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Abstract

The essential difficulty of gradient-based bilevel
optimization using implicit differentiation is to
estimate the inverse Hessian vector product with
respect to neural network parameters. This
paper proposes to tackle this problem by the
Nyström method and the Woodbury matrix iden-
tity, exploiting the low-rankness of the Hes-
sian. Compared to existing methods using it-
erative approximation, such as conjugate gra-
dient and the Neumann series approximation,
the proposed method avoids numerical insta-
bility and can be efficiently computed in ma-
trix operations without iterations. As a result,
the proposed method works stably in various
tasks and is faster than iterative approximations.
Throughout experiments including large-scale
hyperparameter optimization and meta learning,
we demonstrate that the Nyström method con-
sistently achieves comparable or even superior
performance to other approaches. The source
code is available from https://github.
com/moskomule/hypergrad.

1 Introduction

Bilevel optimization is an essential problem in machine
learning, which includes hyperparameter optimization
(HPO) (Hutter et al., 2019) and meta learning (Hospedales
et al., 2021). This problem consists of an inner problem
to minimize an inner objective f(θ,φ, T ) on data T with
respect to parameters θ ∈ Rp and an outer problem to min-
imize an outer objective g(θ,φ,V) on data V with respect
to hyper or meta parametersφ ∈ Rh. In the case of HPO, f
and g correspond to a training loss function and a validation
criterion. In contrast, in the case of meta learning, f and g
correspond to meta-training and meta-testing objectives.
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Typically in the deep learning literature, the bilevel opti-
mization problem can be formulated as

min
φ
g(θT (φ),φ,V) (1)

s.t. θt(φ) = Θ(θt−1(φ),∇θf(θt−1(φ),φ, T ),φ), (2)

where Θ is a gradient-based optimizer, such as SGD and
Adam (Kingma and Ba, 2015), and t = 1, 2, . . . , T . In
some cases, the outer problem (1) can also be optimized by
gradient-based optimization methods by using hypergra-
dient ∇φg, in a similar way to the inner problem, which
is expected to be more efficient and scalable than black-
box counterparts. Especially when combined with warm-
start bilevel optimization that alternately updates outer pa-
rameters as Equation (1) and inner parameters as Equa-
tion (2) during training (Jaderberg et al., 2017; Vicol et
al., 2022), the gradient-based approaches enjoy higher effi-
ciency (Lorraine et al., 2020; Luketina et al., 2016).

A straightforward approach to achieve this goal is to unroll
the inner problem to back-propagate through Equation (2)
for hypergradient (Domke, 2012; Finn et al., 2017; Grefen-
stette et al., 2019). However, unrolling increases the mem-
ory cost as the number of inner optimization T increases,
which may also cause gradient vanishing/explosion (Anto-
niou et al., 2019). Truncating the backward steps (Shaban
et al., 2019) may unburden these issues while sacrificing
the quality of hypergradients.

Alternatively, approximating hypergradient using implicit
differentiation is promising because it requires much less
space complexity than the unrolling approach. Exact im-
plicit differentiation needs computationally demanding in-
verse Hessian vector product, which has been approxi-
mated by iterative methods such as conjugate gradient (Pe-
dregosa, 2016; Rajeswaran et al., 2019) and the Neumann
series approximation (Lorraine et al., 2020). Thanks to
their space efficiency, these methods can scale to large-
scale problems (Hataya et al., 2022; M. Li et al., 2021;
Lorraine et al., 2020; Zhang et al., 2021), but such itera-
tive approximations cost time complexities. Furthermore,
these methods need careful configuration tuning to avoid
numerical instability caused by ill-conditioned Hessian or
the norm of Hessian.

In this paper, we propose to use the Nyström method to
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leverage the low-rank nature of Hessian matrices of neu-
ral networks and compute its inverse by the Woodbury ma-
trix identity, inspired by recent works in quasi second-order
optimization literature (D. Singh et al., 2021; S. P. Singh
and Alistarh, 2020). Unlike the iterative approaches men-
tioned above, this approximation excludes iterative evalu-
ations and can be computed instantly in matrix operations.
Additionally, the proposed method avoids numerical insta-
bility. As a result, the Nyström method is robust to config-
urations, and empirically compares favorably with existing
approximation methods consistently on various tasks, from
HPO to meta learning. In addition, by using the recurrence
of the Woodbury matrix identity, this approach can control
the tradeoff between time and space complexities without
losing accuracy according to one’s computational resource.

