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Abstract

Physics-Informed Neural Network (PINN) has
become a commonly used machine learning
approach to solve partial differential equations
(PDE). But, facing high-dimensional second-
order PDE problems, PINN will suffer from
severe scalability issues since its loss includes
second-order derivatives, the computational cost
of which will grow along with the dimension
during stacked back-propagation. In this work,
we develop a novel approach that can significantly
accelerate the training of Physics-Informed Neu-
ral Networks. In particular, we parameterize the
PDE solution by the Gaussian smoothed model
and show that, derived from Stein’s Identity,
the second-order derivatives can be efficiently
calculated without back-propagation. We further
discuss the model capacity and provide variance
reduction methods to address key limitations in
the derivative estimation. Experimental results
show that our proposed method can achieve com-
petitive error compared to standard PINN training
but is significantly faster. Our code is released
at https://github.com/LithiumDA/
PINN-without-Stacked-BP.

1 INTRODUCTION

Partial Differential Equations (PDEs) play a prominent
role in describing the governing physical laws underlying a
given system. Finding the solution of PDEs is important
in understanding and predicting the physical phenomena
from the laws. Recently, researchers sought to solve PDEs
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via machine learning methods by leveraging the power of
deep neural networks [Khoo et al., 2017, Han et al., 2018,
Long et al., 2018, Long et al., 2019, Raissi et al., 2019,
Sirignano and Spiliopoulos, 2018]. One of the seminal
works in this direction is the Physics-Informed Neural
Networks (PINN) approach [Raissi et al., 2019]. PINN
parameterizes the solution as a neural network and learns
the weights by minimizing some loss functional related to
the PDEs, e.g., the PDE residual.

Although the framework is general to learn any PDEs,
few previous works experimented with PINN on high-
dimensional second-order PDE problems. By thorough
investigation, we find PINN training suffers from a sig-
nificant scalability issue, mainly resulting from stacked
back-propagation. Note that the PDE residual loss con-
tains second-order derivatives. To update the weights of
the neural network by gradient descent, one must first
perform automatic differentiation (i.e., back-propagation)
multiple times to compute the derivatives in the PDE and
then calculate the loss. For high-dimensional second-
order PDEs, the computational cost in such stacked back-
propagation grows along with increasing input dimension
[Pang et al., 2020, Meng et al., 2021]. This will result in
considerable inefficiency, making the PINN approach im-
practical in large-scale settings. Since some fundamental
PDEs, such as Hamilton-Jacobi-Bellman Equations, are
high-dimensional second-order PDEs, addressing the scala-
bility issue of PINN becomes essential.

In this paper, we take a first step to tackle the scalabil-
ity issue of PINN by developing a novel approach to train
the model without stacked back-propagation. Particularly,
we parameterize the PDE solution u(x; θ) as a Gaussian
smoothed model, u(x; θ) = Eδ∼N (0,σ2I)f(x+δ; θ), where
u transforms arbitrary base network f by injecting Gaus-
sian noise into input x. This transformation gives rise to
a key property for u where its derivatives to the input can
be efficiently calculated without back-propagation. Such
property is derived from the well-known Stein’s Identity
[Stein, 1981] that essentially tells that the derivatives of any
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Gaussian smoothed function u can be reformulated as some
expectation terms of the output of its base f , which can be
estimated using Monte Carlo methods.

To be concrete, given any PDE problem, we can replace
the derivative terms in the PDE with Stein’s derivative es-
timators, calculate the (estimated) residual losses in the
forward pass, and then update the weight of the parameters
via one-time back-propagation. Our method can accelerate
the training of PINN from two folds of advantages. First,
after using Stein’s derivative estimators, we no longer need
stacked back-propagation to compute the loss, therefore sav-
ing significant computation time. Second, since the new
loss calculation only requires forward-pass computation,
it is quite natural to parallelize the computation into dis-
tributed machines to further accelerate the training.

Another point worth noting for the practical application of
this method lies in the model capacity, which is highly re-
lated to the choice of the Gaussian noise level σ. We show
that for large σ, the induced Gaussian smoothed models
may not be expressive enough to approximate functions (i.e.,
learn solutions) with a large Lipschitz constant. Therefore,
using a small value of σ is usually a better choice in practice.
However, a small σ will lead to high-variance Stein’s deriva-
tive estimation, which inevitably causes unstable training.
We introduce several variance reduction methods that have
been empirically verified to be effective for mitigating the
problem. Further experiments demonstrate that, compared
to standard PINN training, our proposed method can achieve
competitive error but is significantly faster.

2 RELATED WORKS
2.1 Neural Approximation of PDE Solutions

Neural approximation approaches rely on governing equa-
tions and boundary conditions (or variants) to train neu-
ral networks to approximate the corresponding PDE
solutions. Physics-Informed Neural Networks (PINN)
[Sirignano and Spiliopoulos, 2018, Raissi et al., 2019] is
one of the typical learning frameworks which constrains
the output of deep neural networks to satisfy the given gov-
erning equations and boundary conditions. The applica-
tion of PINN includes aerodynamic flows [Mao et al., 2020,
Yang et al., 2019], power systems [Misyris et al., 2020],
and nano optic [Chen et al., 2020]. Recently, there is also
a growing body of works on studying the optimization
and generalization properties of PINN. [Shin et al., 2020]
proved that the learned PINN will converge to the solu-
tion under certain conditions. [Krishnapriyan et al., 2021]
proposed to use curriculum regularization to avoid failures
during PINN training. Different from the neural operator
approaches [Lu et al., 2019, Li et al., 2020], the neural ap-
proximation methods can work in an unsupervised manner,
without the need of labeled data generated by conventional
PDE solvers.

