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Abstract

We propose a new algorithm for k-means clus-
tering in a distributed setting, where the data is
distributed across many machines, and a coordi-
nator communicates with these machines to cal-
culate the output clustering. Our algorithm guar-
antees a cost approximation factor and a num-
ber of communication rounds that depend only
on the computational capacity of the coordina-
tor. Moreover, the algorithm includes a built-
in stopping mechanism, which allows it to use
fewer communication rounds whenever possi-
ble. We show both theoretically and empiri-
cally that in many natural cases, indeed 1 − 4
rounds suffice. In comparison with the popular
k-means|| algorithm, our approach allows ex-
ploiting a larger coordinator capacity to obtain
a smaller number of rounds. Our experiments
show that the k-means cost obtained by the pro-
posed algorithm is usually better than the cost
obtained by k-means||, even when the latter
is allowed a larger number of rounds. More-
over, the machine running time in our approach is
considerably smaller than that of k-means||.
Code for running the algorithm and exper-
iments is available at https://github.
com/selotape/distributed_k_means.

1 INTRODUCTION

Modern datasets can be very large, requiring algorithms
that can handle massive amounts of data. This need drives
the development of distributed algorithms, which use many
machines that work in parallel to solve the given problem
faster. In some cases, the data is already split among sep-
arate machines, again calling for a distributed solution. In
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this work, we study the classical problem of k-means clus-
tering Sebestyen (1962) in the distributed setting. The goal
of a k-means clustering algorithm is to select cluster cen-
ters from the input dataset that induce a k-means cost as
close as possible to the smallest cost that can be obtained
for the dataset. In a distributed framework, a main bot-
tleneck in many practical settings is communication. Most
distributed algorithms run in communication rounds, where
in each round each machine performs an individual task,
and the machines synchronize and communicate after each
round. The number of rounds is a crucial factor in the
practical performance of distributed algorithms, since each
such round requires synchronization and communication
between the machines, which are costly and can cause time
delays. Therefore, reducing the number of rounds as much
as possible is a key goal for distributed algorithms.

We focus on a common practical distributed computation
model (Ene et al., 2011; Guha et al., 2019), in which
one machine, called the coordinator, communicates with
all other machines, while the data to cluster is distributed
among the machines. We consider the case where the coor-
dinator is capable of running heavier computations, while
the machines are more limited in their computation power
and do not communicate among themselves. This model
is suitable, for instance, when the dataset to cluster is par-
titioned between low-end mobile devices, and the coordi-
nator is a stronger machine. The data may be split among
the machines for the purpose of performing the distributed
computation, or it may be partitioned among the devices to
begin with, for instance if each device has independently
collected data points (e.g., by taking pictures using the de-
vice’s camera). We do not make any assumption on the
partition of the data, thus we support also non-i.i.d. data.
We note that the model that we consider is different from
the Federated Learning model Yang et al. (2019); Ghosh
et al. (2019), which emphasizes other requirements, such
as privacy.

One of the most popular distributed clustering algorithms
is k-means|| (Bahmani et al., 2012). This algorithm
approximates the optimal k-means cost on the dataset up
to a constant approximation factor, assuming that this cost
is bounded away from zero (see the example and discus-
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sion in Bachem et al. 2017a), and that a sufficient num-
ber of communication rounds is performed. However,
k-means|| does not have an adaptive mechanism to de-
cide how many communication rounds to run. There-
fore, the number of rounds is usually set heuristically, in
which case the guarantee for a constant approximation fac-
tor might not hold. Other distributed algorithms (e.g., Bal-
can et al., 2013) use only a single round of communication
by definition, but do not scale well when the number of
machines is large.

In this work, we propose the new distributed k-means clus-
tering algorithm, SOCCER (Sampling, Optimal Clustering
Cost Estimation, Removal), which guarantees a constant
approximation factor that depends only on the computa-
tional capacity of the coordinator, without requiring the
optimal clustering cost to be bounded away from zero.
Moreover, the algorithm automatically stops once a suf-
ficient number of rounds has been completed, which can
be much earlier than the worst-case number of rounds.
We demonstrate that in many natural datasets, the num-
ber of rounds required by SOCCER is much smaller than
the worst-case upper bound. In particular, we prove that
SOCCER stops after a single round if the dataset is drawn
from a high-dimensional Gaussian mixture. In addition,
we prove that there are datasets such that SOCCER stops
after one round and obtains a constant approximation fac-
tor, while k-means|| requires k − 1 rounds for the same
result.

We empirically compare SOCCER to k-means|| on syn-
thetic and real datasets, showing that indeed in practical
scenarios, SOCCER stops after 1 − 4 rounds. In contrast,
k-means|| does not have a stopping condition, and when
stopped after the same or a similar number of rounds, it
usually obtains a worse clustering cost. Moreover, the ma-
chine run time of SOCCER is almost always significantly
smaller than that of k-means|| for a comparable final
cost.

Our technique is based on letting the coordinator run a
(centralized) clustering algorithm on a limited number of
points, and using this clustering to calculate an estimate
of a truncated version of the optimal k-means cost on the
dataset. This provides information to the machines that al-
lows them to progressively remove points from their part
of the dataset. When all the points are removed, the algo-
rithm stops and calculates the final clustering from the cen-
ters selected in the centralized clustering runs. SOCCER
combines clustering approaches designed for two different
settings: The distributed setting (Ene et al., 2011) and the
online setting (Hess et al., 2021). Ene et al. (2011) itera-
tively samples points from the machines and then removes
points that are close to them from consideration. We show
that calculating a clustering on the point sample, along with
a technique adapted from Hess et al. (2021), lead to a more
accurate removal of points. This provides a practical and

successful algorithm with approximation guarantees that
depend only on the number of points that the coordinator
can cluster.

Our contribution To summarize, SOCCER is a new
distributed k-means algorithm that is equipped with the-
oretical guarantees on its cost approximation factor and
number of communication rounds, and requires an even
smaller number of rounds in practice. Our experiments
demonstrate its practical advantages in comparison with
k-means||, in a distributed model which allows the co-
ordinator to calculate a clustering on a limited number of
points. Some of the proofs and experiment results are de-
ferred to the appendices.

2 RELATED WORK

A naive approach to distributed clustering would be to im-
plement a centralized algorithm in a straightforward man-
ner under the distributed model. However, this tends to be
impractical, since it requires a large number of communi-
cation rounds (see, e.g., the discussion in Bahmani et al.,
2012). Therefore, algorithms that are specifically tailored
to the distributed setting have been suggested. Many of
the algorithms that we mention below select more than k
centers. It is then standard to use a weighted centralized k-
means algorithm to reduce the number of centers to exactly
k. It is known (e.g., Guha et al., 2003, Theorem 4) that this
preserves approximation guarantees up to constants.

One common technique used in many distributed algo-
rithms has the following structure: Each machine calcu-
lates a set of representatives of its own data (sometimes
called coresets). these are then sent to the coordinator,
which uses them to calculate a set of centers (Ailon et al.,
2009; Balcan et al., 2013; Feldman et al., 2020; Bachem
et al., 2017b). These algorithms require a small constant
number of communication rounds. However, the technique
has the drawback that the run time and the memory size of
the coordinator increase with the number of machines af-
ter suppressing a certain threshold, while in SOCCER the
running time of the coordinator and the machines improves
linearly with the number of the machines (see experiments
in Bahmani et al. 2012). Some works address the setting of
distributed k-means with outliers (Guo and Li, 2018; Guha
et al., 2019; Chen et al., 2018). These algorithms also re-
quire coordinator resources that increase with the number
of machines. Other distributed algorithms obtain superior
guarantees, but under strong structural assumptions on the
data, such as a small aspect ratio or perturbation-resilient
instances (Voevodski, 2021), or on the partition of the data
into machines (Bhaskara and Wijewardena, 2018).

As mentioned above, one of the most successful distributed
k-means algorithms to date is k-means||(Bahmani et al.,
2012), which is widely used in practice (e.g., in the MLLib
library of Apache Spark, Meng et al., 2016) and also has
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theoretical guarantees. k-means|| proposes a distributed
seeding algorithm that selects a small number of potential
centers. The worst-case number of rounds of k-means||
is O(log(n/opt)), where opt is the optimal k-means cost
of the dataset. This guarantee requires the optimal k-means
cost to be bounded away from zero (see also the example
in Bachem et al., 2017a). Bachem et al. (2017a) show that
if the variance of the dataset is bounded and opt is bounded
away from zero, then k-means|| can be stopped after a
constant number of rounds. However, this requires addi-
tional information about the dataset.

Ene et al. (2011) proposed a distributed k-median algo-
rithm (which can easily be adapted to k-means) with a
number of communication rounds that depends on the
memory size of the coordinator. In each round, each ma-
chine draws two random sub-samples from its data, and
sends them to the coordinator. The coordinator adds the
first sample from each machine to the output clustering,
and uses the second sample to calculate a threshold using
a simple quantile statistic. Then, the threshold and most
of the points received by the coordinator are sent to all the
machines. Each machine then removes from its dataset the
points whose distance to the current clustering does not ex-
ceed the threshold. The total number of removed points
is by definition a fixed fraction of the dataset. The final
round occurs when the remaining points in the machines
fit entirely in the coordinator memory. Chen et al. (2016)
proposed a variation on this idea that reduces the total com-
munication, while increasing the number of rounds. Ku-
mar et al. (2015) generalized this technique to other re-
lated problems. Despite its theoretical guarantees, the al-
gorithm of Ene et al. (2011) has significant disadvantages
in practice. First, it always uses the worst-case number of
rounds. In addition, in practice, on reasonable dataset sizes,
the sub-sampling does not significantly reduce the number
of points relative to the original dataset. This means that
calculating the final clustering is not much easier than cal-
culating a clustering on the original dataset. In addition, the
number of points sent from the coordinator to the machines
is large, leading to both to a heavy communication require-
ment and a heavy computation in each machine. We show
below how the approach of SOCCER avoids these issues.

Most existing algorithms for distributed clustering can be
applied to both the k-means and k-medoids formulations
with slight adaptations, and so the same body of work is
generally relevant for both formulations. The difference in
formulation between k-means and k-medoids is manifested
in the constant approximation factor when using a black
box offline clustering algorithm.

3 SETTING AND NOTATION

For an integer l, denote [l] := {1, . . . , l}. Let (X, ρ)
be a finite metric space, where X is a set of size n and

ρ : X ×X → R+ is a metric. For a point x ∈ X and
a set T ⊆ X , let ρ(x, T ) := miny∈T ρ(x, y). For sim-
plicity, we use set notations for datasets, although they can
include duplicates. For an integer k ≥ 2, a k-clustering
of X is a set of (at most) k points from X which rep-
resent cluster centers. Given a set S ⊆ X , the k-means
cost of T on S is cost(S, T ) :=

∑
x∈S ρ(x, T )2. The goal

when clustering X is to find a clustering T with a low cost
cost(X,T ). We denote by OPT an optimal k-means clus-
tering: OPT ∈ argminT⊆X,|T |≤kcost(X,T ).

