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Abstract

Many conventional learning algorithms rely
on loss functions other than the natural 0-1
loss for computational efficiency and theoretical
tractability. Among them are approaches based
on absolute loss (L1 regression) and square loss
(L2 regression). The first is proved to be an ag-
nostic PAC learner for various important concept
classes such as juntas, and half-spaces. On the
other hand, the second is preferable because of
its computational efficiency which is linear in the
sample size. However, PAC learnability is still
unknown as guarantees have been proved only
under distributional restrictions. The question of
whether L2 regression is an agnostic PAC learner
for 0-1 loss has been open since 1993 and yet has
to be answered.

This paper resolves this problem for the junta
class on the Boolean cube — proving agnostic
PAC learning of k-juntas using L2 polynomial
regression. Moreover, we present a new PAC
learning algorithm based on the Boolean Fourier
expansion with lower computational complexity.
Fourier-based algorithms, such as Linial et al.
(1993), have been used under distributional re-
strictions, such as uniform distribution. We show
that with an appropriate change, one can apply
those algorithms in agnostic settings without any
distributional assumption. We prove our results
by connecting the PAC learning with 0-1 loss to
the minimum mean square estimation (MMSE)
problem. We derive an elegant upper bound on
the 0-1 loss in terms of the MMSE error. Based
on that, we show that the sign of the MMSE is a
PAC learner for any concept class containing it.
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1 Introduction

To gain computational efficiency or analytic tractabil-
ity, many conventional learning methods such as support-
vector machine (SVM) rely on intermediate loss functions
other than the natural 0-1 loss. Absolute difference (L1

distance) is an example. It is known that polynomial re-
gression under L1 distance leads to agnostic probably ap-
proximately correct (PAC) learners (Kalai et al., 2008) for
various hypothesis classes such as k-juntas, polynomial-
approximated predictors, and half-spaces. However, the
running time of computing L1 distance is quadratic in sam-
ple size and hence prohibitive for large data sets.

Square loss (L2 distance), on the other hand, is an alterna-
tive with computational complexity linear in the size of the
data. This has been an incentive to use learning algorithms
such as the low-degree algorithm (Linial et al., 1993) and
LS-SVM (Suykens and Vandewalle, 1999). From the learn-
ing theoretic perspective, PAC learning using L2-based ap-
proaches has been studied for the aforementioned concept
classes, but with distributional assumptions (Linial et al.,
1993; Kalai et al., 2008; Jackson, 2006).

For instance, under the realizability assumption, where
zero generalization loss is possible (opt = 0), the L2-
polynomial regression is a PAC learner. In addition to
the realizability assumption, under the uniform input dis-
tribution, the low-degree algorithm is also a PAC learner
(Mossel et al., 2004, 2003; Blais et al., 2010). Under the
distribution-free (agnostic) setting, PAC bounds of the form
c(opt) with opt being the minimum loss of the class and c a
constant as high as c = 8, have been proved so far for vari-
ous concept classes (Kalai et al., 2008; Kearns et al., 1994;
Jackson, 2006). Therefore, agnostic PAC learnability of
L2-based approaches is still open and yet to be determined.

This paper resolves this problem for learning k-juntas on
the Boolean cube, i.e., Boolean functions over d inputs
whose output depends on at most k < d variables, where k
is typically a constant much smaller than d. Learning jun-
tas has been studied extensively in the literature with vari-
ous motivations such as feature selection in machine learn-
ing (Guyon and Elisseeff, 2003; Blais et al., 2010; Hei-
dari et al., 2021b; Kalai et al., 2008; Klivans et al., 2009;
Birnbaum and Shwartz, 2012; Diakonikolas et al., 2019).



We prove that agnostic PAC learning is possible using L2-
polynomial regression for k-juntas. Moreover, we present
a more efficient variant of L2 regression using a Boolean
Fourier expansion. We show that this algorithm is also an
agnostic PAC learner with respect to k-juntas. This result
implies that Fourier algorithms such as the low-degree al-
gorithm of Linial et al. (1993) that were initially designed
for uniform distribution also apply to agnostic settings.

1.1 Summary of the Contributions

Learning k-juntas with least square regression: The
focus of this paper is PAC learning of k-junta class, on
Boolean inputs, using L2-regression and with the usual 0-1
loss. Following the standard PAC learning model, the train-
ing set contains n samples {(x(i), y(i))}ni=1 with feature-
vectors x(i) ∈ {−1, 1}d and binary labels y(i) ∈ {−1, 1}.
The objective of the L2-polynomial regression is to mini-
mize the empirical square loss between the target label y
and a polynomial p(x) of degree up to k. Given such a
polynomial, a predictor g is created by simply taking the
sign of this polynomial as g(x) = sign[p(x)].

The first main result of this paper shows that L2 polynomial
regression agnostically PAC learns k-juntas. More pre-
cisely, with probability at least (1 − δ), the generalization
loss of the predictor g is within a small deviation of the op-
timal loss among all k-juntas, i.e., P{Y ̸= g(X)} ≤ opt+ϵ,
with opt being the optimal loss in k-junta class. More for-
mally, we prove the following theorem.

Theorem 1 (abbreviated). Given k ≤ d, there is an algo-
rithm based on L2-polynomial regression with degree limit
k (Algorithm 1) that agnostically PAC learns k-juntas with
sample complexity n up to O(k2

k

ϵ2 log d
δϵ2 ) and computa-

tional complexity O(ndΘ(k)).

We note the computational complexity of learning k-juntas
with the L1-polynomial regression is O(n2d(3+ω)3k)
which is worse for large n.

One of the main technical challenges in proving PAC
bounds with L1 or L2 regression is analyzing the con-
nections between the 0-1 loss and the square or absolute
loss. Conventional results for L2 rely on the inequality
1 {y ̸= sign[p(x)]} ≤ (y− p(x))2 that holds for y ∈ {−1,
1}. Based on this bound, the PAC bound 8opt is derived
(Linial et al., 1993). Hence, this raises the question as to
whether taking the sign is optimal in L2-based PAC learn-
ing. When x ∈ {−1, 1}d, Blum et al. (Blum et al., 1994)
and Jackson (Jackson, 2006) proposed a clever idea of ran-
domized rounding instead of taking the sign. As a result,
they improved the factor from 8opt to 2opt. In Section 2.1,
we argue that these bounds are loose, at least for binary in-
puts. We prove new bounds connecting the 0-1 loss and the
square loss (Lemma 3 for binary input and Lemma 6 for
real-valued inputs). Using these results, we show that for

k-junta class, taking the sign is not problematic and gives
opt, hence L2-based agnostic PAC learnability. Moreover,
we improve the factor 8opt to 2opt for more general classes
with x ∈ Rd.

Our approach relies on a framework using vector spaces
equipped with probability measures as a proxy to derive
PAC learning bounds. Among others, we consider a joint
vector space for functions on the feature-label set X × Y ,
incorporating the sample-label relation and the underlying
joint distribution D. This approach establishes our results
by connecting the PAC learning model and powerful tools
for analyzing vector spaces. Notably, we prove an elegant
upper bound on the 0-1 loss based on amenable quantities
such as 1-norm and 2-norm (see Corollary 1 and 3 in Sec-
tion 3). A notable feature of our approach is that the ex-
pressions are quite compact and insightful.

