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Abstract

We propose synperiodic filter banks, a novel
multi-scale learnable filter bank construction
strategy that all filters are synchronized by their
rotating periodicity. By synchronizing in a cer-
tain periodicity, we naturally get filters whose
temporal length are reduced if they carry higher
frequency response, and vice versa. Such filters
internally maintain a better time-frequency reso-
lution trade-off. By further alternating the peri-
odicity, we can easily obtain a group of synperi-
odic filter bank (we call synperiodic filter banks),
where filters of same frequency response in dif-
ferent groups differ in temporal length. Convolv-
ing these filter banks with sound raw waveform
achieves multi-scale perception in time domain.
Moreover, applying the same filter banks to re-
cursively process the 2x-downsampled waveform
enables multi-scale perception in the frequency
domain. Benefiting from the multi-scale percep-
tion in both time and frequency domains, our pro-
posed synperiodic filter banks learn multi-scale
time-frequency representation in a data-driven
way. Experiments on both sound source direc-
tion of arrival (DoA) and physical location de-
tection task show the superiority of synperiodic
filter banks.

1 Introduction

The fundamental task for an agent to perceive and interact
with the 3D environment is to know the location and se-
mantic identity of its nearby objects. The location includes
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both spatial location and temporal location. Vision-based
such environment perception has received large attention
in the past decade and we have witnessed huge progress in
tasks such as object detection (Liu et al., 2016; Lin et al.,
2014), classification (He et al., 2016a) and tracking (Wang
et al., 2019). Nevertheless, the research in sound-based
counterpart has far lagged behind, despite all the fascinat-
ing properties sound signals exhibit. For example, sound is
ubiquitous and insensitive to ambient illumination change,
it has no field-of-view constraints and is capable of circum-
venting physical barriers to perceive scene beyond line-of-
sight. As a sensing approach complementary to vision,
sound-based perception essential for acoustic scene under-
standing. A fundamental task is the sound source detection
from multi-channel sound waveforms.

To detect sound sources, we often deploy a spatially-
configured microphone array to record an acoustic envi-
ronment. The recorded sound is a highly compressed 1D
time series. Since different sound sources have different
frequency properties, it is essential to convert 1D wave-
form into 2D time-frequency representation. This is often
achieved by projecting the raw waveform onto various fre-
quency bases. A sound source’s spatial location clue lies
in inter-channel difference among waveforms (i.e. phase
difference). It is essential to design a neural network that
jointly encodes mono-channel time-frequency and inter-
channel phase difference from the raw waveforms in a uni-
fied, parameter-frugal and computation-efficient manner.
The learned representation should have expressive reso-
lution in both time, frequency and space domains so that
sound sources can be precisely detected.

However, learning such representation is a tough task.
Challenges stem from both theoretical side and practical
side. According to the Uncertainty Principle, we cannot
achieve the optimal resolution in time and frequency do-
main at the same time, but instead keep a trade-off between
them. Traditional hand-engineered sound feature (Davis
and Mermelstein, 1980; Cao et al., 2021; Brandstein and
Silverman, 1997) and some recently proposed learnable fil-
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ter bank (Ravanelli and Bengio, 2018; Zeghidour et al.,
2018) empirically set the same length for all filters, result-
ing in human-biased, unadjustable time-frequency resolu-
tion map. Some other works (Zeghidour et al., 2021; He
et al., 2021; He and Markham, 2022) correlate filter fre-
quency response and filter length by initializing in mel-
scale, but it is neither scalable nor stable. Moreover, all of
them process raw waveform with one-scale filter bank, we
think such one-scale filter bank easily leads to non-optimal
representation, especially when sound sources have spec-
trum overlap or undergo free spatial motion.

In this paper, we first give theoretical analysis on the fil-
ter bank impact on time-frequency representation. Based
on the analysis, we propose a simple yet effective synpe-
riodic filter banks construction strategy, in which synpe-
riodic means each filter’s temporal length and its carried
frequency response are synchronized by rotating periodic-
ity such that each filter’s length is inversely proportional
to its frequency resolution. The resulting synperiodic fil-
ter banks (we call it filter banks as it contains multiple
filter bank groups) thus internally maintain a better time-
frequency resolution trade-off than traditional fixed-length
filter bank. Coupling the filter length with its frequency
response helps us to reduce human intervention in filter
bank design. By simply alternating the periodicity term, we
further construct a group of synperiodic filter banks, with
which we achieve multi-scale perception in time domain.
At the same time, by applying a synperiodic filter banks
to process one raw waveform as well as its consecutively-
downsampled versions, we achieve multi-scale perception
in frequency domain. The multi-scale perception in both
time and frequency domain of synperiodic filter banks en-
ables the neural network to dynamically learn better repre-
sentation for sound source detection in a data-driven way.
It is worth noting that synperiodic filter banks parameter
number is just linear to filter number (adds up to less than
1% of the whole parameters) and it can be efficiently im-
plemented as a 1D convolution operator.

Following the learnable synperiodic filter banks, we fur-
ther design backbone network (a small lite one and a
large one) with two paralleling branches with layerwise
soft-parameter sharing to learn sound source’s semantic
and spatial location related representation jointly. Exper-
iment on both direction-of-arrival (DoA) task and physical
location estimation task shows that our proposed frame-
work outperforms comparing methods significantly. Re-
placing existing method’s head with our proposed synpe-
riodic filter banks also improves the performance signif-
icantly. The source code is https://github.com/
yuhanghe01/SoundSynp.

