
SoundSynp: Sound Source Detection from Raw Waveforms
with Multi-Scale Synperiodic Filterbanks

Yuhang He Andrew Markham
yuhang.he@cs.ox.ac.uk

Department of Computer Science
University of Oxford

United Kingdom

andrew.markham@cs.ox.ac.uk
Department of Computer Science

University of Oxford
United Kingdom

Abstract

We propose synperiodic filter banks, a novel
multi-scale learnable filter bank construction
strategy that all filters are synchronized by their
rotating periodicity. By synchronizing in a cer-
tain periodicity, we naturally get filters whose
temporal length are reduced if they carry higher
frequency response, and vice versa. Such filters
internally maintain a better time-frequency reso-
lution trade-off. By further alternating the peri-
odicity, we can easily obtain a group of synperi-
odic filter bank (we call synperiodic filter banks),
where filters of same frequency response in dif-
ferent groups differ in temporal length. Convolv-
ing these filter banks with sound raw waveform
achieves multi-scale perception in time domain.
Moreover, applying the same filter banks to re-
cursively process the 2x-downsampled waveform
enables multi-scale perception in the frequency
domain. Benefiting from the multi-scale percep-
tion in both time and frequency domains, our pro-
posed synperiodic filter banks learn multi-scale
time-frequency representation in a data-driven
way. Experiments on both sound source direc-
tion of arrival (DoA) and physical location de-
tection task show the superiority of synperiodic
filter banks.

1 Introduction

The fundamental task for an agent to perceive and interact
with the 3D environment is to know the location and se-
mantic identity of its nearby objects. The location includes
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both spatial location and temporal location. Vision-based
such environment perception has received large attention
in the past decade and we have witnessed huge progress in
tasks such as object detection (Liu et al., 2016; Lin et al.,
2014), classification (He et al., 2016a) and tracking (Wang
et al., 2019). Nevertheless, the research in sound-based
counterpart has far lagged behind, despite all the fascinat-
ing properties sound signals exhibit. For example, sound is
ubiquitous and insensitive to ambient illumination change,
it has no field-of-view constraints and is capable of circum-
venting physical barriers to perceive scene beyond line-of-
sight. As a sensing approach complementary to vision,
sound-based perception essential for acoustic scene under-
standing. A fundamental task is the sound source detection
from multi-channel sound waveforms.

To detect sound sources, we often deploy a spatially-
configured microphone array to record an acoustic envi-
ronment. The recorded sound is a highly compressed 1D
time series. Since different sound sources have different
frequency properties, it is essential to convert 1D wave-
form into 2D time-frequency representation. This is often
achieved by projecting the raw waveform onto various fre-
quency bases. A sound source’s spatial location clue lies
in inter-channel difference among waveforms (i.e. phase
difference). It is essential to design a neural network that
jointly encodes mono-channel time-frequency and inter-
channel phase difference from the raw waveforms in a uni-
fied, parameter-frugal and computation-efficient manner.
The learned representation should have expressive reso-
lution in both time, frequency and space domains so that
sound sources can be precisely detected.

However, learning such representation is a tough task.
Challenges stem from both theoretical side and practical
side. According to the Uncertainty Principle, we cannot
achieve the optimal resolution in time and frequency do-
main at the same time, but instead keep a trade-off between
them. Traditional hand-engineered sound feature (Davis
and Mermelstein, 1980; Cao et al., 2021; Brandstein and
Silverman, 1997) and some recently proposed learnable fil-
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ter bank (Ravanelli and Bengio, 2018; Zeghidour et al.,
2018) empirically set the same length for all �lters, result-
ing in human-biased, unadjustable time-frequency resolu-
tion map. Some other works (Zeghidour et al., 2021; He
et al., 2021; He and Markham, 2022) correlate �lter fre-
quency response and �lter length by initializing in mel-
scale, but it is neither scalable nor stable. Moreover, all of
them process raw waveform with one-scale �lter bank, we
think such one-scale �lter bank easily leads to non-optimal
representation, especially when sound sources have spec-
trum overlap or undergo free spatial motion.

