x̄ĉ∗,x̂, x

∗) + d2(x̄c∗,x̂, x
∗)
)

= O(d2(x0, x
∗)).

Let ϵr := ∆x̄ĉ∗,x̂
−∆x̄c∗,x̂

−
(
Retr−1

x∗ (x̄ĉ∗,x̂)− Retr−1
x∗ (x̄c∗,x̂)

)
, we have ∥ϵr∥x∗ = O(d2(x0, x

∗)). In addition, based on
Assumption 5, we show

∥T x∗

xk
ri −

(
Retr−1

x∗ (xi+1)− Retr−1
x∗ (xi)

)
− Γx

∗

xk
ri +

(
∆xi+1 −∆xi

)
∥x∗

≤ ∥T x∗

xk
ri − Γx

∗

xk
ri∥x∗ +O(d2(x0, x

∗)) = O(d2(x0, x
∗)),

where we use Assumption 4, 5 and notice ∥ri∥xi
= ∥Retr−1

xi
(xi+1)∥xi

≤ a1d(xi, xi+1) = O(d(x0, x
∗)). Let ϵv :=

T x∗

xk
ri −

(
Retr−1

x∗ (xi+1)− Retr−1
x∗ (xi)

)
− Γx

∗

xk
ri +

(
∆xi+1

−∆xi

)
, we have ∥ϵv∥x∗ = O(d2(x0, x

∗)).

Using Lemma 2, we then obtain

d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤ C1∥∆x̄ĉ∗,x̂
−∆x̄c∗,x̂

∥x∗ ≤ C1∥Retr−1
x∗ (x̄ĉ∗,x̂)− Retr−1

x∗ (x̄c∗,x̂)∥x∗ + C1∥ϵr∥x∗

≤ C1∥Retr−1
x∗ (x0)∥x∗

1− σ
∥c∗ − ĉ∗∥2 +O(d2(x0, x

∗)),

where we apply (18). Now we proceed to bound ∥c∗−ĉ∗∥2 ≤ ∥P∥2

λ ∥ĉ∗∥2 in a similar manner as Lemma 6 where P = R−R̂.
From the proof of Lemma 6, we have

∥P∥2 ≤ 2

1− σ
∥Retr−1

x∗ (x0)∥x∗∥E∥2 + ∥E∥22,

where ∥E∥2 ≤
∑k
i=0 ∥T x∗

xk
ri − r̂i∥x∗ . Thus it remains to bound ∥T x∗

xk
ri − r̂i∥x∗ . Similarly, we can show

∥T x∗

xk
ri − r̂i∥x∗ ≤ ∥T x∗

xk
ri −

(
Retr−1

x∗ (xi+1)− Retr−1
x∗ (xi)

)
∥x∗ +

i+1∑
j=1

∥εj∥x∗

≤ ∥Γx
∗

xk
ri −

(
∆xi+1

−∆xi

)
∥x∗ + ∥ϵv∥x∗ +

i+1∑
j=1

∥εj∥x∗ = O(d2(x0, x
∗)),
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where εj is defined in (17) and we use Lemma 14 for the exponential map. Thus ∥P∥2 ≤ 2ψ a1
1−σd(x0, x

∗) + ψ2 where
ψ = O(d2(x0, x

∗)). This leads to

d(x̄ĉ∗,x̂, x̄c∗,x̂) ≤
C1∥Retr−1

x∗ (x0)∥x∗

λ(1− σ)

( 2ψ

1− σ
∥Retr−1

x∗ (x0)∥x∗ + ψ2
)
∥ĉ∗∥2 + ϵ2,

where ϵ2 = O(d2(x0, x
∗)).