Learning with Fourier algorithm: In addition, we
present another more efficient algorithm for binary-valued
samples. This algorithm’s running time is linear in n
and scales with dk which is asymptotically better than the
two other approaches as they grow with dO(k). Our re-
sult relies on the Boolean Fourier expansion defined for
the uniform distribution (Wolf, 2008; O’Donnell, 2014).
We prove a counter-intuitive result by showing that the
uniform Boolean Fourier is in fact applicable to agnostic
distribution-free settings. Motivated by Linial’s low-degree
algorithm (Linial et al., 1993) on uniform distribution, we
develop a Fourier algorithm that performs L2 polynomial
regression more efficiently and without any distributional
assumption. We then show that this algorithm also agnos-
tically PAC learns the k-junta class. More formally, we
prove the following statement.
Theorem 2 (abbreviated). Given k < d, the Fourier algo-
rithm (Algorithm 2) agnostically PAC-learns k-juntas with
sample complexity O(k2

k

ϵ2 log d
δ ) and computational com-

plexity O( nkdk

(k−1)! ).

Table 1 compares various PAC learning algorithms in terms
of their sample complexity, running time, and PAC loss.
The L2 and Fourier algorithms have lower sample and
computational complexities when compared to the other
methods. When compared to (Kalai et al., 2008) using L1-
polynomial regression, we obtain a lower sample complex-
ity and computational complexity. Note that the running
time of L1 regression grows with O(n2dO(k)), which is
quadratic in sample size n and hence prohibitive in large
data sets. The running time of L2 regression is O(ndO(k))
which is linear in n. Lastly, the running time of the Fourier
algorithm grows with O(ndk), which is a better exponent
than L2. Overall, given that k is typically a constant in-
dependent of d, the L2 regression and the Fourier algo-
rithm are suitable for large data sets. Lastly, we present
a lower bound on the sample complexity of the k-junta
class. Based on the standard VC-dimension argument
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Table 1: Comparison of the PAC-learning algorithms for k-juntas.

Algorithm Sample Cmplx. Comp. Cmplx. PAC Error

Brute force ERM O(k2
k

ϵ2 log d
δ ) O(ndk22

k

) opt + ϵ

L1-Poly. Reg.
(Kalai et al., 2008)

O( 1ϵk
Θ(k) log d

δ ) O(n2d(3+ω)3k) opt + ϵ

L2-Poly. Reg. O(k2
k

ϵ2 log d
ϵ2δ ) O(ndΘ(k))

• 2opt + ϵ (Jackson, 2006)
• opt + ϵ, [Thm. 1]

Low-degree Alg.
(uniform dist.)
(Linial et al., 1993)

O(k2k log d
δ ) O( nkdk

(k−1)! )

• 8opt + ϵ (Linial et al., 1993)
• 2opt + ϵ (Jackson, 2006)
• 1

4 +opt(1−opt)+ ϵ (Kearns et al., 1994)
• opt + ϵ, [Thm. 2]

Stochastic Fourier
(Algorithm 2) O(k2

k

ϵ2 log d
δ ) O( nkdk

(k−1)! ) opt + ϵ, [Thm. 2]

which gives O( 1
ϵ2 (V C + log(1δ )). The exact expression

for the VC dimension of the k-junta class is unknown, but
it is between 2k and 2k + k log d.

1.2 Related Works

The problem of learning juntas is a classical problem in
machine learning. There is a large body of work on learn-
ing and testing of juntas (Mossel et al., 2004; Bshouty and
Costa, 2016; Liu et al., 2019; Arpe and Mossel, 2008; Fis-
cher et al., 2004; Servedio et al., 2015; De et al., 2019;
Vempala and Xiao, 2011; Chen et al., 2021; Iyer et al.,
2021). Juntas are of significant interest in learning the-
ory as they are connected to other fundamental problems
such as learning with feature selection (Guyon and Elis-
seeff, 2003), DNF formulas, and decision trees (Mossel
et al., 2004). Particularly, learning with feature selection
can be expressed as learning k-juntas (with k out of d fea-
tures). Additionally, every k-junta is implemented by a
decision tree or DNF formula of size 2k and conversely,
any size-k decision tree is also a k-junta, and any k-term
DNF is ϵ-approximated by a k log(kϵ )-junta. Hence, ob-
taining efficient algorithms for these problems is closely
related to learning juntas (Mossel et al., 2004). PAC learn-
ing with respect to k-juntas has been studied using various
approaches. We briefly review the approaches for learn-
ing these concept classes below and summarize them in Ta-
ble 1.
Naive Empirical Risk Minimization (ERM): This is
the usual exhaustive search over all predictors to mini-
mize the empirical loss. For k-juntas, ERM is an ag-
nostic PAC learning algorithm with sample complexity
O(k2

k

ϵ2 log d
δ ) and computational complexity O(ndk22

k

)
(Shalev-Shwartz and Ben-David, 2014). With the compu-
tational complexity of doubly exponential with respect to
k, ERM is prohibitive even for small values of k.
Learning with L1 Regression. Kalai et al. (Kalai et al.,
2008) introduced polynomial regression as an approach for
PAC learning with the 0−1 loss function. They showed that

L1-Polynomial regression agnostically PAC learns with
respect to (k, ϵ)-concentrated hypothesis class which in-
cludes k-juntas. Adopting this algorithm to k-juntas re-
quires a sample complexity O( 1ϵd

Θ(k)). With a linear pro-
gramming implementation, the computational complexity
of this algorithm is O(n2d(3+ω)3k), where ω < 2.4 is the
matrix-multiplication exponent. The quadratic growth of
the computational complexity of this approach makes it ex-
pensive for large sample sizes. This motivates us to study
L2 based approaches.
Learning with L2 Polynomial Regression. This approach
is similar to its L1 counterpart with absolute error replaced
by the square loss. Fast implementations of L2 regression
with linear complexity in sample size have been studied
(Drineas et al., 2006, 2010). PAC learning using this ap-
proach has been studied in (Kalai et al., 2008; Jackson,
2006). In the agnostic setting, it is shown that this approach
is a weak learner with error 8opt. With the use of a nonde-
terministic rounding proposed in (Blum et al., 1994; Jack-
son, 2006), the PAC bound can be reduced to 2opt. This
paper shows that for k-juntas opt is obtained without any
randomized rounding. For other non-binary classes, in Sec-
tion 4, we prove the bound 2opt.
Fourier Algorithms. This approach is viewed as a spe-
cial solution for L2 regression. Linial et al. (Linial et al.,
1993) investigated PAC learning from an alternative per-
spective and introduced the well-known “Low-Degree Al-
gorithm”. They provide theoretical guarantees under the
uniform and known distribution on {−1, 1}d of the sam-
ples. The low-degree is based on the Fourier expansion on
the Boolean cube. Although computationally efficient, this
algorithm has limited practical applications due to its dis-
tributional restrictions — uniform (and known) distribution
is unrealistic in many applications. Furst et al. (Furst et al.,
1991) relaxed such a distributional restriction by adopting
a low-degree algorithm for learning AC0 functions under
the product probability distributions. The Fourier expan-
sion has been used to analyze Boolean functions (Wolf,
2008; O’Donnell, 2014) with a wide range of applications,
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Algorithm 1: L2-Algorithm
Input: Training samples Sn = {(x(i), y(i))}ni=1,

degree parameter k.
1 for each subset J ⊆ [d] with |J | = k do
2 Find a polynomial p̂J of degree up to k that

minimizes 1
n

∑
i

(
y(i)− p(x(i))

)2
.