2.2 Better Training for Physics-Informed Neural
Networks

Despite the success of using PINN in solving various PDEs,
researchers recently observed its training inefficiency in mul-
tiple aspects. For example, [Jagtap et al., 2020] discussed
the architecture-wise inefficiency and introduced an adap-
tive activation function, which optimizes the network by
dynamically changing the topology of the PINN loss func-
tion for different PDEs. The most relevant works related
to our approach are [Sirignano and Spiliopoulos, 2018] and
[Chiu et al., 2021], both of which tried to tackle the ineffi-
ciency in automatic differentiation by using numerical differ-
entiation. In [Sirignano and Spiliopoulos, 2018], a Monte
Carlo approximation method is proposed to estimate the nu-
merical differentiation of second-order derivatives for some
specific second-order PDEs. Concurrently to our work,
[Chiu et al., 2021] introduced a method, which combines
both auto-differentiation and numerical differentiation in
PINN training to trade-off numerical truncation error and
training efficiency. Compared to these two works, our de-
signed approach can be applied to general PDEs and provide
unbiased estimations of any derivatives without the need of
back-propagation in the computation of the loss. Detailed
discussions can be found in Section 4.3.

2.3 Gaussian Smoothed Model

Injecting Gaussian noise to the input has been popu-
larly used in machine learning to improve model’s robust-
ness. [Li et al., 2019, Cohen et al., 2019] first used Gaus-
sian smoothed models (a.k.a. randomized smoothing) to pro-
vide robustness guarantee when facing adversarial attacks.
Since then, the smoothed models with different noise types
have been developed for various scenarios [Zhai et al., 2020,
Yang et al., 2020]. Leveraging Stein’s Identity for efficient
derivative estimation is not entirely new in machine learn-
ing. The method is one of the standard approaches in zero-
order optimization where the exact derivatives cannot be ob-
tained [Flaxman et al., 2004, Nesterov and Spokoiny, 2017,
Liu et al., 2020, Pang et al., 2020]. To the best of our
knowledge, there is no previous work using Stein’s Identity
on Gaussian smoothed models for efficient PINN training.

3 PRELIMINARY

Without loss of generality, we formulate any partial differ-
ential equation as:

Lu(x) = ϕ(x), x ∈ Ω ⊂ Rd (1)
Bu(x) = 0, x ∈ ∂Ω, (2)

where L is the partial differential operator and B is the
boundary condition. We use x to denote the spatiotemporal-
dependent variable, and use u as the solution of the problem.
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Figure 1: Training process of the original PINN approach and our approach. The original approach requires multiple
backward passes to compute the derivative terms in the loss. By contrast, our approach leverages the Stein’s derivative
estimators to compute the loss without back-propagation.

3.1 PINN Basics

Physics-informed Neural Network (PINN)
[Raissi et al., 2019] is a popular choice to learn the
function u(x) automatically by minimizing the Physics-
informed loss function induced by the governing equation
(1) and boundary condition (2).

To be concrete, given any neural network u(x; θ) with pa-
rameter θ ∈ Θ, we define the Physics-informed loss func-
tion as

lΩ[θ] = ∥Lu(x; θ)− ϕ(x)∥2L2(Ω) (3)

l∂Ω[θ] = ∥Bu(x; θ)∥2L2(∂Ω). (4)

The loss term lΩ[θ] in Eqn. (3) corresponds to the PDE
residual, which evaluates how u(x; θ) fits the partial dif-
ferential equation, and l∂Ω[θ] in Eqn. (4) corresponds to
the boundary residual, which measures how well u(x; θ)
satisfies the boundary condition. It is easy to see, if there
exists θ∗ that achieves zero loss in both residual terms lΩ[θ]
and l∂Ω[θ], then u(x; θ∗) will be a solution to the problem.

To find θ∗ efficiently, PINN approaches leverage gradient-
based optimization methods towards minimizing a linear
combination of the two losses defined above. As the domain
Ω and its boundary ∂Ω are usually continuous, Monte Carlo
methods are used to approximate lΩ[u] and l∂Ω[u] in prac-
tice. As a consequence, the optimization problem will be
defined as

argmin
θ∈Θ

l̂Ω[θ] + λl̂∂Ω[θ]. (5)

In Eqn. (5), l̂Ω[θ] = 1
N1

∑N1

i=1 ∥Lu(x(i)) − ϕ(x(i))∥22 and

l̂∂Ω[θ] =
1
N2

∑N2

i=1 ∥Bu(x̃(i))∥22, where {x(1), · · · , x(N1)}

and {x̃(1), · · · , x̃(N2)} are i.i.d sampled over Ω and ∂Ω,
N1 and N2 are the respective sample sizes, and λ is the
coefficient used to balance the interplay between the two
loss terms.

3.2 Inefficiency of PINN

It can be seen that the loss for PINN training, as shown in
Eqn. (5), is defined on the network’s derivatives. There-
fore, the computation of this loss requires multiple back-
propagation steps, which can be very inefficient, especially
for high-dimensional high-order PDE problems. In de-
tails, there are two sources of inefficiency in computing
the PINN loss. The first one lies in the order-level ineffi-
ciency due to the fact that different orders of derivatives
can only be calculated sequentially: One has to first build
up the computational graph for the first-order derivatives
and then perform back-propagation on this graph to ob-
tain the second-order derivatives. The second source is
the dimension-level inefficiency which is a major issue for
high-order PDE problems. In modern deep learning frame-
works like PyTorch [Paszke et al., 2019], one has to per-
form back-propagation on the computational graph sequen-
tially for each partial derivative to implement second-order
operators like the Laplace operator, leading to a computa-
tional cost proportional to the dimensionality of the input
[Pang et al., 2020, Meng et al., 2021].