A (centralized) k-means algorithm A takes as input a fi-
nite set of points S and the parameter k, and outputs a
k-clustering of S, denoted A(S, k). For β ≥ 1, A is a
β-approximation k-means algorithm on (X, ρ), if for all
input sets S ⊆ X , cost(S,A(S, k)) ≤ β · cost(S,OPTS),
where OPTS is an optimal solution on S with centers from
S: OPTS ∈ argminT⊆S,|T |≤kcost(S, T ). In the central-
ized setting, the best known approximation constant for an
efficient k-means algorithm is 9 for a general metric space
and 6.357 for Euclidean spaces (Ahmadian et al., 2019).

In the coordinator model (Guha et al., 2019) which we
study, the data X is arbitrarily partitioned among m ma-
chines, where Xj denotes the set of points in machine
j ∈ [m]. The machines communicate directly only with
the coordinator. Broadcasts from the coordinator to the ma-
chines are counted as a single transmission. The computa-
tion is conducted in rounds, where in each round the ma-
chines perform an individual task and then communicate
with the coordinator.

4 THE GUARANTEES OF SOCCER

In this section, we present the guarantees of SOCCER, our
new distributed k-means algorithm, which is described in
detail in Section 5. Similarly to Ene et al. (2011), we
assume a bound of Θ̃(knε) on the number of points that
can be stored in the memory of the coordinator, where
ε ∈ (0, 1) is a parameter linking the coordinator size with
the dataset size. Specifically, we assume that the coordi-
nator can calculate a (centralized) clustering over a dataset
of size η(ε) = 36knε log( 1.1k

δε ), and can store the same
order of magnitude of data points. We further assume it
has access to a centralized black-box k-means algorithmA
that can be used for this purpose. The clustering is used by
SOCCER to calculate an estimate of a truncated version of
the optimal attainable k-means cost for the dataset X . As
mentioned above, most distributed algorithms select more
than k centers. This number can then reduced to k using
a standard weighted clustering technique. SOCCER selects
only slightly more than k centers, making the final reduc-
tion step easier. The following theorem gives the guaran-
tees of SOCCER. The proof is provided in Section 6 and the
appendices referenced there.

Theorem 4.1. Suppose that the size of the dataset X is
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a sufficiently large n. Suppose that SOCCER runs with a
confidence parameter δ ∈ (0, 1), a coordinator parame-
ter ε ∈ (0, 1), and number of centers k ≥ 5, and sup-
pose that the black-box algorithm A is a β-approximation
k-means algorithm. Denote the total number of communi-
cation rounds until SOCCER stops by I , and denote the set
of cluster centers it selects by Cout. Then, with probability
at least 1− δ,

• I < 1
ε − 1;

• |Cout| ≤ I · (k + 9 log 1.1k
δε );

• cost(X,Cout) ≤ I · (80β + 44) · cost(X,OPT);

• The total number of points transmitted to the coordi-
nator is at most I · η(ε) = 72Iknε log( 1.1k

δε ).

• The total number of points broadcasted from the coor-
dinator is at most I · (k + 9 log 1.1k

δε ).

We note that while the theorem above lists specific con-
stants, these are in fact interdependent, so that, for instance,
one can allow a larger coordinator memory constant, to
obtain a significantly smaller cost approximation constant;
see also the discussion in Section 6.

Before presenting the algorithm, we compare the guaran-
tees above to the closest relevant results. In comparison
with the algorithm of Ene et al. (2011) (henceforth EIM11),
SOCCER uses the same number of communication rounds
in the worst case. However, as will be made evident be-
low, unlike EIM11, it can use considerably fewer rounds on
many natural datasets. SOCCER selects Õ(k) centers, and
these are all the points that the coordinator ever broadcasts
to the machines. In contrast, EIM11 selects Ω(knε log(n))
centers and broadcasts all of them, thus its total commu-
nication to the machines is significantly larger. This also
affects the computation resources required from the ma-
chines, as discussed in more detail in Section 5. Like
SOCCER, EIM11 also obtains a constant approximation
factor. While its approximation constant is smaller, the is-
sues mentioned above make the algorithm impractical, as
we observe in Section 8.

To compare these guarantees to k-means||, note that
the worst-case number of rounds of k-means|| is
O(log(n/opt)), while in the theorem above (as in Ene
et al., 2011) it is 1/ε = Õ(log(n)/ log(L/k)), where L
is the limitation on the coordinator. If L is set to Θ̃(k)
then the worst-case number of rounds of SOCCER is sim-
ilar to that of k-means||, except that it does not require
opt to be bounded away from zero. In addition, and unlike
k-means||, in this approach a larger L can be used to
reduce the worst-case number of iterations. Moreover, as
seen below, SOCCER stops on its own when the number of
rounds is sufficient for the dataset. In contrast, the actual
number of rounds of k-means|| is a hyper-parameter. In
the next section, we give the full description of SOCCER.

Algorithm 1 SOCCER
Require: δ ∈ (0, 1) (confidence), k ∈ N, n ∈ N (data

size), A (a centralized k-means algorithm), ε ∈ (0, 1)
(coordinator parameter), m ∈ [n] (number of ma-
chines).
At the beginning of the run, machine j holds data Xj ,
where X := ∪j∈[m]Xj .

1: Cout ← ∅, N ← n.
2: while N > η(ε) do
3: α← η(ε)/N .
4: For l ∈ {1, 2}, each machine j adds each point in

Xj to a set P lj with independent probability α.
5: Each machine j sends P 1

j and P 2
j to the coordinator.

6: In the coordinator:
7: P1 :=

⋃
j∈[m]

P 1
j , P2 :=

⋃
j∈[m]

P 2
j .

8: Citer ← A(P1, k+).
9: v := 2cost 3

2 (k+1)dk
(P2, Citer)/(3kdk). 4 See

definition in Section 5
10: Cout ← Cout ∪ Citer.
11: Broadcast (v, Citer) to each of the machines.
12: Removal: Each machine j updates:

Xj ← {x ∈ Xj | ρ(x,Citer)
2 > v}.

13: Each machine sends Nj := |Xj | to the coordinator,
which sets N ←

∑
j∈[m]Nj .

14: V ←
∑
j∈[m]

Xj . 4 The machines sends |Xj | to the

coordinator.
15: end while
16: All the machines send Xj to the coordinator, which

sets V ← ∪j∈[m]Xj .
17: The coordinator calculates Cout ← Cout ∪ A(V, k).
18: return Cout.

5 THE SOCCER ALGORITHM

SOCCER is listed in Alg. 1. It uses the notations k+ :=
k + 9 log(1.1k/(δε)), dk := 6.5 log(1.1k/(δε)). The un-
derlying structure of SOCCER is superficially similar to that
of EIM11, which was described in Section 2. It runs a loop,
where in each iteration, each machine sends the coordinator
a sub-sample of its points. The coordinator then sends data
points and a threshold to all machines. Then, each machine
removes from its data the points that are closer to the sent
points than the threshold. This is repeated in rounds, until
the number of remaining points is small enough so they can
be stored in full in the coordinator.

Despite the external similarity in structure, SOCCER is cru-
cially different from EIM11 and its variants, which send
most of the points received by the coordinator to the ma-
chines, and remove a fixed fraction of the dataset in each
round. The coordinator in SOCCER uses the sub-samples
received from the machines as input to the centralized
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black-box k-means clustering algorithm A. Then, it cal-
culates an estimate of the truncated k-means cost of the
centers selected byA on the entire dataset. This estimate is
then used to calculate the threshold that the machines use to
remove points from their dataset. The method for estimat-
ing the cost and calculating the threshold is based on a tech-
nique first proposed in Hess et al. (2021), which addresses
a different setting of (centralized) online no-substitution
clustering. In that work, the estimate is used for the purpose
of on-the-fly center selection, when clustering a stream of
points. Our analysis shows how this type of estimate can
be used to improve performance in the distributed setting,
despite its original use for a completely different purpose.

In SOCCER, in each iteration (corresponding to a commu-
nication round), each machine j creates two sub-samples
from its dataset, P 1

j and P 2
j , which are then sent to the

coordinator. These sub-samples are drawn independently
at random from the machine’s current set of points, where
their sizes are set so that the total number of points sent
to the coordinator by all machines is η(ε). The coordina-
tor merges these sub-sample pairs into the respective sets
P1 and P2. It then calculates a k+-means clustering on P1

using A, denoted Citer, and calculates a threshold using
the truncated cost of Citer on P2: For two sets S, T ⊆ X
and an integer l, the l-truncated cost of T on S, denoted
costl(S, T ), is the total cost of the clustering after remov-
ing the l points in S that incur the most cost.

The coordinator addsCiter to the output setCout, and sends
v and Citer to each of the machines. Then, each machine
removes from its dataset all the points whose distance from
Citer is at most

√
v. Our analysis below shows that the trun-

cated cost can be used to lower-bound the cost of points that
belong to large clusters in the optimal k-means clustering
of X . As a result, points that are

√
v-close to some center

in Citer are sufficiently close to an optimal center to guar-
antee the final approximation factor.

Lastly, when sufficiently many points have been removed
in each machine so that the entire remaining data can be
handled by the coordinator, the loop terminates and the re-
maining points are sent to the coordinator, which calculates
a k-clustering on them and adds the output centers to Cout.

We note that the main computational burden in the ma-
chines is to calculate the distances of the data points
they store from the points broadcasted by the coordina-
tor. Therefore, the number of broadcasted points needs
to be small for this burden to be reasonable. Indeed, in
SOCCER this number is only k+ = k + 9 log(1.1k/(εδ)).
In contrast, in EIM11 this number is 9knε log(n/δ). Thus,
for large datasets, the computational requirements from the
machines in SOCCER are lighter by orders of magnitude
than those of EIM11.

Citer and v are calculated similarly to the centralized on-
line clustering algorithm of Hess et al. (2021) mentioned

above. However, our constants are significantly smaller, as
a result of a tighter analysis (see Appendix A.1). The im-
provement of the constants is of significant practical impor-
tance: These constants are used by SOCCER. If they were
too large, as in Hess et al. (2021), then SOCCER would be
impractical. For instance, in Hess et al. (2021), the number
of outliers removed when calculating the truncated cost is
very large. Using the same number in SOCCER would have
caused the fraction of removed points in each round to be
too small, leading to a large number of rounds. Moreover,
these constants cannot be easily changed without careful
analysis, since they are inter-dependent. Finding an ap-
propriate assignment of constants that makes the algorithm
practical while guaranteeing the desired behaviour requires
a delicate balance of many competing quantities.

