
Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for
Adversarial Nets

Hussein Hazimeh Natalia Ponomareva
Google Research Google Research

Abstract

Adversarial nets have proved to be powerful in
various domains including generative modeling
(GANs), transfer learning, and fairness. How-
ever, successfully training adversarial nets using
first-order methods remains a major challenge.
Typically, careful choices of the learning rates are
needed to maintain the delicate balance between
the competing networks. In this paper, we design
a novel learning rate scheduler that dynamically
adapts the learning rate of the adversary to main-
tain the right balance. The scheduler is driven by
the fact that the loss of an ideal adversarial net is
a constant known a priori. The scheduler is thus
designed to keep the loss of the optimized adver-
sarial net close to that of an ideal network. We
run large-scale experiments to study the effective-
ness of the scheduler on two popular applications:
GANs for image generation and adversarial nets
for domain adaptation. Our experiments indicate
that adversarial nets trained with the scheduler are
less likely to diverge and require significantly less
tuning. For example, on CelebA, a GAN with the
scheduler requires only one-tenth of the tuning
budget needed without a scheduler. Moreover, the
scheduler leads to statistically significant improve-
ments in model quality, reaching up to 27% in
Frechet Inception Distance for image generation
and 3% in test accuracy for domain adaptation.

1 Introduction

Adversarial networks have proved successful in generative
modeling (Goodfellow et al., 2014), domain adaptation
(Ganin et al., 2016), fairness (Zhang et al., 2018), privacy
(Abadi and Andersen, 2016), and other domains. Generative

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

Adversarial Nets (GANs) are a foundational example of this
class of models (Goodfellow et al., 2014). Given a finite
sample from a target distribution, a GAN aims to generate
more samples from that distribution. This is achieved by
training two competing networks. A generatorG transforms
noise samples into the sample space of the target distribution,
and a discriminator D attempts to distinguish between the
real and generated samples. To generate realistic samples,
G is trained to fool D. Adversarial nets used in domains
other than generative modeling follow the same principle of
training two competing networks.

Training an adversarial net typically requires solving a non-
convex, non-concave min-max optimization problem, which
is notoriously challenging (Razaviyayn et al., 2020). In prac-
tice, first-order methods are commonly used as a heuristic
for this problem. One popular choice is Stochastic Gradient
Descent Ascent (SGDA), which is an extension of SGD
that takes gradient descent and ascent steps over the min
and max problems, respectively1. SGDA and its adaptive
variants (e.g., based on Adam) are the defacto standard for
optimizing adversarial nets (Ganin et al., 2016; Radford
et al., 2016; Arjovsky et al., 2017). These methods require
choosing two base learning rates2; one for each competing
network. However, adversarial nets are very sensitive to
the learning rates (Lucic et al., 2018), and careful choices
are needed to maintain a balance between the competing
networks. In practice, the same learning rate is often used
for both networks (Wang et al., 2021), even though decou-
pled rates can lead to improvements (Heusel et al., 2017).
The base learning rates typically used in the literature are
constant, but could also be decayed during training. In either
case, these rates do not depend on the current state of the
network.

In this paper, we argue that a dynamic choice of the base
learning rate that responds to the current state of the adver-
sarial net can significantly enhance training. Specifically, we
propose a learning rate scheduler that dynamically changes
the base learning rate of existing optimizers (e.g., Adam),
based on the current loss of the network. Our scheduler is

1The steps could be simultaneous or alternating.
2We use the term base learning rate to refer to the base learning

rate in adaptive optimizers and to the learning rate of SGDA.

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

driven by the following key observation: in many popular
formulations, the loss of an ideal adversarial net is a con-
stant known a priori. For example, an ideal GAN is one in
which the distributions of the real and generated samples
match. Therefore, we can define an optimality gap, which
refers to the gap (absolute difference) between the losses of
the current and ideal adversarial nets.

Our main hypothesis is that adversarial nets with smaller
optimality gaps tend to perform better—we present empir-
ical evidence that verifies this hypothesis on different loss
functions and datasets. Motivated by this hypothesis, our
proposed scheduler keeps track of the optimality gap. At
each optimization step, the scheduler decides whether to
increase or decrease the base learning rate of the adversary
(e.g., discriminator), in order to keep the optimality gap
relatively small. The base learning rate of the competing
network (e.g., generator) is kept constant, since controlling
the loss of the adversary (through its base rate) effectively
modifies that of the competing network3.

We demonstrate the effectiveness of the scheduler empiri-
cally in two popular use cases: GANs for image generation
and Domain Adversarial Neural Nets (DANN) (Ganin et al.,
2016) for domain adaptation. We observe that the scheduler
significantly reduces the need for tuning (by ∼ 10x in many
cases) and can lead to statistically significant improvements
in the main performance metrics (image quality or accuracy)
on five benchmark datasets.

Contributions: (i) We present statistical evidence showing
that GANs with smaller optimality gaps tend to generate
higher quality samples (see Sec. 2). (ii) Motivated by the
latter evidence, we propose a novel scheduler that adapts the
base learning rate of the adversary to keep the optimality gap
relatively small and maintain a balance with the competing
network (see Sec. 3). (iii) We carry out a large-scale statisti-
cal study on GANs and DANN to compare the performance
of the scheduler with popular alternatives. Specifically, we
study how the tuning budget and weight initialization affect
performance by systematically training over 25,000 GANs.
The results indicate that the scheduler can reduce the need
for tuning by ∼ 10x, improve Frechet Inception Distance in
GANs by up to 27%, and improve accuracy in DANN by
up to 3% (see Sec. 4). We provide a simple open-source
implementation4 of the scheduler that can be used with any
existing optimizer.

1.1 Related Work

Gradient-based methods for non-convex, non-concave min-
max problems are known to face difficulties during training

3If the game is zero-sum, an increase in the objective of the
adversary will lead to a decrease in the objective of the competing
network with an equal magnitude (and vice versa).

4https://github.com/google-research/
google-research/tree/master/adversarial_
nets_lr_scheduler

and may generally fail to achieve even simple notions of
stationarity (Razaviyayn et al., 2020). In the context of
GANs, there has been active research on stabilizing train-
ing (with different notions of stability). One important line
of work introduces new loss functions or formulations that
may be more amenable to first-order methods (e.g., via ad-
ditional smoothness or avoiding vanishing gradients) (Li
et al., 2015; Arjovsky et al., 2017; Mao et al., 2017; Zhao
et al., 2017; Nowozin et al., 2016; Gulrajani et al., 2017).
Another related approach is to augment existing GAN loss
functions with regularizers or perform simple modifications
to SGDA (which may be interpreted as regularization) to
improve stability (Che et al., 2017; Mescheder et al., 2017;
Nagarajan and Kolter, 2017; Yadav et al., 2018; Mescheder
et al., 2018; Xu et al., 2020). Improved architectures have
also been vital in successfully training GANs, e.g., see Rad-
ford et al. (2016); Neyshabur et al. (2017); Lee et al. (2021)
and the references therein. See also Karras et al. (2020) for
improving stability using data augmentation. Fundamental
to all the approaches described above is the choice of the
(base) learning rates, which effectively controls the balance
between the competing networks. The base rates used in
the literature are typically fixed, but may also be decayed
during training. In either setting, the base rates used do not
take into account the current state of the network. The main
novelty of our scheduler is that it uses the current state of
the network (gauged by the optimality gap) when modifying
the learning rate.