3 Select p̂ as the p̂J that has the smallest square loss.
4 return ĝ ≡ sign[p̂].

namely computational learning (Linial et al., 1993; Mos-
sel et al., 2004), noise sensitivity (O’Donnell, 2014; Kalai,
2005; Li and Médard, 2018; Heidari et al., 2019), approxi-
mation (Blais et al., 2010), feature selection (Heidari et al.,
2021b), and other information-theoretic problems (Cour-
tade and Kumar, 2014; Weinberger and Shayevitz, 2017,
2018; Heidari et al., 2021a). In this work, we also gen-
eralize this approach for agnostic PAC learning — hence,
removing the distributional assumptions.

2 Formulations and Main Results

Model: We use the usual formulation of agnostic PAC
learning model (Valiant, 1984; Kearns et al., 1994). The
focus of this paper is on binary classification with the 0-
1 loss. Available is a set of n labeled samples Sn =
{(x(i), y(i))}ni=1 generated independent and identically
distributed (i.i.d.) from an unknown but fixed probability
distribution D. The generalization loss of a predictor g is
given by LD(g) := PD

{
Y ̸= g(X)

}
. An algorithm ag-

nostically PAC learns a hypothesis class H, if, for any ϵ,
δ ∈ (0, 1), and given n > n(ϵ, δ) training samples drawn
from any distribution D, it outputs with probability (1− δ)
a predictor g whose expected loss is at most opt+ ϵ, where
opt is the minimum loss in H.

Notation: For any natural number d, the set {1, 2, · · · , d}
is denoted by [d]. For a pair of functions f, g on X , the
notation f ≡ g means that f(x) = g(x) for all x ∈ X .
For any function h : Z → R and input distribution D, the
1-norm and 2-norm are defined as ∥h∥1,D := ED[|h(Z)|]
and ∥h∥2,D :=

√
ED[h(Z)2], respectively.

2.1 Warm-Up

We start with highlighting one of the main difficulties in
proving PAC bounds with L1 or L2 regression. The main
challenge is the analysis of the 0-1 loss after taking the
sign of the resulting polynomial. For that, one needs to
study the relations between the 0-1 loss and the square or
absolute loss. To see this, let p be the polynomial min-
imizing the square loss. Then, it is not difficult to see
that 1 {y ̸= sign[p(x)]} ≤ (y − p(x))2, where y ∈ {−1,
1}. As a result, the 0-1 loss of sign[p] is bounded as

P
{
Y ̸= sign[p(X)]

}
≤ E[(Y − p(X))2]. This is a loose

bound that leads to a PAC bound of 8opt. To see the argu-
ment, let f be the optimal predictor with the 0-1 loss opt.
Additionally, suppose f is approximated by a polynomial
p̃ with the square error less than ϵ2. Then, we can write

P
{
Y ̸= sign[p(X)]

}
≤ E[(Y − p(X))2]

(a)

≤ E[(Y − p̃(X))2]

(b)

≤ 2E[(Y − f(X))2 + (f(X)− p̃(X))2]

(c)

≤ 8opt + 2ϵ2,

where (a) follows as p is the optimal polynomial, (b)
holds from the AM-GM inequality, and (c) holds as
1 {y ̸= f(x)} = 1

4 (y − f)2 for any f : X → {−1, 1}.

These observations raise the question of whether taking the
sign is optimal in PAC learning. When x ∈ {−1, 1}d,
Blum et al. (Blum et al., 1994) and Jackson (Jackson,
2006) proposed a clever idea of randomized rounding in-
stead of taking the sign. As a result, they improved the
factor from 8opt to 2opt.

In Lemma 3, we prove a tighter bound between the 0-1
loss and the square loss. Using this lemma, we prove in
Theorem 1 that for k-junta class taking the sign is optimal
and results in opt (i.e., agnostic PAC learnability). More-
over, we develop a more general analysis and show that
sign of the MMSE of Y given the observation X give a
PAC learner, see Theorem 3.

2.2 Learning with L2-Polynomial Regression

We employ a PAC learning algorithm using L2-polynomial
regression. Given a training set, the objective of the poly-
nomial regression is to minimize the empirical square loss
over all polynomials of degrees up to k. This process can
be implemented by stochastic gradient descent or solving
a linear equations system. Based on this regression, one
can study PAC learning of various concept classes. In this
paper, we consider k-juntas.

k-junta class: A k-junta is a Boolean function h : {−1,
1}d → {−1, 1} with d input variables whose output de-
pends on at most k out of d inputs.

For k-junta classes, we use a variant of L2-polynomial re-
gression (see Algorithm 1) that has the same computational
complexity as compared to the vanilla L2 polynomial re-
gression. With this approach, we establish the following
theorem.

Theorem 1. Algorithm 1, with a degree limit of k ≤ d,
agnostically PAC learns k-juntas. More precisely, given
δ ∈ [0, 1], with probability (1 − δ), its generalization loss
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does not exceed the following

opt +O
(√2k + k log d

n
log

n

2k + k log d

)
+

√
log(1/δ)

2n
,

where n is the number of samples. Furthermore, the result-
ing computational complexity is O(ndΘ(k)).

By simplifying the above expression, we get a sample com-
plexity bound of n(δ, ϵ) = O(k2

k

ϵ2 log d
ϵ2δ ). The proof is

presented in Section 3.3.

The polynomial regression procedure in Algorithm 1 can
be implemented via a linear L2 regression in RD, where
D = dk. The factor dk is because a polynomial of degree
up to k is a linear combination of monomials of the form∏k

j=1 Xij , where ij ∈ [d]. Linear regression can be im-
plemented via Moore-Penrose (generalized) inverse. The
generalized inverse is computed using classical methods in
O(nD2 + D3). Hence, given that n > D, we can per-
form polynomial regression in O(nD2) = O(nd2k). How-
ever, we note that under special cases (e.g., dk = ⌈nr⌉)
the regression can be done in O(ndkω(r)), where ω(r) is
a constant given in (Gall and Urrutia, 2018). Hence, the
computational complexity of this algorithm is O(ndΘ(k))
as noted in Table 1.

2.3 Fourier-Based Learning Algorithm

We present another L2-based approach that is computa-
tionally more efficient than the L2-polynomial regression.
The computational cost of the L2 regression grows as
O(ndΘ(k)) which is more efficient than its L1 variant with
complexity O(n2d(3+ω)3k). This leads to the question as to
whether the factor dΘ(k) can be further reduced. We answer
this question using a Fourier analysis on the Boolean cube.
Particularly, we present an algorithm with the complexity
of O( nkdk

(k−1)! ).

Our solution is based on the Boolean Fourier expansion
applied to the uniform distribution on the Boolean cube
(O’Donnell, 2014; Wolf, 2008). Surprisingly, we plan to
use this Fourier for agnostic settings. Let us briefly explain
the standard Boolean Fourier expansion.

Fact 1 (Boolean Fourier). Any (bounded) function f :
{−1, 1}d → R admits the following decomposition

f(x) =
∑
S⊆[d]

fS χS(x), ∀x ∈ {−1, 1}d,

where χS(x) is the monomial corresponding to the subset
S ⊆ [d] and is defined as χS(x) =

∏
j∈S xj . Further, the

coefficients fS ∈ R are called the Fourier coefficients of f
and are calculated as

fS =
1

2d

∑
x

f(x)χS(x), ∀S ∈ [d]

This expansion relies on the restriction that the input vari-
ables are uniformly distributed over the Boolean cube. This
limits the applications of Fourier-based algorithms such as
(Linial et al., 1993) to agnostic learning problems with-
out any distributional assumptions. This issue can be re-
solved via a Gram-Schmidt-type orthogonalization process
that yields a generalized Boolean Fourier expansion (Hei-
dari et al., 2021a).