In the next section, we state the main lemma that we prove
to derive the guarantees of SOCCER.

6 MAIN LEMMA

We now give the main lemma that allows us to prove
Theorem 4.1. First, we define necessary notation. Con-
sider the contents of the machine datasets {Xj}j∈[m] at
the beginning of iteration i in line 12 of Alg. 1, and let
Vi := ∪j∈[m]Xj . Denote the points removed at iteration i
by Ri := Vi \ Vi+1. Let Ciiter and αi be the values of Citer

and α, respectively, as calculated by SOCCER at iteration
i. To prove Theorem 4.1, we provide the following lemma,
which is proved in Appendix A.1.

Lemma 6.1. Assume that SOCCER runs with the parame-
ters given in Theorem 4.1. Let i ≤ I . With probability at
least 1− δε,

• cost(Ri, C
i
iter) ≤ (80β + 44) · cost(Vi,OPT);

• |Vi+1| ≤ 5.5kdk/αi.

The first part of this lemma shows that in round i, the cal-
culated cluster Ciiter obtains a constant approximation on
all the removed points in this round. This is later used
to prove the overall approximation guarantee. The second
part bounds the number of remaining points in each round,
which is used to upper bound the number of rounds. Theo-
rem 4.1 can now be proved using the lemma. The proof is
provided in Appendix A.2

We note that the constants in Lemma 6.1 and, consequently,
in Theorem 4.1, are interdependent. In particular, increas-
ing the coordinator’s capacity by a constant factor would
decrease the cost approximation constant, since a larger
memory constant would allow P1 and P2 to be larger, mak-
ing them more representative of the full data, and leading
to a smaller cost approximation factor. In addition, it would
allow reducing the threshold for removal, again improving
the accuracy at the expense of a larger coordinator capacity.
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7 BEYOND WORST-CASE: WHY SOCCER
CAN STOP AFTER FEWER ROUNDS

As discussed above, a main desideratum of the distributed
algorithm is to use a small number of communication
rounds. While the worst-case number of rounds for
SOCCER is Θ(1/ε), it stops earlier if sufficiently many data
points are removed from the machine datasets, so that the
current total data size can be handled by the coordinator.
If this is the case, then also the approximation factor and
the number of selected centers are smaller, as can be see in
Theorem 4.1.

We now show that indeed, SOCCER is likely to require
fewer rounds on many natural datasets. SOCCER calcu-
lates in each round the clustering Citer based on the sub-
sample sent from each machine. Our analysis shows that
Citer obtains a near-optimal clustering cost on points that
in the optimal solution belong to clusters that are larger
than dk/α = Õ(n1−ε/k). Such points will typically be
sufficiently close to Citer to be removed from the machine
dataset in the removal step. The number of points in small
optimal clusters can be at most kdk/α = O(n1−ε). In
many natural cases, and in particular when n is sufficiently
large, the optimal solution will have even fewer points, per-
haps none, in such small clusters. Thus, almost all points
will be removed in the first round. As a simple exam-
ple, consider a dataset drawn from a k-Gaussian mixture.
The following result shows that SOCCER requires a single
round to cluster such a dataset. The proof is provided in
Appendix A.3.

Theorem 7.1. Let X be a dataset drawn from a k-
spherical Gaussian mixture. For sufficiently large d and
n, if ε ≥ log log(n/δ)/ log n, then with high probability,
SOCCER when running onX will stop after one round, and
output a clustering with a constant cost approximation fac-
tor.

This property of SOCCER is contrasted with EIM11, which
removes the same fraction of points in each round, regard-
less of the structure of the data, and so never stops early.
To compare to k-means||, recall that it has no stopping
mechanism and its number of rounds is set heuristically.
Moreover, the following theorem, proved in Appendix A.4,
shows that there are cases in which k-means|| requires
k − 1 rounds to get any finite approximation factor, while
SOCCER stops after a single round and finds the optimal
clustering.

Theorem 7.2. Let k ∈ N. For any n0 ∈ N, there exists a
dataset X of size n ≥ n0, such that if k-means|| runs
on X for fewer than k− 1 rounds, then it does not obtain a
finite multiplicative approximation factor, while with prob-
ability at least 1 − δ, SOCCER stops after a single round
and returns the optimal clustering.

The experiments below demonstrate that also in practice,

in many cases SOCCER requires few rounds.

8 EXPERIMENTS

We report experiments on synthetic and real datasets.
The code is provided at https://github.com/
selotape/distributed_k_means. The experi-
ments were performed on a single multi-core machine with
a standard Intel processor, which ran the code of the coor-
dinator and of all the machines. We could not run EIM11
(Ene et al., 2011) on these datasets, since, as explained in
Section 5, in this algorithm the coordinator broadcasts a
very large number of points to the machines. Since each
machine is required to calculate the distance from each of
its data points to the broadcasted set of points, this leads
to a very large machine running time. For instance, for
k = 100, n = 107, and ε = 0.1, the coordinator broadcasts
72,000 points to the machines in each round, compared to
about 200 points sent by SOCCER and k-means||. As a
result, the machine running time of EIM11 is more than a
hundred-fold larger, making this algorithm far from com-
petitive in terms of machine run time, and impractical to
run in our environment.

Both SOCCER and k-means|| output more than k cen-
ters. The output k clustering was calculated using the stan-
dard weighted k-means approach described in Section 2,
using the k-means algorithm of python’s scikit-learn
(Pedregosa et al., 2011), which was also used as our cen-
tralized black-box k-means algorithm for the intermediate
clustering calculations of the coordinator in SOCCER. To
reduce variance, we fixed the sample sizes P1 and P2 to be
exactly an α fraction of the current data. The parameter l
of k-means||, which determines the number of points to
select in each round, was set to 2k, as in Bahmani et al.
(2012) and in the default setting of MLLib (Meng et al.,
2016). We calculated k-means clusterings using each of the
two algorithms, for several values of k, on both synthetic
and real datasets. The properties of the tested datasets are
listed in Table 1.

Table 1: Properties of datasets

Dataset # points Dim.
k-Gaussian Mixture 10M 15
Higgs 11M 28
Census1990 2.45M 68
KDDCup1999 4.8M 42
BigCross 11.6M 57

For SOCCER, we set δ = 0.1 in all the experiments, and
tested several values of ε. For k-means||, we tested stop-
ping after each round between 1 and 5. Each experiment
was repeated 10 times; we report the average of each re-
sult. Standard deviations (reported in Appendix A.5) were

https://github.com/selotape/distributed_k_means
https://github.com/selotape/distributed_k_means


Tom Hess, Ron Visbord, Sivan Sabato

usually smaller than 2% of the reported mean.

First, we generated for each tested k a synthetic dataset
drawn from a k-Gaussian mixture in R15. The mean of
each Gaussian was randomly drawn from the unit cube
in R15, and all Gaussian were all set to be spherical
with isotropic variance σ = 0.001. The weight distri-
bution of the Gaussians in the mixture was set accord-
ing to the Zipf distribution, proportionally to iγ , where
γ = 1.5. Each dataset consisted of ten million points drawn
from this distribution. We provide the code and seed for
generating these datasets at https://github.com/
selotape/distributed_k_means. We then tested
the algorithms on four real-world datasets with millions of
points, which were used in previous papers studying sim-
ilar settings: HIGGS, KDDCup1999 (Baldi et al., 2014)
and Census1990, all from the UCI repository (Dua and
Graff, 2017), and Bigcross (Ackermann et al., 2012).

Table 2 provides some of the results of running the algo-
rithms on the each of the datasets. Results of SOCCER for
all values of ε and for k-means|| after all rounds be-
tween 1 and 5 are reported in full in Appendix A.6. In Ta-
ble 2 (Top), we report the value of ε and the induced coordi-
nator clustering size |P1| that resulted in SOCCER stopping
after a single round, and provide the obtained cost and the
machine running time of SOCCER and of k-means|| af-
ter a single round. This provides a direct comparison with
the same number of rounds. In Table 2 (Bottom), we report
the results of k-means|| for the same experiments af-
ter two and five rounds, for comparison to SOCCER after a
single round. The reported machine running time was cal-
culated by taking the sum, over all rounds, of the maximal
machine running time in each round based on 50 machines.
The communication complexity of SOCCER per round is
2|P1|. The communication complexity of k-means|| per
round is l = 2k. While for large ε, the total communica-
tion is much larger in SOCCER, the average communication
complexity per machine in SOCCER is smaller, since it is
2|P1| divided by the number of machines.

For the k-Gaussian mixtures, the first two rows of Table 2
(Top) show that when the coordinator is allowed to clus-
ter |P1| ≈ 500 · k points, SOCCER stops after a single
round. In comparison, when stopping k-means|| after
one round, its resulting clustering cost is three orders of
magnitude larger than that of SOCCER. As can be seen in
Table 2 (Bottom), even after five rounds, the cost obtained
by k-means|| is still somewhat larger than the one ob-
tained in one round by SOCCER, at which point the ma-
chine running time is also larger than that of SOCCER. For
all the coordinator sizes that we tested (see Appendix A.6),
the output cost of SOCCER for the Gaussian mixtures was
almost identical (and approximately optimal) regardless
of coordinator sizes, which only affected the number of
rounds.

For the other datasets, it can be seen that the cost obtained
by SOCCER after its single round is lower than that ob-
tained by k-means|| after one round, and almost always
also after two rounds. In addition, the machine running
time of SOCCER after one round is usually significantly
smaller than that of k-means|| after running the number
of rounds necessary to obtain a comparable cost.

In all of our experiments, SOCCER stopped after a smaller
number of rounds than the worst-case guarantee of 1/ε −
1. In particular, Table 3 reports experiments in which
ε = 0.01 and so the coordinator size was very small (see
Appendix A.6 for other values of ε). In this case, the
worst-case number of rounds is 99, while the true num-
ber of rounds was usually between 2 and 4. Even with
this small coordinator size, the number of rounds required
by k-means|| to obtain a comparable cost was usually
much larger, as can be seen by comparing to the two right-
most columns in Table 3. The machine running time in
k-means|| was also usually significantly larger. Note
that unlike k-means||, in which each round requires the
same running time, in SOCCER each additional round is
considerably faster, due to the removal of points. Regard-
ing the dependence of the cost upper bound on the total
number of rounds of SOCCER in Theorem 4.1, it can be
seen in Appendix A.6 that in practice the cost is similar for
the same dataset for different coordinator sizes, although
they each lead to a different total number of rounds.