2 Adversarial Nets and their Ideal Loss

We start this section by briefly reviewing a few popular
variants of GANs and discussing how their ideal loss can
be determined a priori. Then, in Section 2.1.1, we discuss
how the quality of generated samples correlates with the
optimality gap. Finally, in Section 2.2, we introduce DANN
and discuss how to estimate its ideal loss.

2.1 Generative Adversarial Nets (GANs)

First, we introduce some notation. Let Pr be the real distri-
bution and Pn be some noise distribution. The generator G
is a function that maps samples from Pn to the sample space
of Pr (e.g., space of images). We define Pg as the distribu-
tion of x̃ := G(z) where z ∼ Pn, i.e., Pg is distribution of
generated samples. The discriminator D is a function that
maps samples from G to a real value.

Standard GAN and its Ideal Loss. The standard GAN
introduced by Goodfellow et al. (2014) can be written as:

min
G

max
D

Ex∼Pr logD(x) + Ex̃∼Pg
log
(
1−D(x̃)

)
,

where D in this case outputs a probability. In practice, we
have a finite sample from Pr so it is replaced by the corre-
sponding empirical distribution. Moreover, the expectation
over Pg is estimated by sampling from the noise distribution.

https://github.com/google-research/google-research/tree/master/adversarial_nets_lr_scheduler
https://github.com/google-research/google-research/tree/master/adversarial_nets_lr_scheduler
https://github.com/google-research/google-research/tree/master/adversarial_nets_lr_scheduler

Hussein Hazimeh, Natalia Ponomareva

We say that a GAN is ideal if the generated and real samples
follow the same distribution, i.e., Pg = Pr. When the
standard GAN is ideal, the objective function becomes:

max
D

Ex∼Pr

[
logD(x) + log

(
1−D(x)

)]
.

The solution to the problem above is given by D(x) = 0.5
for all x in the support of Pr. Thus, the optimal objective is
− log(4). Throughout the paper, we will be focusing on the
loss, i.e., the negative of the utility discussed above. We will
denote the optimal loss of D in an ideal GAN by V ∗, so in
this case V ∗ = log(4). This quantity allows for computing
the optimality gap, which is essential for the operation of
the scheduler.

Popular GAN Variants. While the standard GAN is con-
ceptually appealing, the gradients of the generator may van-
ish early on during training. To mitigate this issue, Good-
fellow et al. (2014) proposed the non-saturating GAN (NS-
GAN), which uses the same objective for D, but replaces
the objective ofGwith another that (directly) maximizes the
probability of the generated samples being real–see Table 1.
Similar to the standard GAN, the optimal discriminator loss
of an ideal NSGAN is V ∗ = log(4).

Many follow-up works have proposed alternative loss func-
tions and divergence measures in attempt to improve the
quality of the generated samples, e.g., see Arjovsky et al.
(2017); Mao et al. (2017); Nowozin et al. (2016); Li et al.
(2017) and Wang et al. (2021) for a survey. In Table 1, we
present the objective functions of two popular GAN for-
mulations: Wasserstein GAN (WGAN) and least-squares
GAN (LSGAN) (Arjovsky et al., 2017; Mao et al., 2017).
WGAN uses a similar formulation to the standard GAN but
drops the log, and D outputs a logit (not a probability). Ar-
jovsky et al. (2017) shows that under an optimal k-Lipschitz
discriminator, WGAN minimizes the Wasserstein distance
between the real and generated distributions. LSGAN uses
squared-error loss as an alternative to cross-entropy, and
Mao et al. (2017) motivate this by noting that squared-error
loss typically leads to sharper gradients.

Similar to an ideal standard GAN, the optimal discriminator
losses of ideal WGAN and LSGAN are known constants–
see the last column of Table 1 (these constants are derived
by plugging Pg = Pr in the discriminator loss).

2.1.1 Correlation between the Optimality Gap and
Sample Quality

For all the GAN formulations in Table 1, it is known in
theory that if the model capacity is sufficiently high, solving
the optimization problem to global optimality leads to an
ideal GAN (Goodfellow et al., 2014; Arjovsky et al., 2017;
Mao et al., 2017). However, in practice, the capacity of
the GAN is limited and optimization is done using first-
order methods, which are generally not guaranteed to obtain
optimal solutions. Thus, obtaining an ideal GAN in practice

is generally infeasible. However, as we demonstrate in our
experiments, it is possible to train GANs that are “close
enough” to an ideal GAN in terms of the loss. Specifically,
given a GAN whose discriminator loss is V̂ , we define the
optimality gap as |V̂ − V ∗|. Our main hypothesis is:

GANs that achieve smaller optimality gaps tend to generate
better samples.

We stress that this hypothesis applies to GANs that are
trained with reasonable hyperparameters and initialization.
It is possible to obtain GANs whose optimality gap is 0 or
close to 0 without training, e.g., initializing a GAN with
all-zero weights will lead to a 0 gap in standard GAN.

Empirical Evidence. We validate the hypothesis through
multiple experiments on MNIST (Xiao et al., 2017), Fashion
MNIST (Xiao et al., 2017), CIFAR-10 (Krizhevsky et al.,
2009), and CelebA (Liu et al., 2015). Next, we briefly dis-
cuss one of these experiments and leave the rest to Section 4.
We consider generating images from MNIST using a GAN,
based on the DCGAN architecture (Radford et al., 2016),
and we study different GAN variants (NSGAN, LSGAN,
and WGAN). We consider 100 sets of hyperparameter val-
ues, drawn randomly, on which we train each GAN (see
Section 4 for more details). For evaluation, we compute
the Frechet Inception Distance (FID) (Heusel et al., 2017),
which is a standard for assessing image quality.

In Figure 1, we present scatter plots of FID versus the op-
timality gap; here each point corresponds to a particular
hyperparameter configuration. For the three variants of
GAN, we observe medium to strong, positive spearman’s
correlation between FID and the optimality gap. That is,
models with a smaller optimality gap tend to have better
image quality. The scheduler we develop (in Sec. 3) at-
tempts to keep the optimality gap in check by modifying the
learning rate.