Both of these two sources of inefficiency lead to a non-
parallelizable training process, making the learning of
PINN for high-dimensional high-order problems particu-
larly slow. It can be easily obtained that for general k-
order d-dimensional PDEs, the computational complexity
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of each training iteration of PINN using back-propagation is
O(dk−1). Therefore, it becomes substantially beneficial to
explore new parallelizable methods for PINN training since
it may largely increase the training efficiency by making
full use of advanced computing hardware, such as GPU.

4 METHOD

In this work, we propose a novel method which enables
fully parallelizable PINN training. The key of our approach
is using a specific formulation of u(x; θ):

u(x; θ) = Eδ∼N (0,σ2I)f(x+ δ; θ), (6)

where f(·; θ) is a neural network with parameter θ, and σ is
the noise level of the Gaussian distribution. When queried at
x, u returns the expected output of f when its input is sam-
pled from a Gaussian distribution N (x, σ2I) centered at x.
It can be easily seen that u(x; θ) is a “smoothed” network
constructed from a “base” network f(x; θ) by injecting
Gaussian noise into the input, and we call u(x; θ) a Gaus-
sian smoothed model. For simplicity, we may omit θ and
refer to the base network and the Gaussian smoothed model
as f(x) and u(x) in the rest part of the paper.

4.1 Back-propagation-free Derivative Estimators

At first glance, using formulation (6) brings more difficulties
since the output of u can only be estimated by repeatedly
sampling δ. However, we show that the efficiency can be
significantly improved during training since all derivatives,
as derived by Stein’s Identity, can be calculated in parallel
without using back-propagation.

Theorem 1 ([Stein, 1981]). Suppose x ∈ Rd. For any mea-
surable function f(x), define u(x) = Eδ∼N (0,σ2I)f(x+ δ),
then we have

∇xu = Eδ∼N (0,σ2I)[
δ

σ2
f(x+ δ)].

From the above theorem, we can see that the first-order
derivative ∇xu can be reformulated as an expectation term
Eδ∼N (0,σ2I)[

δ
σ2 f(x + δ)]. To calculate the value of the

expectation, we can use Monte Carlo method to obtain an
unbiased estimation from K i.i.d Gaussian samples, i.e.,

∇xu ≈ 1

K

K∑
k=1

δk
σ2

f(x+ δk), (7)

where δk ∼ N (0, σ2I), k = 1, ...,K.

It is easy to check that Stein’s Identity can be extended to
any order of derivatives by recursion. Here we showcase
the corresponding identity for Hessian matrix and Laplace
operator:

• Hessian matrix Hu:

Hu = Eδ∼N (0,σ2I)

[(
δδ⊤ − σ2I

σ4

)
f(x+ δ)

]
.

• Laplace operator ∆u:

∆u = Eδ∼N (0,σ2I)

[(
∥δ∥2 − σ2d

σ4

)
f(x+ δ)

]
.

For convenience, we refer to the Monte Carlo estimators
based on these identities as vanilla Stein’s derivative esti-
mators.

We can plug the Stein’s derivative estimators into the
physics-informed loss functions (Eqn. 5) defined for a given
PDE. In this way, we are able to overcome the two sources of
inefficiency in training PINN mentioned earlier: We can see
that Stein’s derivative estimators for higher-order deriva-
tives no longer require pre-computation for lower-order
ones, and the derivatives with respect to each dimension
can be obtained in a forward pass simultaneously instead
of computing them dimension by dimension sequentially.
Therefore, we can utilize the parallel computing power of
GPU resource better and achieve O(1) time complexity. See
Figure 1 for an illustration of our approach.

These properties of Stein’s derivative estimators are appeal-
ing because they enable a fully-parallelizable PINN train-
ing and lead to significant improvement over efficiency for
solving high-dimensional PDEs. In the meantime, a natu-
ral concern about the deficient expressiveness of Gaussian
smooth function may rise. In the following subsection, we
will take deep discussion on this issue and demonstrate the
importance of σ in practice to control the model expressive-
ness.

4.2 Model Capacity

In our method, Gaussian smoothed neural network is used
instead of vanilla neural network as the solution of PDE.
This modification brings a natural concern, i.e., whether the
function space of the proposed Gaussian smoothed models
is expressive enough to approximate the solutions of a given
PDE problem. In this subsection, we show that the capacity
of Gaussian smoothed neural networks is closely related
to the Lipschitz function class according to the following
theoretical result:

Theorem 2. For any measurable function f : Rd → R,

define u(x) = Eδ∼N (0,σ2I)f(x + δ), then u(x) is F
σ

√
2
π -

Lipschitz with respect to ℓ2-norm, where F = sup
x∈Rd

|f(x)|.

Proof. Theorem 1 states that

∇xu = E
[
δ

σ2
f(x+ δ)

]
.
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Thus, for any unit vector α, we have

|α⊤∇xu| ≤
E
[
|α⊤δf(x+ δ)|

]
σ2

≤
FE

[
|α⊤δ|

]
σ2

=
F

σ

√
2

π
.

The last equality holds since α⊤δ ∼ N (0, σ2), which con-
cludes the proof.

Theorem 2 can be viewed as a negative result on the capacity
of the Gaussian smoothed models. It indicates that the noise
level σ is an important hyper-parameter that controls the
expressive power of the model u(x). For example, if the
neural network f uses tanh activation in the final prediction
layer, its output range will be restricted to (−1, 1). From
Theorem 2, it is straightforward to see that the Lipschitz

constant of u is no more than 1
σ

√
2
π no matter how complex

the network f is. In this setting, if we have a prior that the
solution of a PDE has a large Lipschitz constant, we have
to choose a small value of σ to approximate it well. On
the other hand, using small σ would affect the finite-sample
approximation error of vanilla Stein’s derivative estimators.
Without further assumptions on f , it is easy to check that
the variance of vanilla Stein’s derivative estimators in Eqn.
(7) can be inversely proportional to σ. Thus, naively using
Monte Carlo method requires a large sample size for small
σ, which may even slow down the training in practice. In
the next subsection, we present several variance reduction
approaches that we find particularly useful during training.