We conclude that overall, if the coordinator is allowed to
calculate a clustering for a moderate number of points,
SOCCER usually stops after a small number of rounds, and
obtains a comparable or better cost than k-means||, even
if the latter runs for a larger number of rounds. In addition,
SOCCER requires significantly less machine running time
to achieve a comparable cost.

Our run time comparison focuses on machine running
times, showing that in this respect SOCCER is consider-
ably faster. Our premise is that the coordinator is sig-
nificantly stronger, and its computation time is not a bot-
tleneck. However, one may still be interested in re-
ducing the coordinator running time as well. To speed
up the coordinator, a faster clustering implementation
can be used. However, existing fast implementations
are typically less successful on more difficult datasets.
We demonstrate this approach by replacing the black-
box k-means implementation used for the experiments
above with the faster MiniBatchKMeans implementa-
tion from scikit-learn. The results, reported in Ap-
pendix A.7, show that in almost all experiments, SOCCER
obtains a similar cost to k-means|| with a compara-
ble total running time and fewer rounds. A notable ex-
ception is the KDDCup1999 dataset. In this dataset,
MiniBatchKMeans fails to find a clustering with a rea-
sonable cost, even when running on the entire set of points.
We believe this is because this dataset includes many out-

https://github.com/selotape/distributed_k_means
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Table 2: Some of the experiment results (See Appendix A.5 for full results). Top: Comparing SOCCER and k-means||
when each is running a single round. Bottom: k-means|| results for 2 and 5 rounds. The factors in parenthesis for
k-means|| results provide the ratio between the k-means|| cost or time to the corresponding values of SOCCER.

SOCCER, one round k-means||, one round
Dataset k ε |P1| Cost T (seconds) Cost T (seconds)
Gau 25 0.05 11,316 150 0.37 168 ·103 (x6,340) 0.05 (x0.14)

100 0.05 56,440 150 0.68 1,079 ·103 (x1,773) 0.05 (x0.07)
Hig 25 0.1 25,335 144 ·106 0.32 171 ·106 (x1.19) 0.05 (x0.16)

100 0.05 56,440 122 ·106 0.48 137·106 (x1.12) 0.06 (x0.12)
Cen 25 0.1 22,018 188 ·106 0.09 418 ·106 (x2.22) 0.05 (x0.56)

100 0.1 109,813 132 ·106 0.13 264 ·106 (x2) 0.05 (x0.38)
KDD 25 0.2 110,088 112 ·1012 0.15 254 ·1012 (x2.08) 0.06 (x0.4)

100 0.2 549,037 743 ·1010 0.26 5,175 ·1010 (x6.97) 0.06 (x0.23)
Big 25 0.1 25,335 332 ·1010 0.38 519 ·1010 (x1.56) 0.18 (x0.47)

100 0.1 126,354 152 ·1010 0.53 241 ·1010 (x1.86) 0.18 (x0.34)

k-means||, 2 rounds k-means||, 5 rounds
Dataset k Cost T (seconds) Cost T (seconds)

Gau 25 37,350 (x246) 0.33 (x0.89) 164 (x1.1) 1.98 (x5.35)
100 25,866 (x172) 1.09 (x1.6) 167 (x1.1) 7.09 (x10.4)

Hig 25 153 ·106 (x1.06) 0.31 (x0.96) 139 ·106 (x1.06) 1.59 (x4.96)
100 125 ·106 (x1.06) 0.85 (x1.77) 115 ·106 (x0.94) 5.62 (x11.7)

Cen 25 218 ·106 (x1.15) 0.15 (x1.66) 185 ·106 (x0.98) 0.6 (x6.66)
100 133 ·106 (x1) 0.31 (x2.38) 109 ·106 (x0.82) 1.66 (x12.76)

KDD 25 157 ·1012 (x1.4) 0.23 (x1.53) 126 ·1012 (x1.12) 1.03 (x6.86)
100 649 ·1010 (x0.87) 0.54 (x2.07) 795 ·1010 (x1.07) 3.05 (x11.73)

Big 25 519 ·1010 (x1.66) 0.18 (x0.47) 330 ·1010 (x0.99) 2.13 (x5.6)
100 169 ·1010 (x1.11) 1.09 (x2.06) 150 ·1010 (x0.99) 6.17 (x11.64)

Table 3: Results of experiments with ε = 0.01. ‘R’
of SOCCER gives the number of rounds it required.
k-means|| was run until a cost that is up to 2% from
that of SOCCER.

SOCCER, ε = 0.01 k-means||
Data k |P1| R Cost T R T
Gau 25 6,000 3 150 0.72 15 12.3

100 30,000 2 150 0.95 15 47
Hig 25 6,000 3 134 ·106 0.6 8 3.8

100 30,000 2 120 ·106 0.68 3 2.1
Cen 25 6,000 4 176 ·106 0.2 8 1.3

100 30,000 3 110 ·106 0.3 5 1.7
KDD 25 6,000 11 114 ·1012 1 10 3.3

100 30,000 7 597 ·1010 1.1 10 10.9
Big 25 6,000 3 319 ·1010 0.9 8 5.1

100 31,000 2-3 154 ·1010 0.93 4 3.9

liers Tavallaee et al. (2009), which are not well handled by
this implementation. This highlights the importance of us-
ing a black box that is suitable for the task at hand.

9 CONCLUSION

In this work, we presented a new distributed k-means clus-
tering algorithm that can require as little as one or two com-
munication rounds, and stops on its own without having
to specify the number of rounds as a parameter. Given a

restriction on the maximal number of points that can be
clustered by the coordinator using a centralized k-means
algorithm, our algorithm obtains a constant approximation
factor, as well as a constant upper bound on the number
of rounds. Our experiments demonstrate its effectiveness
on various datasets, where it usually obtains a smaller cost
than k-means|| using fewer rounds. We believe that the
techniques used in SOCCER can further be used to support
robustness against outliers and machine failures, and we
intend to study these challenges in future work.
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A APPENDIX

A.1 Proof of Lemma 6.1

In this section, we give the proof of Lemma 6.1. We first give an auxiliary lemma. This lemma is a variation on results that
were proved in Hess et al. (2021) (henceforth abbreviated to HMS21), where the latter have significantly larger constants.
An additional difference is that HMS21 proved the results for k-median. The adaptation to k-means is straightforward, but
affects some constants.

Denote a k-means solution from X which is optimal for some subset Y ⊆ X by the notation OPTXY :=
minT⊆X,|T |≤k cost(Y, T ). Consider the optimal clusters induced by OPTXY on Y . HMS21 defines small optimal clusters
as those optimal clusters which include at most 150 log(32k/(δ))/α points. In order to obtain guarantees with smaller
constants, we use a variant of this definition. Recall the notation dk := 6.5 log(1.1k/(δε)), k+ := k + 9 log(1.1k/(δε)).
Denote d′k := 6.5 log(1.1k/δ), k′+ := k + 9 log(1.1k/δ), which are equal to dk, k+ with ε = 1. Let Fα(Y ) be the d′k/α
points in Y that are furthest from OPTXY . Define small optimal clusters to be those that of size at most d′k/α after removing
the points in Fα(Y ). Any larger cluster is called a large optimal cluster. Denote by Cαsmall(Y ) the set of points in Y that
belong to small optimal clusters in Y , and its complement by Cαlarge(Y ) := Y \ Cαsmall. The following lemma provides
results that are adaptations of results from HMS21, where latter have larger constants and hold for the original definition
of small optimal clusters.

Lemma A.1 (Adaptation of results from HMS21). Let Y ⊆ X . Let α, δ ∈ (0, 1) and set k′+, d
′
k as defined in Alg. 1. Let

P1, P2 ⊆ Y be two independent samples of size α|Y |, selected uniformly at random from Y . Let A be a β-approximation
k-means algorithm, and define T := A(P1, k

′
+) . With probability at least 1− δ,

1. cost(Cαlarge(Y ) \ Fα(Y ), T ) ≤ (36β + 20)cost(Y,OPT);

2. ψ := 2
3αcost 3

2 (k+1)d′k
(P2, T ) ≤ cost(k+1)d′k/α

(Y, T );

3. |{x ∈ Y | ρ(x, T )2 > ψα/(kd′k)}| ≤ 5.5kd′k/α.

Proof Sketch. The lemma is derived by adapting results from HMS21 to our setting. The adaptation is consists of following
the same proofs with minor technical differences; we give a sketch of the differences below.

The three parts of the lemma are derived by adapting lemmas 5.7, 5.8, and 5.9 of HMS21 to our setting. The original
claim in Lemma 5.7 is proved for OPTXY := minT⊆X,|T |≤k cost(Y, T ), however it is easy to see that cost(Y,OPTXY ) ≤
cost(Y,OPT). In addition, the original claim does not subtract Fα(Y ) on the LHS. This subtraction allows us to get
improved final constants. Lemma 5.9 gives the claim in part 3 for Y \ (P1 ∪ P2), while in our case it holds for Y (with
a different constant). This is because in our case, P1 and P2 are independent samples, while in HMS21 they are non-
overlapping.

The main differences between the original lemmas and the version we give here are in the definition of large clusters and
in the resulting constants. In particular, HMS21 provided guarantees for d′k = 150 log( 32k

δ ) and k′+ = k+ 38 log( 32k
δ ). In

the current work, we define d′k = 6.5 log(1.1k
δ ) and k′+ = k + 9 log( 1.1k

δ ). In addition, as described above, our definition
of small optimal clusters ignores the points in Fα(Y ). In addition to the new definition of small clusters and a tightening
of the constants in the analysis, the improved constants are also due to the fact that unlike HMS21, we require fewer events
to hold. For instance, we do not require the optimal points to be outside of P1 and P2. This allows reducing the factor in
the log in the definition of d′k.

The constant factor is further improved by using the tighter version of the multiplicative Chernoff bound (Motwani and
Raghavan, 1996) to tighten the constants in Lemma 5.4 of HMS21. Reducing the constants in d′k leads to a reduction in
other constants as well, including those in k′+. An additional improvement in constants stems by assuming that n is not
too small, which allows avoiding certain edge cases. In particular, this allows improving the constants in the guarantees
provided in HMS21 for linear bin divisions, and these affect the final result.