(III). Finally for the nonlinearity term d(x̄c∗,x̂, x̄c∗,x), we show

d(x̄c∗,x̂, x̄c∗,x) ≤ C1∥∆x̄c∗,x̂
−∆x̄c∗,x

∥x∗ ≤ C1∥Retr−1
x∗ (x̄c∗,x̂)− Retr−1

x∗ (x̄c∗,x)∥x∗ +O(d2(x0, x
∗))

≤ C1∥c∗∥2(
k∑
i=0

∥Retr−1
x∗ (xi)− Retr−1

x∗ (x̂i)∥x∗) +O(d2(x0, x
∗))

≤ C1

√∑k
i=0 ∥Retr

−1
xi

(xi+1)∥2xi
+ λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ3,

where ϵ3 = O(d2(x0, x
∗)) and we follow similar steps as in Lemma 6.

Finally, combining results from (I), (II), (III), we have

d(x̄c∗,x, x
∗) ≤ ∥Retr−1

x∗ (x0)∥x∗

a0(1− σ)

√
(S

[0,σ]

k,λ̄
)2 − λ

∥Retr−1
x∗ (x0)∥2x∗

∥ĉ∗∥22

+
C1∥Retr−1

x∗ (x0)∥x∗

λ(1− σ)

( 2ψ

1− σ
∥Retr−1

x∗ (x0)∥x∗ + ψ2
)
∥ĉ∗∥2

+ C1

√∑k
i=0 ∥Retr

−1
xi

(xi+1)∥2xi
+ λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ1 + ϵ2 + ϵ3.

Maximizing the bound over ∥ĉ∗∥2 yields

d(x̄c∗,x, x
∗) ≤ S

[0,σ]

k,λ̄

√√√√∥Retr−1
x∗ (x0)∥2x∗

a20(1− σ)2
+
C2

1∥Retr
−1
x∗ (x0)∥4x∗

(
2ψ
1−σ∥Retr

−1
x∗ (x0)∥x∗ + ψ2

)2
λ3(1− σ)2

+ C1

√∑k
i=0 ∥Retr

−1
xi

(xi+1)∥2xi
+ λ

(k + 1)λ

( k∑
i=0

i∑
j=0

∥εj∥x∗

)
+ ϵ1 + ϵ2 + ϵ3.

Finally, to see the asymptotic convergence rate, we notice that ∥Retr−1
x∗ (x0)∥x∗ = O(d(x0, x

∗)) and
limd(x0,x∗)−→0

1
d(x0,x∗) (ϵ1 + ϵ2 + ϵ3) = 0.

G EXTENSIONS

In this section, we consider various extensions to the proposed nonlinear acceleration on manifolds.

G.1 Online Riemannian Nonlinear Acceleration

Following Scieur et al. (2018); Bollapragada et al. (2022), we can extend Algorithm 1 to the online setting, where the
extrapolated point x̄c,x is used to update the iterate sequence. The idea is to add a mixing step by updating x̄c,x in the
direction of the weighted average of the gradients, i.e., gradf(x̄c,x) =

∑k
i=0 ciΓ

x̄c,x
xi gradf(xi). For the averaging schemes

(Avg.1), (Avg.3), the next iteration starts with Expx̄c,x
(−δ gradf(x̄c,x)) for some mixing parameter δ > 0. Particularly for

the tangent space averaging scheme (Avg.2), we show a more efficient strategy of mixing, which we focus in this paper.
The averaging and mixing steps are both performed on the same tangent space. Specifically, let x−1 = x0, we define the
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Algorithm 8 Riemannian nonlinear acceleration (RiemNA-online)

1: Input: Initialization x0. Regularization parameter λ. Mixing parameter δ.
2: for k = 0, ...,K − 1 do
3: Compute ri = Γxk

xi
Exp−1

xi
(xi+1) ∈ Txk

M, i = 0, ..., k

4: Solve c∗ = argminc∈Rk+1:c⊤1=1 ∥
∑k
i=0 ciri∥2xk

+ λ∥c∥22.
5: Compute xk+1 = Expxk

(
−δc∗kgradf(xk)−

∑k−1
i=0 Γxk

xi

(
θ∗i Exp

−1
xi

(xi+1)+δc
∗
i gradf(xi)

))
, where θ∗i =

∑i
j=0 c

∗
j .

6: end for
7: Output: xK .