4.3 Variance-Reduced Stein’s Derivative Estimators

We mainly use two methods to reduce the variance for
Stein’s derivative estimators, the control variate method and
the antithetic variable method. For simplicity, we demon-
strate how to apply the two techniques to improve the es-
timator of ∇xu and ∆u, which can be easily extended to
other Stein’s derivative estimators.

The control variate method. One generic approach to re-
ducing the variance of Monte Carlo estimates of integrals is
to use an additive control variate [Evans and Swartz, 2000,
Fishman, 2013, Hammersley, 2013], which is known as
baseline. In our problem, we find f(x) is a proper baseline
which can lead to low-variance estimates of the derivative:

∇xu =Eδ∼N (0,σ2I)

[
δ

σ2
(f(x+ δ)− f(x))

]
≈ 1

K

K∑
k=1

[
δk
σ2

(f(x+ δk)− f(x))

]
; (8)

∆u =E
[(

∥δ∥2 − σ2d

σ4

)
(f(x+ δ)− f(x))

]
≈ 1

K

K∑
k=1

[(
∥δk∥2 − σ2d

σ4

)
(f(x+ δk)− f(x))

]
,

(9)

where δk are i.i.d. samples from N (0, σ2I). To see clearly
why this technique leads to variance reduction, we take Eqn.
(8) as an example. we assume f(x) is smooth leverage its
Taylor expansion at x to rewrite δ

σ2 (f(x + δ) − f(x)) as
δ
σ2

(
δ⊤∇f(x) + o(∥δ∥)

)
. This expression can be further

simplified to ξξ⊤∇f(x)+o(1), where ξ = δ/σ ∼ N (0, I).
Therefore, the variance of the estimator in Eqn. (8) will be
independent of σ. This fact is in sharp contrast to the origi-
nal estimator provided in Eqn. (7). With a similar argument,
we can also show that the variance of the estimator in Eqn.
(9) is inversely of proportional to σ, while the the variance
of the original estimator for ∆u is inversely proportional to
σ2.

Further improvement using the antithetic vari-
able method. The antithetic variable method is
yet another powerful technique for variance reduction
[Hammersley and Morton, 1956]. By using the symmetry
of Gaussian distribution, it’s easy to see that Eqn. (8) and
(9) still holds when δ is substituted with −δ, which leads to
new estimators. Averaging the new estimator and the one in
Eqn. (8) / (9) gives the following result:

∇xu =E
[

δ

2σ2
(f(x+ δ)− f(x− δ))

]
≈ 1

K

K∑
k=1

[
δk
2σ2

(f(x+ δk)− f(x− δk))

]
; (10)

∆u =E
[(

∥δ∥2 − σ2d

2σ4

)
(f(x+ δ) + f(x− δ)− 2f(x))

]
≈ 1

K

K∑
k=1

[(
∥δk∥2 − σ2d

2σ4

)
·

(f(x+ δk) + f(x− δk)− 2f(x))] , (11)

Again, by leveraging the Taylor expansion of f(x), one
can show that the variances of the estimators in Eqn.
(10) and (11) are both independent of σ. For exam-
ple,

(
∥δ∥2−σ2d

2σ4

)
(f(x + δ) + f(x − δ) − 2f(x)) =(

∥δ∥2−σ2d
2σ4

)
(δ⊤Hf(x)δ + o(∥δ∥2)), where Hf(x) de-

notes the Hessian matrix of f at x. By letting ξ =
δ/σ ∼ N (0, I), the estimator is simplified to (∥ξ∥2 −
d)(ξ⊤Hf(x)ξ+o(1)). Thus, its variance is independent of
σ. This property is especially appealing because it enables
us to tune model expressiveness according to PDE complex-
ity in practice. For instance, we can use a small σ to ensure
the model is expressive enough to learn a complex PDE
solution. We also provide empirical comparisons between
vanilla Stein’s derivative estimators and the improved ones.
See Section 5.4 for details.

Note that Eqn. (8) and (11) look very similar to numerical
differentiation in the surface form but they yield substantial
differences. First, the roles of the term f(x) are different.
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In Eqn. (8) and (11), the term f(x) is introduced as the
baseline which doesn’t change the value of the expectation
since E

[
δ
σ2 f(x)

]
= E

[(
∥δ∥2−σ2d

σ4

)
f(x)

]
= 0. Therefore,

multiplying any constant to f(x) also holds, which will be
infeasible for numerical differentiation. Second, our method
provides unbiased estimation of the derivatives while nu-
merical method can only obtain biased derivatives due to
truncation error.

5 EXPERIMENTAL RESULTS

We conduct experiments to verify the effectiveness of our
approach on a variety of PDE problems. Ablation stud-
ies on the design choices and hyper-parameters are then
provided. Our codes are implemented based on PyTorch
[Paszke et al., 2019]. All the models are trained on one
NVIDIA GeForce RTX 2080 Ti GPU with 11GB memory
and the reported training time is also measured on this ma-
chine. Our code can be found in the supplementary material.

5.1 Low-dimensional Problems

We first showcase our approach on two-dimensional PDE
problems with visualization. In particular, we study the fol-
lowing two-dimensional Poisson’s Equation with Dirichlet
boundary conditions:{

∆u(x) = g(x) x ∈ Ω
u(x) = h(x) x ∈ ∂Ω

In our experiment, we set Ω = [0, 1]2, g(x) = − sin(x1 +
x2) and h(x) = 1

2 sin(x1 + x2). This PDE has a unique
solution u∗(x) = 1

2 sin(x1 + x2).