The approximation factor of Lemma 5.7 in HMS21 is 18β + 10. This factor is reduced to 9β + 5.5 for k-medians using
the techniques above. For k-means, the triangle inequality used in several places in that proof needs to be replaced by the
weak triangle inequality, leading to a final approximation factor of 36β + 20.
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The following corollary is immediate, by applying the lemma above to the intermediate calculations in SOCCER, and
replacing δ, dk, k+ by δε, d′k, k

′
+, respectively. For simplicity, we take the sizes of P1 and P2 in SOCCER to be exactly

an α fraction of Vi. For the independent sampling mechanism of {P lj} used in Alg. 1, this holds in expectation, and with
a high probability for large data sizes, up to a negligible correction. It can also be enforced exactly and for all dataset
sizes, by letting the coordinator set the number of sample points that each machine should send, based on a draw from
the relevant multinomial distribution. However, since this would have a negligible effect in most cases, and makes the
algorithm unnecessarily more complicated, we chose to present the simpler mechanism in Alg. 1.

Corollary A.2. Assume that SOCCER runs with the parameters given in Theorem 4.1. Let αi, Ciiter, vi be the respective
values of α,Citer, ψ, v calculated at iteration i of SOCCER. Let ψi = vikdk/αi. Let Vi be the remaining dataset at the
beginning of round i of SOCCER. With probability at least 1− δε,

• cost(Cαlarge(Vi) \ Fαi(Vi), Ciiter) ≤ (36β + 20)cost(Vi,OPT);

• ψi ≤ cost(k+1)dk/αi(Vi, C
i
iter);

• |Vi+1| ≤ 5.5kdk/αi.

We now use this corollary to prove Lemma 6.1.

Proof of Lemma 6.1. To prove the first part of the lemma, we separately bound the cost of Ri ∩ (Cαlarge(Vi) \Fαi(Vi)) and
Ri ∩ (Cαsmall(Vi) ∪ Fαi(Vi)) with respect to Ciiter. For the first part, the bound follows from part 1 of Cor. A.2, since

cost(Ri ∩ (Cαlarge(Vi) \ Fαi(Vi)), Ciiter)
≤ cost(Cαlarge(Vi) \ Fαi(Vi), Ciiter)
≤ (36β + 20)cost(Vi,OPT). (1)

Next, we consider the second part. Note that by the definition of small clusters, |Cαsmall(Vi) ∪ Fαi(Vi)| ≤ (k + 1)dk/αi.
Hence, we get

cost(k+1)dk/αi(Vi, C
i
iter)

≤ cost(Vi \ (Cαsmall(Vi) ∪ Fαi(Vi)), Ciiter)
= cost(Cαlarge(Vi) \ Fαi(Vi), Ciiter).

Hence, by combing the above equation with the first and second parts of Cor. A.2, we get that

ψi ≤ (36β + 20)cost(Vi,OPT).

Note that by the definition of Ri and the equation above,

∀x ∈ Ri, ρ(x,Ciiter) ≤ vi =
ψi

kdk/α

≤ (36β + 20)cost(Vi,OPT)

kdk/α
.

Hence,

cost(Ri ∩ (Cαsmall(Vi) ∪ Fαi(Vi)), Ciiter) (2)

≤ |Ri ∩ (Cαsmall(Vi) ∪ Fαi(Vi))|
(36β + 20)cost(Vi,OPT)

kdk/α

≤ k + 1

k
(36β + 20)cost(Vi,OPT)

≤ (44β + 24)cost(Vi,OPT), (3)

Where the second inequality follows since,

|(Cαsmall(Vi) ∪ Fαi(Vi))| < (k + 1)dk/α,
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and the third inequality follows since k ≥ 5. By combining Eq. (1) and Eq. (3), we get that

cost(Ri, C
i
iter) =

cost(Ri ∩ (Cαsmall(Vi) ∪ Fαi(Vi)), Ciiter)
+ cost(Ri ∩ (Cαlarge(Vi) \ Fαi(Vi)), Ciiter)
≤ (80β + 44)cost(Vi,OPT).

This completes the proof of the first part of the lemma. The second part of the lemma is the same as the third part of
Cor. A.2.

A.2 Proof of Theorem 4.1

Proof of Theorem 4.1. By a union bound, the event in Lemma 6.1 holds in all of the first min(I, 1/ε) rounds with proba-
bility at least 1− δ. To prove the first part of the theorem, we show that under this joint event, SOCCER stops after at most
1/ε rounds. By the definition in line 3, αi = η(ε)/|Vi|. Also, η(ε) = 36knε log( 1.1k

δε ) and dk = 6.5 log(1.1k
δε ). Hence, by

the second part of Lemma 6.1,

|Vi+1| ≤ 5.5kdk/αi = 5.5|Vi|kdk/η(ε) < |Vi|/nε.

Since V1 = n, it follows by induction that |Vi+1| ≤ n1−iε. Recall that the stopping condition of the main loop of SOCCER

is |Vi+1| ≤ η(ε). Clearly, we have n1−iε ≤ η(ε) once i ≥ (1 − log(36k log( 1.1k
δε ))

logn ) 1
ε − 1. Therefore, the total number of

communication rounds is at most (1− log(36k log( 1.1k
δε ))

logn ) 1
ε < 1/ε− 1. This proves the first part of the theorem.

Next, we prove the cost approximation bound (the third part of the theorem). Since {Ri} and VI are a partition of X and
Ciiter ⊆ Cout for all iterations i, we have

cost(X,Cout) ≤
∑

i∈[I−1]

cost(Ri, C
i
iter) + cost(VI , C

I
iter),

where CIiter is the result of the k-means clustering performed in line 17 of Alg. 1. Using the first part of Lemma 6.1 and
recalling that CIiter is a β approximation k-means solution for VI , we get

cost(X,Cout) ≤
∑
i∈[I]

(80β + 44) · cost(Vi,OPT) ≤
∑
i∈[I]

(80β + 44) · cost(X,OPT)

= I · (80β + 44) · cost(X,OPT).

This completes the proof of the third part of the theorem. The second, fourth, and fifth parts follow directly from the
definition of SOCCER. This completes the proof.

A.3 Proof of Theorem 7.1

Proof of Theorem 7.1. Consider a k-Gaussian mixture in dimension d. Suppose that the Gaussians are all spherical with
covariance matrix σ2I . For Z ∼ N(µ, σ2I), it is known (see, e.g. Laurent and Massart, 2000) that for γ > 0,

P[||Z − µ||22 ≤ σ2d · (1 + 2

√
log( 1

γ )

d
+

2 log( 1
γ )

d
)] ≥ 1− γ. (4)

In other words, for large values of d, almost all the points drawn from each Gaussian are about σ
√
d-far from the mean of

the Gaussian. Thus, with high probability, the optimal k-clustering cost for a dataset of size n is Θ(nσ2d).

Suppose that SOCCER runs on a dataset drawn from this k-mixture. In the first iteration, SOCCER calculates a k+-clustering
over a random sample of points from the dataset, using the β approximation algorithm A. Since k+ does not depend on
d, it is easy to see that for a large enough d, the average distance of the dataset points from any k+ centers cannot be
significantly smaller than the average distance of these points from their Gaussian centers. Therefore, the cost of the
calculated k+ clustering on the dataset is Θ(nσ2d).
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We now show that SOCCER stops after one round. First, we consider the value of cost 3
2 (k+1)dk

(P2, Citer), which is used
to calculate v in line 9 of Alg. 1. This is the cost of Citer on P2 after removing the 3

2 (k + 1)dk points that are furthest
from Citer. Note that |P2| = αn. Therefore, the fraction of points from P2 disregarded in the calculation of the truncated
cost is kdk/(αn) = 6.5k log( 1.1k

δ )/(αn) = 6.5k log( 1.1k
δ )/η(ε) = O(n−ε). Therefore, this fraction goes to zero for

large n. It follows that cost 3
2 (k+1)dk

(P2, Citer) = |P2|Θ(σ2d) = Θ(αnσ2d). Since α = η(ε)/n = Θ(nε−1), we get
cost 3

2 (k+1)dk
(P2, Citer) = Θ(nεσ2d). The threshold is thus v = Θ(cost 3

2 (k+1)dk
(P2, Citer)) = Θ(nεσ2d).

We now show that SOCCER stops after a single round, by showing that with high probability, all the points in X are closer
to Citer than v. From Eq. (4) with γ = log(1/δ)/n, we get that with a probability at least 1 − log(1/δ)/n, a point drawn
from a Gaussian has a square distance of O(σ2(d + log(n/δ))) to the center of the Gaussian. Hence, with probability at
least 1− δ, this holds for all the points in the dataset. Clearly, this implies that the centers Citer selected byAmust include
centers with a square distance of O(σ2(d+ log(n/δ))) from the Gaussian mean, otherwise the β-approximation guarantee
would not hold. By the assumption of the theorem, ε > log log(n/δ)/ log n. Therefore, nε > log(n/δ). It follows that
v = Ω(σ2d log(n/δ)). Thus, for a large enough d, v is larger than the distance of all points from Citer. As a result, all the
dataset points are removed in the first round of SOCCER, and the algorithm completes after one round. By Theorem 4.1,
this implies also that the cost of the output clustering is a constant approximation of the optimal cost.

A.4 Proof of Theorem 7.2

Proof of Theorem 7.2. The proof is based on an example of Bachem et al. (2017a) of a hard instance for k-means||.
Bachem et al. (2017a, Theorem 2) describes a dataset of size 2k− 2 such that for any value of the k-means|| parameter
l, k-means|| requires at least k − 1 rounds to obtain a constant approximation. The dataset in the example includes k
distinct points {xi}i∈[k], where x1 has k−1 copies in the dataset and each of x2, . . . , xk appear a single time in the dataset.

To prove the claim in the theorem, we construct a dataset of size n > n0 based on this example, by duplicating the above
dataset z = dn0/(2k − 2)e times. The number of rounds required by k-means|| remains the same, as can be verified
by following the proof of Theorem 2 in Bachem et al. (2017a).

In contrast, we now show that SOCCER stops after one round on this dataset. Consider the sub-sample P1, which is
calculated in the first round of SOCCER. For any i ∈ [k],

P[xi /∈ P1] ≤ (1− α)z ≤ exp(−α · z)

≤ exp(− η(ε)

2z(k − 1)
· z) ≤ exp(− η(ε)

2(k − 1)
)

≤ δ/k.

The last inequality follows since η(ε) = 36knε log(kδ ). Therefore, with probability at least 1 − δ, an instance of each
of {xi}i∈[k] is found in P1. Hence, the optimal clustering for P1 includes all the distinct points from X , and has a cost
of zero. As a result, also Citer must have a cost of zero and so it also includes all the distinct points from X , leading to
the removal of all the dataset points from each of the machines in line 12. Therefore, SOCCER stops after one round and
returns an optimal clustering.
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A.5 Full experiment results

In this section, we provide the full results of all the experiments described in Section 8. Each table reports experiments on
one of the datasets in Table 1. The results are divided to two subsections. Appendix A.6 shows the results of SOCCER and
k-means|| when the standard Kmeans implementation is used as a black-box algorithm for SOCCER, and Appendix A.7
shows the results when MiniBatchKMeans is used as the black box.