In this paper, we �rst give theoretical analysis on the �l-
ter bank impact on time-frequency representation. Based
on the analysis, we propose a simple yet effective synpe-
riodic �lter banks construction strategy, in which synpe-
riodic means each �lter's temporal length and its carried
frequency response are synchronized by rotating periodic-
ity such that each �lter's length is inversely proportional
to its frequency resolution. The resulting synperiodic �l-
ter banks (we call it �lter banks as it contains multiple
�lter bank groups) thus internally maintain a better time-
frequency resolution trade-off than traditional �xed-length
�lter bank. Coupling the �lter length with its frequency
response helps us to reduce human intervention in �lter
bank design. By simply alternating the periodicity term, we
further construct a group of synperiodic �lter banks, with
which we achieve multi-scale perception in time domain.
At the same time, by applying a synperiodic �lter banks
to process one raw waveform as well as its consecutively-
downsampled versions, we achieve multi-scale perception
in frequency domain. The multi-scale perception in both
time and frequency domain of synperiodic �lter banks en-
ables the neural network to dynamically learn better repre-
sentation for sound source detection in a data-driven way.
It is worth noting that synperiodic �lter banks parameter
number is just linear to �lter number (adds up to less than
1% of the whole parameters) and it can be ef�ciently im-
plemented as a 1D convolution operator.

Following the learnable synperiodic �lter banks, we fur-
ther design backbone network (a small lite one and a
large one) with two paralleling branches with layerwise
soft-parameter sharing to learn sound source's semantic
and spatial location related representation jointly. Exper-
iment on both direction-of-arrival (DoA) task and physical
location estimation task shows that our proposed frame-
work outperforms comparing methods signi�cantly. Re-
placing existing method's head with our proposed synpe-
riodic �lter banks also improves the performance signif-
icantly. The source code ishttps://github.com/
yuhanghe01/SoundSynp .

2 Related Work

Sound signal processing has been thoroughly studied in tra-
ditional digital signal processing area. The preliminary step
of sound signal processing is usually to convert raw wave-
form into 2D time-frequency representation. There are two
main realms: Fourier transform based and Wavelet based
transform (Sturm, 2007). Traditional sound feature design
are motivated in�uenced by human-auditory system. For
example, they often convert frequency bins into mel-scale
to imitate human hearing system, like MFCC (Davis and
Mermelstein, 1980), LogMel (Cao et al., 2021; Grondin
et al., 2019), the �lter length is empirically chosen and of-
ten a windowing is added to avoid spectrum leakage. For
inter-channel phase difference encoding, it is often recom-
mended to encode in frequency domain due to the less-
computation advantage. Typical phase difference features
include GCC-Phat (Brandstein and Silverman, 1997) and
intensity vector (Cao et al., 2021).

Sound source detection has been previously treated as
sound structure (Thrun, 2006) estimation, sound object
detection (He et al., 2021) and sound event detection
and localization (SELD) problem (Adavanne et al., 2018;
Thi Ngoc et al., 2021). It involves jointly identifying a
sound source's semantic label and predicting its spatial lo-
cation, the two sub-tasks have been thoroughly studied sep-
arately in acoustics (Nandwana and Hasan, 2016; Mohan
et al., 2008; Sundar et al., 2020; Vera-Diaz et al., 2018)
and computer vision community (He et al., 2016a). Kim
et al. (Kim et al., 2019) provided a review and discussion
for raw-audio based event classi�cation. Bene�ting from
the success of the traditional hand-engineered sound fea-
ture and the large availability of mature image-based deep
neural networks (He et al., 2016a), most work (Grondin
et al., 2019; Cao et al., 2021; Grondin et al., 2019; Ada-
vanne et al., 2018; Thi Ngoc et al., 2021) tackle the task
by �rst extracting hand-engineered sound feature and then
feeding them to mature image-based neural networks. This
work�ow is straightforward and often guarantees reason-
ably good results but it is not end-to-end trainable and heav-
ily depend on image side which may not be optimal for
sound processing. At the same time, some work (He et al.,
2021; Adavanne et al., 2018; Tho Nguyen et al., 2020) have
simpli�ed the problem by assuming no two sound sources
of the same semantic label but different spatial location
happen at the same time. This assumption avoids seman-
tic label and spatial location association issue but may not
re�ect real scenarios.