However, in this paper, we take a slightly different path
and propose a simple adjustment to the standard Boolean
Fourier that applies to certain agnostic problems. Hence,
we get PAC learnability together with computational effi-
ciency. In what follows, we describe this adjustment.

Let DX be any probability distribution on {−1, 1}d and f
be a Boolean function. Define

fS :=
1

2d

∑
x

f(x)DX(x)χS(x).

From Fact 1, fS is the Fourier coefficient of the real-valued
function f(x)DX(x). Note that under the uniform DX ,
fS = 1

2d
fS , where fS is the Fourier coefficient of f(x) as

in Fact 1. In agnostic settings where DX is unknown, fS is
not accessible. However, we can estimate it empirically.

Before explaining the estimation, let us introduce another
extension. In agnostic settings, the label y is not necessarily
a function of the features x. Hence, to make the Fourier ex-
pansion applicable to agnostic PAC, we expand it, beyond
deterministic function, to stochastic mappings:

Consider a random vector X and a labeling variable Y . Let
(X, Y ) ∼ D where D is a probability distribution over
{−1, 1}d × {−1, 1}. Then the stochastic Fourier coeffi-
cients are defined as

aS :=
1

2d
E[Y χS(X)], (1)

for all S ⊆ [d]. If Y = f(X), then aS = fS . Given the
i.i.d. samples {x(i), y(i)}ni=1, the empirical estimation of
aS is

âS :=
1

2d
1

n

n∑
i=1

y(i)χS(x(i)). (2)

Note that the estimation is agnostic to the underlying dis-
tribution D, but we show that it converges to aS .

Lemma 1. Let D be any probability distribution on {−1,
1}d+1. Let S1,S2, · · · ,Sm be m subsets of [d]. Given δ ∈
(0, 1) and n samples drawn i.i.d. from D, the inequality

sup
1≤j≤m

|âSj
− aSj

| ≤ 1

2d

√
1

2n
log

2m

δ

holds with probability at least (1 − δ), where aS and âS
are given in (1) and (2), respectively.
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Algorithm 2: Stochastic Fourier
Input: Training samples Sn = {(x(i), y(i))}ni=1,

degree parameter k.
Output: Predictor ĝ

1 For each S ⊆ [d] with at most k elements compute the
empirical Fourier coefficients as
âS = 1

2d
1
n

∑n
i=1 y(i)

∏
j∈S xj(i).

2 For each J ⊆ [d] with k elements construct the
function f̂J (x) =

∑
S⊆J âSχS(x).

3 Find Ĵ with the minimum empirical loss of sign[f̂J ].
4 return ĝ ≡ sign[f̂ Ĵ ].

Proof. Observe that for any S ⊆ [d]

ESn∼Dn [âS ] =
1

2d
E[Y (1)χS(X(1))]

=
1

2d

∑
x,y

D(x, y)y χS(x) = aS .

By taking the factor 1
2d

in the definition of aS and âS , we
have that

|âS − aS | =
1

2d

∣∣∣ 1
n

n∑
i=1

y(i)χS(x(i))− E[Y χS(X)
∣∣∣.

We apply McDiarmid inequality to bound the right-hand
side term. It is not difficult to check that

P
{∣∣∣ 1

n

n∑
i=1

y(i)χS(x(i))− E[Y χS(X)
∣∣∣ ≥ ϵ

}
≤ 2e−

nϵ2

2 .

Therefore, by considering the factor 1
2d

, from the union
bound, and by equating the right-hand side to δ, we es-
tablish the lemma.

With this approach, our Fourier algorithm (See Algorithm
2) performs a polynomial regression in the Fourier domain
by estimating the Fourier coefficients of the label from the
training samples. In the following theorem, we present a
PAC bound for learning k-juntas using this approach.

Theorem 2. The Fourier algorithm agnostically learns k-
juntas for k ≤ d/2 and with error less than

opt +O
(√2k

n
log

dk

(k − 1)!δ

)
,

with probability at least (1 − δ), where n is the number of
samples. Moreover, the resulted computational complexity
is O( nkdk

(k−1)! ).

In the next section, we discuss our main ideas. The proof
of this theorem is given in Section 3.5.

3 Main Technical Results

The main results of this paper rely on a fundamental con-
nection between square loss and the 0-1 loss presented as
Corollary 1 and 3 in Section 3.2. In this section, we present
this connection and describe the steps in proving Theorem
1 and 2.

3.1 A Vector Space Representation

We introduce a vector representation incorporating the
feature-label distribution. Such representation is a proxy to
use powerful algebraic tools developed for vector spaces.
In what follows, we describe this representation.

Let X denote the input set, Y = {−1, 1} be the label set,
and D be the underlying distribution on X × Y . Consider
the vector space of all functions h : X ×Y 7→ R for which
ED[h(X, Y )2] is finite1. Naturally, the inner product be-
tween two functions h1, and h2 is defined as

⟨h1, h2⟩D =∆ ED[h1(X, Y )h2(X, Y )].

With this formulation, the true labeling is simply the func-
tion (x, y) 7→ y. Note that this complies with the agnostic
setting, where the label is not necessarily a function of x.
In addition, a predictor g in the learning model is viewed as
the mapping (x, y) 7→ g(x). Since Y = {−1, 1}, then the
0-1 loss of any predictor g can be written as

LD(g) =
1

2
− 1

2
⟨Y, g⟩D =

1

4
∥Y − g∥22,D, (3)

where, with slight abuse of notation, Y and g are under-
stood as the mappings (x, y) 7→ y and (x, y) 7→ g(x), re-
spectively. This first equality in (3) is because of the iden-
tity 1 {a ̸= b} = 1

2 (1 − ab) for any a, b ∈ {−1, 1}. The
second equality is from the definition of 2-norm and the
fact that ∥Y ∥2,D = ∥g∥2,D = 1.

One benefit of this representation is that the theoretical re-
sults under the known distribution D can be easily trans-
lated to the agnostic setting. This is easily done by replac-
ing D with the empirical distribution D̂ that is uniform on
the training set and zero outside of it. For instance, the
empirical loss of g immediately satisfies the same type of
relationship as in (3):

1

n

∑
i

1 {yi ̸= g(xi)} =
1

2
− 1

2
⟨Y, g⟩D̂ =

1

4
∥Y − g∥2

2,D̂
.

3.2 PAC and MMSE

In what follows, we derive bounds on the expected and em-
pirical loss and prove the main theorems. The main ingre-
dient in the proof of the main results (Theorem 1 and 2) is a
connection between the MMSE and the PAC learning loss.

1A zero function in this space is a function that maps (x, y) 7→
0 for all x, y except a zero-probability subset.
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Consider a general problem in which Z is the observations
and the goal is to predict Y . Here Z takes values from a
generic set Z and Y from {−1, 1}. Let YMMSE be the
MMSE of Y given Z. It is known that YMMSE = E[Y |Z].
In the following lemmas, we establish the connection be-
tween MMSE and PAC. The proofs are provided in Ap-
pendix A and B.

Lemma 2. Suppose (Y,Z) ∼ D is a pair of random vari-
ables, where Y takes values from {−1, 1} and Z from some
set Z . Suppose g : Z → {−1, 1} is any predictor of Y from
Z. Then,

P
{
Y ̸= g(Z)

}
=

1

2
− 1

2
⟨YMMSE , g⟩.