A.6 Results for standard Kmeans as black-box for SOCCER

The results for SOCCER and k-means||, when standard Kmeans algorithm used as black-box for SOCCER are provided
below in Table 4, Table 5, Table 6, Table 7, and Table 8.
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Table 4: k-GaussiansMixture dataset experiments with Standard KMeans as black-box. ‘T’ stands for time in
seconds.

k ALG ε P1 Output size Rounds Cost T (machine) T (Total)

25

SOCCER

0.2 126,978 90 1 150.1±0 0.32±0.07 6.56±0.22
0.1 25,335 96 1 150.2±0 0.44±0.08 2.51±0.12
0.05 11,316 127±1 1 150.3±0 0.37±0.09 1.75±0.12
0.01 5,939 348 3 150.1±0 0.73±0.07 4.11±0.21

k-means||

- - 51 1 1,688,270.3±951992.1 0.05±0 0.15±0.03
- - 101 2 37,530.5±46409 0.33±0.01 0.43±0.02
- - 151 3 196.9±18.6 0.76±0.03 0.87±0.03
- - 201 4 171.2±4.7 1.32±0.06 1.42±0.06
- - 251 5 164.4±2.1 1.98±0.07 2.1±0.07

50

SOCCER

0.2 285,296 121 1 150.1±0 0.39±0.08 16.39±0.26
0.1 56,924 127 1 150.2±0 0.48±0.08 5.03±0.2
0.05 25,427 137±1 1 150.3±0 0.57±0.08 3.43±0.12
0.01 13,344 346 2 150.2±0 0.79±0.09 5.02±0.15

k-means||

- - 101 1 1,283,640.5±558248.2 0.05±0 0.24±0.04
- - 201 2 13,399.3±11108.8 0.62±0.03 0.81±0.04
- - 301 3 211.5±6.8 1.45±0.04 1.66±0.04
- - 401 4 174.9±2.3 2.52±0.05 2.71±0.07
- - 501 5 166±1 3.83±0.08 4.04±0.12

100

SOCCER

0.2 633,271 177 1 150.1±0 0.53±0.05 73.11±0.73
0.1 126,354 183 1 150.1±0 0.67±0.1 13.77±0.3
0.05 56,440 212±41 1 150.3±0 0.68±0.11 8.22±0.35
0.01 29,620 428±42 2 150.2±0 0.95±0.13 10.78±0.23

k-means||

- - 201 1 1,079,458.8±266,814.6 0.05±0.01 0.45±0.13
- - 401 2 25,866.5±16072.3 1.09±0.03 1.51±0.14
- - 601 3 226.9±61.2 2.67±0.06 3.09±0.1
- - 801 4 176.6±3.1 4.75±0.05 5.21±0.08
- - 1001 5 167.2±1.7 7.09±0.1 7.52±0.11

200

SOCCER
0.1 277,721 297±18 1 150.1±0 0.87±0.09 42.15±0.26
0.05 124,053 371±81 1 150.3±0 0.93±0.12 21.97±0.55
0.01 65,104 648±61 2 150.2±0 1.26±0.1 27.1±0.52

k-means||

- - 401 1 1,104,954±201,686.7 0.05±0.01 0.82±0.06
- - 801 2 26,593.9±9,916.1 2.08±0.04 3±0.14
- - 1201 3 218.8±14.9 4.97±0.09 5.89±0.1
- - 1601 4 175.7±1.5 8.72±0.1 9.74±0.17
- - 2001 5 167±1.8 13.16±0.12 14.18±0.17
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Table 5: Higgs dataset experiments with Standard KMeans as black-box. ‘T’ stands for time in seconds.

k ALG ε P1 Output size Rounds Cost (·106) T (Machine) T (Total)

25

SOCCER

0.2 126,978 92 1 129±0.38 0.3±0.02 112.01±4.91
0.1 25,335 121 1 144±2.76 0.32±0.05 14.59±1.39
0.05 11,316 204 2 144±1.53 0.31±0.03 9.23±0.33
0.01 5,939 348 3 134±1.09 0.63±0.08 7.88±0.2

k-means||

- - 51 1 171±3.99 0.05±0 0.16±0.02
- - 101 2 153±1.47 0.31±0.02 0.43±0.03
- - 151 3 148±1.41 0.68±0.09 0.81±0.09
- - 201 4 143±0.98 1.06±0.05 1.19±0.06
- - 251 5 139±0.58 1.59±0.04 1.72±0.03

50

SOCCER

0.2 285,296 122.8±0.4 1 117±0.19 0.35±0.02 318.99±5.72
0.1 56,924 177 1 134±1.75 0.38±0.04 54.53±3.34
0.05 25,427 183 1 128±0.79 0.39±0.05 20.6±1.46
0.01 13,344 346 2 124±0.51 0.56±0.04 17.16±0.76

k-means||

- - 101 1 153±1.66 0.05±0 0.25±0.04
- - 201 2 139±1.14 0.5±0.03 0.72±0.05
- - 301 3 133±0.63 1.13±0.05 1.38±0.08
- - 401 4 129±0.65 1.95±0.03 2.2±0.05
- - 501 5 127±0.45 2.96±0.1 3.24±0.11

100

SOCCER

0.2 633,272 178±1 1 106±0.09 0.45±0.03 908.56±9.99
0.1 126,354 283 1 131±1.86 0.44±0.02 191.25±12.93
0.05 56,440 289 1 122±0.55 0.48±0.04 69.38±5.04
0.01 29,620 508 2 120±0.59 0.68±0.07 55.61±2.24

k-means||

- - 201 1 137±0.85 0.06±0.01 0.44±0.04
- - 401 2 125±0.92 0.85±0.03 1.29±0.06
- - 601 3 120±0.66 2.08±0.05 2.58±0.07
- - 801 4 117±0.5 3.75±0.05 4.29±0.1
- - 1001 5 115±0.61 5.62±0.08 6.15±0.08

200

SOCCER
0.1 277,721 470±20 1 119±2.93 0.65±0.02 671.95±18.65
0.05 124,053 496 1 115±0.51 0.67±0.05 251.17±16.4
0.01 65,104 820 2 119±0.79 0.84±0.02 192.33±5.38

k-means||

- - 401 1 122±1.22 0.06±0 0.84±0.04
- - 801 2 112±0.27 1.69±0.07 2.6±0.08
- - 1201 3 108±0.26 4.1±0.1 5.13±0.1
- - 1601 4 106±0.31 7.13±0.15 8.33±0.17
- - 2001 5 104±0.21 11.08±0.33 12.42±0.31
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Table 6: Census1990 dataset experiments with Standard KMeans as black-box. ‘T’ stands for time in seconds.

k ALG ε P1 Output size Rounds Cost (·106) T. Machine T. Total

25

SOCCER

0.2 95,908 90 1 172±1.34 0.12±0.03 17.67±1.15
0.1 22,018 121 1 188±4.89 0.1±0.02 5.4±0.3
0.05 10,550 204 2 179±2.68 0.11±0.01 5.69±0.24
0.01 5,856 489 4 176±1.07 0.23±0.02 8.69±0.17

k-means||

- - 51 1 418±133.76 0.05±0 0.16±0.04
- - 101 2 218±11.09 0.15±0 0.27±0.03
- - 151 3 199±3.39 0.28±0 0.4±0.03
- - 201 4 188±2.8 0.44±0.01 0.56±0.03
- - 251 5 185±3.03 0.61±0.01 0.76±0.06

50

SOCCER

0.2 215,487 121 1 131±1.47 0.11±0.01 49.62±3.63
0.1 49,471 177 1 156±2.77 0.11±0.01 14.57±1.24
0.05 23,704 266 2 140±2.39 0.14±0.03 15.61±0.65
0.01 13,158 592 4 138±1.55 0.24±0.03 20.17±0.53

k-means||

- - 101 1 318±79.46 0.05±0 0.27±0.05
- - 201 2 169±6.17 0.2±0 0.41±0.02
- - 301 3 153±3.33 0.42±0.01 0.67±0.05
- - 401 4 144±1.97 0.66±0.01 0.94±0.07
- - 501 5 140±1.43 0.97±0.02 1.3±0.07

100

SOCCER

0.2 478,318 177 1 100±0.81 0.15±0.02 172.23±11.82
0.1 109,813 283 1 132±2.7 0.14±0.01 43.41±2
0.05 52,616 378 2 110±0.87 0.17±0.03 45.09±2.1
0.01 29,207 712 3 110±0.88 0.29±0.04 51.47±1.52

k-means||

- - 201 1 264±67.1 0.05±0 0.44±0.02
- - 401 2 133±2.3 0.31±0.01 0.77±0.08
- - 601 3 119±1.05 0.65±0.01 1.15±0.06
- - 801 4 112±0.97 1.1±0.01 1.69±0.13
- - 1001 5 109±0.67 1.67±0.03 2.21±0.08

200

SOCCER
0.1 241,364 489 1 111±1.9 0.19±0.01 152.95±9.98
0.05 115,648 563.2 1,2 89.7±1.13 0.22±0.03 143.42±10.41
0.01 64,197 1130 3 87.3±0.54 0.41±0.03 147.67±6.72

k-means||

- - 401 1 224±49.18 0.05±0 0.92±0.14
- - 801 2 104±2.75 0.5±0.01 1.45±0.07
- - 1201 3 93.8±0.97 1.14±0.02 2.27±0.09
- - 1601 4 88.7±0.45 1.96±0.03 3.19±0.06
- - 2001 5 87±0.56 3.03±0.06 4.35±0.1
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Table 7: KDDCup1999 dataset experiments with Standard KMeans as black-box. ‘T’ stands for time in seconds.

k ALG ε P1 Output size Rounds Cost (·1012) T. Machine T. Total

25

SOCCER

0.2 110,088 115 1 112.79±10.71 0.15±0.02 9.25±1.84
0.1 23,590 236±40 2.2±0.4 118.21±18.54 0.24±0.02 5.62±0.96
0.05 10,920 433 4 130.33±12.46 0.35±0.03 6.04±0.32
0.01 5,896 1324±49 11.2±0.42 113.55±10.09 1.01±0.09 13.91±0.73

k-means||

- - 51 1 253.76±34.98 0.07±0 0.18±0.03
- - 101 2 157.12±12.26 0.23±0 0.34±0.03
- - 151 3 148.23±22.31 0.44±0.01 0.55±0.03
- - 201 4 124.1±3.3 0.71±0.01 0.82±0.04
- - 251 5 126.4±11.82 1.03±0.01 1.15±0.02