2 Related Work

Sound signal processing has been thoroughly studied in tra-
ditional digital signal processing area. The preliminary step
of sound signal processing is usually to convert raw wave-
form into 2D time-frequency representation. There are two
main realms: Fourier transform based and Wavelet based
transform (Sturm, 2007). Traditional sound feature design
are motivated influenced by human-auditory system. For
example, they often convert frequency bins into mel-scale
to imitate human hearing system, like MFCC (Davis and
Mermelstein, 1980), LogMel (Cao et al., 2021; Grondin
et al., 2019), the filter length is empirically chosen and of-
ten a windowing is added to avoid spectrum leakage. For
inter-channel phase difference encoding, it is often recom-
mended to encode in frequency domain due to the less-
computation advantage. Typical phase difference features
include GCC-Phat (Brandstein and Silverman, 1997) and
intensity vector (Cao et al., 2021).

Sound source detection has been previously treated as
sound structure (Thrun, 2006) estimation, sound object
detection (He et al., 2021) and sound event detection
and localization (SELD) problem (Adavanne et al., 2018;
Thi Ngoc et al., 2021). It involves jointly identifying a
sound source’s semantic label and predicting its spatial lo-
cation, the two sub-tasks have been thoroughly studied sep-
arately in acoustics (Nandwana and Hasan, 2016; Mohan
et al., 2008; Sundar et al., 2020; Vera-Diaz et al., 2018)
and computer vision community (He et al., 2016a). Kim
et al. (Kim et al., 2019) provided a review and discussion
for raw-audio based event classification. Benefiting from
the success of the traditional hand-engineered sound fea-
ture and the large availability of mature image-based deep
neural networks (He et al., 2016a), most work (Grondin
et al., 2019; Cao et al., 2021; Grondin et al., 2019; Ada-
vanne et al., 2018; Thi Ngoc et al., 2021) tackle the task
by first extracting hand-engineered sound feature and then
feeding them to mature image-based neural networks. This
workflow is straightforward and often guarantees reason-
ably good results but it is not end-to-end trainable and heav-
ily depend on image side which may not be optimal for
sound processing. At the same time, some work (He et al.,
2021; Adavanne et al., 2018; Tho Nguyen et al., 2020) have
simplified the problem by assuming no two sound sources
of the same semantic label but different spatial location
happen at the same time. This assumption avoids seman-
tic label and spatial location association issue but may not
reflect real scenarios.

In recent years, a bunch of work tried to design neural
work to directly learn from raw sound waveform, ranging
from the earlier methods that directly apply stacked lay-
ers to process raw waveform (Schneider et al., 2019; Palaz
et al., 2013; Jaitly and Hinton, 2011; Sainath et al., 2013)
to the recent frequency-sensitive filter bank learning meth-
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ods (Zeghidour et al., 2021; Ravanelli and Bengio, 2018;
Zeghidour et al., 2018; He et al., 2021; Hoshen et al., 2015;
Sainath et al., 2015; Luo and Mesgarani, 2019; He and
Markham, 2022). The filter bank parameter is initialized
in either mel-scale (Ravanelli and Bengio, 2018; Zeghi-
dour et al., 2021; He et al., 2021; Zeghidour et al., 2018)
or as Gammatone filter (Hoshen et al., 2015; Sainath et al.,
2015). SoundDet (He et al., 2021) designs MaxCorr fil-
ter bank to directly convolve with multi-channel raw wave-
forms to learn phase difference aware features.

Multi-scale representation has a rich history in computer
vision (Liu et al., 2016; Lin et al., 2016; He et al., 2016b),
in which multi-scale representation strategy has been pro-
posed to accommodate large object scale variation. The
“multi-scale” discussed in this paper is slightly different
from their definition, as we mainly indicate the interaction
between a filter’s temporal support region and frequency
response. In sound signal processing, Mallat (Bruna and
Mallat, 2013; Mallat, 2012) proposed wavelet scattering to
obtain multi-scale sound representation by iteratively treat-
ing the proceeding processed sound waveform as new vir-
tual waveform for further process. Won et al. (Won et al.,
2020) proposed to learn multi-scale harmonic filters in a
data-driven way, by exploiting audio signal inherent har-
monic structures.

3 Multi-Scale Synperiodic Filter Banks

3.1 Background Knowledge Discussion

Sound source detection task aims at detecting each sound
source’s start/end time, the semantic identity and spatial lo-
cation during its occurrence. Semantic identity cues mainly
lie in mono-channel sound waveform time-frequency rep-
resentation, and spatial location cues lie in inter-channel
waveform difference (e.g. phase difference). To get
the time-frequency representation for each mono-channel
waveform, a frequency-selective filter bank F is often used
to project the waveform onto different frequency bases. A
general filter bank F of M filters can be mathematically
represented as,

F = {F i}Mi=1, F i
fi,σi

(t) = ϕfi(t) · ωσi
(t) (1)

Each filter F i is a filter in time domain. It con-
tains a frequency response fi and filter length σi, that
are independently controlled by frequency-selective filter
ϕfi(t) (e.g. (Ravanelli and Bengio, 2018)) and a window
function ωσi

(t). An expressive filter bank should have
good resolution capability in both time and frequency do-
mains. Frequency resolution indicates the ability of dis-
cerning two adjacent frequency bins, time resolution cor-
responds to the capability of precisely localizing a sound
source in time domain. According to the Uncertainty Prin-

ciple, the frequency resolution ∆f and time resolution ∆t

satisfies ∆f · ∆t ≥ C (C is a constant, which means we
cannot achieve the optimal resolution at time and frequency
domains simultaneously, but instead maintain a trade-off
between them. Therefore, it is essential to design a filter
bank that maximally maintains a good time-frequency res-
olution.