Algorithm 9 Adaptive regularized Riemannian nonlinear acceleration (AdaRiemNA)

1: Input: A sequence of iterates x0, ..., xk+1. Tentative regularization parameters {λj}kj=1.
2: Compute ri = Γxk

xi
Exp−1

xi
(xi+1) ∈ Txk

M, i = 0, ..., k
3: for j = 1, ..., k do
4: Solve c∗(λj) = argminc∈Rk+1:c⊤1=1 ∥

∑k
i=0 ciri∥2xk

+ λj∥c∥22.
5: Compute x̄(λj) = x̄c,x using c∗(λj).
6: end for
7: Set x̄∗ = argminj=1,...,k f(x̄(λj)).
8: Compute u = Exp−1

x0
(x̄∗) and set t = 1.

9: while f(Expx0
(2tu)) < f(Expx0

(tu)) do
10: Update t = 2t.
11: end while
12: Output: Expx0

(tu).

following progression of the online nonlinear acceleration on manifolds.

xk+1 = Expxk

(
−
k−1∑
i=0

θiΓ
xk
xi
Exp−1

xi
(xi+1)− δ

k∑
i=0

ciΓ
xk
xi
gradf(xi)

)
= Expxk

(
− δckgradf(xk)−

k−1∑
i=0

Γxk
xi

(
θiExp

−1
xi

(xi+1) + δcigradf(xi)
))
.

The complete procedures are presented in Algorithm 8.

G.2 Practical Considerations

Here are some practical considerations to use nonlinear acceleration on manifolds.

Iterates From Riemannian Gradient Descent with Line-search Suppose the iterates {xi}ki=0 are generated from
xi = Expxi

(−ηigradf(xi−1)) where the stepsize is determined from a line-search procedure (such as backtracking line-
search (Boumal et al., 2019)) and thus varies across iterations. Nevertheless, Lemma 3 still holds withGi = id−ηiHessf(x∗).
Suppose the stepsize is chosen such that ∥Gi∥ ≤ σ < 1. Then the analysis still holds under this setting.

Safeguarding Decrease Due to the curved geometry of the manifold and nonlinearity of the objective function, it is not
guaranteed that f(x̄c,x) will decrease. In the main text, we only show local convergence of the acceleration strategy. A
typical globalization technique is to only keep the extrapolated point if it shows sufficient decrease compared to previous
iterates, i.e., f(x̄c,x) ≤ τ mini=0,...,k f(xi) for some τ < 1. In Scieur et al. (2020), an adaptive regularization strategy
has been proposed to select regularization parameter λ. Here we adapt the same strategy on manifolds, which we show
in Algorithm 9. As noticed in Scieur et al. (2020), a higher value of λ pushes the weights close to uniform and thus stays
closer to x0. Thus the line-search over t tries to enhance the progress compared to the initialization. In addition, for online
Riemannian nonlinear acceleration specifically, we may consider performing a line-search over the parameter δ to ensure a
sufficient descent condition is met.
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Limited-memory and Extrapolation Frequency Rather than keeping all the previous iterates for extrapolation, we can
set a memory depth of m and using only the most recent m iterates to compute the extrapolated point. In practice, m is
usually set to be less than 10. In addition, we notice that compared to the Euclidean version, the computational cost for the
Riemannian nonlinear acceleration can be high due to the use of parallel transport. Hence to mitigate this issue, we may
only compute the extrapolated point every m iteration.

Efficient Update of the Residual Matrix R Recall for each application of Riemannian nonlinear acceleration, we need to
compute R = [⟨ri, rj⟩xk

]0≤i,j≤k, where ri = T xk
xi

Retr−1
xi

(xi+1), where we write using (isometric) vector transport and
general retraction. This includes parallel transport and exponential map as special cases. By isometry, in the next iteration
when we receive rk+1, the update of R only requires computing ⟨Γxk+1

xk ri, rk+1⟩xk+1
, i = 0, ..., k + 1. Denote the vector

r+ := [⟨Γxk+1
xk ri, rk+1⟩xk+1

]0≤i≤k. Then the updated residual matrix is

R+ =

[
R r+
r⊤+ ∥rk+1∥2xk+1

]
.
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