In the remaining text, we introduce the proposed method in
Section 2. After reviewing related work in Section 3, we
analyze the approximation quality of the proposed method
when Hessian is low-rank in Section 4. Then, Section 5
empirically demonstrates the effectiveness of the method
from a synthetic logistic regression problem to a large-scale
real-world data reweighting problem, and finally Section 6
concludes this work.

2 Method

2.1 Approximating Hypergradient by Implicit
Differentiation

In this paper, we focus on the methods to approximate
hypergradients ∇φg by implicit differentiation so that the
outer problem can also be efficiently optimized by gradient
descent. Specifically, if ∇θf(θT ,φ) ≈ 0, then according
to the implicit function theorem, we obtain

dg(θT ,φ)

dφ
= − ∂g

∂θ

(
∂2f

∂θ2

)−1
∂2f

∂φ∂θ
+
∂g

∂φ
, (3)

where, in the r.h.s., f = f(θT ,φ) and g = g(θT ,φ). Fol-
lowing the prior works (Lorraine et al., 2020; Pedregosa,
2016; Rajeswaran et al., 2019), we assume that this approx-
imation holds after T iterations of the inner optimization.
We also assume that factors in the r.h.s. of Equation (3) are
available, e.g., g is differentiable w.r.t. θ. In some cases,
such as optimization of hyperparameters for regularization,
∇φg(θT ,φ) is always zero.

Still solving Equation (3) seems computationally in-
tractable, as computing inverse Hessian (∇2

θf)−1 is com-
putationally expensive, when the number of model param-
eters p = dimθ is large. Though early works compute in-
verse Hessian directly (Bengio, 2000; Larsen et al., 1996),
especially for modern neural networks, just storing Hessian
∇2

θf is already infeasible in practice.

To mitigate this issue, some approximations have been pro-
posed. Pedregosa, 2016; Rajeswaran et al., 2019 used the

conjugate gradient method (Hestenes and Stiefel, 1952),
which iteratively solves a linear equationAx = b to obtain
x = A−1b, where, in this case, A = ∇2

θf and b = ∇θg.
Lorraine et al., 2020 adopted the Neumann series approxi-
mation, A−1 = α

∑∞
i=1(I − αA)i, where A is an invert-

ible matrix that satisfies ‖αA‖ ≤ 1 and α > 0 is a constant.
As these algorithms may take arbitrarily long iterations for
convergence, their truncated versions are preferred in prac-
tice, which cut off the iterations at a predefined number of
steps l.

Importantly, these methods do not require keeping actual
Hessian but accessing it as Hessian vector product (HVP),
which modern automatic differentiation tools (Bradbury et
al., 2018; Paszke et al., 2019) can efficiently compute in
O(p) (Baydin et al., 2018). Because they consist of HVP
and vector arithmetics, their time and space complexities
are O(lp+ h) and O(p+ h) for the number of iterations l,
where p = dimθ and h = dimφ. In the following discus-
sion, we omit the complexity regarding h for simplicity.

The downside of conjugate gradient and the Neumann se-
ries approximation may be their numerical instability. Con-
jugate gradient needs a well-conditioned matrix for fast
convergence (Golub and Van Loan, 2013; Yousef Saad,
2003), i.e., it works sub-optimally with ill-conditioned
Hessian. Its longer iterations accumulate numerical er-
rors, and these errors typically need to be alleviated by pre-
conditioning or reorthogonalization, which requires extra
time and space complexities. The Neumann series needs
the matrix norm to be less than 1, and thus α needs to be
carefully configured.

2.2 Nyström Approximation

Different from these previous methods using iterative com-
putation, we instead propose to use a low-rank approx-
imation for approximated inverse Hessian vector prod-
uct (IHVP). Specifically, we propose to use the Nyström
method to obtain IHVP by leveraging the low-rank nature
of Hessian matrix (Ghorbani et al., 2019; Karakida et al.,
2019; LeCun et al., 2012).