50

SOCCER

0.2 247,347 171 1 21.77±1.33 0.18±0.03 23.34±3.9
0.1 53,003 304 2 23.71±4.96 0.3±0.02 11.84±0.83
0.05 24,535 515±70 3.5±0.5 23.95±3.82 0.41±0.02 11.1±1.21
0.01 13,249 1352±62 8.8±0.4 22.98±2.19 0.96±0.06 19.23±1.05

k-means||

- - 101 1 108.72±29.12 0.07±0 0.25±0.02
- - 201 2 37.17±10.96 0.33±0.01 0.56±0.08
- - 301 3 35.18±4.36 0.69±0.01 0.91±0.05
- - 401 4 35.19±5.25 1.13±0.01 1.36±0.04
- - 501 5 32.8±5.59 1.69±0.02 1.97±0.08

100

SOCCER

0.2 549,037 277 1 7.43±0.66 0.27±0.04 71.35±7.87
0.1 117,651 466 2 8.07±0.76 0.39±0.02 29.1±2.11
0.05 54,461 667 3 7.13±0.52 0.55±0.03 24.85±1.15
0.01 29,409 1528 7 5.97±0.36 1.15±0.07 37.81±1.3

k-means||

- - 201 1 51.75±15.63 0.06±0 0.47±0.05
- - 401 2 6.49±0.74 0.54±0.01 0.92±0.04
- - 601 3 8.41±0.8 1.16±0.02 1.62±0.14
- - 801 4 8.54±1.34 1.99±0.03 2.4±0.04
- - 1001 5 7.95±0.49 3.05±0.03 3.55±0.13

200

SOCCER
0.1 258,592 778 2 3.06±0.08 0.56±0.04 93.74±6.77
0.05 119,705 1088 3 2.89±0.33 0.73±0.05 64.74±4.33
0.01 64,641 2060 6 2.46±0.21 1.46±0.07 82.2±2.99

k-means||

- - 401 1 10.85±2.14 0.06±0 0.89±0.18
- - 801 2 1.71±0.5 0.92±0.02 1.81±0.23
- - 1201 3 2.62±0.35 2.11±0.05 3.06±0.25
- - 1601 4 2.76±0.11 3.64±0.09 4.6±0.12
- - 2001 5 2.41±0.35 5.69±0.08 6.73±0.11
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Table 8: BigCross dataset experiments with Standard KMeans as black-box. ‘T’ stands for time in seconds.

k ALG ε P1 Output size Rounds Cost (·1010) T. Machine T. Total

25

SOCCER

0.2 126,978 90 1 328± 5 0.43±0.06 60.32±3.7
0.1 25,335 106±13 1 332± 7 0.39±0.03 11.95±0.9
0.05 11,316 204 2 345± 5 0.4±0.05 6.82±0.24
0.01 5,939 358±13 3 319± 2 0.87±0.08 7.78±0.26

k-means||

- - 51 1 519± 40 0.18±0.01 0.27±0.03
- - 101 2 367± 9 0.49±0.01 0.6±0.02
- - 151 3 350± 5 0.93±0.04 1.05±0.06
- - 201 4 339± 6 1.59±0.05 1.71±0.06
- - 251 5 330± 6 2.14±0.09 2.28±0.1

50

SOCCER

0.2 285,296 121 1 224± 4 0.41±0.01 164.48±16.65
0.1 56,924 127 1 221± 3 0.47±0.05 35.69±2.03
0.05 25,427 266 2 242± 3 0.5±0.05 19.17±1.26
0.01 13,344 444 3 215± 1 0.83±0.06 17.42±0.61

k-means||

- - 101 1 365± 28 0.18±0.02 0.39±0.03
- - 201 2 244± 6 0.78±0.07 1.02±0.09
- - 301 3 230± 2 1.33±0.01 1.58±0.03
- - 401 4 223± 2 2.27±0.07 2.55±0.1
- - 501 5 217± 1 3.54±0.19 3.84±0.12

100

SOCCER

0.2 633,272 177 1 151± 1 0.54±0.06 510.31±41.78
0.1 126,354 183 1 152± 1 0.53±0.03 105.06±9.78
0.05 56,440 289 1 170± 2 0.61±0.05 48.38±3.31
0.01 29,620 580± 50 2,3 154± 2 0.94±0.07 48.47±3.34

k-means||

- - 201 1 242± 20 0.18±0.03 0.56±0.06
- - 401 2 169± 2 1.1±0.04 1.54±0.05
- - 601 3 157± 2 2.43±0.18 2.94±0.18
- - 801 4 153± 1 3.94±0.25 4.49±0.33
- - 1001 5 150± 1 6.17±0.31 6.71±0.32

200

SOCCER
0.1 277,721 289 1 103± 0 0.73±0.04 336.87±27.02
0.05 124,053 496 1 117± 2 0.74±0.04 142.19±9.06
0.01 65,104 820 2 109± 1 1.13±0.07 121.35±4.43

k-means||

- - 401 1 166± 9 0.21±0.06 1.04±0.07
- - 801 2 119± 1 1.8±0.03 2.72±0.03
- - 1201 3 111± 1 4.08±0.13 5.31±0.28
- - 1601 4 107± 1 7.31±0.09 8.56±0.09
- - 2001 5 106± 0 10.86±0.32 12.24±0.32
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A.7 Results for MiniBatchKMeans as black-box for SOCCER

The results for SOCCER and k-means||, when MiniBatchKMeans used as black-box for SOCCER are provided below
in Table 9, Table 10 , Table 11, , Table 12, and Table 13.
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Table 9: k-GaussianMixture dataset experiments with MiniBatchKMeans used as black-box. ‘T’ stands for time
in seconds.

k ALG ε P1 Output size Rounds Cost T (machine) T (Total)

25

SOCCER

0.2 126,978 105±13 1 150.2±0.2 0.32±0.06 1.03±0.2
0.1 25,335 161±50 1.6±0.5 150.3±0.1 0.49±0.12 1.14±0.25
0.05 11,316 178±53 1.5±0.5 150.5±0.1 0.49±0.14 1.05±0.28
0.01 5,939 348 3 150.1±0 0.74±0.12 1.67±0.18

k-means||

- - 51 1 1,688,270.3±951992.1 0.05±0 0.15±0.03
- - 101 2 37,530.5±46409 0.33±0.01 0.43±0.02
- - 151 3 196.9±18.6 0.76±0.03 0.87±0.03
- - 201 4 171.2±4.7 1.32±0.06 1.42±0.06
- - 251 5 164.4±2.1 1.98±0.07 2.1±0.07

50

SOCCER

0.2 285,296 171 1 150.4±0.3 0.52±0.1 1.91±0.28
0.1 56,924 216±41 1.5±0.5 152.1±5.2 0.51±0.07 1.5±0.31
0.05 25,427 244±42 1.7±0.5 150.6±0.2 0.65±0.14 1.48±0.23
0.01 13,344 361±47 2.1±0.3 150.3±0.1 0.83±0.09 1.86±0.18

k-means||

- - 101 1 1,283,640.5±558248.2 0.05±0 0.24±0.04
- - 201 2 13,399.3±11108.8 0.62±0.03 0.81±0.04
- - 301 3 211.5±6.8 1.45±0.04 1.66±0.04
- - 401 4 174.9±2.3 2.52±0.05 2.71±0.07
- - 501 5 166±1 3.83±0.08 4.04±0.12

100

SOCCER

0.2 633,271 277 1 628.2±612.3 0.67±0.13 4.19±0.76
0.1 126,354 406±52 2 154±6.1 0.91±0.11 3.22±0.3
0.05 56,440 390±54 1.9±0.3 150.7±0.5 0.94±0.1 2.7±0.37
0.01 29,620 550±54 2.4±0.5 150.3±0 1.05±0.13 2.91±0.21

k-means||

- - 201 1 1,079,458.8±266814.6 0.05±0.01 0.45±0.13
- - 401 2 25,866.5±16072.3 1.09±0.03 1.51±0.14
- - 601 3 226.9±61.2 2.67±0.06 3.09±0.1
- - 801 4 176.6±3.1 4.75±0.05 5.21±0.08
- - 1001 5 167.2±1.7 7.09±0.1 7.52±0.11

200

SOCCER
0.1 277,721 733±96 1.9±0.3 156.9±4.8 1.42±0.17 6.94±0.31
0.05 124,053 757±74 2 150.9±0.6 1.47±0.12 5.13±0.29
0.01 65,104 1008±86 3 855.6±1139.9 1.71±0.11 5.53±0.26

k-means||

- - 401 1 1,104,954±201686.7 0.05±0.01 0.82±0.06
- - 801 2 26,593.9±9916.1 2.08±0.04 3±0.14
- - 1201 3 218.8±14.9 4.97±0.09 5.89±0.1
- - 1601 4 175.7±1.5 8.72±0.1 9.74±0.17
- - 2001 5 167±1.8 13.16±0.12 14.18±0.17
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Table 10: Higgs dataset experiments with MiniBatchKMeans used as black-box. ‘T’ stands for time in seconds.

k Alg ε P1 Output size Rounds Cost (·106) T (machine) T (Total)

25

SOCCER

0.2 126,978 92±2 1 129.5±0.9 0.27±0.03 1.04±0.12
0.1 25,335 121 1 141.5±2 0.29±0.02 0.83±0.09
0.05 11,316 204 2 144.5±1.8 0.31±0.04 0.99±0.11
0.01 5,939 348 3 135.2±0.7 0.49±0.04 1.52±0.19

k-means||

- - 51 1 171±4 0.05±0 0.16±0.02
- - 101 2 153±1.5 0.31±0.02 0.43±0.03
- - 151 3 148±1.4 0.68±0.09 0.81±0.09
- - 201 4 143±1 1.06±0.05 1.19±0.06
- - 251 5 139±0.6 1.59±0.04 1.72±0.03

50

SOCCER

0.2 285,296 123±0.4 1 118.1±0.3 0.35±0.04 1.98±0.22
0.1 56,924 177 1 133.4±1.6 0.37±0.04 1.26±0.18
0.05 25,427 183 1 128.2±0.8 0.38±0.05 1.16±0.11
0.01 13,344 346 2 124.9±0.4 0.54±0.06 1.69±0.16

k-means||

- - 101 1 153±1.7 0.05±0 0.25±0.04
- - 201 2 139±1.1 0.5±0.03 0.72±0.05
- - 301 3 133±0.6 1.13±0.05 1.38±0.08
- - 401 4 129±0.7 1.95±0.03 2.2±0.05
- - 501 5 127±0.4 2.96±0.1 3.24±0.11