We train a Gaussian-smoothed model to fit the solution with
our method. Specifically, the base neural network of our
model is a 4-layer MLP with 200 neurons and tanh activa-
tion in each hidden layer. In our Gaussian smoothed model,
the noise level σ is set to 0.1, and the number of samples
K is set to 2048. We use the variance-reduced derivative
estimator in Eqn. (11) based on the control variate method
and the antithetic variable method. To train the model, we
use Adam as the optimizer [Kingma and Ba, 2015]. The
learning rate is set to 3e − 4 in the beginning and then
decays linearly to zero during training. In each training
iteration, we sample N1 = 100 points from the domain Ω
and N2 = 100 points from the boundary ∂Ω to obtain a
mini-batch. We train the model for 1000 iterations. We use
the variance-reduced derivative estimator in Eqn. (10) and
(11) based on the control variate method and the antithetic
variable method to compute the loss during training.

We compare our method with original PINN trained with
stacked automatic differentiation [Raissi et al., 2019]. The
PINN baseline model is trained using the same set of hyper-
parameters on the same machine to ensure a fair compari-

son. Evaluations are performed on a hold-out validation set
which is unseen during training. We measure the accuracy
of the learned solution by calculating the L1 and L2 relative
error in the domain Ω. We also report the training time to
study the efficiency in practice. The reported results are
averaged across 3 different runs.

Experimental Results. The experimental results are sum-
marized in Table 1. After training, our model reaches an
L1 relative error of 0.16%, indicating that the model fits
the ground truth well. Furthermore, the final relative error
of our model is very close to that of PINN, e.g., 0.13%
v.s. 0.16% in terms of L1 relative error. This result demon-
strates that using Gaussian smoothed neural networks and
Stein’s derivative estimators does little harm to the accu-
racy of the model. Besides, one can notice that the training
time of our model is slightly longer than that of PINN. We
point out that this is because stacked back-propagation is
especially time-consuming for high dimensional problem,
while this experiment targets a two-dimensional PDE. In
this case, removing the need for stacked back-propagation
does not necessarily lead to speed-up, and this experiment
is not a favorable setting for our method. That being said,
this experiment still shows that using Gaussian smoothed
neural networks and Stein’s derivative estimators is feasible
in PINN training.

We also examine the quality of the learned solution u(x)
by visualization. Figure 2 shows the ground truth u∗(x),
the learned solution u(x) and the point-wise error |u(x)−
u∗(x)|. We can see that the learned solution and the ground
truth are very similar. Quantitatively speaking, the third
subfigure in Figure 2 shows that the point-wise error of our
model is less than 2e− 3 for most areas, thus the model can
approximate the solution to Poisson’s Equation with high
accuracy when using our method.

5.2 High-dimensional Heat Equation

We consider the high-dimensional Heat Equation to demon-
strate the speed and accuracy of our proposed method in
solving high-dimensional PDE. Heat Equation is a pro-
totypical parabolic PDE [Evans, 1998], which is deeply
connected to several domains including probability theory
[Lawler, 2010], image processing [Aubert et al., 2006], and
quantum mechanics [Griffiths and Schroeter, 2018]. In this
experiment, we study the following N -dimensional Heat
Equation: ut(x, t) = ∆u(x, t) x ∈ B(0, 1), t ∈ (0, 1)

u(x, 0) = ∥x∥2/2N x ∈ B(0, 1)
u(x, t) = t+ 1/2N x ∈ ∂B(0, 1), t ∈ [0, 1]

In the above equation, x ∈ RN is the spatial variable, while
t > 0 is the temporal variable, which is slightly different
from the notation in Eqn. (1) where x is denotes as the
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Table 1: Experimental results of solving Poisson’s Equation (left) and HJB Equation (right). “PINN” refers to the
original PINN approach with stacked auto-differentiation. “Ours” refers to our new method using Gaussian smoothed
models and Stein’s derivative estimators. We report L1 and L2 relative error of the learned solutions, as well as the training
time, to compare these two approaches.

Problem Method L1 error L2 error Training time

2-dimensional Poisson’s Equation
PINN 0.13% 0.15% 18.96s
Ours 0.16% 0.19% 28.44s

100-dimensional Heat Equation
PINN 0.52% 0.60% 2.35min
Ours 0.53% 0.63% 0.83min

250-dimensional HJB Equation
PINN + adv train 0.95% 1.18% 38.16h
Ours + adv train 0.91% 1.37% 12.07h

Figure 2: Visualization for two-dimensional Poisson’s Equation. Three subfigures show the ground truth u∗(x), the
learned solution u(x) using our method, and the point-wise error |u(x)− u∗(x)| respectively.

spatiotemporal-dependent variable in the PDE. We hope
this abuse of notations does not confuse the readers. B(0, 1)
denotes the unit ball in N -dimensional space. ∆ denotes the
Laplacian operator with respect to the spatial variable x. The
solution to the above equation is u(x, t) = t+∥x∥2/2N . In
our experiments, we focus on the high-dimensional setting
and set the problem dimensionality N to 100.

Similar to Section 5.1, We compare our method with orig-
inal PINN trained with stacked automatic differentiation
[Raissi et al., 2019]. The baseline and our model share the
same set of hyperparameters, and are trained on the same
machine. Evaluations are performed on a hold-out vali-
dation set which is unseen during training. We report the
accuracy of the learned solution by calculating the L1 and
L2 relative error in the domain B(0, 1)× [0, 1], as well as
the training time.

We train a Gaussian-smoothed model to fit the solution,
where the base neural network of our model is a 4-layer
MLP with 256 neurons and tanh activation in each hidden
layer. In our Gaussian smoothed model, the noise level σ
is set to 0.01, and the number of samples K is set to 2048.
We use the variance-reduced derivative estimator in Eqn.
(11) based on the control variate method and the antithetic
variable method. The learning rate is set to 1e − 3 in the
beginning and then decays linearly to zero during training.
Other training details can be found in the appendix.