Existing filter bank differs in their way of choosing ϕfi(t)
and ωσi(t). Classic Fourier transform based filter banks,
such as short-time Fourier transform (STFT), LogMel and
MFCC (Davis and Mermelstein, 1980), decide ϕfi(t) and
ωσi

(t) independently in arbitrary manner. They usually as-
sign a fixed window length to all filters (where ωσi(t) is a
constant), so their extracted time-frequency representation
resolution is fixed and unadjustable across all frequency
bins. We call such filter bank syndistance filter bank to
emphasize their equal length property across all frequency
responses. Wavelet transform (Sturm, 2007) inversely cor-
relates window length with frequency response so that the
filter with higher frequency response is naturally associated
with shorter window. The resulting time-frequency map
theoretically has better resolution than the one extracted by
Fourier transform, but it is still fixed and heavily rely on
empirical parameter tuning. Some recent work (He et al.,
2021; Zeghidour et al., 2018, 2021) relax ϕfi(t) to be train-
able so that they can be further optimized in a data-driven
way. They still involve much empirical parameter-tuning
work (i.e. ωσi

(t) selection). Moreover, they all process the
raw waveform in one-scale manner, which often leads to
non-optimal time-frequency representation.

Synperiodic filter banks address these issues from three
perspectives: First, we inversely correlate ϕfi(t) and
ωσi(t) by a periodicity term. Therefore, we do not have
to explicitly set the window length (ωσi(t)) for each filter
because it is internally decided by the filter’s frequency re-
sponse. In addition, inversely correlating ϕfi(t) and ωσi

(t)
naturally generates filter bank in which filters with high
frequency responses are associated with shorter window
length. Such filter bank naturally maintains a better time-
frequency resolution. Second, By simply alternating the
periodicity term, we create a group of filter banks that dif-
fer in their window length. Applying these filter banks to
process the raw waveform helps achieve multi-scale per-
ception in time domain. Third, applying the same filter
banks to process recursively 2x downsampled waveforms
helps achieve multi-scale perception in frequency domain.

4 Synperiodic Filter Banks Construction

In synperiodic filter banks, we inversely correlate ϕfi and
ωσi

by setting σi to be proportional to the filter’s periodic
term: rotating ρ periodic circles. Specifically, synperiodic
filter banks Fsynp = {Fsynp

i }Mi=1 can be represented as,
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Figure 1: Synperiodic filter banks illustration: Syndistance filter bank (green color) rotates the same distance in complex
plane and thus has the same kernel length, regardless of frequency it carries. Its time-frequency dynamic resolution map is
thus rectangular. our proposed synperiodic filter banks (blue color) are generated by rotating the same periodicity number.
So filter carrying lower frequency has larger kernel size than those with higher frequency response. As a result, synperiodic
filter banks’ time-frequency dynamic resolution map achieves better trade-off than traditional syndistance filter bank.

 

Figure 2: Synperiodic filter construction. Given a set of fil-
ters of infinite length ϕf (t) (dark blue) and predefined pe-
riodicity parameters [ρ1, ρ2, ρ3], windowing function ωf,ρ

takes the frequency f and periodicity ρ as input to cre-
ate windows with locality property (green), and the win-
dow’s active region length is inversely proportional to its
corresponding filter’s frequency response f . Multiplying
the infinite filter and its associated window results in a
group of Synperiodic filter bank. The filters of the same
frequency response in different groups have different time
length, helping to achieve multi-scale perception in time-
scale.

Fsynp
i,fi

(t) = ϕfi(t) · ωfi,ρ(t) (2)

where ω(fi, ρ) indicates the periodic number the filter ro-
tates. Since filters carrying higher-frequencies have shorter
period length, requiring all filters to rotate the same period
number naturally results in shorter filter length for high-
frequency filters and wider filter length for low-frequency
filters. Therefore, ω(fi, ρ) defines the filter window length
by constraining the period number it rotates. We call our
filter banks synperioidc filter banks to emphasize that all fil-
ters’ window lengths are automatically decided by the pe-
riod number they rotate. To better understand the difference
between syndistance and synperiodic filter banks, we visu-
alize them in complex-valued plane (see Fig. 1, left-most),
in which a filter is a complex exponential rotating in the
complex plane counter-clockwisely, the rotating speed cor-

responds to the frequency it carries. In the complex-valued
plane, all syndistance filters rotate to the same distance.
Synperiodic filters, however, rotate to a predefined peri-
odicity ρ, resulting in narrow window for high-frequency
filters and wide window for low-frequency filters.

Synperiodic filter banks lend us three advantages: it first
avoids us setting window length for each filter sepa-
rately, which is quite empirical and random; second, the
constructed filter banks internally maintain a good time-
frequency resolution trade-off; third, by simply varying
the periodicity term ρ, we can easily obtain a group of syn-
periodic filter banks to process the raw waveforms in multi-
scale manner. Our synperiodic construction strategy shares
similar idea with Wavelet transform (Sturm, 2007) where it
adopts a time shift and “squeezing ratio” to achieve multi-
scale perception. The difference is that we omit the time
shift but instantiate the squeezing ratio with our proposed
synperiodicity strategy. Moreover, synperiodic filter banks
are multi-scale both time and frequency domain, and self-
adjustable in a data-driven way.

There are many ways to instantiate ω(wi, ρ), as long as we
guarantee the window length gradually reduces as the fre-
quency response increases. The simplest choice is to treat
ω(wi, ρ) as a constant, but we find it either results in too
wide window for low-frequency filters or too narrow win-
dow for high-frequency filters. To mitigate this dilemma,
we use logarithmic window function,

ω(fi, ρ) = 27 · log10(fi)− ρ, ρ = {−6,−11,−16} (3)

We set ρ as [−6,−11,−16] respectively to construct three
synperiodic filter banks. The design of this window func-
tion is motivated by mel-scale frequency initialization strat-
egy. By roughly setting a filter’s bank width to be equal to
the distance between its preceding and next frequency lo-
cation in frequency domain, converting to time domain we
can roughly get a logarithmic scale frequency-periodicity
relationship (see Fig. 1 in Appendix).