100

SOCCER

0.2 633,272 179±0.4 1 106.7±0.2 0.55±0.03 4.03±0.2
0.1 126,354 283 1 127.5±1.4 0.49±0.06 2.06±0.2
0.05 56,440 289 1 121.5±0.7 0.51±0.06 1.89±0.18
0.01 29,620 508 2 121.1±0.7 0.73±0.06 2.62±0.14

k-means||

- - 201 1 137±0.8 0.06±0.01 0.44±0.04
- - 401 2 125±0.9 0.85±0.03 1.29±0.06
- - 601 3 120±0.7 2.08±0.05 2.58±0.07
- - 801 4 117±0.5 3.75±0.05 4.29±0.1
- - 1001 5 115±0.6 5.62±0.08 6.15±0.08

200

SOCCER
0.1 277,721 480±17 1 117.3±1.3 0.79±0.06 4.23±0.31
0.05 124,053 496 1 115.3±0.4 0.77±0.07 3.54±0.21
0.01 65,104 820 2 116.7±0.7 0.94±0.08 4.45±0.34

k-means||

- - 401 1 122±1.2 0.06±0 0.84±0.04
- - 801 2 112±0.3 1.69±0.07 2.6±0.08
- - 1201 3 108±0.3 4.1±0.1 5.13±0.1
- - 1601 4 106±0.3 7.13±0.15 8.33±0.17
- - 2001 5 104±0.2 11.08±0.33 12.42±0.31
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Table 11: Census1990 dataset experiments with MiniBatchKMeans used as black-box. ‘T’ stands for time in seconds.

k ALG ε P1 Output size Rounds Cost (·106) T (machine) T (Total)

25

SOCCER

0.2 95,908 90 1 171.3±1.7 0.11±0.05 0.96±0.14
0.1 22,018 121 1 187.8±4 0.11±0.04 0.65±0.16
0.05 10,550 204 2 179.6±3.6 0.14±0.05 0.85±0.13
0.01 5,856 489 4 175.8±1.6 0.3±0.07 1.65±0.17

k-means||

- - 51 1 418±133.8 0.05±0 0.16±0.04
- - 101 2 218±11.1 0.15±0 0.27±0.03
- - 151 3 199±3.4 0.28±0 0.4±0.03
- - 201 4 188±2.8 0.44±0.01 0.56±0.03
- - 251 5 185±3 0.61±0.01 0.76±0.06

50

SOCCER

0.2 215,487 121 1 129.1±1.4 0.1±0.03 1.79±0.19
0.1 49,471 177 1 155.2±2.8 0.15±0.05 1.08±0.14
0.05 23,704 266 2 139.8±1.4 0.15±0.06 1.2±0.16
0.01 13,158 592 4 135.6±1.1 0.31±0.08 2.02±0.18

k-means||

- - 101 1 318±79.5 0.05±0 0.27±0.05
- - 201 2 169±6.2 0.2±0 0.41±0.02
- - 301 3 153±3.3 0.42±0.01 0.67±0.05
- - 401 4 144±2 0.66±0.01 0.94±0.07
- - 501 5 140±1.4 0.97±0.02 1.3±0.07

100

SOCCER

0.2 478,318 177 1 99.6±0.8 0.22±0.08 4.27±0.34
0.1 109,813 283 1 126.8±3.1 0.18±0.06 1.9±0.18
0.05 52,616 378 2 110.5±1.3 0.17±0.06 2.22±0.16
0.01 29,207 722±32 3.1±0.3 105.3±1.4 0.39±0.09 2.98±0.18

k-means||

- - 201 1 264±67.1 0.05±0 0.44±0.02
- - 401 2 133±2.3 0.31±0.01 0.77±0.08
- - 601 3 119±1 0.65±0.01 1.15±0.06
- - 801 4 112±1 1.1±0.01 1.69±0.13
- - 1001 5 109±0.7 1.67±0.03 2.21±0.08

200

SOCCER
0.1 241,364 489 1 107.8±2.7 0.31±0.06 4.33±0.43
0.05 115,648 592 2 89.4±0.6 0.29±0.07 4.48±0.26
0.01 64,197 1130 3 87.3±0.2 0.47±0.08 5.49±0.34

k-means||

- - 401 1 224±49.2 0.05±0 0.92±0.14
- - 801 2 104±2.7 0.5±0.01 1.45±0.07
- - 1201 3 93.8±1 1.14±0.02 2.27±0.09
- - 1601 4 88.7±0.4 1.96±0.03 3.19±0.06
- - 2001 5 87±0.6 3.03±0.06 4.35±0.1
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Table 12: KDDCup1999 dataset experiments with MiniBatchKMeans used as black-box. ‘T’ stands for time in seconds.

k Alg ε P1 Output size Rounds Cost (·1010) T (machine) T (Total)

25

SOCCER

0.2 110,088 115 1 6,273,229±102,539 0.14±0.01 0.94±0.15
0.1 23,590 313 3 3,034,310±1,064,972 0.25±0.01 1.33±0.13
0.05 10,920 433 4 3,982,745±1124135 0.37±0.04 1.6±0.2
0.01 5,896 1243±61 10.5±0.5 2,344,966±946,061 0.88±0.06 3.88±0.21

k-means||

- - 51 1 254±35 0.07±0 0.18±0.03
- - 101 2 157±12.3 0.23±0 0.34±0.03
- - 151 3 148±22.3 0.44±0.01 0.55±0.03
- - 201 4 124±3.3 0.71±0.01 0.82±0.04
- - 251 5 126±11.8 1.03±0.01 1.15±0.02

50

SOCCER

0.2 247,347 171 1 5,971,765±351183 0.17±0.01 1.59±0.18
0.1 53,003 304 2 5,716,218±507,248 0.29±0.01 1.5±0.13
0.05 24,535 555±56 3.8±0.4 2,995,765±1,379,745 0.43±0.03 2.05±0.21
0.01 13,249 1248±47 8.1±0.3 3,946,555±954,957 0.89±0.02 3.86±0.23

k-means||

- - 101 1 109±29.1 0.07±0 0.25±0.02
- - 201 2 37.2±11 0.33±0.01 0.56±0.08
- - 301 3 35.2±4.4 0.69±0.01 0.91±0.05
- - 401 4 35.2±5.3 1.13±0.01 1.36±0.04
- - 501 5 32.8±5.6 1.69±0.02 1.97±0.08

100

SOCCER

0.2 549,037 277 1 5,969,280±355,576 0.26±0.02 3.22±0.22
0.1 117,651 466 2 5,587,433±940,351 0.38±0.02 2.66±0.27
0.05 54,461 667 3 3,924,526±674,470 0.52±0.02 2.89±0.18
0.01 29,409 1528 7 3,530,365±841,054 1.11±0.03 5.36±0.25

k-means||

- - 201 1 51.7±15.6 0.06±0 0.47±0.05
- - 401 2 6.5±0.7 0.54±0.01 0.92±0.04
- - 601 3 8.4±0.8 1.16±0.02 1.62±0.14
- - 801 4 8.5±1.3 1.99±0.03 2.4±0.04
- - 1001 5 8±0.5 3.05±0.03 3.55±0.13

200

SOCCER
0.1 258,592 778 2 4,561,690±1,036,461 0.61±0.04 5.3±0.25
0.05 119,705 1088 3 2,859,826±1,177,854 0.78±0.07 5.2±0.21
0.01 64,641 2060 6 3,814,931±1,066,684 1.46±0.08 8.22±0.23

k-means||

- - 401 1 10.8±2.1 0.06±0 0.89±0.18
- - 801 2 1.7±0.5 0.92±0.02 1.81±0.23
- - 1201 3 2.6±0.4 2.11±0.05 3.06±0.25
- - 1601 4 2.8±0.1 3.64±0.09 4.6±0.12
- - 2001 5 2.4±0.4 5.69±0.08 6.73±0.11
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Table 13: BigCross dataset experiments with MiniBatchKMeans used as black-box. ‘T’ stands for time in seconds.

k ALG epsilon P1 Output size Rounds Cost (10ˆ10) T (machine) T (Total)

25

SOCCER

0.2 126,978 90 1 328±2.6 0.38±0.03 1.39±0.13
0.1 25,335 99±8 1 327±6.3 0.37±0.05 0.86±0.12
0.05 11,316 204 2 345±8 0.4±0.03 1.1±0.15
0.01 5,939 365±12 3 318±3.2 0.79±0.02 1.81±0.11

k-means||

- - 51 1 519±39.6 0.18±0.01 0.27±0.03
- - 101 2 367±8.7 0.49±0.01 0.6±0.02
- - 151 3 350±4.8 0.93±0.04 1.05±0.06
- - 201 4 339±6.3 1.59±0.05 1.71±0.06
- - 251 5 330±5.5 2.14±0.09 2.28±0.1

50

SOCCER

0.2 285,296 121 1 222±3.7 0.47±0.05 2.44±0.23
0.1 56,924 142±24 1 221±2.1 0.45±0.02 1.3±0.17
0.05 25,427 266 2 242±4.2 0.48±0.04 1.55±0.19
0.01 13,344 444 3 217±1.8 0.85±0.13 2.26±0.2

k-means||

- - 101 1 365±28 0.18±0.02 0.39±0.03
- - 201 2 244±5.9 0.78±0.07 1.02±0.09
- - 301 3 230±2.1 1.33±0.01 1.58±0.03
- - 401 4 223±2.3 2.27±0.07 2.55±0.1
- - 501 5 217±1.4 3.54±0.19 3.84±0.12

100

SOCCER

0.2 633,272 177 1 150±1.3 0.59±0.05 5.17±0.23
0.1 126,354 193 1 148±1.2 0.59±0.07 2.3±0.15
0.05 56,440 298±28 1.1±0.3 169±2.7 0.59±0.05 2.15±0.18
0.01 29,620 612 3 154±1.3 0.87±0.03 3.1±0.17

k-means||

- - 201 1 242±20 0.18±0.03 0.56±0.06
- - 401 2 169±2.3 1.1±0.04 1.54±0.05
- - 601 3 157±2 2.43±0.18 2.94±0.18
- - 801 4 153±1.5 3.94±0.25 4.49±0.33
- - 1001 5 150±1 6.17±0.31 6.71±0.32

200

SOCCER
0.1 277,721 289 1 102±0.3 0.74±0.02 4.33±0.25
0.05 124,053 496 1 116±2.1 0.79±0.07 3.72±0.16
0.01 65,104 820 2 109±0.7 1.13±0.05 4.74±0.18

k-means||

- - 401 1 166±8.6 0.21±0.06 1.04±0.07
- - 801 2 119±1.4 1.8±0.03 2.72±0.03
- - 1201 3 111±1 4.08±0.13 5.31±0.28
- - 1601 4 107±0.5 7.31±0.09 8.56±0.09
- - 2001 5 106±0.4 10.86±0.32 12.24±0.32
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