2.2 Domain Adversarial Neural Nets (DANN)

DANN is another important example of adversarial nets
used in domain adaptation (Ganin et al., 2016). Given la-
belled data from a source domain and unlabelled data from
a related, target domain, the goal is to train a model that
generalizes well on the target. The main principle behind
DANN is that for good generalization, the feature represen-
tations should be domain-independent (Ben-David et al.,
2010). DANN consists of: (i) a feature extractor F that
receives features (from either the source or target data) and
generates representations, (ii) a label predictor Y that clas-
sifies the source data based on the representations from
the feature extractor, (iii) a discriminator D–a probabilis-
tic classifier–that takes the feature representations from the
extractor and attempts to predict whether the sample came
from the source or target domain. Let Ps and Pt be the input
distributions of the source and target domains, respectively.

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

Table 1: Popular GAN variations considered in this work. Both the discriminator and generator losses are minimized. The value V ∗

denotes the loss of the discriminator in an ideal GAN.
GAN DISCRIMINATOR LOSS (MINIMIZED) GENERATOR LOSS (MINIMIZED) IDEAL DISCRIMINATOR LOSS V ∗

STANDARD −Ex∼Pr
[log(D(x))]− Ex̃∼Pg

[log(1−D(x̃))] Ex̃∼Pg
[log(1−D(x̃))] log(4)

NSGAN −Ex∼Pr
[log(D(x))]− Ex̃∼Pg

[log(1−D(x̃))] −Ex̃∼Pg
[log(D(x̃))] log(4)

WGAN −Ex∼Pr [D(x)] + Ex̃∼Pg [D(x̃)] −Ex̃∼Pg [D(x̃)] 0

LSGAN Ex∼Pr
[(D(x)− 1)2] + Ex̃∼Pg

[D(x̃)2] Ex̃∼Pg
[(D(x̃− 1))2] 0.5

Figure 1: Scatter plots of the Frechet Inception Distance (FID) versus the optimality gap on MNIST. Each point corresponds to a
particular hyperparameter configuration obtained by random sampling. Lower FID values typically correspond to better image quality.
For the three GAN variants, we observe moderate to strong, positive (rank) correlation between FID and the optimality gap. To improve
visualization, a small number of outliers was removed–these outliers do not affect correlation and are presented in Appendix A. For
WGAN, we removed outliers with FID > 5 and applied a log transformation to the gap (since it varies over 8 orders of magnitude).

At the population level, DANN solves:

min
F,Y

max
D
Ly(F, Y)− λLd(F,D),

where Ly(F, Y) is the risk of the label predictor, λ is a non-
negative hyperparameter, and Ld(F,D) is the discriminator
risk defined by:

−Ex∼Ps
log
[
D(F (x))

]
− Ex̃∼Pt

log
[
1−D(F (x̃))

]
.

We say that DANN is ideal if the distribution of F (x), x ∼
Ps is the same as that of F (x̃), x̃ ∼ Pt. By the same rea-
soning used for standard GAN, the optimal discriminator
in this ideal case outputs 0.5, and thus Ld(F,D) = log(4).
However, generally, λ controls the extent to which the two
distributions discussed above are matched, and thus the op-
timal Ld(F,D) generally depends on λ. Very small values
of λ may5 lead to a discriminator that distinguishes well
between the two domains. On the other hand, by increasing
λ, we can get arbitrarily close the ideal case (where the
discriminator outputs 0.5). In theory, for effective domain
transfer, λ needs to be chosen large enough so that discrim-
inator is well fooled (Ben-David et al., 2010), so for such
λ’s we expect the optimal Ld(F,D) to be roughly close
to log(4). Finally, similar to GANs, we remark that the
ideal case is typically infeasible to achieve in practice (due
to several factors, including using first-order methods and

5Small values are not always guaranteed to lead to a discrimi-
nator that distinguishes well. This depends on a combination of
factors including the architecture and the input distributions. As
a trivial example, if DANN is supplied with identical domains
(Ps = Pt), the optimal discriminator outputs 0.5 for any λ ≥ 0.

limited capacity); but controlling the optimality gap can be
useful, as we demonstrate in our experiments.

3 Gap-Aware Learning Rate Scheduling

In Section 2, we presented empirical evidence that validates
our hypothesis that GANs with smaller optimality gaps tend
to generate higher quality samples. In this section, we put
the hypothesis into action and design a learning rate sched-
uler that attempts to keep the gap relatively small throughout
training. Besides the hypothesized improvement in sample
quality, keeping the optimality gap small throughout training
can mitigate potential drifts in the loss (e.g., the discrimi-
nator loss dropping towards zero), which may lead to more
stable training. Next, we describe the optimization setup
and then introduce the scheduling algorithm.

Optimization Setup. We assume that the optimization
problem of the adversarial net is cast as a minimization
over both the loss of the adversary D (e.g., the discriminator
in a GAN) and the loss of the competing network G (e.g.,
the generator in a GAN). We focus on the popular strategy
of optimizing the two competing networks simultaneously
using (minibatch) SGD6. We use the notation αd to refer
to the learning rate of D. The learning rate scheduler will
modify αd throughout training whereas the learning rate of
G remains fixed. We note that the scheduler can be applied
to adaptive optimizers (e.g., Adam or RMSProp) as well–in
such cases, αd will refer to the base learning rate. We denote

6This is SGDA if optimization over D is formulated as maxi-
mization.

Hussein Hazimeh, Natalia Ponomareva

by Vd the current loss of D (a scalar representing the aver-
age of the loss over the whole training data). The scheduler
takes Vd and D’s ideal loss V ∗ as inputs and outputs a scalar,
which is used as a multiplier to adjust αd.

Effect of D’s learning rate on the optimality gap. Recall
that in our setup D and G are simultaneously optimized.
During each optimizer update, D aims to decrease Vd while
G typically aims to increase Vd. The optimizer update
may increase or decrease Vd, depending on how large D’s
learning rate is w.r.t. that of G. If D’s learning rate is
sufficiently larger, we expect Vd to decrease after the update,
and otherwise, we expect Vd to increase. This intuition will
be the basis of how the scheduler controls the optimality
gap.

Next, we introduce the scheduling mechanism, where we
differentiate between two cases: (i) Vd ≥ V ∗ and (ii) Vd <
V ∗.

Scheduling when Vd ≥ V ∗. First, we give an abstract
definition of the scheduler and then define the scheduling
function formally. In this case, the current loss ofD is larger
than V ∗, so to reduce the gap, we need to decrease Vd. As
discussed earlier, this effect can be achieved by increasing
D’s learning rate sufficiently. Therefore, when Vd ≥ V ∗,
we design the scheduler to increase the learning rate, and
we make the increase proportional to the gap (Vd − V ∗), so
that the scheduler focuses more on larger deviations from
optimality.

There are a couple of important constraints that should be
taken into account when increasing the learning rate. First,
the increase should be bounded because too large of a learn-
ing rate will lead to convergence issues. Second, we need
to control the rate of increase and ensure the chosen rate
works in practice (e.g., too fast of a rate can lead to sharp
changes in the loss and cause instabilities). Next, we define
a function that satisfies the desired constraints.