We use the following k-rank approximation to the original
p dimensional Hessian matrix, where we assume k � p:

Hk = H[:,K]H
†
[K,K]H

>
[:,K], (4)

where K is a randomly selected index set of size k,
H[:,K] ∈ Rp×k is a matrix extracted columns of H corre-
sponding to indices in K, and H[K,K] ∈ Rk×k is a matrix
extracted rows of H[:,K] corresponding to indices in K.
H†[K,K] = UΛ−1U> denotes the pseudo inverse, where
U and Λ are eigenvectors and engenvalues ofH[K,K].

Then, we use the Woodbury matrix identity for matrices
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A,B,C such that

(A+CBC>)−1 (5)

=A−1 −A−1C(B−1 +C>A−1C)−1C>A−1

to obtain the inverse Hessian. Namely, we compute (Hk +
ρIp)

−1, where ρ > 0 is a small constant to improve numer-
ical stability and Ip is the p-dimensional identity matrix, to
approximateH−1 as follows:

(ρIp +H[:,K]H
†
[K,K]H

>
[:,K])

−1 (6)

=
1

ρ
Ip −

1

ρ2
H[:,K]

(
H[K,K] +

1

ρ
H>[:,K]H[:,K]

)−1
H>[:,K].

Although this left-hand side requires the inversion of a p×p
matrix, the right-hand side only needs the inversion of a
k × k matrix. Because k � p, the computational burden
of the l.h.s. is drastically reduced in the r.h.s. The use of
Woodbury matrix identity as Equation (6) is similar to the
idea of D. Singh et al., 2021, but our formulation is slightly
efficient as it avoids unnecessary eigen decomposition.

The small constant ρ in Equation (6) makes a low-rank ma-
trix Hk invertible. Additionally, it can also be regarded
as being stemmed from a proximally regularized inner ob-
jective f(θ,φ) +

ρ

2
‖θ − θ′‖, where θ′ ∈ argmin

θ
f(θ,φ)

(Vicol et al., 2022).

We visualize the inverse of a low-rank matrix and its ap-
proximations in Figure 1. Nyström method can approxi-
mate the true inverse efficiently and accurately. Because
conjugate gradient cannot explicitly output inverse Hes-
sian, we do not display its result here.

To sum up, the proposed method approximates the hyper-
gradient by using a low-rank HessianHk as

dg(θT ,φ)

dφ
≈− ∂g

∂θ
(Hk + ρIp)

−1 ∂2f

∂φ∂θ
+
∂g

∂φ
. (7)

2.3 Space-efficient Variant

The Nyström approximation is free from iterative algo-
rithms, but it needs to store k columns of the original Hes-
sian matrix H[:,K] and compute the inverse of a k × k
matrix. As a result, its time and space complexities are
O(p + k3) and O(kp + k2), but k3 and k2 are ignorable
because usually k � p.

Some readers may worry about memory explosion when k
is relatively large. Actually, this Nyström approximation
can be turned into an iterative algorithm that saves mem-
ory. Recall that the low-rank matrix can be decomposed as
follows

Hk = H[:,K]H
†
[K,K]H

>
[:,K] =

∑
i∈K

1

λi
lil
>
i , (8)

Algorithm 1 Algorithm of the proposed method
Require:
κ: control parameter of computational cost
K: randomly selected index set, where #K = k

H[:,K]: a column matrix ofH corresponding to K
U ,Λ: eigen decomposition ofH[K,K] = UΛU>

Partition K in to size κ subsets K
Ĥ = 1

ρIp
for K ′ in K do
L← (H[:,K]U)[:,K′]

J ← Λ[K′,K′]

Ĥ ← Ĥ − ĤL(J +L>ĤL)−1L>Ĥ
end for
Return Ĥ , equivalent to (Hk + ρIp)

−1

where λi ∈ R is the ith value of Λ and li =
(H[:,K]U)[:,i] ∈ Rp. Then, we can iteratively compute
the inverse of Hk + ρIp by the Woodbury matrix identity
(Equation (5)) as

Ĥi+1 = Ĥi −
Ĥilil

>
i Ĥi

λi + l>i Ĥili
, (9)

where Ĥ0 =
1

ρ
Ip,

Ĥk = (Hk + ρIp)
−1,

for i = 0, 1, . . . , k − 1. This variant needs O(k2p) time
complexity and O(p) space complexity like iterative algo-
rithms. S. P. Singh and Alistarh, 2020 proposed a dynami-
cal algorithm for a similar problem to compute the inverse
of the Fisher information matrix (FIM).