In recent years, a bunch of work tried to design neural
work to directly learn from raw sound waveform, ranging
from the earlier methods that directly apply stacked lay-
ers to process raw waveform (Schneider et al., 2019; Palaz
et al., 2013; Jaitly and Hinton, 2011; Sainath et al., 2013)
to the recent frequency-sensitive �lter bank learning meth-
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ods (Zeghidour et al., 2021; Ravanelli and Bengio, 2018;
Zeghidour et al., 2018; He et al., 2021; Hoshen et al., 2015;
Sainath et al., 2015; Luo and Mesgarani, 2019; He and
Markham, 2022). The �lter bank parameter is initialized
in either mel-scale (Ravanelli and Bengio, 2018; Zeghi-
dour et al., 2021; He et al., 2021; Zeghidour et al., 2018)
or as Gammatone �lter (Hoshen et al., 2015; Sainath et al.,
2015). SoundDet (He et al., 2021) designs MaxCorr �l-
ter bank to directly convolve with multi-channel raw wave-
forms to learn phase difference aware features.

Multi-scale representation has a rich history in computer
vision (Liu et al., 2016; Lin et al., 2016; He et al., 2016b),
in which multi-scale representation strategy has been pro-
posed to accommodate large object scale variation. The
“multi-scale” discussed in this paper is slightly different
from their de�nition, as we mainly indicate the interaction
between a �lter's temporal support region and frequency
response. In sound signal processing, Mallat (Bruna and
Mallat, 2013; Mallat, 2012) proposed wavelet scattering to
obtain multi-scale sound representation by iteratively treat-
ing the proceeding processed sound waveform as new vir-
tual waveform for further process. Wonet al. (Won et al.,
2020) proposed to learn multi-scale harmonic �lters in a
data-driven way, by exploiting audio signal inherent har-
monic structures.

3 Multi-Scale Synperiodic Filter Banks

3.1 Background Knowledge Discussion

Sound source detection task aims at detecting each sound
source's start/end time, the semantic identity and spatial lo-
cation during its occurrence. Semantic identity cues mainly
lie in mono-channel sound waveform time-frequency rep-
resentation, and spatial location cues lie in inter-channel
waveform difference (e.g. phase difference). To get
the time-frequency representation for each mono-channel
waveform, a frequency-selective �lter bankF is often used
to project the waveform onto different frequency bases. A
general �lter bankF of M �lters can be mathematically
represented as,

F = fF i gM
i =1 ; F i

f i ;� i
(t) = � f i (t) � ! � i (t) (1)

Each �lter F i is a �lter in time domain. It con-
tains a frequency responsef i and �lter length � i , that
are independently controlled by frequency-selective �lter
� f i (t) (e.g. (Ravanelli and Bengio, 2018)) and a window
function ! � i (t). An expressive �lter bank should have
good resolution capability in both time and frequency do-
mains. Frequency resolution indicates the ability of dis-
cerning two adjacent frequency bins, time resolution cor-
responds to the capability of precisely localizing a sound
source in time domain. According to the Uncertainty Prin-

ciple, the frequency resolution� f and time resolution� t

satis�es � f � � t � C (C is a constant, which means we
cannot achieve the optimal resolution at time and frequency
domains simultaneously, but instead maintain a trade-off
between them. Therefore, it is essential to design a �lter
bank that maximally maintains a good time-frequency res-
olution.