We introduce a scheduling function f : R → R, which
takes x := (Vd − V ∗) as an input and returns a multiplier
for the learning rate. That is, the new learning rate of the
discriminator (after scheduling) will be αd × f(x). To
satisfy the constraints discussed above (boundedness and
rate control), we introduce two user-specified parameters:
fmax ∈ [1,∞) and xmax ∈ R>0. The function f interpolates
between the points (0, 1) and (xmax, fmax) and caps at fmax,
i.e., f(x) = fmax for x ≥ xmax. Here xmax is viewed as a
parameter that controls the rate of the increase–a larger xmax
leads to a slower rate, and thus the scheduler becomes less
stringent. There are different possibilities for interpolation.
In our experiments, we tried linear and exponential interpo-
lation and found the latter to work slightly better. Thus, we
use exponential interpolation and define f as:

f(x) = min
{
[fmax]

x/xmax , fmax

}
. (1)

Note that since fmax ≥ 1, we always have f(x) ≥ 1 for

x ≥ 0, so the learning rate will increase after scheduling.
Moreover, the learning rate is not modified when the gap is
zero since f(0) = 1.

Scheduling when Vd ≤ V ∗. In this case, reducing the gap
requires increasing Vd. This can be achieved by decreasing
the learning rate of D. Similar to the previous case, we
design the scheduler so that the decrease is proportional
to (V ∗ − Vd) (a non-negative quantity). More formally,
we define a scheduling function h : R → R, which takes
x := (V ∗ − Vd) as an input and returns a multiplier for
the learning rate, i.e., the new learning rate is αd × h(x).
Similar to the previous case, we introduce two user-specified
parameters hmin ∈ (0, 1] (the minimum value h can take)
and xmin ∈ R>0 to control the decay rate. We define h
as an interpolation between (0, 1) and (xmin, hmin), which
is clipped from below at hmin. We use exponential decay
interpolation, leading to:

h(x) = max
{
[hmin]

x/xmin , hmin

}
. (2)

Since hmin ∈ [0, 1], we always have h(x) ≤ 1 for x ≥ 0,
implying that the learning rate will decrease after scheduling.
We summarize the scheduling mechanism in Algorithm 1.

Algorithm 1: Gap-Aware Scheduling Algorithm

Inputs: Current loss Vd and ideal loss V ∗.

Parameters: xmin, xmax, hmin ∈ (0, 1], fmax ∈ [1,∞).

1. If Vd ≥ V ∗, increase D’s learning rate by multiplying
it with f(Vd − V ∗) – see (1).

2. If Vd < V ∗, decrease D’s learning rate by multiplying
it with h(V ∗ − Vd) – see (2).

In our experiments, we inspect the optimality gap of GANs
trained with and without the scheduler. We observe that
the scheduler effectively reduces the optimality gap on all
datasets and GAN variants, by up to 70x (see Table 2). In
most cases, we also observe that models with smaller gaps
tend to have better sample quality.

Choice of Parameters. Based on our experiments, we pro-
pose setting the same base learning rate for G and D (and
tuning over the learning rate, if the computational budget
allows). Under this setting, in all of our GAN experiments
and across all datasets, we fix the parameters: hmin = 0.1,
fmax = 2, xmin = xmax = 0.1V ∗ for NSGAN and LS-
GAN; and xmin = xmax = 0.1 for WGAN. These values
were only tuned on MNIST for a very limited number of
configurations–see Appendix B for details and intuition. We
found these parameters to transfer well to Fashion MNIST,
CIFAR-10, and CelebA. In Section 4, we present a sensitiv-
ity analysis in which we vary these parameters over multiple
orders of magnitude. The results generally indicate that the

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

scheduler is relatively stable around the default values re-
ported above (but setting these parameters to extreme values
may cause instabilities).

For the DANN experiments, we use the same fixed pa-
rameters as in GANs (xmax = xmin = 0.1V ∗), but we
consider a single tuning parameter: V ∗. As discussed in
Section 2.2, the optimal discriminator loss in DANN de-
pends on λ, but we expect it to be roughly close to log(4)
(for good choices of λ). In our experiments we tune over
V ∗ ∈ [0.5 log(4), log(4)] and demonstrate that DANN is
not sensitive to V ∗, e.g., with only 10 random search trials
for tuning the base learning rate, V ∗, and λ, optimizing
with the scheduler outperforms its no-scheduler counterpart
(with the same tuning budget).

Batch-level Scheduling. We apply Algorithm 1 at the batch
level, i.e., the learning rate is modified at each minibatch
update. The motivation behind batch-level scheduling is
to keep the loss in check after each update. One popular
alternative is to schedule at the epoch level. However, if the
epoch involves many batches, the loss may drift drastically
throughout one or few epochs (an observation that is com-
mon in practice). Scheduling at the batch level can mitigate
such drifts early on.

Estimating the Current Discriminator Loss. The
scheduling algorithm requires access to the discriminator’s
loss Vd at every minibatch update. The loss should be ide-
ally evaluated over all training examples, however, this is
typically inefficient. We resort to an exponential moving
average to estimate Vd. Specifically, let V̂d be the current
estimate of Vd and denote by Vbatch the loss of the current
batch (which is available from the forward pass). The mov-
ing average update is: V̂d ← αV̂d + (1 − α)Vbatch, where
α ∈ [0, 1) is a user-specified parameter that controls the
decay rate. In all experiments, we fix α = 0.95 (no tuning
was performed) and initialize with V ∗. We also note that
if the training loss is evaluated periodically over the whole
dataset (e.g., every number of epochs), the moving average
can be reinitialized with this value.

4 Experiments

We study the performance of the scheduler on GANs for
image generation and DANN.

4.1 GANs

GANs are generally sensitive to weight initialization and
hyperparameters (especially, learning rate) and require suf-
ficiently large tuning budgets to perform well (Lucic et al.,
2018). Thus, our main goal is to study if the learning rate
scheduler can improve stability and reduce the need for
tuning.

A Statistical Study. We perform a systematic study in

which we tune GANs under different tuning budgets and
repeat experiments over many random seeds. Our study
allows for a rigorous understanding of the statistical signifi-
cance and stability of the results. The study is large-scale as
it involves training over 25,000 GANs (for 100s of epochs
each) and requires around 6 GPU years on NVIDIA P100.
In this respect, we note that a large part of the literature on
GANs reports results on a single random seed and manu-
ally tunes hyperparameters (without reporting the tuning
budget)–as reported by Lucic et al. (2018), this may result
in misleading conclusions.

Competing Methods, Datasets, and Architecture. We
compare with popular mechanisms for choosing the learn-
ing rate, including using the same learning rate for G and
D, decoupled learning rates (tuned independently) (Heusel
et al., 2017), and a classical scheduler that monotonically
decays the learning rate. Since our study involves train-
ing a large number of GANs (over 25,000), we consider
the following standard datasets that allow for reasonable
computation time: CelebA, CIFAR, Fashion MNIST, and
MNIST. We focus on three popular GAN variants: NSGAN,
LSGAN, and WGAN, and use a DCGAN architecture (Rad-
ford et al., 2016)–see Appendix D for details. Our setup
(both datasets and architecture) is standard for large-scale
tuning studies of GANs, e.g., see Lucic et al. (2018).