Figure 2 visualizes synperiodic filter banks construction. In
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Figure 3: Multi-scale learning in frequency domain. Given the raw one channel sound waveform and pre-constructed
synperiodic filter banks, we consecutively downsample the waveform by factor 2x, the newly downsampled waveform is
processed by low-half filter bank from the proceeding filter bank. We can obtain time-frequency representation on each
frequency scale. These time-frequency representations share the same time length by adjusting step size. The final time-
frequency representation is obtained by max-pooling them together.

our implementation, synperiodic filter is created by multi-
plying a sinusoidal basis (ϕ(fi) instantiation) with learn-
able frequency response initialized in mel-scale by a Gaus-
sian window (ω(fi, ρ) instantiation) with learnable width
initialized through the windowing function by Eqn. (3).
The initial synperiodic filter extracted features in different
channels are in a complex format, we further encode cross-
spectrum feature as spatial location relevant feature (see
Sec. 1 in supp. material) and concatenate them with synpe-
riodic filter extracted together as the overall sound source
feature. Synperiodic filter banks are initialized with inde-
pendent learnable frequencies and window length, they are
independently updated during training stage.

4.1 Multi-Scale Perception in Time Domain

We use the previously constructed synperiodic filter banks
to convolve with mono-channel sound waveform with the
same step size and padding strategy, resulting in the same
size output for each single synperiodic filter banks. Since
different filter group has different window length, we
achieve multi-scale learning in time domain (see the third
figure in Fig. 1). It maximally avoids us empirically select-
ing one window scale ρ, but instead uses a group of filter
banks to enforce the neural network to strike a better time-
frequency resolution trade-off in a data-driven way.

4.2 Multi-Scale Perception in Frequency Domain

Multi-scale perception in frequency domain is hierarchi-
cal: given a raw sound waveform with sampling frequency
FS , synperiodic filter banks’ frequency is initialized within
the range [0, FS

2 ] under Nyquist sampling theorem. If we
downsample the sound waveform by a factor of 2, the re-
sulting waveform can be processed by the lower-half fil-
ters in each group whose frequency response lies in [0, FS

4 ].
Please note that merely using the lower-half filters to pro-
cess the 2x-downsampled waveform helps us to avoid alias-
ing issue. This process that 2x-downsampling the wave-
form further process the downsampled waveform with fil-

ters with lower-half frequency response can potentially it-
erate a couple of times (in our case three times), resulting
in multi-scale perception in frequency domain. Figure 3 il-
lustrates how it works. Multi-scale learning in frequency
domain brings us two extra benefits: 1) from data aug-
mentation perspective, 2x downsampling a waveform cre-
ates new low-quality waveform, equivalently we have extra
dataset. 2) from the perception field perspective, the adja-
cent 2x-downsampling strategy leads to dilated convolution
for lower-frequency filters, because applying a filter to con-
volve with a downsampled waveform equals to convolve on
the original waveform with dilated convolution (skip-2 con-
nection). The resulting wider or dilated perception field for
lower frequency filters enables to learn better sound rep-
resentation along the time axis (see Fig. 2 in supp. ma-
terial). In sum, by using learnable synperiodic filter bank
group to process the raw waveforms in multi-scale manner,
we achieve a dynamic time-frequency resolution that nat-
urally maintains a better time-frequency resolution fitting
for sound source detection in a data-driven way.

Computational Analysis Synperiodic filter bank group in-
troduces very few parameters (less than 1%) because they
are parameterized filters. The trainable parameter num-
ber increases linearly w.r.t. synperiodic filter bank num-
ber. Their convolution with raw waveforms can also be
efficiently implemented with 1D convolution.

4.3 Backbone Neural Network

Following the Synperiodic filter banks, we further design a
backbone network to further learn sound source representa-
tion. Jointly learning sound source semantic label and spa-
tial location representation is a multi-task problem (Kendall
et al., 2018; Misra et al., 2016), we follow (Cao et al., 2021)
to propose a backbone with two paralleling and identical
branches to learn each sub-task separately. To enforce in-
formation communication, we add a layerwise information
exchange module: for the intermediate semantic label fea-
ture f i

s and spatial location feature f i
g learned by the i-th

block, a learnable weight Wi is introduced to linearly com-
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bine them together to get an updated f i
s and f i

g before feed-
ing them to the next layer, [f i

s, f
i
g] = Wi ·[f i

s, f
i
g]. On top of

the representation, we add trackwise permutation-invariant
training (PIT) strategy to train the whole neural network in
an end-to-end manner. We have designed two backbone
versions: a lite version of 24M parameters and a large ver-
sion of 60M parameters (see Table 8, 9 in Appendix for
network architecture).

5 Experiments

We focus on two tasks: direction of arrival (DoA) and
physical location estimation. For DoA estimation task,
we use DCASE2020 sound event detection and localiza-
tion dataset (Politis et al., 2020), in which the sampling
rate is 24 k. It contains 14 sound sources with azimuth
range [−180◦, 180◦] and elevation range [−45◦, 45◦]. Two
recording formats: FOA and MIC-array (refer Sec. 1 in
Appendix). More details are in (Politis et al., 2020). For
physical location, we use L3DAS22-SELD dataset (Guizzo
et al., 2022).

5.1 Comparing Methods

For DoA, we compare with five latest methods:

1. SELDNet (Adavanne et al., 2018), SELDNet is the
baseline model and it jointly trains sound source’s seman-
tic label and spatial location with a convolutional recurrent
neural network (CRNN) (Chung et al., 2014).

2. EIN-v2 (Cao et al., 2021), EIN-v2 (Cao et al.,
2021) is a very recent work. It adopts multi-heads self-
attention (Vaswani et al., 2017) (MHSA) to model tempo-
ral dependency and trackwise permutation-invariant train-
ing to train the model.

3. SoundDet (He et al., 2021), SoundDet directly learns
from raw waveforms with MaxCorr kernels, followed by an
encoder-decoder neural network to learn frame-wise repre-
sentation.