2.4 Controlling the Cost Tradeoff

Furthermore, by chunking H[:,K] into thinner matrices of
width κ ∈ (1, k) and applying the Woodbury matrix iden-
tity iteratively as Algorithm 1, (Hk + ρIp)

−1 can be ob-
tained in a hybrid manner with less memory footprint, i.e.,
O(κp), than Equation (6) and faster, i.e.,O({k/κ}2p), than
Equation (9). In other words, our method allows users to
dynamically control the necessary tradeoff between time
and space complexities for given accuracy, which is a
unique characteristic of our proposed method. See Table 1
for comparison with other methods.

Notice that for any κ, the computational result is equiva-
lent to each other up to machine precision. Thus, in the
remaining paper, we use Equation (6), where κ = k, with-
out otherwise specified.
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Figure 1: Comparison of inverse of a 40 dimensional matrixA+ ρI . A is a rank 20 symmetric matrix, and ρ is set to 0.1.
Nyström method can approximate the true inverse accurately even in the rank 5 setting.

Table 1: Comparison of time and space complexity. p denotes the number of model parameters. l is the number of iterations
of the algorithms, k is the rank of low-rank Hessian. The Nyström method allows users to control the complexities by
choosing κ ∈ {1, 2, . . . , k}.

Approximation Time Complexity Space Complexity

Conjugate gradient (Rajeswaran et al., 2019) O(lp) O(p)
Neumann series (Lorraine et al., 2020) O(lp) O(p)
Nyström method (ours) O((k/κ)2p) O(κp)

2.5 Limitations

The proposed method cannot straightforwardly optimize
outer parameters φ that do not directly affect the training
loss, inheriting the limitation of the methods to approxi-
mate hypergradient by implicit differentiation (Lorraine et
al., 2020). Such parameters include a learning rate of an
optimizer of the inner problem, which needs to be care-
fully tuned in deep learning research (Schmidt et al., 2021).
We may need to rely on unrolling approaches for this prob-
lem (Andrychowicz et al., 2016; Grefenstette et al., 2019;
K. Li and Malik, 2017). Additionally, the method does
not directly applicable to non-smooth problems as other
gradient-based methods, part of which could be alleviated
by smoothing the problem or using sub-gradients and sub-
Hessians.

3 Related Work

3.1 Gradient-based Hyperparameter Optimization
and Meta Learning

The development of automatic differentiation (Baydin et
al., 2018; Bradbury et al., 2018; Paszke et al., 2019) has
encouraged the active research of gradient-based HPO and
meta learning, where the outer problem of a bilevel prob-
lem (Equation (1)) is also optimized by gradient descent
using hypergradient (Franceschi, 2021; Franceschi, Fras-
coni, et al., 2018).

One way to compute hypergradients is to backpropagate

through the unrolled inner optimization (Equation (2))
(Domke, 2012; Finn et al., 2017; Grefenstette et al., 2019).
Except for the special cases, where a specific inner op-
timization algorithm (Maclaurin et al., 2015) or forward-
mode automatic differentiation (Franceschi, Donini, et al.,
2017) can be used, this approach suffers from space com-
plexity as the inner optimization step T increases.

Another approach is to approximate hypergradient using
the implicit differentiation as Equation (3) with less space
complexity (Bengio, 2000; Lorraine et al., 2020; Pe-
dregosa, 2016; Rajeswaran et al., 2019). Although Equa-
tion (3) includes inverse Hessian, which is infeasible to
compute for modern neural networks, truncated solutions
of conjugate gradient (Pedregosa, 2016; Rajeswaran et al.,
2019) and the Neumann series approximation (Lorraine et
al., 2020) have been adopted to approximate this term effi-
ciently. Other solvers for linear systems, such as GMRES
(Youcef Saad and Schultz, 1986), can also be used (Blondel
et al., 2021). Our work is in line with these works, but com-
pared to these methods using generic techniques for matrix
inverse, the proposed method exploits the low-rankness of
Hessian of neural networks.

3.2 Inverse Hessian Approximation

The application of inverse Hessian approximation is not
limited to the computation of hypergradient. It has been a
key element in estimation of influence function (Koh and
Liang, 2017), backpropagation through long recurrence
(Liao et al., 2018), and network pruning (Hassibi and Stork,
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1992; S. P. Singh and Alistarh, 2020).