While it would be interesting to consider larger datasets and
architectures, we note that performing such a large-scale
study may become computationally infeasible. Moreover,
we stress that our goal is to understand how the scheduler
performs compared to other alternatives, under a clear, fixed
tuning budget. Thus, it would be unfair to compare with
models in the literature that do not report the tuning budget
and the exact tuning procedure.

Experimental Details. We use Adam (Kingma and Ba,
2015) as it is the most popular choice for optimizing GANs
(Wang et al., 2021), and fix the batch size to 256. On
MNIST, Fashion MNIST, and CIFAR, we use 500 epochs,
and 200 epochs on CelebA (as it is ∼ 3x larger than the
other datasets). To avoid overfitting, we periodically com-
pute FID on the validation set during training, and upon
termination return the version of the model with the best
FID (this simulates early stopping). We tune over the fol-
lowing key hyperparameters: base learning rate(s), β1 in
Adam, and the clipping weight in WGAN. We consider two
settings when tuning the base learning rate: (i) the same
rate for both G and D, and (ii) two decoupled rates that are
tuned independently (Heusel et al., 2017). We report the
results of (i) in the main paper and the results of (ii) in the
appendix–in both cases, the scheduler outperforms its no
scheduler counterpart. We use 100 trials of random search,
where in each trial, training is repeated 5 times over random
seeds to reduce variability. We use FID on the validation set
as the tuning metric, and we report the final FID results on
a separate test set. See Appendix D for more details.

Hussein Hazimeh, Natalia Ponomareva

MNIST

Fashion MNIST

CIFAR-10

CelebA

Figure 2: Plots of the best FID as function of the tuning budget. Following Lucic et al. (2018), for each tuning budget k, we
report the mean and 99% confidence intervals of the best FID, estimated using 5,000 bootstrap samples of size k from the
original 100 tuning runs.

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

Table 2: Frechet Inception Distance (lower is better), Inception Score (higher is better), and the Optimality Gap (multiplied
by 103) on the test set after tuning. Each entry represents the mean and standard error, computed over 100 training runs
(initialized with random seeds). Best values are in bold. An asterisk (*) indicates statistical significance based on a
two-sample t-test at a level of 0.01.

FID Inception Score Optimality Gap ×103

GAN/Dataset MNIST Fashion CIFAR CelebA MNIST Fashion CIFAR CelebA MNIST Fashion CIFAR CelebA
NS 1.4 (0.03) 12.4 (0.04) 42.1 (0.09) 16.5 (0.06) 8.18 (0.01) 4.11 (0.01) 6.27 (0.01) 3.1 (0.01) 22 (1) 34 (1) 203 (6) 513 (8)
NS + Sched. 1.2 (0.02)* 12.0 (0.04)* 41.1 (0.1)* 15.0 (0.07)* 8.23 (0.01)* 4.11 (0.01) 6.41 (0.01)* 3.12 (0.0004) 19 (1) 34 (1) 91 (3)* 238 (5)
LS 1.3 (0.02) 12.2 (0.04) 68.1 (10.28) 40.6 (9.5) 8.19 (0.01) 4.04 (0.03) 6.01 (0.13) 2.97 (0.05) 10 (1) 17 (0.4) 115 (10) 246 (8)
LS + Sched. 1.3 (0.02) 12.1 (0.04) 40.9 (0.09)* 14.5 (0.05)* 8.19 (0.01) 4.11 (0.01) 6.4 (0.01)* 3.12 (0.0004) 11 (1) 17 (0.4) 27 (0.4)* 111 (3)*
W 1.1 (0.02) 13.8 (0.06) 49.9 (0.11) 23.4 (0.11) 8.32 (0.01) 4.1 (0.01) 5.93 (0.01) 2.99 (0.01) 2143 (169) 346 (35) 11801 (813) 9861 (225)
W + Sched. 1.0 (0.02)* 11.6 (0.04)* 41.8 (0.17)* 17.1 (0.11)* 8.4 (0.01)* 4.15 (0.01)* 6.32 (0.02)* 3.1 (0.01) 57 (5)* 117 (9)* 825 (96)* 139 (6)*

4.1.1 Results

Tuning Budget and Performance. Here we compare the
performance with and without the scheduler, using the same
base learning rate for G and D; see Appendix C for de-
coupled rates (Heusel et al., 2017). In Figure 2, we plot
the best FID as a function of the tuning budget. The re-
sults indicate that on all datasets, all variants of GANs, and
almost every computational budget, the scheduler outper-
forms the (tuned) optimizer without the scheduler. The
improvement reaches up to 27% in some cases, e.g., for
WGAN on CelebA. The magnitude of the improvement
is more pronounced on CelebA and CIFAR compared to
MNIST/Fashion MNIST. This may be attributed to the more
complex nature of CelebA and CIFAR, which can require
more careful choices of the learning rates. Additionally, we
note that the learning rate with the scheduler does not mono-
tonically decrease (as in common learning rate decay)–it
varies up and down as the training progresses (see Figure
C.6 in the appendix).

Stability. To get an idea about the stability of the scheduler
w.r.t. weight initialization, we pick the best hyperparameters
from the tuning study (after 100 random search trials), and
train each model 100 times using random seeds. In Table 2,
we report the mean and standard error of both FID and the
Inception Score (Salimans et al., 2016). The improvements
we saw from using the scheduler in the tuning study (repre-
sented by Figure 2) generalize to this experiment, i.e., the
performance of the scheduler does not seem to be sensitive
to the random seed. For LSGAN without the scheduler,
there are significant outlier runs (the standard error is ∼ 10)
on CIFAR-10 and CelebA–the same observation was made
by Lucic et al. (2018) for LSGAN on the latter datasets. In
contrast, for LSGAN with the scheduler, we did not observe
outlier runs and this is evidenced by the small standard error
(< 0.1). Thus, for the datasets considered, the scheduler
appears to be generally more stable.

Optimality Gap. In Table 2, we also report the optimal-
ity gap of the tuned models (averaged over 100 randomly
initialized training runs). Out of the 12 dataset/GAN-type
pairs, the scheduler achieves a strictly lower optimality gap

in 9 cases, equal gap in 2 cases, and 1 worse gap that is
statistically insignificant (see LSGAN on MNIST). On CI-
FAR and CelebA, the scheduler achieves significantly lower
gaps, e.g., 70x lower for WGAN on CelebA. For LSGAN
on MNIST and Fashion MNIST, the optimizer without the
scheduler already achieves small gaps, so the scheduler does
not offer noticeable improvements. Generally, the results
are in line with our hypothesis that models with smaller
optimality gaps tend to generate better samples.