Moreover, let optZ be the minimum 0-1 loss among all pre-
dictors of Y given Z. Then,

optZ =
1

2
− 1

2
E
[∣∣E[Y |Z]

∣∣]. (4)

Lastly, g∗ ≡ sign[YMMSE ] is the optimal predictor.

Lemma 3. Let Z be any set and h : Z → R be any
bounded function. Suppose (Y,Z) ∼ D be a pair of ran-
dom variables, where Y take values from {−1, 1} and Z
from Z . Then,

P
{
Y ̸= sign[h(Z)]

}
≤ optZ + U

(
E
[(
YMMSE − h(Z)

)2])
,

where U is a polynomial defined as U(x) = x3+ 3
2x

2+ 3
2x.

Connections to learning k-juntas: Given the above re-
sults, we can derive bounds on the error in learning many
classes such as k-juntas. Let J be a subset of [d] with k
elements. Set Z = XJ as our observation variable. Con-
sider all polynomials on the coordinates of J as the input
variables. The polynomial that minimizes the square loss
is defined as the projection of Y onto the subset J . This
polynomial is formally defined as

ΠJ
Y := argmin

p∈Pk

∥Y − p(XJ )∥2,D (5)

where opt is the set of polynomials of degree at most k.
Note that ΠJ

Y is the MMSE of Y from the observation Z =
XJ . Then we immediately get the following result from
Lemma 2.

Corollary 1. Let opt be the minimum 0-1 among all the
k-juntas for a fixed k ≤ d. Then,

opt =
1

2
− 1

2
max

J⊆[d], |J |=k
∥ΠJ

Y ∥1,D. (6)

Based on these results, we are ready to prove Theorem 1 on
PAC learning of k-juntas using L2 regression.

3.3 Proof of Theorem 1

For any J , let p̂J be the output of the empirical polyno-
mial regression, that is p̂J = argminp∈Pk

∥Y − pJ ∥2,D̂,
where D̂ is the empirical distribution. Note that the se-
lected predictor is of the form sign[p̂J ], as in Algorithm
1. As a result, from Corollary 3 with D replaced with D̂
and Z = XJ , the empirical loss of sign[p̂J ] is bounded
as LD̂(sign[p̂J ]) ≤ 1

2 − 1
2∥p̂J ∥1,D̂, where the U(·) term

in Lemma 3 is zero, as p̂J is the MMSE of Y under
D̂. Next, we minimize both sides over all k-element
subsets J . From Corollary 1, with D replaced by D̂,
the right-hand side of the above inequality minimized over
J is the minimum empirical loss ôpt. This implies that
minJ :|J |=k LD̂(sign[p̂J ]) = ôpt. Hence, we proved that
the minimum empirical loss is achieved using the L2 poly-
nomial regression. Naturally, the next step is to extend this
result to the generalization loss. This part follows from the
standard arguments in VC theory ( See Corollary 3.19 in
(Mohri et al., 2018)) and the fact that the VC dimension of
the k-junta class is less than 2k + O(k log d). Particularly,
given δ ∈ (0, 1), with probability (1 − δ), the generaliza-

tion loss is less than opt+O
(√

2k+k log d
n log n

2k+k log d

)
+√

log(1/δ)
2n , where n is the number of samples. With this

inequality, the theorem is proved.

3.4 PAC Learning in Fourier Domain

Next, we analyze the Fourier algorithm and prove Theo-
rem 2. We study the PAC learning problem in the Fourier
domain. For that, we start with the following lemma con-
necting the prediction loss to the Fourier coefficients.
Lemma 4. Let (X, Y ) ∼ D where D is a distribution on
{−1, 1}d+1. Then the prediction loss of any g(x) equals to

LD(g) =
1

2
− 2d−1

∑
S⊆[d]

aSgS ,

where gS is the (uniform) Fourier coefficient of g corre-
sponding to S, as in Fact 1, and aS is the stochastic Fourier
coefficient of Y as in (1).

Proof. Recall from (3) that LD(g) = 1
2 − 1

2E[Y g(X)].
Then, from the definition of aS in (1), we have that

E[Y g(X)] =
∑
y,x

D(x, y)yg(x)

=
∑
y,x

yD(x, y)
(∑

S
gSχS(x)

)
=

∑
S

gS
∑
y,x

yD(x, y)χS(x)

=
∑
S⊆[d]

gS(2
daS),

as needed.
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Interestingly, with this lemma, the prediction loss under
any distribution D can be written in terms of gS ’s which
are the Fourier coefficient of g under the uniform distribu-
tion. We use this intuition and prove the following lemma
in Appendix C.

Lemma 5. Let (X, Y ) ∼ D where D is a distribution on
{−1, 1}d+1. Given any subset coordinate J , let fJ (x) =∑

S⊆J aSχS(x), with aS ’s being the stochastic Fourier
coefficients of Y . Let hJ be any real-valued function on
coordinate J , then the prediction loss of g ≡ sign[hJ ] is
bounded as

LD(g) ≤ 1

2
(1− ∥fJ ∥1,unif) + U(∥fJ − hJ ∥2,unif),

where the norm is computed on the uniform distribution
and U(x) = x3 + 3

2x
2 + 3

2x.

This lemma is different from Lemma 3 in that fJ is not the
MMSE estimate of Y as it is defined based on the uniform
Fourier expansion.However, it gives a different characteri-
zation of the optimal loss opt.

Corollary 2. The optimal loss among k-juntas under any
distribution D satisfies the following equation

opt =
1

2
− 1

2
max

J⊆[d], |J |=k
∥fJ ∥1,unif.

Based on these results, we prove Theorem 2 on the PAC
learning of the Fourier algorithm.

3.5 Proof of Theorem 2

We prove the theorem by showing that ĝ in Algorithm 2
achieves opt of k-juntas. Recall that ĝ ≡ sign[f̂ Ĵ ], where
f̂ Ĵ is the constructed for the selected subset Ĵ . Thus, from
Lemma 5, the prediction loss of ĝ is bounded as

LD(ĝ) ≤ 1

2
(1− ∥f Ĵ ∥1,unif) + U(∥f Ĵ − f̂ Ĵ ∥2,unif).

Next, we bound the second term on the right-hand side.
Note that f̂ Ĵ ≡

∑
S⊆Ĵ âSχS . Parseval identity gives

∥f Ĵ − f̂ Ĵ ∥22,unif =
∑
S⊆Ĵ

(aS − âS)
2. (7)

Consider all S ⊆ [d] with at most k elements. Let K be the
number of such subsets. Then, as |Ĵ | = k, using Lemma 1
the above summation is bounded as,

∥fJ − f̂J ∥22,unif ≤ 2k sup
S:|S|≤k

(aS − âS)
2 ≤ 2k

2n
log

2K

δ
,

where the second inequality holds with probability at least
(1− δ). As a result, the prediction loss satisfies

LD(ĝ) ≤ 1

2
(1− ∥f Ĵ ∥1,unif) +O

(√2k

n
log

K

δ

)
,

where we used the fact that U(x) ≤ 4x for x ∈ [0, 1].
Next, we minimize the right-hand side over the choice of
Ĵ by considering all k-element coordinates J . Let J ∗ be
the optimal set. Then, from Corollary 2, we obtain that

LD(sign[f̂J ∗
]) ≤ opt +O

(√2k

n
log

K

δ

)
.