Existing �lter bank differs in their way of choosing� f i (t)
and ! � i (t). Classic Fourier transform based �lter banks,
such as short-time Fourier transform (STFT), LogMel and
MFCC (Davis and Mermelstein, 1980), decide� f i (t) and
! � i (t) independently in arbitrary manner. They usually as-
sign a �xed window length to all �lters (where! � i (t) is a
constant), so their extracted time-frequency representation
resolution is �xed and unadjustable across all frequency
bins. We call such �lter banksyndistance�lter bank to
emphasize their equal length property across all frequency
responses. Wavelet transform (Sturm, 2007) inversely cor-
relates window length with frequency response so that the
�lter with higher frequency response is naturally associated
with shorter window. The resulting time-frequency map
theoretically has better resolution than the one extracted by
Fourier transform, but it is still �xed and heavily rely on
empirical parameter tuning. Some recent work (He et al.,
2021; Zeghidour et al., 2018, 2021) relax� f i (t) to be train-
able so that they can be further optimized in a data-driven
way. They still involve much empirical parameter-tuning
work (i.e. ! � i (t) selection). Moreover, they all process the
raw waveform in one-scale manner, which often leads to
non-optimal time-frequency representation.

Synperiodic �lter banks address these issues from three
perspectives: First , we inversely correlate� f i (t) and
! � i (t) by a periodicity term. Therefore, we do not have
to explicitly set the window length (! � i (t)) for each �lter
because it is internally decided by the �lter's frequency re-
sponse. In addition, inversely correlating� f i (t) and! � i (t)
naturally generates �lter bank in which �lters with high
frequency responses are associated with shorter window
length. Such �lter bank naturally maintains a better time-
frequency resolution.Second, By simply alternating the
periodicity term, we create a group of �lter banks that dif-
fer in their window length. Applying these �lter banks to
process the raw waveform helps achieve multi-scale per-
ception in time domain.Third , applying the same �lter
banks to process recursively 2x downsampled waveforms
helps achieve multi-scale perception in frequency domain.

4 Synperiodic Filter Banks Construction

In synperiodic �lter banks, we inversely correlate� f i and
! � i by setting� i to be proportional to the �lter's periodic
term: rotating� periodic circles. Speci�cally, synperiodic
�lter banks F synp = fF synp

i gM
i =1 can be represented as,
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Figure 1: Synperiodic �lter banks illustration: Syndistance �lter bank (green color) rotates the same distance in complex
plane and thus has the same kernel length, regardless of frequency it carries. Its time-frequency dynamic resolution map is
thus rectangular. our proposed synperiodic �lter banks (blue color) are generated by rotating the same periodicity number.
So �lter carrying lower frequency has larger kernel size than those with higher frequency response. As a result, synperiodic
�lter banks' time-frequency dynamic resolution map achieves better trade-off than traditional syndistance �lter bank.

Figure 2: Synperiodic �lter construction. Given a set of �l-
ters of in�nite length� f (t) (dark blue) and prede�ned pe-
riodicity parameters[� 1; � 2; � 3], windowing function! f;�

takes the frequencyf and periodicity� as input to cre-
ate windows with locality property (green), and the win-
dow's active region length is inversely proportional to its
corresponding �lter's frequency responsef . Multiplying
the in�nite �lter and its associated window results in a
group of Synperiodic �lter bank. The �lters of the same
frequency response in different groups have different time
length, helping to achieve multi-scale perception in time-
scale.

F synp
i;f i

(t) = � f i (t) � ! f i ;� (t) (2)

where! (f i ; � ) indicates the periodic number the �lter ro-
tates. Since �lters carrying higher-frequencies have shorter
period length, requiring all �lters to rotate the same period
number naturally results in shorter �lter length for high-
frequency �lters and wider �lter length for low-frequency
�lters. Therefore,! (f i ; � ) de�nes the �lter window length
by constraining the period number it rotates. We call our
�lter banks synperioidc �lter banks to emphasize that all �l-
ters' window lengths are automatically decided by the pe-
riod number they rotate. To better understand the difference
between syndistance and synperiodic �lter banks, we visu-
alize them in complex-valued plane (see Fig. 1, left-most),
in which a �lter is a complex exponential rotating in the
complex plane counter-clockwisely, the rotating speed cor-

responds to the frequency it carries. In the complex-valued
plane, all syndistance �lters rotate to the same distance.
Synperiodic �lters, however, rotate to a prede�ned peri-
odicity � , resulting in narrow window for high-frequency
�lters and wide window for low-frequency �lters.