Experimental Results. The experimental results are sum-
marized in the middle of Table 1. Our model is as accurate
as the PINN baseline. For example, our model and the orig-
inal PINN obtain 0.53% and 0.52% L1 relative error on the
test set, respectively. Besides, our model is significantly
more efficient than the PINN baseline, achieving 2.83× ac-
celeration in this problem. We emphasize that our model
and the baseline are trained for the same number of itera-
tions. Therefore, our technique clearly brings noticeable
efficiency gains by avoiding stacked back-propagation.

5.3 High-dimensional Hamilton-Jacobi-Bellman
Equation

We further use the high-dimensional Hamilton-Jacobi-
Bellman (HJB) Equation to showcase the effectiveness
of our proposed method in solving complicated non-
linear high-dimensional PDE. HJB Equation is one of
the most important non-linear PDE in optimal control
theory. It has a wide range of applications, including
physics [Sieniutycz, 2000], biology [Li et al., 2011], and
finance [Pham, 2009]. Its discrete-time counterpart is the
Bellman Equation widely used in reinforcement learning
[Sutton and Barto, 2018].

Experimental Design. Following existing works
[Han et al., 2018, Wang et al., 2022], we study the classi-
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cal linear-quadratic Gaussian (LQG) control problem in N
dimensions, whose HJB Equation is a second-order PDE1

defined as below:{
ut +∆u− µ∥∇xu∥2 = 0 x ∈ RN , t ∈ [0, T ]
u(T, x) = g(x) x ∈ RN

(12)

As is shown in [Han et al., 2018], there is a unique solution
to Eqn. (12):

u(x, t) = − 1

µ(2π)
n
2
ln

∫
Rn

e−
∥y∥2

2 −µg(x−
√

2(T−t)y)dy.

We set the parameters µ = 1, T = 1, and the terminal cost

function g(x) = ln

(
1 + ∥x∥2

2

)
. To evaluate the training

speed and performance in high dimensional cases, we set
the problem dimensionality N to 250.

We compare our method with the sate-of-the-art PINN-
based approach on HJB Equation [Wang et al., 2022].
Specifically, [Wang et al., 2022] shows that original PINN
training algorithm cannot guarantee to learn an accurate so-
lution to a large class of HJB Equation, and propose to use
adversarial training for PINN to learn the solution with the-
oretical guarantee. The resulting training algorithm is pow-
erful yet time-consuming because it involves both stacked
back-propagation for high-dimensional function and addi-
tional computation over-head in adversarial training. In this
experiment, we follow [Wang et al., 2022] to apply adver-
sarial training, while removing stacked back-propagation
with our method.

We train a Gaussian-smoothed model to fit the solution,
where the base neural network of our model is a 4-layer
MLP with 768 neurons and tanh activation in each hidden
layer. The noise level σ, the number of samples K, and
the derivative estimators are the same as those in Section
5.2. The learning rate is set to 2e− 4 in the beginning and
then decays linearly to zero during training. Other training
settings, including the batch size, the total iterations, etc.,
are the same as those in [Wang et al., 2022], and the details
can be found in the appendix.

Experimental Results. The experimental results are
summarized in the bottom of Table 1, where the perfor-
mance of the baseline “PINN + adv train” is reported in
[Wang et al., 2022]. It’s clear that the accuracy of our model
is on par with the state-of-the-art result, showing that using
the Gaussian smoothed model and approximated deriva-
tives does not hurt the model performance. Besides, our
model and the baseline are trained for the same number of
iterations, and the reported training time indicates that our
method is much more efficient compared with stacked back-
propagation in high-dimensional problem. To be specific,

1Similar to the Heat Equation in Section 5.2, x denotes the
state variable and t denotes the temporal-dependent variable here.

our method is 3.16× faster than the baseline, which largely
reduces the training cost.

These observations clearly demonstrates that our method can
significantly accelerate the training for high-dimensional
PDE problems without sacrificing performance. We be-
lieve this is an initial step towards efficiently solving high-
dimensional PDEs using deep learning approaches.

5.4 Ablation studies

we conduct ablation studies in this section to examine the
effects of different design choices.

Regarding the choice of derivative estimators. To com-
pare different statistical estimators introduced in the paper,
we conduct several numerical experiments and study the ap-
proximation errors of each estimator. We experiment with
a Gaussian-smoothed model u(x) = Eδ∼N (0,σ2I)f(x+ δ),
where the base neural network f(x) is a randomly initialized
and then fixed 4-layer MLP. The input/output dimension is
set to 1000/1 respectively. We set the noise level σ to 0.1.
We consider the derivative estimators for the gradient ∇xu
and the Laplace operator ∆u. We randomly sample 103

points in [0, 1]1000. For each sampled point x, we sample
105 Gaussian noises and use back-propagation to calculate
∇xu and ∆u as an oracle. Empirically, we observe the out-
put of the oracle is very stable, whose variance is less than
1e − 7. We compute the L1 distance between the deriva-
tives returned by the oracle and the derivative estimators
used in the paper as the evaluation metric. We compare
three estimators: a) the vanilla Stein’s derivative estimators,
defined in Eqn. (7); b) variance-reduced estimators with
the control variate method, defined in Eqn. (8) and (9); c)
variance-reduced estimators with both the control variate
and the antithetic variable method, defined in Eqn. (10) and
(11). For each estimator, we vary the sample size K from 8
to 32768.