4. SoundDoA (He and Markham, 2022) SoundDoA also
learns from raw waveform by a Gabor-like filter bank with
an Enhance module. A backbone neural network is associ-
ated with the Gabor-like filter bank to learn time-frequency
representation.

5. Utsc-Iflytek (Wang et al., 2020). Utsc-Iflytek is ranked
first in DECASE2020 challenge leaderboard 1, it combines
MIC and FOA features and ensembles different models like
ResNet (He et al., 2016a) and Xception (Chollet, 2017) to
detect sound sources.

For sound source physical location estimation task, we ad-
ditionally compare with Conf-EIN (Hu et al., 2022), which

1see link for leaderboard report.

is based on EIN-v2 (Cao et al., 2021) and additionally con-
tains conformer and dense blocks. We call our framework
SoundSynp (the one with small backbone SoundSynp lite,
large backbone SoundSynp large). All methods’ compari-
son is in Table 4.

5.2 Implementation Detail

To train the neural network, we clip all 4s short snippets
from the original one minute long four-channel raw wave-
forms so that we have the largest train dataset. The raw
waveforms are normalized to [−1, 1]. We adopt Adam op-
timizer (Kingma and Ba, 2015) with an initial learning rate
0.0002 in the first 100 epochs and 0.0001 in the following
50 epochs. The loss combination weight between classi-
fication head and regression head is 1 : 2. During train-
ing, data augmentation method SpecAugment (Park et al.,
2019) is applied. For DoA task, we regress direction of
arrival angle in Cartesian coordinates [x, y, z]. In synpe-
riodic filter banks, the filter length is 1025, each group’s
filter number is 256 and the step size is 600. Particularly,
we have observed the initialized learnable synperiodic fil-
ter banks update its parameters intensively during the early
several epochs, and then gradually becomes stable. We
train each model with Pytorch (Paszke et al., 2019) five
times independently and report the average score. The
standard deviation is within 0.04 (for recall) and 0.17◦ for
angle, 0.002 for mAP and mAR, we do not report the stan-
dard deviation in tables for succinct report.

5.3 Direction of Arrival (DoA) Estimation Result

Evaluation Metrics: We use two metrics. Segment-based
metric is a widely adopted evaluation metric (Adavanne
et al., 2018; Cao et al., 2021; He and Markham, 2022; He
et al., 2021), it couples semantic label and spatial loca-
tion together: a semantic-correctly detected sound source
needs to be spatially close enough to its ground truth lo-
cation in order to be regarded as a true positive detec-
tion. Event-based based metric is newly proposed by (He
et al., 2021) to comprehensively evaluate under different
confidence scores. Like object detection from images (Lin
et al., 2014), it computes mean average precision (mAP)
and mean average recall (mAR).

The result is given in Table 1, from which we see that
SoundSynp (both the lite and large versions) achieves the
best performance over all comparing methods significantly.
Both EIN-v2 and UTSC-Iflytek use pre-extracted hand-
engineered sound features, such as Logmel, GCC-Phat and
Intensity Vector. SELDNet (Adavanne et al., 2018) uses
phase and spectrum. SoundDet (He et al., 2021), Sound-
DoA (He and Markham, 2022) and SoundSynp are the only
three methods that directly learn from raw waveforms. At
the same time, SoundSynp obtains better performance on
FOA than MIC format, the same phenomena has been ob-

http://dcase.community/challenge2020/task-sound-event-localization-and-detection-results
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Table 1: Result on DoA task. For Segment-based eval., we report detection error ER20◦ , F-measure F20◦ under DoA
threshold 20◦, and classification dependent localization error LECD and localization recall LRCD. For event-based eval.,
we report mAP/mAR. The “Input” column labels are: 0. Raw waveforms, 1. Log-Mel, 2. GCC-Phat, 3. Intensity Vector.
Top three performances are respectively highlighted by red, green, and blue color.

Methods Input Segment-Based Eval. Event-based Eval.
ER20◦(↓) F20◦(↑) LE(↓) LR(↑) mAP(↑) mAR(↑)

SELDNet(foa) (Adavanne et al., 2018) 1,3 0.63 0.46 23.1 0.69 0.087 0.152
SELDNet(mic) (Adavanne et al., 2018) 1,2 0.66 0.43 24.2 0.66 0.079 0.140

EIN-v2(foa) (Cao et al., 2021) 1,2 0.30 0.77 8.9 0.84 0.134 0.256
SoundDet(foa) (He et al., 2021) 0 0.25 0.81 8.3 0.82 0.197 0.294

SoundDoA(foa) (He and Markham, 2022) 0 0.23 0.85 7.9 0.87 0.220 0.301
UTSC-Iflytek(foa+mic) (Wang et al., 2020) 1,2,3 0.20 0.85 6.0 0.89 - -

SoundSynp lite(mic) 0 0.21 0.83 6.2 0.87 0.199 0.303
SoundSynp large(mic) 0 0.19 0.86 5.5 0.91 0.210 0.313
SoundSynp lite(foa) 0 0.20 0.85 5.6 0.89 0.205 0.309

SoundSynp large(foa) 0 0.15 0.89 4.3 0.94 0.232 0.327

Figure 4: DoA result visualization. We show detected sound source temporal location (top row) and azimuth (bottom
row). The horizontal axis is time, the vertical axis is semantic label (top) and azimuth in degree(bottom). Different color
indicates different sound source class.

A. Initialized Filter B. Learned Filter

Figure 5: Learned Synperiodic Filterbank Visualization.

served by all other methods. It thus shows FOA better fits
for sound source detection than MIC format. It is worth
noting that Utsc-Iflytek (Wang et al., 2020) ensembles dif-
ferent powerful image-based 2D models to detect sound
sources. However, our proposed SoundSynp still outper-
forms Utsc-Iflytek by a large margin. SoundSynp lite
achieves comparable performance with Utsc-Iflytek with
much smaller parameter size (24M). It thus shows our pro-
posed synperiodic filter banks are capable of learning ex-
pressive representation for sound source detection. We do
not report mAP/mAR value for Utsc-Iflytek because it is a
complex system and no detail about their system is avail-
able.