Synperiodic �lter banks lend us three advantages: it�rst
avoids us setting window length for each �lter sepa-
rately, which is quite empirical and random;second, the
constructed �lter banks internally maintain a good time-
frequency resolution trade-off;third , by simply varying
the periodicity term� , we can easily obtain a group of syn-
periodic �lter banks to process the raw waveforms in multi-
scale manner. Our synperiodic construction strategy shares
similar idea with Wavelet transform (Sturm, 2007) where it
adopts a time shift and “squeezing ratio” to achieve multi-
scale perception. The difference is that we omit the time
shift but instantiate the squeezing ratio with our proposed
synperiodicity strategy. Moreover, synperiodic �lter banks
are multi-scale both time and frequency domain, and self-
adjustable in a data-driven way.

There are many ways to instantiate! (wi ; � ), as long as we
guarantee the window length gradually reduces as the fre-
quency response increases. The simplest choice is to treat
! (wi ; � ) as a constant, but we �nd it either results in too
wide window for low-frequency �lters or too narrow win-
dow for high-frequency �lters. To mitigate this dilemma,
we use logarithmic window function,

! (f i ; � ) = 27 � log10(f i ) � �; � = f� 6; � 11; � 16g (3)

We set� as[� 6; � 11; � 16] respectively to construct three
synperiodic �lter banks. The design of this window func-
tion is motivated by mel-scale frequency initialization strat-
egy. By roughly setting a �lter's bank width to be equal to
the distance between its preceding and next frequency lo-
cation in frequency domain, converting to time domain we
can roughly get a logarithmic scale frequency-periodicity
relationship (see Fig. 1 in Appendix).

Figure 2 visualizes synperiodic �lter banks construction. In
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Figure 3: Multi-scale learning in frequency domain. Given the raw one channel sound waveform and pre-constructed
synperiodic �lter banks, we consecutively downsample the waveform by factor 2x, the newly downsampled waveform is
processed by low-half �lter bank from the proceeding �lter bank. We can obtain time-frequency representation on each
frequency scale. These time-frequency representations share the same time length by adjusting step size. The �nal time-
frequency representation is obtained by max-pooling them together.

our implementation, synperiodic �lter is created by multi-
plying a sinusoidal basis (� (f i ) instantiation) with learn-
able frequency response initialized in mel-scale by a Gaus-
sian window (! (f i ; � ) instantiation) with learnable width
initialized through the windowing function by Eqn. (3).
The initial synperiodic �lter extracted features in different
channels are in a complex format, we further encode cross-
spectrum feature as spatial location relevant feature (see
Sec. 1 in supp. material) and concatenate them with synpe-
riodic �lter extracted together as the overall sound source
feature. Synperiodic �lter banks are initialized with inde-
pendent learnable frequencies and window length, they are
independently updated during training stage.

4.1 Multi-Scale Perception in Time Domain

We use the previously constructed synperiodic �lter banks
to convolve with mono-channel sound waveform with the
same step size and padding strategy, resulting in the same
size output for each single synperiodic �lter banks. Since
different �lter group has different window length, we
achieve multi-scale learning in time domain (see the third
�gure in Fig. 1). It maximally avoids us empirically select-
ing one window scale� , but instead uses a group of �lter
banks to enforce the neural network to strike a better time-
frequency resolution trade-off in a data-driven way.