The results are shown in Figure 3. For the first-order deriva-
tive, i.e., ∇xu, the vanilla Stein’s derivative estimator is
already accurate, and the variance-reduced ones further
improve it slightly. For the second-order derivative, i.e.,
∆u, the vanilla Stein’s derivative estimator performs poorly,
whose error is larger than 1e − 2 even with sample size
K = 32768. The control variate method slightly improves,
but the resulting estimator is still inaccurate given reason-
able sample size. Combining the control variate method
with the antithetic variable method significantly reduces the
approximation error: The corresponding estimator is 100×
more accurate than the vanilla one. These observations
suggest that variance reduction is essential in using Stein’s
Identity, especially for estimating high-order derivatives.

Regarding the choice of the noise level σ. As discussed in
Section 4.2, the noise level σ controls the expressive power
of the Gaussian-smoothed model u(x), which will greatly
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Figure 3: Numerical results on the approximation error. The two subfigures show the approximation error of different
estimators for the gradient (left) and the Laplace operator (right), where the x-axis indicates the logarithmic-scaled sample
sizes and the y-axis indicates the logarithmic-scaled approximation error.

Table 2: Experimental results for ablation studies. We experiment on the 250-dimensional HJB Equation using different
hyperparameters. The left table investigates the impact of the noise level σ on the final performance. The right table compare
the performances of our model trained with different sample size K in the Stein’s derivative estimator.

Noise level σ L1 error L2 error

1 22.74% 27.90%
1e− 1 1.04% 1.42%
1e− 2 0.91% 1.37%
1e− 3 0.96% 1.39%

Sample size K L1 error L2 error Training time

256 1.11% 1.42% 1.34h
512 0.98% 1.32% 2.63h

1024 0.96% 1.38% 5.59h
2048 0.91% 1.37% 12.07h

affect the performance of the learned models. To understand
the influence of σ during training, we conduct experiments
on 250-dimensional HJB Equation with σ ranging from
1e− 3 to 1. In all these experiments, we set the sample size
K to 2048. We tune the learning rate and the loss coefficient
in the experiment and report the best result for each setting.

The results are shown in the left part of Table 2. Note that
changing the noise level σ does not affect the computational
complexity. Thus, the training time of different models are
nearly the same, and we only report the relative error for
brevity. It can be seen that the learned solutions are accurate
when σ ≤ 0.1, and the value of σ does not affect the model’s
performance much. However, when σ becomes too large,
e.g., σ = 1, the relative error of the model is high at the end
of training. This indicates that the solution of the PDE may
not be in the function class that the model can express. Note
that σ cannot be arbitrarily small because the calculation
of the second-order derivatives involves small values, e.g.,
σ4, which will introduce round-off error when we use float
precision.

Regarding the choice of sample size K. In our method, the
sample size K is a hyper-parameter that controls the speed-
accuracy trade-off. When K is larger, the approximation of
the derivatives is more accurate, while the training would
be slower. We run experiments on 250-dimensional HJB
Equation with the sample size K ranging from 256 to 2048.
In all these experiments, we set the noise level σ to 0.01.
We tune the learning rate and the loss coefficient in the

experiment and report the best result for each setting.

The results are shown in the right part of Table 2. From the
results we can see that a larger sample size K can lead to
better performance, at the cost of increased training time.
However, the training is not very sensitive to the sample size.
Even with only 256 samples, our method is still accurate
(and extremely efficient). This is because the variance-
reduced Stein’s derivative estimators can provide sufficiently
accurate estimation given a small sample size.

6 CONCLUSION

In this paper, we develop a novel approach that can signifi-
cantly accelerate the training of Physics-Informed Neural
Networks. In particular, we parameterize the PDE solution
by the Gaussian smoothed model and show that, as derived
from Stein’s Identity, the second-order derivatives can be ef-
ficiently calculated without back-propagation. Experimental
results show that our proposed method can significantly ac-
celerate PINN without sacrificing accuracy. One limitation
of our work is that our method only leads to acceleration for
high dimensional PDE. Accelerating PINN on more classes
of problems can be an exciting direction for future work.
We believe this work is an initial step towards efficiently
solving the high-dimensional partial differential equations
using deep learning approaches and will address various
other challenges along the way.
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A OMITTED PROOFS

In this section, we always assume x ∈ Rd, f(x) is a measurable function, and that u(x) = Eδ∼N (0,σ2I)f(x+ δ).

A.1 Proof of Theorem 1

Proof. Note that

u(x) = (2π)−
n
2

∫
Rd

e−
∥δ∥2

2σ2 f(x+ δ)dδ = (2π)−
n
2

∫
Rd

e−
∥t−x∥2

2σ2 f(t)dt. (13)

We have

∇xu(x) = (2π)−
n
2

∫
Rd

∇xe
− ∥t−x∥2

2σ2 f(t)dt = (2π)−
n
2

∫
Rd

t− x

σ2
e−

∥t−x∥2

2σ2 f(t)dt

= (2π)−
n
2

∫
Rd

δ

σ2
e−

∥δ∥2

2σ2 f(x+ δ)dδ = Eδ∼N (0,σ2I)

[
δ

σ2
f(x+ δ)

]
,

which concludes the proof.

A.2 Deviations of the Second Order Stein’s derivative estimators

Proposition 3. We have

Hu = Eδ∼N (0,σ2I)

[(
δδ⊤ − σ2I

σ4

)
f(x+ δ)

]
; (14)

∆u = Eδ∼N (0,σ2I)

[(
∥δ∥2 − σ2d

σ4

)
f(x+ δ)

]
. (15)

Proof. Note that u(x) can be expressed as in Eqn.(13). Therefore, for i, j ∈ {1, · · · , d} and i ̸= j, we have

∂2

∂xi∂xj
u(x) = (2π)−

n
2

∫
Rd

∂2

∂xi∂xj
e−

∥t−x∥2

2σ2 f(t)dt = (2π)−
n
2

∫
Rd

(ti − xi)(tj − xj)

σ4
e−

∥t−x∥2

2σ2 f(t)dt

= (2π)−
n
2

∫
Rd

δiδj
σ4

e−
∥δ∥2

2σ2 f(x+ δ)dδ = Eδ∼N (0,σ2I)

[
δiδj
σ4

f(x+ δ)

]
, (16)

For the case where i = j, similar computations will yield

∂2

∂x2
i

u(x) = (2π)−
n
2

∫
Rd

∂2

∂x2
i

e−
∥t−x∥2

2σ2 f(t)dt = Eδ∼N (0,σ2I)

[
δ2i − 1

σ4
f(x+ δ)

]
, (17)

By definition of Hessian matrix, Eqn.(14) can be proven by combining Eqn.(16) and (17).