We show one learned synperiodic filter in Fig. 5, in which
the filter’s temporal support region and frequency response

is updated to achieve better time-frequency resolution.

5.4 Ablation Study

1. Existing Methods with Synperiodic Frontend. We re-
place either fixed TF feature extractor front-end of SELD-
Net, EIN-v2, or learnable TF extractor front-end of Sound-
Det (He et al., 2021) and SoundDoA (He and Markham,
2022) with our proposed Synperiodic filter banks front-
end to test their performance. It removes the influence of
the backbone neural network of different models and thus
helps to get direct comparison of synperiodic filter banks
with other fixed time-frequency features. The result is in
Table 2, from which we can see using synperiodic filter
banks as a replacement of existing filter bank dramatically
improves the performance. Synperiodic filter banks can be
used as a general plug-and-play front-end by existing meth-
ods.

2. Replace Synperiodic with Classic TF Feature. In
SoundSynp, we replace the synperiodic filter bank group
with MFCC (Davis and Mermelstein, 1980) and Log-
Mel (used by SELDNet (Adavanne et al., 2018) and EIN-
v2 (Cao et al., 2021)), STFT and Wavelet (Sturm, 2007)
like filters (we use the typical Gabor filter bank, we call
SSynp Gabor). It helps us to understand the performance
with/without synperiodic filter banks. The result is given
in Table 5, from which we can see replacing SoundSynp’s
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Table 2: Existing Methods with Synperiodic Frontend
Method ER ↓ F ↑ LE↓ LR↑
SELDNet (Grondin et al., 2019) 0.63 0.46 23.1 0.69
SELDNet Synp 0.50 0.53 21.0 0.78

EIN-v2 (Cao et al., 2021) 0.30 0.77 8.9 0.84
EIN-v2 Synp 0.22 0.84 6.7 0.89

SoundDet (He et al., 2021) 0.25 0.81 8.3 0.82
SoundDet Synp 0.21 0.85 7.5 0.87

SoundDoA (He and Markham, 2022) 0.23 0.85 7.9 0.87
SoundDoA Synp 0.21 0.87 7.2 0.90

Table 3: Various SoundSynp Variants Results
Variants ER ↓ F ↑ LE↓ LR↑

SSynp MSFreq 0.20 0.84 7.3 0.86
SSynp MSTime 0.23 0.83 7.0 0.88
SSynp Linear 0.22 0.83 8.4 0.84
SSynp SScale 0.25 0.81 7.8 0.84
SSynp Sinc 0.21 0.83 6.3 0.87

SSynp LEAF 0.22 0.84 5.7 0.86

SoundSynp 0.15 0.89 4.3 0.94

Table 4: Network Architecture Highlight.
MHSA: multi-head self-attention.

Variants Network Blocks

SELDNet (Grondin et al.) Conv2D, biGRU
EIN-v2 (Cao et al.) Conv2D, MHSA
SoundDet (He et al.) Conv1D LSTM
SoundDoA (He and Markham) Conv1D/2D MHSA

SoundSynp Conv1/2D MHSA

Table 5: Replace Synperiodic Learnable Frontend with traditional
TF feature.

Method ER ↓ F ↑ LE↓ LR↑
SSynp MFCC 0.22 0.81 6.7 0.86
SSynp LogMel 0.23 0.84 6.6 0.86
SSynp STFT 0.23 0.82 7.0 0.84
SSynp Gabor 0.22 0.82 7.3 0.85

SoundSynp 0.15 0.89 4.3 0.94

synperiodic filter banks with classic hand-engineered TF
features inevitably reduces the performance under all eval-
uation metrics. It thus shows learning from either fixed
or single-scale TF feature leads to worse performance than
our proposed multi-scale synperiodic filter banks on sound
source detection task.

3. Necessity of Each SoundSynp Component. We in-
ternally test six synperiodic filter banks variants: (1) syn-
periodic filter banks with just multi-scale in frequency
domain (SSynp MSFreq); (2) just multi-scale in time
domain (SSynp MSTime); (3) Synperiodic filter banks
with frequency responses linearly initialized in Nyquist
frequency range (SSynp Linear, compare with our mel-
scale initialization); (4) just one synperiodic filter bank
without multi-scale perception neither in time nor fre-
quency domain (SSynp SScale); (5) with rectangular
band-pass frequency response initialization (SSynp Sinc),
like SincNet (Ravanelli and Bengio, 2018) does; (6)
with LEAF (Zeghidour et al., 2021) learnable filter
bank (SSynp LEAF). The result is given in Table 3. We
can observe that he absence of multi-scale perception in ei-
ther frequency domain or time domain inevitably reduces
the performance. We find semantic label detection suf-
fers more in single-scale perception in time domain than in
frequency domain (see better performance on ER20◦ , and
F20◦ score), which shows frequency domain multi-scale
perception is vital for semantic estimation. Similarly, we
can observe that multi-scale perception in time domain is
vital for sound source spatial location estimation (see bet-
ter performance on LE and LR score). Linearly initial-
ized filter bank frequency reduces the performance as well,
which shows assigning more filters to the lower frequency

range is important. But this conclusion might be data-
biased because we find DCASE dataset contains many low-
frequency sound events like burning fire. Moreover, reduc-
ing the synperiodic filter bank groups to one group with
just single-scale perception leads to the worst performance,
it thus shows multi-scale perception in both time and fre-
quency domain is essential for DoA-based sound source
detection. Moreover, SoundSynp Sinc leads to slightly in-
ferior performance than our used mel-scale initialization
strategy, it attests synperiodic filter framework is general
enough to be adopted by various initialization strategy.