Note that J ∗ is not necessarily the same as the algorithm’s
choice Ĵ . However, as Ĵ is the k-element coordinate
that minimizes the empirical loss, then LD̂(sign[f̂ Ĵ ]) ≤
LD̂(sign[f̂J ∗

]). Therefore, from McDiarmid’s inequality
with probability (1− δ) we obtain that

LD̂(sign[f̂J ∗
]) ≤ LD(sign[f̂J ∗

]) +

√
k

2n
log

2

δ
,

where we used the fact that there are at most 2k Boolean
functions on coordinate J ∗. To sum up, we proved that

LD̂(sign[f̂ Ĵ ]) ≤ opt +O
(√2k

n
log

K

δ

)
.

Assuming that k ≤ d/2, we bound K as

K ≤
k∑

ℓ=0

(
d

ℓ

)
≤ 1 + k

(
d

k

)
= 1 +

dk

(k − 1)!
.

The rest of the argument follows from VC theory for re-
placing D̂ with D in the left-hand side.

The computational complexity of Algorithm 2 is dominated
by the procedure for estimating all the K Fourier coeffi-
cients. Each estimation takes O(nk). Hence, the overall
computational complexity of the algorithm is O(nkK) =

O(nk dk

(k−1)! ) as given in Table 1.

3.6 PAC Learning with MMSE

Lastly, we discuss a more general indication of our result
about the PAC learnability of MMSE.

Theorem 3. Suppose A is an algorithm that outputs
sign[ŶMMSE ], where ŶMMSE is the empirical MMSE of
Y given the observation samples Sn. Then, A agnostically
PAC learns any concept class C containing sign[ŶMMSE ]
with error up to

optC +O
(√V C

n
log(

n

δV C

)
,

where V C is the VC dimension of C.

This result is a consequence of Lemma 3 applied to empir-
ical loss followed by VC theory.
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Algorithm 3: Learning with L2-Polynomial Regres-
sion
Input: Training samples Sn = {(x(i), y(i))}ni=1,

degree parameter k.
1 Find a polynomial p̂ of degree up to k that minimizes

1
n

∑
i

(
y(i)− p(x(i))

)2
.

2 Find θ ∈ [−1, 1] such that the empirical error of
sign[p̂(x)− θ] is minimized.

3 return ĝ ≡ sign[p̂− θ].

4 Learning Other Hypothesis Classes

In this section, we study learning more general concept
classes using the vanilla L2 polynomial regression (see Al-
gorithm 3). An important concept class is the set of predic-
tors that are approximated by fixed-degree polynomials as
studied in (Kalai et al., 2008; Blais et al., 2010).

(ϵ, k)-approximated concept class: Given ϵ ∈ [0, 1],
k ∈ N and any probability distribution DX on X , a con-
cept class C of functions c : Rd 7→ {−1, 1} is (ϵ, k)-
approximated if

sup
c∈C

inf
p∈Pk

E
[(
c(X)− p(X)

)2] ≤ ϵ2,

where Pk is the set of all polynomials of degree up to k.

We prove in Appendix D that the L2 polynomial regres-
sion learns the approximated concept class with error up
to 2opt + ϵ. This is an improvement compared to the best
known bound 8opt in (Linial et al., 1993).

Theorem 4. Given ϵ > 0 and k ∈ N, the degree k
L2 polynomial regression (Algorithm 3) learns any (ϵ, k)-
approximated concept class, with probability greater than
(1− δ), and error up to

2opt + 3ϵ+O
(√2 dk+1

n
log

en

dk+1

)
+

√
1

2n
log

1

δ

where d is the input dimension and n is the sample size.

Note that when changing the inputs from binary to non-
binary, the L2 polynomial regression is not necessarily ag-
nostic PAC learner as the scalar increases to 2opt.

This result is derived using the following lemma proved in
Appendix D.1, eliminating the need for randomized round-
ing.

Lemma 6. Suppose θ is a random variable with the prob-
ability density function fθ(t) = 1 − |t|, for t ∈ [−1, 1].
Then, the following bound holds for any polynomial p

Eθ

[
LD̂(sign[p(X)− θ])

]
≤ 1

2
∥Y − p∥2

2,D̂
.

Conclusion

This paper studies PAC learning using algorithms based on
L2 polynomial regression. Mainly, we show that L2 based
algorithms are PAC learners for the k-junta class. More-
over, we present a more efficient PAC learning algorithm
based on the (uniform) Boolean Fourier expansion. Our ap-
proach relies on two frameworks, one connecting MMSE
and PAC and the other connecting PAC and the Boolean
Fourier expansion. With this approach and powerful tools
for analyzing vector spaces, we derive tighter bounds be-
tween the 0-1 loss and the square loss.
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A Proof of Lemma 2

Lemma 2. Suppose (Y,Z) ∼ D is a pair of random variables, where Y takes values from {−1, 1} and Z from some set
Z . Suppose g : Z → {−1, 1} is any predictor of Y from Z. Then,

P
{
Y ̸= g(Z)

}
=

1

2
− 1

2
⟨YMMSE , g⟩.

Moreover, let optZ be the minimum 0-1 loss among all predictors of Y given Z. Then,

optZ =
1

2
− 1

2
E
[∣∣E[Y |Z]

∣∣]. (8)

Lastly, g∗ ≡ sign[YMMSE ] is the optimal predictor.

Proof. From (3) in the main text, the generalization error of g can be written as 1
2 − 1

2 ⟨Y, g⟩. This inner product equals to
the following

⟨Y, g⟩ = E
[
Y g(Z)

]
= EZ

[
EY |Z

[
Y g(Z)] | Z

]]
= EZ

[
EY |Z

[
Y |Z

]
g(Z)

]
.

Let YMMSE = E[Y |Z]. Hence, we obtain that

P
{
Y ̸= g(Z)

}
=

1

2
− 1

2
⟨YMMSE , g⟩ (9)

Note that

P
{
Y ̸= g(X)

}
=

1

2
− 1

2
⟨YMMSE , g⟩D ≥ 1

2
− 1

2
⟨|YMMSE |, |g|⟩D ≥ 1

2
− 1

2
∥YMMSE∥1,D,

where the last inequality follows as |g(Z)| = 1. Therefore, we get the bound optZ ≥ 1
2 − 1

2∥YMMSE∥1,D. Hence,
we established a lower-bound on optZ . Next, we show that this bound is achievable. For that construct a predictor as
g∗ = sign[YMMSE ]. Then, from the above argument, the generalization error of such g equals

P
{
Y ̸= sign[YMMSE ]

}
=

1

2
− 1

2
⟨YMMSE , sign[YMMSE ]⟩D =

1

2
− 1

2
∥YMMSE∥1,D,

where the last equality follows due to the identity ⟨h, sign[h]⟩ = ∥h∥1 for any function h. Therefore, we showed that the
lower bound is achievable which implies that optZ = 1

2 − 1
2∥YMMSE∥1,D and that g∗ = sign[YMMSE ] is the optimal

predictor.