As for Eqn.(15), note that ∆u = tr(Hu), where tr(·) denotes the trace of a matrix. Therefore,

∆u = E
[
tr

(
δδ⊤ − σ2I

σ4

)
f(x+ δ)

]
= E

[(
∥δ∥2 − σ2d

σ4

)
f(x+ δ)

]
,

which concludes the proof.

A.3 Deviations of the Variance-Reduced Stein’s derivative estimators

Proposition 4 (Estimators based on the control variate method).

∇xu = Eδ∼N (0,σ2I)

[
δ

σ2
(f(x+ δ)− f(x))

]
; (18)

∆u = E
[(

∥δ∥2 − σ2d

σ4

)
(f(x+ δ)− f(x))

]
. (19)
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Proof. Note that δ ∼ N (0, σ2I) implies E[δ] = 0 and E[∥δ∥2 − σ2d] = 0.

Thus, E[δf(x)] = E[∥δ∥2 − σ2df(x)] = 0. Applying Theorem 1 and Proposition 3, Eqn.(18) and (19) hold by linearity of
expectation.

Proposition 5 (Estimators based on the control variate and antithetic variable method).

∇xu =E
[

δ

2σ2
(f(x+ δ)− f(x− δ))

]
; (20)

∆u =E
[(

∥δ∥2 − σ2d

2σ4

)
(f(x+ δ) + f(x− δ)− 2f(x))

]
(21)

Proof. Note that δ ∼ N (0, σ2I) implies −δ ∼ N (0, σ2I). Thus, we can substitute δ with −δ in Eqn.(18) and obtain

∇xu = Eδ∼N (0,σ2I)

[
− δ

σ2
(f(x− δ)− f(x))

]
(22)

The summation of Eqn.(18) and (22) gives Eqn.(20). Eqn.(21) is proven similarly.

B EXPERIMENTAL SETTINGS

B.1 Poisson’s Equation

Hyperparameters. The hyperparameters used in our experiment on Poisson’s Equation are described in Table 3.

Table 3: Derailed experimental settings of Poisson’s Equation.

Model Configuration

Layers 4
Hidden dimension 256
Activation tanh
Noise level σ 0.01
Sample size K 2048

Hyperparameters

Total iterations 1000
Domain Batch Size N1 100
Boundary Batch Size N2 100
Boundary Loss Weight λ 300
Learning Rate 1e− 3
Learning Rate Decay Linear
Adam ε 1e− 8
Adam(β1, β2) (0.9, 0.999)

Training data. The training data is sampled online. Specifically, in each iteration, we sample N1 i.i.d. data points,
x(1), · · · , x(N1), uniformly from the domain Ω, and N2 i.i.d. data points, x̃(1), · · · , x̃(N2), uniformly from the boundary ∂Ω.

B.2 Heat Equation

Hyperparameters. The hyperparameters used in our experiment on HJB Equation are described in Table 4.

Training data. The training data is sampled online. Specifically, in each iteration, we uniformly sample N1 i.i.d. data
points, (x(1), t(1)), · · · , (x(N1), t(N1)), from the domain B(0, 1) × (0, 1); N2 i.i.d. data points, (x̃(1), 0), · · · , (x̃(N2), 0),
from B(0, 1)× {0}; and N3 i.i.d. data points, (x̂(1), t̂(1)), · · · , (x̂(N3), t̂(N3)), from ∂B(0, 1)× [0, 1].
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Table 4: Derailed experimental settings of Heat Equation.

Model Configuration

Layers 4
Hidden dimension 256
Activation tanh
Noise level σ 0.01
Sample size K 2048

Hyperparameters

Total iterations 1000
Domain Batch Size N1 50
Initial Condition Batch Size N2 50
Spatial Boundary Batch Size N3 50
Initial Condition Weight λ2 1000
Spatial Boundary Weight λ3 1000
Learning Rate 1e− 3
Learning Rate Decay Linear
Adam ε 1e− 8
Adam(β1, β2) (0.9, 0.999)

B.3 HJB Equation

Hyperparameters. The hyperparameters used in our experiment on HJB Equation are described in Table 5.

Table 5: Derailed experimental settings of HJB Equation.

Model Configuration

Layers 4
Hidden dimension 768
Activation tanh
Noise level σ 0.01
Sample size K 2048

Hyperparameters

Total iterations 10000
Domain Batch Size N1 50
Boundary Batch Size N2 50
Boundary Loss Weight λ 500
(Adversarial training) Inner Loop Iterations K 20
(Adversarial training) Inner Loop Step Size η 0.05
Learning Rate 2e− 4
Learning Rate Decay Linear
Adam ε 1e− 8
Adam(β1, β2) (0.9, 0.999)

Training data. The training data is sampled online. Specifically, in each iteration, we sample N1 i.i.d. data points,
(x(1), t(1)), · · · , (x(N1), t(N1)), from the domain Rn × [0, T ], and N2 i.i.d. data points, (x̃(1), T ), · · · , (x̃(N2), T ), from the
boundary Rn × {T}, where (x(i), t(i)) ∼ N (0, In)× U(0, 1) and x̃(j) ∼ N (0, In).
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