One qualitative comparison is shown in Fig. 4. We can
clearly see that SELDNet (Grondin et al., 2019) gener-
ates mixed prediction at different time steps and DoA lo-
cations. SoundDet (He et al., 2021) and EIN-v2 (Cao
et al., 2021) give non-existing sound sources (orange
color). When multiple sound sources happen at the same
time (polyphonicity), SoundDet and EIN are easily failed
to predict the right spatial location (discretized blue and
red color). Our method (SoundSynp large) predicts more
spatially and temporally consistent sound sources by maxi-
mally keeping sound source’s continuity and completeness.

5.5 Physical Location Estimation Result

We run experiment on L3DAS22-SELD dataset (Guizzo
et al., 2022), whose target is to predict sound source’s 3D
physical location [x, y, z] in indoor room environment. The
room is of size 6m× 5m× 3m. It involves 14 seed sounds
from FSD50K (Fonseca et al., 2022). Up to 3 sources
are co-emitting sound. The dataset contains 600/150/150
30s-clips for train/val/test. We report the result on val-
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Table 6: Physical Location Detection Result. The top three
performances are labelled by red, green and blue color.

Method F≤1m ↑ F≤2m ↑
EIN-v2 (Cao et al., 2021) 0.621 0.636
SoundDet (He et al., 2021) 0.640 0.672
SoundDoA (He and Markham, 2022) 0.652 0.688
Conf-EIN (Hu et al., 2022) 0.685 0.715

SoundSynp lite 0.644 0.681
SoundSynp large 0.722 0.733

Table 7: Inference Time and Param. Size (M: million).
Method Infer. Time Param. Size

SELDNet (Adavanne et al.) 1.20 s 0.5 M
EIN-v2 (Cao et al.) 2.20 s 26 M
SoundDet (He et al.) 1.25 s 13 M
SoundDoA (He and Markham) 2.10 s 27 M
Conf-EIN (Hu et al.) 4.0 s 83 M

SoundSynp lite 1.80 s 24 M
SoundSynp large 3.10 s 60 M

idation set because the test set is held-out for the chal-
lenge and not publicly available. The evaluation metric
used here is F-score (Mesaros et al., 2019; Guizzo et al.,
2022). In addition to EIN-v2 (Cao et al., 2021), Sound-
Det (He et al., 2021) and SoundDoA (He and Markham,
2022) (SELDNet model does not converge in training), we
also compare with the champion method Conf-EIN (Hu
et al., 2022), it ranks the first in L3DAS22-SELD chal-
lenge. The result is in Table 6, we can see SoundSynp large
outperforms Conf-EIN (Hu et al., 2022) by a large mar-
gin with smaller parameter size and inference time (see Ta-
ble 7). SoundSynp lite achieves comparable performance
with Conf-EIN (Hu et al., 2022). It thus shows SoundSynp
framework is capable of accurately detecting sound sources
3D physical location.

The inference time (Intel(R) Core(TM) i9-7920X CPU,
100 independent tests, report the average time) and model
parameters of all methods are given in Table 7, from which
we can see that SoundSynp lite has comparable parame-
ters and smaller inference time than EIN-v2 (Cao et al.,
2021). SoundSynp large has fewer parameters and less in-
ference time than Conf-EIN (Hu et al., 2022), and it out-
performs Conf-EIN (Hu et al., 2022) in physical location
based sound source detection.

5.6 Limitation Discussion

One limitation is the lack of experiment of testing syn-
periodic filter banks on highly-polyphonic sound scenes,
where multiple sound sources (more than 3) are co-emitting
sound. Another limitation is the lack of testing synperiodic
filter banks in tasks outside sound source detection (e.g.
speech and other vibro-acoustics area). Moreover, the in-

stantiation of synperiodic filter banks in Eqn. 3 is just one
appropriate instantiation (no proof to show it is optimal,
we show it outperforms SSynp Sinc, see Table 3). There
are other potential instantiations that await to be discussed.
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A Appendix

A.1 Spatial Location Encoding in Frequency Domain and Recording Format Discussion

We discuss the detailed spatial location encoding for FOA and MIC sound waveforms recording format. The spatial
location encoding is based on 2D feature learned by the Gabor filter bank for each sound waveform channel, which can be
represented as {Fi = (Ri, Ii)}4i=1. Ri and Ii are real part and imaginary part feature of the i-th channel sound waveform,
respectively.

FOA format is well-known as first-order Ambisonics (B-format). It contains four channels: omni-directional, x-directional,
y-directional and z-directional components, respectively. The instantaneous sound intensity vector is often used as spatial
location (or phase difference) feature, which can be computed through the cross-spectrum between the omni-directional
channel to the remaining x, y, z- directional. As a result, we have obtained 3 channel spatial location encoding feature.

IVx = F ∗
0 · F1, IVy = F ∗

0 · F2, IVz = F ∗
0 · F3 (4)

where F ∗
0 indicates the conjugate of the omni-directional feature. The three cross-spectrum feature IVx, IVy and IVz are

stacked together and further normalized before serving as the spatial encoding feature.

MIC format is well-known as tetrahedral microphone array. The four microphones are mounted in spherical coordinates
with four distinct orientations. We treat the four microphones equally and compute the phase difference between any two
microphones. Thus a total of six channels spatial location feature can be constructed. Specifically, we choose to compute
GCC-PHAT (Brandstein and Silverman, 1997) like cross-spectrum feature. For any two channel m and n, we compute the
angle between the real part and imaginary part of the cross-spectrum.