The inverse of Hessian or an FIM is also indispensable in
(quasi) second-order optimization (Martens, 2010) and nat-
ural gradient descent (Amari, 1998). Thus, its estimation
has been studied for a long time. For example, LBFGS em-
ploys past gradients and updates (Liu and Nocedal, 1989),
and KFAC adopts block-diagonal approximation of FIM
(Martens and Grosse, 2015) for efficient approximation of
large matrix inversion.

The Hessians and FIMs of neural networks have low-rank
structures, as most of their eigenvalues are nearly zero
(Ghorbani et al., 2019; Karakida et al., 2019; LeCun et al.,
2012). Exploiting this nature, inverse FIM (Frantar et al.,
2021) or inverse Hessian (D. Singh et al., 2021) are com-
puted using the Woodbury identity in the literature of quasi
second-order optimization. Especially, the latter used the
Nyström method. Although these approaches are techni-
cally similar to ours, they are in a different context.

4 Theoretical Analysis

This section theoretically shows that the proposed approach
can efficiently approximate the true hypergradient.

Theorem 1 Suppose H is a positive semidefinite. Let h?

and h be hypergradients using the true inverse Hessian
(H + ρIp)

−1 (r.h.s. of Equation (3)) and the Nyström
method (Hk + ρIp)

−1 (r.h.s. of Equation (6)), and g =
∇θg(θT ,φ), F = ∇φ∇θf(θT ,φ). Then, the accuracy of
approximated hypergradient is bounded

‖h?−h‖2 ≤ ‖g‖2‖F ‖op
(

1

ρ

‖H −Hk‖op
ρ+ ‖H −Hk‖op

)
. (10)

‖·‖2 and ‖·‖op denote L2 norm and operator norm, respec-
tively.

This theorem is based on (Frangella et al., 2021). See the
supplemental material for the derivation.

When considering neural networks, because the training
objective f is not convex w.r.t. θ, its Hessian H is not
always positive semi-definite. However, Ghorbani et al.,
2019 empirically demonstrated that most negative eigen-
values disappeared even after a few iterations of training,
indicating that we may assume that H + ρI for ρ > 0
is positive semi-definite in practice. Also importantly,
‖H −Hk‖op is bounded.

Remark 1 (Theorem 3 in Drineas and Mahoney, 2005)
Let H̄k be the best k-rank approximation ofH . IfO(k/ε4)
columns are selected for ε > 0 so that the ith column is
chosen proportional to H2

i,i, then,

E[‖H −Hk‖op] ≤ ‖H − H̄k‖op + ε

p∑
i=1

H2
i,i. (11)

Especially ifH is a rank k matrix, then

E[‖H −Hk‖op] ≤ ε
p∑
i=1

H2
i,i (12)

Because Hessian of a trained neural network can be re-
garded as low rank (Ghorbani et al., 2019; Karakida et
al., 2019; LeCun et al., 2012), we may expect that Equa-
tion (12) holds.

Equation (10) indicates that an approximated hypergradi-
ent converges to the true hypergradient as Hk approaches
toH . This differs from truncated iterative approximations,
such as conjugate gradient, where their expected solutions
never converge to the true one for a small number of itera-
tions.

5 Experiments

In this section, we empirically demonstrate the effective-
ness of the proposed method.

Experimental Setups

We implemented models and algorithms using PyTorch
v1.12 (Paszke et al., 2019) and its accompanying
functorch (He and Zou, 2021). The reference code is
available from https://github.com/moskomule/
hypergrad. Experiments were conducted on a single
NVIDIA A100 GPU with CUDA 11.3. The implemen-
tations of conjugate gradient and the Neumann series ap-
proximation algorithms were adopted from betty v0.1.1
(Choe et al., 2022).

In the following experiments, the Nyström method was
implemented according to Equation (6), that is, the time-
efficient variant otherwise spcified. Using ReLU as an acti-
vation function leads some columns of Hessian to zero vec-
tors, and then the inversion in Equation (6) fails. To circum-
vent this problem, we replaced ReLU with leaky ReLU:
LR(x) = max(0, x) + 0.01×min(0, x).