Sensitivity Analysis. We study the sensitivity of the sched-
uler to its parameters: hmin, fmax, xmin, and xmax. Specif-
ically, we vary the value of each parameter (individually)
over multiple orders of magnitude and study the change
in FID. When varying a given parameter, we fix the other
parameters to their default values (discussed in Section 3).
The analysis is done on MNIST using the best (tuned) hy-
perparameters of the GAN, and training is repeated for 50
random seeds to account for the variability due to initializa-
tion. In Figure 3, we present sensitivity plots for NSGAN,
LSGAN, and WGAN.

The results indicate that NSGAN and WGAN are relatively
insensitive: there is a wide range of values (over one order
of magnitude) that lead to good performance, which ex-
ceeds that of no scheduler. LSGAN has sharp transitions for
large values of fmax (specifically > 5); this is intuitively ex-
pected because increasing the learning rate beyond a certain
threshold will cause the model to diverge. For very small
xmin and xmax (< 0.02), LSGAN performs poorly; this is
also expected because such small values force the training
loss to be almost constant so essentially the model does not
train. We also note that LSGAN is known in the literature
to be more sensitive and suffer from frequent failure even
for well-tuned hyperparameters, compared to NSGAN and
WGAN (Lucic et al., 2018).

Optimality Gap of G. Given that the scheduler only con-
trols the learning rate (and loss) of D, a natural question
is: what happens to the loss of G? In Appendix C, we
study the effect of the scheduler on G’s loss. Specifically,
we measure G’s optimality gap, which we define as the
absolute difference between G’s training and ideal losses.
The main conclusion of the experiment is that the scheduler

Hussein Hazimeh, Natalia Ponomareva

Figure 3: Sensitivity plots for the scheduler applied to NSGAN, LSGAN, and WGAN on MNIST. The x-axis is on a log
scale. When varying each parameter, we fix the other parameters to the default values. We repeat training 50 times (using
random seeds) and report the mean and standard error (represented by the shaded region). A star represents the default
parameter value used in the experiments.

can significantly reduce G’s optimality gap, compared to no
scheduler.

Additional Comparisons. In Appendix C, we compare
with two additional alternative strategies for choosing the
learning rate: (i) decoupled base learning rates (tuned inde-
pendently) (Heusel et al., 2017), and (ii) a classical sched-
uler that monotonically decreases the learning rate. In both
cases, the scheduler reduces the need for tuning (by up to
10x) and significantly improves FID (by up to 38%). More-
over, we present a comparison between exponential and
linear interpolation for the scheduling functions f(x) and
h(x).

4.2 DANN

We consider a standard domain adaptation benchmark:
MNIST as the source and MNIST-M as the target. MNIST-
M consists of MNIST images whose background has been
altered (Ganin et al., 2016). We conduct a tuning study to
understand how DANN with the scheduler compares to (i)
DANN without a scheduler and (ii) a model without domain
adaptation (i.e., trained only on the source).

Experimental Setup. We use a CNN-based architecture
for DANN, similar to that in Ganin and Lempitsky (2015),
and optimize using SGD with a batch size of 256. We train
for 300 epochs, computing the validation accuracy at each
epoch. At the end of training, we pick the version of the
model with the highest validation accuracy (simulating early
stopping). Additionally, we tune over the following hyper-
parameters: learning rate, λ, and V ∗, using 100 random
search trials, and training is repeated 5 times per trial (using
random seeds). See Appendix D for details.

Results. In Figure 4 (left), we report the test accuracy (on
the target) as a function of the tuning budget for DANN
with and without the scheduler. The results indicate that the
scheduler performs better for every tuning budget. The rel-
ative improvement in mean accuracy reaches around 0.7%
at 100 trials. We also experimented with a source-only
model that does not perform domain adaptation (specifi-

cally, DANN with λ = 0). The accuracy of the source-only
model is 60.4% (with standard error of 0.4%) at 100 trials,
which is significantly lower than the two models in Figure
4. In Figure 4 (right), we study the training stability of
the model using the optimal hyperparameters (obtained by
tuning). Specifically, we report the accuracy of 100 mod-
els trained with random initialization. We observe that the
scheduler has roughly a 40% smaller interquartile range,
suggesting that it leads to more stable training. Moreover,
the scheduler significantly improves the lower tail of the
accuracy distribution, e.g., the first quartile and minimum
(worst-case) accuracy improve by 1% and 3%, respectively.

Figure 4: Domain adaptation (MNIST→MNIST-M) using
DANN. [Left] Test accuracy of the best model as a function
of the tuning budget. The 99% confidence intervals are
estimated using 5000 bootstrap samples. [Right] Training
stability: test accuracy of 100 models trained using random
initialization and optimal hyperparameters.

5 Conclusion

We proposed a novel gap-aware learning rate scheduler for
adversarial nets. The scheduler monitors the optimality gap
(from an ideal network) during training and modifies the
base learning rate to keep the gap in check. This is in con-
trast to the common choices of base learning rates which do
not take into account the gap or the current state of the net-
work. Our experiments on GANs for image generation and
DANN for domain adaptation demonstrate that the sched-
uler can significantly improve performance and reduce the
need for tuning.

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems.
Software available from tensorflow.org.

Abadi, M. and Andersen, D. G. (2016). Learning to protect
communications with adversarial neural cryptography.
arXiv preprint arXiv:1610.06918.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasser-
stein generative adversarial networks. In International
conference on machine learning, pages 214–223. PMLR.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. (2010). A theory of learn-
ing from different domains. Machine learning, 79(1):151–
175.

Che, T., Li, Y., Jacob, A. P., Bengio, Y., and Li, W. (2017).
Mode regularized generative adversarial networks. In 5th
International Conference on Learning Representations,
ICLR 2017.

Ganin, Y. and Lempitsky, V. (2015). Unsupervised domain
adaptation by backpropagation. In International confer-
ence on machine learning, pages 1180–1189. PMLR.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
(2016). Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–
2030.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014). Generative adversarial nets. Advances in neural
information processing systems, 27.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. (2017). Improved training of wasserstein
gans. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, pages 5769–
5779.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-scale
update rule converge to a local nash equilibrium. Ad-
vances in neural information processing systems, 30.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J.,
and Aila, T. (2020). Training generative adversarial net-
works with limited data. In IEEE Conference on Neural
Information Processing Systems;.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun, Y.,
editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.

Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., and Liu, C.
(2021). Vitgan: Training gans with vision transformers.
arXiv preprint arXiv:2107.04589.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos,
B. (2017). Mmd gan: towards deeper understanding of
moment matching network. In Proceedings of the 31st
International Conference on Neural Information Process-
ing Systems, pages 2200–2210.

Li, Y., Swersky, K., and Zemel, R. S. (2015). Generative mo-
ment matching networks. In Bach, F. R. and Blei, D. M.,
editors, Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, volume 37 of JMLR Workshop and Con-
ference Proceedings, pages 1718–1727. JMLR.org.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV).

Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bous-
quet, O. (2018). Are gans created equal? A large-scale
study. In Bengio, S., Wallach, H. M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R., edi-
tors, Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pages 698–707.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. (2017). Least squares generative adver-
sarial networks. In Proceedings of the IEEE international
conference on computer vision, pages 2794–2802.

Mescheder, L., Geiger, A., and Nowozin, S. (2018). Which
training methods for gans do actually converge? In In-
ternational conference on machine learning, pages 3481–
3490. PMLR.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). The
numerics of gans. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
pages 1823–1833.

Nagarajan, V. and Kolter, J. Z. (2017). Gradient descent
gan optimization is locally stable. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pages 5591–5600.

Neyshabur, B., Bhojanapalli, S., and Chakrabarti, A. (2017).
Stabilizing gan training with multiple random projections.
arXiv preprint arXiv:1705.07831.

Hussein Hazimeh, Natalia Ponomareva

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan:
Training generative neural samplers using variational di-
vergence minimization. In Proceedings of the 30th Inter-
national Conference on Neural Information Processing
Systems, pages 271–279.

Radford, A., Metz, L., and Chintala, S. (2016). Unsuper-
vised representation learning with deep convolutional gen-
erative adversarial networks. In Bengio, Y. and LeCun,
Y., editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

Razaviyayn, M., Huang, T., Lu, S., Nouiehed, M., San-
jabi, M., and Hong, M. (2020). Nonconvex min-max
optimization: Applications, challenges, and recent the-
oretical advances. IEEE Signal Processing Magazine,
37(5):55–66.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. (2016). Improved techniques for
training gans. Advances in neural information processing
systems, 29:2234–2242.

Wang, Z., She, Q., and Ward, T. E. (2021). Generative
adversarial networks in computer vision: A survey and
taxonomy. ACM Computing Surveys (CSUR), 54(2):1–38.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. CoRR, abs/1708.07747.

Xu, K., Li, C., Zhu, J., and Zhang, B. (2020). Understanding
and stabilizing gans’ training dynamics using control
theory. In International Conference on Machine Learning,
pages 10566–10575. PMLR.

Yadav, A., Shah, S., Xu, Z., Jacobs, D., and Goldstein,
T. (2018). Stabilizing adversarial nets with prediction
methods. In International Conference on Learning Rep-
resentations.

Zhang, B. H., Lemoine, B., and Mitchell, M. (2018). Mit-
igating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 335–340.

Zhao, J., Mathieu, M., and LeCun, Y. (2017). Energy-based
generative adversarial networks. In 5th International
Conference on Learning Representations, ICLR 2017.

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

A FID versus Optimality Gap

In Figure 1, we removed a small number of outlier points to improve visualization. Below we plot all points including
outliers. These outliers have < 1% effect on Spearman’s correlation. For WGAN, a significant number of runs had FID > 5
(corresponding to failures), so we removed these and added additional (non-failing) training runs to have approximately 100
points in the final plot.

Figure A.5: Plots of FID vs. optimality gap for NSGAN and LSGAN with all outliers included.

B Scheduler’s Parameters

On MNIST, we tried a total of 8 configurations, which are the Cartesian product of: hmin ∈ {0.5, 0.1}, fmin ∈ {2, 10},
xmin = xmax ∈ {0.1V ∗, 0.5V ∗} (V ∗ is dropped for WGAN). We found hmin = 0.1, fmax = 2, xmin = xmax = 0.1V ∗ for
NSGAN and LSGAN; and xmin = xmax = 0.1 for WGAN to work best. We noticed that setting fmax = 10 can lead to
instabilities–intuitively, there is an upper bound on the learning rate after which the model will diverge. For the opposite
direction, i.e., when decreasing the learning rate, having a relatively low floor such as 0.1 (as opposed to 0.5) does not seem
to cause instabilities (which is expected with small learning rates).

C Additional Experimental Results

Scheduler’s Output. In Figure C.6, we visualize the output of the scheduler (the multiplier of the learning rate) for
NSGAN, LSGAN, and WGAN using the tuned hyperparameters. The results generally show that the learning rate multiplier
continuously goes and up and down during training (based on the current optimality gap).

Figure C.6: Change in leaning rate multiplier as the training progresses for NSGAN, LSGAN and WGAN with the scheduler,
on MNIST. This demonstrates that the learning rate varies up and down during training.

Tuning Study for Decoupled/Different Learning Rates. In Figure C.7, we report the results of the tuning study when
the base learning rates of G and D are tuned independently. The results conform with the conclusions we had from the
same-rate setting: the scheduler outperforms its no-scheduler counterpart for most tuning budgets.

Exponential Decay vs. Our Scheduler. In Figure C.8, we compare our scheduler versus a (classical) exponential decay
scheduler that decays the learning rate monotonically (i.e., does not depend on the loss of the network), on MNIST. We
apply exponential decay at every step, in which the base learning rate is multiplied by ρs/T where s is the index of the

Hussein Hazimeh, Natalia Ponomareva

current step and T is the total number of steps. We tune both models (similar to the tuning experiment in the main paper),
including the decay factor ρ which we sample from a log-uniform distribution over the range [10−4, 0.1].

Scheduling Function: Exponential vs. Linear Interpolation. Recall that we use exponential interpolation in the
scheduling functions f(x) and h(x). Here we compare with linear interpolation, which is a natural alternative. For each
interpolation method, we tune a GAN on MNIST, with the same architecture and tuning setup described in Section 4. Using
the best hyperparameters, we then train the GAN 100 times (using random seeds) and report the test FID. We report the
results for both interpolation methods in Table C.3. The results indicate that exponential interpolation performs slightly
better than linear interpolation for all the three GAN types considered.

G’s Optimality Gap. While the scheduler is designed to control the learning rate (and consequently the gap) of D, we note
that the scheduler also indirectly controls the optimality gap of G. Specifically, we define G’s optimality gap as the absolute
difference between G’s training and ideal losses. G’s ideal loss can be derived similar to that of D; e.g., for NSGAN it is
log(2). In Table C.4, we report G’s optimality gap for GANs trained with and without the scheduler. The results indicate
that the scheduler (which only controls D’s LR) can significantly reduce G’s optimality gap (by up to 60x).

Table C.3: Test FID of Exponential vs. Linear scheduling. We report the mean and standard error over 100 training runs
(after tuning both).

FID (smaller is better)

Exponential Linear

NS + Sched. 1.23 (0.02) 1.26 (0.04)

LS + Sched. 1.29 (0.02) 1.33 (0.03)

W + Sched. 0.98 (0.02) 1.07 (0.02)

Table C.4: G’s optimality gap (absolute difference between G’s training and ideal losses) multiplied by 103. We report the
mean and standard error over 100 training runs. Our scheduler, which only controls D, significantly reduces the optimality
gap of G, compared to no scheduler. Asterisk (*) means statistically significant based on a t-test at a level of 0.01.