B Proof of Lemma 3

Lemma 3. Let Z be any set and h : Z → R be any bounded function. Suppose (Y,Z) ∼ D be a pair of random variables,
where Y take values from {−1, 1} and Z from Z . Then,

P
{
Y ̸= sign[h(Z)]

}
≤ optZ + U

(√
E
[(
YMMSE − h(Z)

)2])
,

where U is a polynomial defined as U(x) = x3 + 3
2x

2 + 3
2x.2

Proof. For shorthand, let f(z) = E[Y |z] for any z ∈ Z . Hence, f(Z) = YMMSE . From (9) in the proof of Lemma 2, the
generalization error of sign[h] can be written Hence, we obtain that

P
{
Y ̸= sign[h(Z)]

}
=

1

2
− 1

2
⟨f, sign[h]⟩

2There is a typo in the original statement of the lemma in the main text. The square root is missing.
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Recall that ∥f∥2,D :=
√
ED[f(X)2]. Hence, ∥a− b∥22,D = ∥a∥22,D + ∥b∥22,D − 2⟨a, b⟩. Therefore,

⟨f, sign[h]⟩ = 1

2

(
∥f∥22,D + ∥sign[h]∥22,D − ∥f − sign[h]∥22,D

)
=

1

2

(
∥f∥22,D + 1− ∥f − sign[h]∥22,D

)
,

where we used the fact that | sign[h]| = 1. As a result,

P
{
Y ̸= sign[h(Z)]

}
=

1

4

(
1− ∥f∥22,D + ∥f − sign[hJ ]∥22,D

)
. (10)

In what follows, we bound the ∥f − sign[hJ ]∥22,D. By adding and subtracting h, we have that

∥f − sign[h]∥22,D
(a)

≤
(
∥f − h∥2,D + ∥h− sign[h]∥2,D

)2

=
(
∥f − h∥22,D + ∥h− sign[h]∥22,D︸ ︷︷ ︸

(I)

+2∥f − h∥2,D ∥h− sign[h]∥2,D︸ ︷︷ ︸
(II)

)
, (11)

where (a) follows from the Minkowski’s inequality for 2-norm. Next, we provide separate bounds for the terms (I) and
(II):

Bounding (I): Note that |h− sign[h]| = |1− |h||. Therefore,

(I) = ∥h− sign[h]∥22,D = E
[
(1− |h(Z)|)2

]
= 1 + ∥h∥22,D − 2∥h∥1,D. (12)

Bounding (II): From (12), we have

∥h− sign[h]∥22,D = 1 + ∥h∥22,D − 2∥h∥1,D
(a)

≤ 1 + 2(∥f∥22,D + ∥f − h∥22,D)− 2∥h∥1,D
(b)
= 1 + 2(∥f∥22,D + ∥f − h∥22,D)− 2

(
∥f∥1,D + (∥h∥1,D − ∥f∥1,D)

)
= 1 + 2(∥f∥22,D − ∥f∥1,D) + 2∥f − h∥22,D − 2

(
∥h∥1,D − ∥f∥1,D

)
(c)

≤ 1 + 2∥f − h∥22,D − 2
(
∥h∥1,D − ∥f∥1,D

)
(d)

≤ 1 + 2∥f − h∥22,D + 2∥f − h∥2,D, (13)

where (a) follows from the Minkowski’s inequality for 2-norm and the inequality (x + y)2 ≤ 2(x2 + y2). Equality (b)
follows by adding and subtracting ∥f∥1. Inequality (c) holds as |f(x)| ≤ 1 implying that ∥f∥22 ≤ ∥f∥1. Lastly, (d) holds
because of the following chain of inequalities∣∣∣∥f∥1,D − ∥h∥1,D

∣∣∣ ≤ ∥f − h∥1,D ≤ ∥f − h∥2,D, (14)

where the first is due to the Minkowski’s inequality for 1-norm and the second is due to Holder’s.

Next, we show that the quantity
∥∥h − sign[hJ ]

∥∥
2,D

without the square is upper bounded by the same term as in the
right-hand side of (13). That is

(II) =
∥∥h− sign[hJ ]

∥∥
2,D

≤ λ1 =∆ 1 + 2∥f − h∥22,D + 2∥f − h∥2,D. (15)

The argument is as follows: if
∥∥h−sign[hJ ]

∥∥
2,D

is less than one, then the upper bound holds trivially as λ1 ≥ 1; otherwise,
this quantity is less than its squared and, hence, the upper-bound holds.

Now combining (15), (12) and (11) gives

∥f − sign[h]∥22,D ≤ ∥f − h∥22,D + 1 + ∥h∥22,D − 2∥h∥1 + 2λ1∥f − h∥2,D. (16)
13



From this bound and (10), the error probability satisfies:

4P
{
Y ̸= sign[h(Z)]

}
≤ 2− 2∥h∥1,D + ∥h∥22,D − ∥f∥22,D︸ ︷︷ ︸

(III)

+∥f − h∥22,D + 2λ1∥f − h∥2,D. (17)

In what follows, we bound the term denoted by (III).
Bounding (III): From the Minkowski’s inequality for 2-norm, we have

∥h∥22,D ≤
(
∥f∥2,D + ∥h− f∥2,D

)2

= ∥f∥22,D + ∥h− f∥22,D + 2∥f∥2,D∥h− f∥2,D
≤ ∥f∥22,D + ∥h− f∥22,D + 2∥h− f∥2,D

where the second inequality is due Bessel’s inequality implying that ∥f∥2,D ≤ 1. Hence, the term (III) in (17) is upper
bounded as

(III) ≤ λ2 =∆ ∥h− f∥22,D + 2∥h− f∥2,D. (18)

As a result of the bounds in (17), (18), we obtain that

4P
{
Y ̸= sign[h(Z)]

}
≤ 2− 2∥h∥1,D + λ2 + ∥f − h∥22,D + 2λ1∥f − h∥2,D

= 2− 2∥f∥1,D + 2
(
∥f∥1,D − ∥h∥1,D

)
+ λ2 + ∥f − h∥22,D + 2λ1∥f − h∥2,D

≤ 2− 2∥f∥1,D + 2∥f − h∥2,D + λ2 + ∥f − h∥22,D + 2λ1∥f − h∥2,D,

where the last inequality is due to (14). Therefore, from the definition of λ1 and λ2, and the function U in the statement of
the lemma, we obtain

4P
{
Y ̸= sign[h(Z)]

}
≤ 2− 2∥f∥1,D + 4U(∥f − h∥2,D).

This completes the proof by recalling that f(z) = E[Y |z] and that from Lemma 2, optZ = 1
2 − 1

2∥f∥1,D.

C Proof of Lemma 5

Lemma 5. Let (X, Y ) ∼ D where D is a distribution on {−1, 1}d+1. Given any subset coordinate J , let fJ (x) =∑
S⊆J aSχS(x), with aS ’s being the stochastic Fourier coefficients of Y . Let hJ be any real-valued function on coordi-

nate J , then the prediction loss of g ≡ sign[hJ ] is bounded as

LD(g) ≤ 1

2
(1− ∥fJ ∥1) + U(2d∥fJ − hJ ∥2,unif),

where the norm is computed on the uniform distribution and U(x) = x3 + 3
2x

2 + 3
2x.3

Proof. From Lemma 4 in the main text, the generalization error of g = sign[hJ ] can be written as

LD(g) =
1

2
− 2d−1

∑
S⊆[d]

aSgS ,

Note that since g depends only on the coordinates J , then gS = 0 for any S ⊈ J . Hence, the above equation simplifies to

LD(g) =
1

2
− 2d−1

∑
S⊆J

aSgS .

3There is a typo in the original statement of the lemma in the main text. The factor 2d is missing and the first norm does not have
unif.
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Note that χS ’s are orthogonal for different S’s and
∑

x χS(x)
2 = 2d. Hence,

LD(g) =
1

2
− 1

2

∑
x

( ∑
S⊆J

aSχS(x)
)( ∑

S⊆J

gSχS(x)
)

=
1

2
− 1

2

∑
x

fJ (x)g(x),

where fJ ≡
∑

S⊆J aSχS . By multiplying and dividing 2d, the above summation equals to the inner product on the
uniform distribution as ∑

x

fJ (x)g(x) = 2d⟨fJ , g⟩unif.