5.1 Optimizing Weight-decay of Linear Regression

We first showcase the ability of the Nyström approximation
by optimizing weight-decay parameters for each parameter
of a linear regression model using synthetic data. For D
dimensional data, inner parameters θ ∈ RD and outer pa-
rameters φ ∈ RD are optimized. The inner problem is
f(θ,φ) = `(θ>x, y) + θ> diag(φ)θ, for an input x and
its label y, where ` is binary cross entropy loss. Each input
x is sampled from a standard normal distribution, and its
label is defined as y = w∗>x+ ε > 0, where w∗ ∈ RD is
a constant vector and ε ∈ RD is a noise vector. This inner
problem is optimized by SGD with a learning rate of 0.1,
and the inner parameters are reset every 100 iteration. The

https://github.com/moskomule/hypergrad
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outer problem is to minimize validation loss by SGD with
a learning rate of 1.0 and a momentum of 0.9. The outer
parameters φ, initialized to 1, are updated after every 100
inner parameter update. We setD = 100 and used 500 data
points for both inner and outer optimization.

Figure 2 (top) shows validation loss curves, comparing ap-
proximated implicit differentiation methods, conjugate gra-
dient, and the Neumann series approximation, with our pro-
posed method. For the conjugate gradient method and the
Neumann series approximation, we set the number of iter-
ations l to 5, following Rajeswaran et al., 2019. Accord-
ingly, we set the rank of the Nyström method to 5. As
can be seen, the Nyström method can optimize the weight-
decay parameters faster than other methods. Figure 2 (bot-
tom) displays training loss curves. Because the inner pa-
rameters are reset when the outer parameters are updated,
training loss values at inner-parameter reset moments are
high (around 0.7). As the outer optimization proceeds,
the inner parameters, particularly those of the Nyström
method, quickly decreases the training loss during each in-
ner optimization period.

For the experiments in Figure 2, the “learning rate” pa-
rameter α of conjugate gradient and the Neumann series
approximation was set to 0.01, and ρ of the Nyström
method was set to 0.01. We compare other choices of α
in {0.01, 0.1, 1.0} in Figure 3. Accordingly, we try other
values of ρ in {0.01, 0.1, 1.0}. The results indicate that the
Nyström method surpasses others in most cases and show
robustness to the choice of ρ. We will revisit the robustness
of the Nyström method later in Section 5.4. These exper-
imental results were averaged over five runs of different
random seeds.

5.2 Dataset Distillation

Dataset distillation is a task to optimize a small synthesized
training dataset Tφ = {φ1,φ2, . . . ,φC} parametrerized
byφ so that validation loss on real data is minimized (Wang
et al., 2018). We used MNIST dataset (Le Cun et al., 1998)
and a LeNet-like CNN, and followed the fixed-known ini-
tialization setting that CNN weights, i.e., the inner param-
eters, are reset every 100 model parameter update. As
MNIST is a 10-class dataset, we set C = 50, so each class
has 5 distilled images. Each φi ∈ Tφ has an equal size to
an MNIST image. We used fixed learning rates for inner
and outer optimization to simplify the problem. Namely,
the inner problem is optimized by SGD with a learning rate
of 0.01, while the outer problem is optimized with an Adam
optimizer with a learning rate of 1.0× 10−3.

The test accuracy after 5,000 outer parameter updates is
reported in Table 2. These results were averaged over five
runs. We set α = ρ = 0.01 and l = k = 10.

The Nyström method yields comparable performance to

Figure 2: Optimization of weight decay parameters to each
model parameter in logistic regression. The top figure
shows the validation loss curve of the outer problem, and
the bottom figure shows the training loss curves of the in-
ner problem, optimized in 100 iterations.

Table 2: Test accuracy of the dataset-distillation task on the
MNIST dataset. The Nyström method shows better perfor-
mance than others.

Conjugate gradient Neumann series Nyström method

0.17± 0.04 0.47± 0.03 0.49± 0.04

the Neumann series approximation. However, despite
our best efforts to select appropriate values of α ∈
{0.01, 0.1, 1.0} and l ∈ {5, 10, 20} based on the validation
performance on a 10% split of training data, the conjugate
gradient method failed to learn this task. This failure may
be attributed to ill-conditioned Hessian.