4.2 Multi-Scale Perception in Frequency Domain

Multi-scale perception in frequency domain is hierarchi-
cal: given a raw sound waveform with sampling frequency
FS , synperiodic �lter banks' frequency is initialized within
the range[0; FS

2 ] under Nyquist sampling theorem. If we
downsample the sound waveform by a factor of 2, the re-
sulting waveform can be processed by the lower-half �l-
ters in each group whose frequency response lies in[0; FS

4 ].
Please note that merely using the lower-half �lters to pro-
cess the 2x-downsampled waveform helps us to avoid alias-
ing issue. This process that 2x-downsampling the wave-
form further process the downsampled waveform with �l-

ters with lower-half frequency response can potentially it-
erate a couple of times (in our case three times), resulting
in multi-scale perception in frequency domain. Figure 3 il-
lustrates how it works. Multi-scale learning in frequency
domain brings us two extra bene�ts: 1) from data aug-
mentation perspective, 2x downsampling a waveform cre-
ates new low-quality waveform, equivalently we have extra
dataset. 2) from the perception �eld perspective, the adja-
cent 2x-downsampling strategy leads to dilated convolution
for lower-frequency �lters, because applying a �lter to con-
volve with a downsampled waveform equals to convolve on
the original waveform with dilated convolution (skip-2 con-
nection). The resulting wider or dilated perception �eld for
lower frequency �lters enables to learn better sound rep-
resentation along the time axis (see Fig. 2 in supp. ma-
terial). In sum, by using learnable synperiodic �lter bank
group to process the raw waveforms in multi-scale manner,
we achieve a dynamic time-frequency resolution that nat-
urally maintains a better time-frequency resolution �tting
for sound source detection in a data-driven way.

Computational AnalysisSynperiodic �lter bank group in-
troduces very few parameters (less than1%) because they
are parameterized �lters. The trainable parameter num-
ber increases linearly w.r.t. synperiodic �lter bank num-
ber. Their convolution with raw waveforms can also be
ef�ciently implemented with 1D convolution.

4.3 Backbone Neural Network

Following the Synperiodic �lter banks, we further design a
backbone network to further learn sound source representa-
tion. Jointly learning sound source semantic label and spa-
tial location representation is a multi-task problem (Kendall
et al., 2018; Misra et al., 2016), we follow (Cao et al., 2021)
to propose a backbone with two paralleling and identical
branches to learn each sub-task separately. To enforce in-
formation communication, we add a layerwise information
exchange module: for the intermediate semantic label fea-
ture f i

s and spatial location featuref i
g learned by thei -th

block, a learnable weightWi is introduced to linearly com-
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bine them together to get an updatedf i
s andf i

g before feed-
ing them to the next layer,[f i

s ; f i
g] = Wi � [f i

s ; f i
g]. On top of

the representation, we add trackwise permutation-invariant
training (PIT) strategy to train the whole neural network in
an end-to-end manner. We have designed two backbone
versions: a lite version of24M parameters and a large ver-
sion of 60M parameters (see Table 8, 9 in Appendix for
network architecture).

5 Experiments

We focus on two tasks: direction of arrival (DoA) and
physical location estimation. For DoA estimation task,
we use DCASE2020 sound event detection and localiza-
tion dataset (Politis et al., 2020), in which the sampling
rate is 24 k. It contains 14 sound sources with azimuth
range[� 180� ; 180� ] and elevation range[� 45� ; 45� ]. Two
recording formats: FOA and MIC-array (refer Sec. 1 in
Appendix). More details are in (Politis et al., 2020). For
physical location, we use L3DAS22-SELD dataset (Guizzo
et al., 2022).

5.1 Comparing Methods

For DoA, we compare with �ve latest methods:

1. SELDNet (Adavanne et al., 2018), SELDNet is the
baseline model and it jointly trains sound source's seman-
tic label and spatial location with a convolutional recurrent
neural network (CRNN) (Chung et al., 2014).