SL = angle(F ∗
m · Fn), m ̸= n,m = 1, 2, 3, 4;n = 1, 2, 3, 4 (5)

SL indicates the spatial location feature computed by the sound waveforms channel m and n. The angle(·) equals to a
frequency amplitude normalization operation, like the GCC-PHAT (Brandstein and Silverman, 1997) does. Please note that
all the spatial location feature computation operations are differentiable so the whole neural network becomes end-to-end
trainable.

A.2 Synperiodic Filter Bank Frequency-Periodicity Relationship Determination

Figure 6: The relationship between filter frequency response and
the periodicity. Green curve: our proposed windowing function.
Light orange dots: mel-scale initialized frequency-periodicity
relationship.

Mel-scale time-frequency representation has been
widely used in both traditional sound feature like
MFCC (Davis and Mermelstein, 1980), LogMel and
learnable filter bank (Zeghidour et al., 2021). It ini-
tializes the filter bank in frequency domain, in which
high-frequency filter has wider window length. We
transform the filter bank into time domain and can
naturally get a roughly logarithmic-scale frequency-
periodicity relationship, in which narrower window
width is associated with high-frequency filters. We
thus set ω(wi, ρ) = 27 · log10(wi) − ρ. We plot
our synperiodic filter bank window function and the
mel-scale initialized windowing function in Fig. 6, it
shows our proposed windowing function naturally ap-
proximates the mel-scale windowing function.
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Table 8: SoundSynp-large neural network architecture. The layer follow name@kernelsize, stride format, and synperi-
odic filter bank follow name@kernelsize, stride, groups format. FC is fully connection layer, AvgPool is the average
pooling layer, MaxPool is max-pooling layer. B is the batchsize, T is input waveforms time-length. All convolution layers
are followed by a batch normalization layer and Relu activation layer. Please note that since the backbone neural network
has two identical branches, we just show one branch here.

layer filter num output size
Input: [B,4,T]

Synperiodic Filter Bank Groups
SynperiodicFilterBank@1024,600,3 256 [B, 256, T/600, 21]

Backbone Conv block1
Conv2d@3,1 128 [B, 256, T/600, 128]
Conv2d@3,1 128 [B, 256, T/600, 128]
AvgPool@2,1 None [B, 128, T/600, 128]

Backbone Conv block2
Conv2d@3,1 256 [B, 128, T/600, 256]
Conv2d@3,1 256 [B, 128, T/600, 256]
AvgPool@2,1 None [B, 64, T/600, 256]

Backbone Conv block3
Conv2d@3,1 256 [B, 64, T/600, 256]
Conv2d@3,1 256 [B, 64, T/600, 256]
AvgPool@2,1 None [B, 32, T/600, 256]

Backbone Conv block4
Conv2d@3,1 512 [B, 32, T/600, 512]
Conv2d@3,1 512 [B, 32, T/600, 512]
AvgPool@2,1 None [B, 16, T/600, 512]

Backbone Conv block5
Conv2d@3,1 512 [B, 16, T/600, 512]
Conv2d@3,1 512 [B, 16, T/600, 512]

AvgPool@16,1 None [B, T/600, 512]
Backbone MHSA block1

MHSA@8,1024 512 [B, T/600, 512]
AvgPool@2,1 None [B, T/1200, 512]

Backbone MHSA block2
MHSA@8,1024 512 [B, T/1200, 512]
AvgPool@2,1 None [B, T/2400, 512]

Backbone MHSA block3
MHSA@8,1024 512 [B, T/2400, 512]

FC class num [B, T/2400, class num]
FC class num x 3 [B, T/2400, class num x 3]

Trackwise Permutation Invariant Head
Multi-label Classification None scalar

Location Regression None scalar
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Table 9: SoundSynp-lite neural network architecture. The layer follow name@kernelsize, stride format, and synperiodic
filter bank follow name@kernelsize, stride, groups format. FC is fully connection layer, AvgPool is the average pooling
layer, MaxPool is max-pooling layer. B is the batchsize, T is input waveforms time-length. All convolution layers are
followed by a batch normalization layer and Relu activation layer. It can be easily adjusted to fit other cases. Please note
that since the backbone neural network has two identical branches, we just show one branch here.

layer filter num output size
Input: [B,4,T]

Synperiodic Filter Bank Groups
SynperiodicFilterBank@1024,600,3 256 [B, 256, T/600, 21]

Backbone Conv block1
Conv2d@3,1 128 [B, 256, T/600, 128]
Conv2d@3,1 128 [B, 256, T/600, 128]
AvgPool@2,1 None [B, 128, T/600, 128]

Backbone Conv block2
Conv2d@3,1 256 [B, 128, T/600, 256]
Conv2d@3,1 256 [B, 128, T/600, 256]
AvgPool@2,1 None [B, 64, T/600, 256]

Backbone Conv block3
Conv2d@3,1 512 [B, 64, T/600, 512]
Conv2d@3,1 512 [B, 64, T/600, 512]
AvgPool@2,1 None [B, 32, T/600, 512]

Backbone Conv block4
Conv2d@3,1 256 [B, 32, T/600, 256]
Conv2d@3,1 256 [B, 32, T/600, 256]
AvgPool@2,1 None [B, 16, T/600, 256]

Backbone Conv block5
Conv2d@3,1 256 [B, 16, T/600, 256]
Conv2d@3,1 256 [B, 16, T/600, 256]

AvgPool@16,1 None [B, T/600, 256]
Backbone MHSA block1

MHSA@8,1024 256 [B, T/600, 256]
AvgPool@2,1 None [B, T/1200, 256]

Backbone MHSA block2
MHSA@8,1024 256 [B, T/1200, 256]
AvgPool@2,1 None [B, T/2400, 256]

Backbone MHSA block3
MHSA@8,1024 256 [B, T/2400, 256]

FC class num [B, T/2400, class num]
FC class num x 3 [B, T/2400, class num x 3]

Trackwise Permutation Invariant Head
Multi-label Classification None scalar

Location Regression None scalar