Hence, with the definition of g, we obtain that

LD(g) =
1

2
− 2d

2
⟨fJ , sign[hJ ]⟩

Using a similar argument in deriving (10), we can show that

LD(g) =
1

2
− 2d

4

(
1 + ∥fJ ∥22,unif − ∥fJ − sign[hJ ]∥22,unif

)
. (19)

Notice that this equation is different from (10) because of the factor 2d and that the norm quantities are taken with respect
to the uniform distribution. We proceed with bounding the 2-norm quantities. Note that we can apply exactly the same
argument used to derive in (16), as it holds for any underlying distribution. The 2-norm quantity above is upper-bounded
as follows

∥fJ − sign[hJ ]∥22,unif ≤ ∥fJ − hJ ∥22,unif + 1 + ∥hJ ∥22,unif − 2∥hJ ∥1,unif + 2λ1∥fJ − hJ ∥2,unif,

where λ1 = 1 + 2∥fJ − h∥22,unif + 2∥fJ − hJ ∥2,unif. As a result, the loss of g satisfies

LD(g) =
1

2
− 2d

4

(
2∥hJ ∥1,unif +

(
∥fJ ∥22,unif − ∥hJ ∥22,unif

)︸ ︷︷ ︸
(I)

−∥fJ − hJ ∥22,unif − 2λ1∥fJ − hJ ∥2,unif

)
.

Note that (I) ≥ −λ2 with λ2 =∆ ∥hJ −fJ ∥22,unif+2∥hJ −fJ ∥2,unif as in (18). Next, by adding and subtracting 2∥fJ ∥1,unif,
we have that

LD(g) ≤ 1

2
− 2d

4

(
2∥fJ ∥1,unif + 2

(
∥hJ ∥1,unif − ∥fJ ∥1,unif

)︸ ︷︷ ︸−λ2 − ∥fJ − hJ ∥22,unif − 2λ1∥f − h∥2,unif

)
≤ 1

2
− 2d

4

(
2∥fJ ∥1,unif − 2∥fJ − hJ ∥2,unif − λ2 − ∥fJ − hJ ∥22,unif − 2λ1∥fJ − hJ ∥2,unif

)
,

where we used (14) to derive the inequality. Therefore, from the definition of λ1, λ2 and U(x) = x3 + 3
2x

2 + 3
2x we have

that

LD(g) ≤ 1

2
− 2d

2
∥fJ ∥1,unif + 2dU(∥fJ − hJ ∥2,unif).

Lastly, we further bound this expression. Note that ∥·∥1 = 2d∥·∥1,unif. Then, we have that

LD(g) =
1

2
− 1

2
∥fJ ∥1 + 2dU(∥fJ − hJ ∥2,unif) ≤

1

2
− 1

2
∥fJ ∥1 + U(2d∥fJ − hJ ∥2,unif),

where the last inequality holds by bringing 2d inside U(·). This completes the proof of the lemma.
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D Proof of Theorem 4

To derive an upper bound on the empirical error of ĝ, we first consider a weaker version of the algorithm. The idea is to
select θ randomly instead of optimizing it as in the algorithm. For that, we use Lemma 6 in Section 4. Consequently, from
the lemma and due the fact that θ in the algorithm is selected to minimize the empirical error, we obtain that

PD̂

{
Y ̸= ĝ(X)

}
≤ 1

2
∥Y − p̂∥2

2,D̂
, (20)

where p̂ is the output of L2-polynomial regression and ĝ ≡ sign[p̂ − θ], as in Algorithm 1. Let c∗ be the predictor
with minimum generalization error in the (ϵ, k)-approximated concept class. Let p be a degree k polynomial such that
∥c∗ − p∥2 ≤ ϵ. Since p̂ minimizes the empirical 2-norm, then the right-hand side of (20) satisfies

1

2
∥Y − p̂∥2

2,D̂
≤ 1

2
∥Y − p∗∥2

2,D̂
. (21)

We proceed by taking the expected error of the empirical error with respect to the random training samples. From (20) and
(21) we obtain the following inequalities

E
[
PD̂

{
Y ̸= ĝ(X)

}]
≤ 1

2
E
[
∥Y − p∗∥2

2,D̂

]
=

1

2
∥Y − p∗∥22,D

(a)

≤ 1

2

(
∥Y − c∗∥2,D + ∥p∗ − c∗∥2,D

)2

≤ 1

2

(
∥Y − c∗∥2,D + ϵ

)2

(b)

≤ 1

2

(
∥Y − c∗∥22,D + 4ϵ+ ϵ2

)
(c)

≤ 2opt +
5

2
ϵ, (22)

where (a) holds from Minkowski’s inequality for 2-norm, (b) holds as ∥Y − c∗∥2,D ≤ 2, and (c) holds because of the
second equality in (3) and that opt = P{Y ̸= c∗(X)}.

Next, we connect the empirical error of ĝ to its generalization error. Note that the Vapnik–Chervonenkis (VC) dimension
of all functions of the form sign[p] for some polynomial of degree upto k does not exceed dk+1. Therefore, from VC theory
( See Corollary 3.19 in (Mohri et al., 2018)) for any δ, with probability at least (1− δ), the following inequality holds

P
{
Y ̸= ĝ(X)

}
≤ PD̂

{
Y ̸= ĝ(X)

}
+

√
2 dk+1

n
log

en

dk+1
+

√
log 1

δ

2n
. (23)

Therefore, the proof is complete by taking the expectation and combining it with the last bound in (22).

D.1 Proof of Lemma 6

Note that y ̸= sign(p(x) − θ), if θ is between y and p(x). Hence, the expected empirical error of sign[p(X) − θ] with
respect to the random θ equals to

Eθ

[
PD̂

{
Y ̸= sign[p(X)− θ]

}]
=

1

n

∑
i

Eθ

[
1
{
yi ̸= sign(p(xi)− θ)

}]
=

1

n

∑
i

P
{
θ ∈ [p(xi), yi]

⋃
[yi, p(xi)]

}
︸ ︷︷ ︸

Pi

. (24)
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Next, we show that Pi ≤ 1
2 (yi − p(xi))

2 for all (xi, yi)’s. Suppose yi = 1. If p(xi) > 1, then Pi = 0 as θ ≤ 1. If
p(xi) ∈ [0, 1], then

Pi = P
{
θ ∈ [p(xi), 1]

}
=

∫ 1

p(xi)

(1− t)dt

=
1

2

(
1− p(xi)

)2
=

1

2

(
yi − p(xi)

)2
.

If p(xi) ∈ [−1, 0], then

Pi = P
{
θ ∈ [p(xi), 1]

}
=

∫ 1

p(xi)

1− |t|dt

=
1

2
+

∫ 0

p(xi)

(1 + t)dt

=
1

2
− p(xi)−

1

2
(p(xi))

2

≤ 1

2
(1 + |p(xi)|)2 =

1

2
(yi − p(xi))

2.

Lastly, if p(xi) < −1, then Pi = 1 because θ ≥ −1. In this case also Pi ≤ 1
2 (yi − p(xi))

2. The case for yi = −1 follows
by symmetricity. Hence, we obtain the following inequality

Eθ

[
PD̂

{
Y ̸= ĝ(X)

}]
≤ 1

n

∑
i

1

2

(
yi − p(xi)

)2
.

The proof is complete by noting that the right-hand side equals to 1
2∥Y − p∥2

2,D̂
.
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