2. EIN-v2 (Cao et al., 2021), EIN-v2 (Cao et al.,
2021) is a very recent work. It adopts multi-heads self-
attention (Vaswani et al., 2017) (MHSA) to model tempo-
ral dependency and trackwise permutation-invariant train-
ing to train the model.

3. SoundDet (He et al., 2021), SoundDet directly learns
from raw waveforms with MaxCorr kernels, followed by an
encoder-decoder neural network to learn frame-wise repre-
sentation.

4. SoundDoA (He and Markham, 2022) SoundDoA also
learns from raw waveform by a Gabor-like �lter bank with
anEnhancemodule. A backbone neural network is associ-
ated with the Gabor-like �lter bank to learn time-frequency
representation.

5. Utsc-I�ytek (Wang et al., 2020). Utsc-I�ytek is ranked
�rst in DECASE2020 challenge leaderboard1, it combines
MIC and FOA features and ensembles different models like
ResNet (He et al., 2016a) and Xception (Chollet, 2017) to
detect sound sources.

For sound source physical location estimation task, we ad-
ditionally compare with Conf-EIN (Hu et al., 2022), which

1see link for leaderboard report.

is based on EIN-v2 (Cao et al., 2021) and additionally con-
tains conformer and dense blocks. We call our framework
SoundSynp (the one with small backbone SoundSynplite,
large backbone SoundSynplarge). All methods' compari-
son is in Table 4.

5.2 Implementation Detail

To train the neural network, we clip all 4s short snippets
from the original one minute long four-channel raw wave-
forms so that we have the largest train dataset. The raw
waveforms are normalized to[� 1; 1]. We adopt Adam op-
timizer (Kingma and Ba, 2015) with an initial learning rate
0.0002 in the �rst 100 epochs and 0.0001 in the following
50 epochs. The loss combination weight between classi-
�cation head and regression head is1 : 2. During train-
ing, data augmentation method SpecAugment (Park et al.,
2019) is applied. For DoA task, we regress direction of
arrival angle in Cartesian coordinates[x; y; z]. In synpe-
riodic �lter banks, the �lter length is 1025, each group's
�lter number is 256 and the step size is 600. Particularly,
we have observed the initialized learnable synperiodic �l-
ter banks update its parameters intensively during the early
several epochs, and then gradually becomes stable. We
train each model with Pytorch (Paszke et al., 2019)�ve
times independently and report the average score. The
standard deviation is within 0.04 (for recall) and0:17� for
angle, 0.002 for mAP and mAR, we do not report the stan-
dard deviation in tables for succinct report.

5.3 Direction of Arrival (DoA) Estimation Result

Evaluation Metrics: We use two metrics.Segment-based
metric is a widely adopted evaluation metric (Adavanne
et al., 2018; Cao et al., 2021; He and Markham, 2022; He
et al., 2021), it couples semantic label and spatial loca-
tion together: a semantic-correctly detected sound source
needs to be spatially close enough to its ground truth lo-
cation in order to be regarded as a true positive detec-
tion. Event-basedbased metric is newly proposed by (He
et al., 2021) to comprehensively evaluate under different
con�dence scores. Like object detection from images (Lin
et al., 2014), it computes mean average precision (mAP)
and mean average recall (mAR).

The result is given in Table 1, from which we see that
SoundSynp (both the lite and large versions) achieves the
best performance over all comparing methods signi�cantly.
Both EIN-v2 and UTSC-I�ytek use pre-extracted hand-
engineered sound features, such as Logmel, GCC-Phat and
Intensity Vector. SELDNet (Adavanne et al., 2018) uses
phase and spectrum. SoundDet (He et al., 2021), Sound-
DoA (He and Markham, 2022) and SoundSynp are the only
three methods that directly learn from raw waveforms. At
the same time, SoundSynp obtains better performance on
FOA than MIC format, the same phenomena has been ob-



Yuhang He, Andrew Markham

Table 1: Result on DoA task. For Segment-based eval., we report detection errorER20� , F-measureF20� under DoA
threshold20� , and classi�cation dependent localization errorLECD and localization recallLRCD . For event-based eval.,
we report mAP/mAR. The “Input” column labels are: 0. Raw waveforms, 1. Log-Mel, 2. GCC-Phat, 3. Intensity Vector.
Top three performances are respectively highlighted byred, green, andblue color.