5.3 Gradient-based Meta Learning

MAML is a typical method of gradient-based meta learn-
ing, where the inner problem learns to adapt to a given
problem while the outer problem aims to find good param-
eters that adapts quickly to new tasks (Finn et al., 2017).
Among its variants, iMAML uses implicit differentiation
to compute hypergradient, achieving better memory effi-
ciency (Rajeswaran et al., 2019). Although the original
iMAML adopts conjugate gradient to obtain IHVP, this
choice can be replaced with the Neumann series approxi-
mation and the Nyström method.

We compared such backends using few-shot image classi-
fication, where models are learned to classify images only
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Figure 3: Validation loss curves of implicit differentiation
methods with different configurations.

Table 3: Test accuracy of the meta learning task on the
Omniglot dataset. The Nyström method shows comparable
performance to conjugate gradient.

Task 1-shot 5-shot

Conjugate gradient 0.96± 0.00 0.98± 0.00
Neumann series 0.91± 0.00 0.97± 0.00
Nyström method 0.95± 0.00 0.98± 0.00

from few examples (Fei-Fei et al., 2006; B. Lake et al.,
2011; Ravi and Larochelle, 2017), on the Omniglot dataset
(B. M. Lake et al., 2015) with a VGG-like CNN, follow-
ing (Antoniou et al., 2019; Rajeswaran et al., 2019). We
set k = l = 10, α = ρ = 0.01. The inner problem is
to optimize model parameters by SGD with a learning rate
of 0.1 in 10 steps, and the outer problem is to update the
initial model parameters by Adam with a learning rate of
1.0× 10−3.

Table 3 shows the averaged accuracy on the test tasks over
three runs after training on 1.6 × 106 tasks. As can be
seen, the Nyström method achieved comparable results
with iMAML using conjugate gradient both in the 1-shot
and 5-shot settings.

5.4 Data Reweighting

Data reweighting is a task to learn to weight a loss value
to each example, which aims to alleviate the effect of class
imbalance and label noise (M. Li et al., 2021; Shu et al.,
2019). Its inner problem can be formulated as f(θ,φ) =
`(νθ(x),y) · µφ(`(νθ(x),y)), where ` is cross-entropy
loss, νθ is a model, and µφ is a neural network to weight
samples. The outer problem is to updateφ to minimize val-
idation loss on balanced validation data. The inner param-
eters are not reset when the outer parameters are updated.

We adopted long-tailed CIFAR-10 datasets (Cui et al.,
2019), which simulate class imbalance at several degrees,

WideResNet 28-10 (Zagoruyko and Komodakis, 2016) as
νθ, which has approximately 3.6 × 107 parameters, and a
two-layer MLP with a hidden dimension of 100 as µφ. The
inner problem is optimized by SGD with a learning date
of 0.1, momentum of 0.9, and weight decay of 5.0× 10−4,
and the outer problem is optimized with an Adam optimizer
with a learning rate of 1.0 × 10−5 on 2% split of training
data, following Shu et al., 2019. We set α = ρ = 0.01 and
l = k = 10.

Table 4 shows the averaged test accuracy over three runs
after 1.5× 104 inner updates and 1.5× 103 outer updates.
Again, the Nyström method consistently yielded matching
or better performance to other methods and outperformed
the baseline.

Runtime Speed and Memory Consumption

Table 5 compares speed and peak GPU memory con-
sumption to compute hypergradients on the data reweight-
ing task (averaged over 10 runs). Because WideResNet
28-10 caused out of memory when k = 20 with the
time-efficient Nyström method, we instead used relatively
smaller WideResNet 28-2, which has 1.5 × 106 parame-
ters. The reported values were measured after 10 iterations
of warmup.

As shown in Table 1, the time complexity of iterative al-
gorithms, conjugate gradient and the Neumann series, de-
pends on l, whereas that of the Nyström method is in-
dependent of k. As a result, the runtime speed of it-
erative algorithms slowdowns as the approximation qual-
ity l increases, while the deceleration of the time-efficient
Nyström method is marginal. On the other hand, the
space complexity of the iterative algorithms is constant of
l, which is reflected in the results. In contrast, that of the
time-efficient Nyström method relies on k, which can also
be observed from the linear growth of the actual memory
consumption.

Table 5 also presents the results of the space-efficient vari-
ant of the Nyström method, where κ = 1. Its memory con-
sumption is constant, while the speed is almost quadratic to
k, demonstrating the controllability of the tradeoff between
speed and memory consumption as expected in Table 1.