Generator’s Optimality Gap ×103
GAN/Dataset MNIST Fashion CIFAR CelebA
NS 90 (7) 55 (4) 308 (18) 994 (26)
NS + Sched. 76 (6) 48 (4) 155 (6)* 358 (9)*
LS 48 (4) 29 (2) 194 (0.01) 380 (0.007)
LS + Sched. 50 (4) 22 (2) 74 (1)* 145 (4)*
W 138685 (6771) 8065 (465) 16883 (491) 7141 (520)
W + Sched. 2320 (189)* 5211 (155)* 9597 (172)* 1612 (33)*

D Experimental Details

Computing Setup: We ran the experiments on a cluster equipped with P100 GPUs (we do not report the specs of the cluster
for confidentiality). The tuning experiments took roughly 6 GPU years. All models were implemented and trained using
TensorFlow 2 (Abadi et al., 2015), ran in GPU mode.

D.1 GANs

Datasets and Processing: For MNIST and Fashion MNIST, we use 50,000 examples for training, and 10,000 examples for
each of the validation and test sets. For CIFAR, we use 40,000 examples for training, and 10,000 for each of the validation
and test sets. For CelebA, we use the standard training set of 162,770 examples, and uniformly sample 10,000 examples for
validation and testing from the standard validation/test sets, when computing FID. All pixels are rescaled to [−1, 1], and for
CelebA we resize all images to 32× 32 (to reduce the memory requirements during training).

FID and Inception Score: FID and the Inception Score are computed using TF-GAN7 based on the Inception model, with
the exception of MNIST, where TF-GAN uses a model trained on MNIST (with 99% accuracy). For both measures, we
use 10,000 generated images, and additionally for FID we use 10,000 real images from either the validation or test sets
(depending on whether the validation or test FID is being computed).

7https://github.com/tensorflow/gan

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

MNIST

Fashion MNIST

CIFAR-10

CelebA

Figure C.7: Decoupled Learning Rates: Plots of the best Frechet Inception Distance (FID) as function of the tuning budget.
Following Lucic et al. (2018), for each tuning budget k, we report the mean and 99% confidence intervals of the best FID,
estimated using 5,000 bootstrap samples of size k from the original 100 tuning runs. Tuning is performed on a validation set
and the FID is reported on a separate test set.

Hussein Hazimeh, Natalia Ponomareva

Figure C.8: Exponential Decay vs. Our Scheduler. The exponential decay scheduler decays the base learning rate
monotonically (i.e., does not depend on the current state of the network). The exponential decay factor is tuned.

Training: Validation FID is computed every 10 epochs for MNIST, 100 epochs for CIFAR-10 and Fashion MNIST, and 50
epochs for CelebA. Note that we compute FID less often for datasets other than MNIST because the FID computation is
expensive (each FID evaluation can take more than 15 minutes on a GPU).

Hyperparameter Ranges: We denote a uniform distribution supported on [a, b] by U(a, b) . Moreover, L(a, b) denotes
a log-uniform distribution: x ∼ L(a, b) ⇐⇒ x ∼ 10U(log10(a),log10(b)). The hyperparameters are sampled as follows:
Learning rate from L(10−5, 10−3), β1 (for Adam) from U(0, 1), and WGAN clipping parameter from L(10−3, 1). Also,
note that as discussed in the main paper, we tune the number of epochs by evaluating FID periodically during training.

Architectures: In all architectures, the generator is supplied with a 128-dimensional noise vector, sampled from a standard
normal distribution.

MNIST and Fashion MNIST: We use a standard DCGAN architecture (taken from TensorFlow Core examples):

• Discriminator: Convolution (64 filters, 5× 5 kernel, stride 2, leaky ReLU, batchnorm, dropout 0.3)→ Convolution
(128 filters, 5× 5 kernel, stride 2, Leaky ReLU, batchnorm, dropout 0.3)→ Flatten→ Dense (1 unit).

• Generator: Dense (7× 7× 256), ReLU, batchnorm)→ Reshape to (7, 7, 256)→ Up Convolution (128 filters, 5× 5
kernel, stride 1, ReLU, batchnorm)→ Up Convolution (64 filters, 5 × 5 kernel, stride 2, ReLU, batchnorm)→ Up
Convolution (1 filter, 5× 5 kernel, stride 2, Tanh).

CIFAR and CelebA: We use the standard architecture for CIFAR in TF-GAN; with added batchnorm and dropout (to
conform with DCGAN).

• Discriminator: Convolution (64 filters, 5× 5 kernel, stride 2, leaky ReLU, batchnorm, dropout 0.3)→ Convolution
(128 filters, 5× 5 kernel, stride 2, Leaky ReLU, batchnorm, dropout 0.3)→→ Convolution (256 filters, 5× 5 kernel,
stride 2, Leaky ReLU, batchnorm, dropout 0.3)→ Flatten→ Dense (1 unit).

• Generator: Dense (4× 4× 256), ReLU, batchnorm)→ Reshape to (4, 4, 256)→ Up Convolution (128 filters, 5× 5
kernel, stride 2, ReLU, batchnorm)→ Up Convolution (64 filters, 4 × 4 kernel, stride 2, ReLU, batchnorm)→ Up
Convolution (3 filters, 4× 4 kernel, stride 2, Tanh).

D.2 DANN

Dataset and Processing: We use 60,000 images from each of MNIST (labelled) and MNIST-M (unlabelled) during
training. We use 5000 samples for each of the validation and test sets in MNIST-M. All pixels in the images are rescaled to
[−1, 1].

Hyperparameter Ranges: The hyperparameters are sampled as follows: Learning rate for SGD from L(10−4, 10−2), λ
uniformly from {0.01, 0.1, 1}, and V ∗ from U(0.5 log(4), log(4)). As discussed in the main text, the number of epochs is
tuned during each training run.

Architecture: We consider a simple CNN architecture similar to that in Ganin et al. (2016) (with additional batchnorm and
dropout to improve generalization). Below are the architecture details:

Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets

• Feature Extractor: Convolution (32 filters, 5× 5 kernel, stride 1, ReLU, maxpooling, batchnorm)→ Convolution (48
filters, 5× 5 kernel, stride 1, ReLU, maxpooling, batchnorm)→ Flatten→ Dropout (0.3).

• Label Predictor: Dense (100 units, ReLU)→ Dense (100 units, ReLU)→ Dense (10 units, Sigmoid).

• Discriminator: Dense (100 units, ReLU)→ Dense (1 unit, Sigmoid).

	Introduction
	Related Work

	Adversarial Nets and their Ideal Loss
	Generative Adversarial Nets (GANs)
	Correlation between the Optimality Gap and Sample Quality

	Domain Adversarial Neural Nets (DANN)

	Gap-Aware Learning Rate Scheduling
	Experiments
	GANs
	Results

	DANN

	Conclusion
	FID versus Optimality Gap
	Scheduler's Parameters
	Additional Experimental Results
	Experimental Details
	GANs
	DANN