Methods Input Segment-Based Eval. Event-based Eval.
ER20 � (#) F 20 � (" ) LE( #) LR( " ) mAP(" ) mAR(" )

SELDNet(foa) (Adavanne et al., 2018) 1,3 0.63 0.46 23.1 0.69 0.087 0.152
SELDNet(mic) (Adavanne et al., 2018) 1,2 0.66 0.43 24.2 0.66 0.079 0.140

EIN-v2(foa) (Cao et al., 2021) 1,2 0.30 0.77 8.9 0.84 0.134 0.256
SoundDet(foa) (He et al., 2021) 0 0.25 0.81 8.3 0.82 0.197 0.294

SoundDoA(foa) (He and Markham, 2022) 0 0.23 0.85 7.9 0.87 0.220 0.301
UTSC-I�ytek(foa+mic) (Wang et al., 2020) 1,2,3 0.20 0.85 6.0 0.89 - -

SoundSynplite(mic) 0 0.21 0.83 6.2 0.87 0.199 0.303
SoundSynplarge(mic) 0 0.19 0.86 5.5 0.91 0.210 0.313
SoundSynplite(foa) 0 0.20 0.85 5.6 0.89 0.205 0.309

SoundSynplarge(foa) 0 0.15 0.89 4.3 0.94 0.232 0.327

Figure 4: DoA result visualization. We show detected sound source temporal location (top row) and azimuth (bottom
row). The horizontal axis is time, the vertical axis is semantic label (top) and azimuth in degree(bottom). Different color
indicates different sound source class.

Figure 5: Learned Synperiodic Filterbank Visualization.

served by all other methods. It thus shows FOA better �ts
for sound source detection than MIC format. It is worth
noting that Utsc-I�ytek (Wang et al., 2020) ensembles dif-
ferent powerful image-based 2D models to detect sound
sources. However, our proposed SoundSynp still outper-
forms Utsc-I�ytek by a large margin. SoundSynplite
achieves comparable performance with Utsc-I�ytek with
much smaller parameter size (24M). It thus shows our pro-
posed synperiodic �lter banks are capable of learning ex-
pressive representation for sound source detection. We do
not report mAP/mAR value for Utsc-I�ytek because it is a
complex system and no detail about their system is avail-
able.

We show one learned synperiodic �lter in Fig. 5, in which
the �lter's temporal support region and frequency response

is updated to achieve better time-frequency resolution.

5.4 Ablation Study

1. Existing Methods with Synperiodic Frontend. We re-
place either �xed TF feature extractor front-end of SELD-
Net, EIN-v2, or learnable TF extractor front-end of Sound-
Det (He et al., 2021) and SoundDoA (He and Markham,
2022) with our proposed Synperiodic �lter banks front-
end to test their performance. It removes the in�uence of
the backbone neural network of different models and thus
helps to get direct comparison of synperiodic �lter banks
with other �xed time-frequency features. The result is in
Table 2, from which we can see using synperiodic �lter
banks as a replacement of existing �lter bank dramatically
improves the performance. Synperiodic �lter banks can be
used as a general plug-and-play front-end by existing meth-
ods.

2. Replace Synperiodic with Classic TF Feature. In
SoundSynp, we replace the synperiodic �lter bank group
with MFCC (Davis and Mermelstein, 1980) and Log-
Mel (used by SELDNet (Adavanne et al., 2018) and EIN-
v2 (Cao et al., 2021)), STFT and Wavelet (Sturm, 2007)
like �lters (we use the typical Gabor �lter bank, we call
SSynpGabor). It helps us to understand the performance
with/without synperiodic �lter banks. The result is given
in Table 5, from which we can see replacing SoundSynp's