Robustness of the Nyström method

The Nyström method has two parameters ρ for numerical
stability and k for the matrix rank. Table 6 shows the ef-
fect of these configurations on the data reweighting task
using WideResNet 28-2 on the long-tailed CIFAR-10 of
the imbalanced factor of 50 over ρ ∈ {0.01, 0.1, 1.0} and
k ∈ {5, 10, 20}. The results differ only marginally, i.e., the
proposed method is robust to the choice of configurations,
which is a favorable property in practical applications. Fig-
ure 4 compares the validation curves in weight-decay opti-
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Table 4: Test accuracy of the data reweighting task on the long-tailed CIFAR-10 datasets. Baseline indicates training
without outer optimization. The Nyström method achieves consistently favorable results.

Imbalanced factor 200 100 50

Baseline 0.62± 0.06 0.67± 0.13 0.74± 0.08
Conjugate gradient 0.63± 0.06 0.70± 0.05 0.78± 0.02
Neumann series 0.60± 0.09 0.73± 0.01 0.79± 0.01
Nyström method 0.66± 0.02 0.73± 0.02 0.79± 0.01

Table 5: Average runtime speed and peak memory consumption for hypergradient computation in data reweighting task
over 10 runs.

Speed (s) Peak GPU Memory Consumption (GB)

Conjugate gradient (Pedregosa, 2016) l = 5 0.44 2.46
l = 10 0.83 2.46
l = 20 1.68 2.46

Neumann series (Lorraine et al., 2020) l = 5 0.40 2.39
l = 10 0.75 2.39
l = 20 1.48 2.39

Nyström method (ours) k = 5 0.24 4.66
(time efficient) k = 10 0.33 8.15

k = 20 0.54 15.1

Nyström method (ours) k = 5 3.11 1.94
(space efficient) k = 10 10.7 1.94

k = 20 41.0 1.94

mization of logistic regression using the Nyström method
with different k. Again, the differences of curves among
configurations are marginal, emphasizing the robustness of
the Nyström method.

These results suggest that k = 5 may be sufficient for prac-
tically sized problems, which is faster than other methods,
while consuming only twice memory (Table 5). Also no-
tice that, throughout various experiments including HPO
and meta learning, the proposed method successfully and
consistently works, different from other methods that failed
at some tasks. This indicates that the Nyström method
may also be robust to the types of problems. These prop-
erties are appealing for practical use cases, that is, the
Nyström method may need minimum efforts for “hyper-
hyperparameter optimization.”

6 Conclusion and Discussion

This paper introduced an approximated implicit differen-
tiation method for gradient-based bilevel optimization us-
ing the Nyström method. The key idea was to exploit the
low-rank property of Hessian of neural networks by the
Nyström method and use the Woodbury matrix identity for
fast and accurate computation of inverse Hessian vector
product in hypergradient. The proposed method scaled to
large-scale problems and was applicable to hyperparame-

Table 6: The effect of ρ and k of the Nyström method on
the data reweighting task. Test accuracy is reported. The
baseline without outer optimization yields test accuracy of
0.75 ± 0.03. These results indicate the robustness of the
proposed method to configurations.

ρ
0.01 0.1 1.0

5 0.79± 0.01 0.78± 0.01 0.79± 0.01
k 10 0.79± 0.01 0.78± 0.01 0.78± 0.01

20 0.78± 0.02 0.78± 0.01 0.79± 0.01

ter optimization and meta learning. Empirically, the ap-
proach was robust to configurations and about two times
faster than iterative approximation methods.

Although hyperparameter optimization is crucial in ma-
chine learning, especially in deep learning, traditional hy-
perparameter optimization is costly and emits a substantial
amount of CO2 (Strubell et al., 2020). Contrarily, gradient-
based hyperparameter optimization is efficient and may
help alleviate this issue. Since the proposed method is fast,
scalable, robust, and applicable to a wide range of tasks, it
may provide a reliable way for researchers and practition-
ers to introduce efficient bilevel optimization.
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Figure 4: The effect of k when ρ = 0.01 in weight-decay
optimization of logistic regression.
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Supplemental Material of “Nyström Method for Accurate and Scalable Implicit
Differentiation”

A Proof of Theorem 1

For positive semi-definite matricesH andHk, we have
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where E = H −Hk. In the final step, we used proposition 3.1 of Frangella et al. (2021).
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