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Abstract

Many novel notions of “risk” (e.g., CVaR, tilted

risk, DRO risk) have been proposed and studied,

but these risks are all at least as sensitive as the

mean to loss tails on the upside, and tend to ig-

nore deviations on the downside. We study a

complementary new risk class that penalizes loss

deviations in a bi-directional manner, while hav-

ing more flexibility in terms of tail sensitivity than

is offered by mean-variance. This class lets us de-

rive high-probability learning guarantees without

explicit gradient clipping, and empirical tests us-

ing both simulated and real data illustrate a high

degree of control over key properties of the test

loss distribution of gradient-based learners.

1 INTRODUCTION

What does it mean for a learner to successfully generalize?

Broadly speaking, this is an ambiguous property of learning

systems that can be defined, measured, and construed in

countless ways. In the context of machine learning, how-

ever, the notion of “success” in off-sample generalization

is almost without exception formalized as minimizing the

expected value of a random loss Eμ L(h), where h is a can-

didate parameter, model, or decision rule, and L(h) is a

random variable on a probability space (Ω,F , μ) (Mohri

et al., 2012; Shalev-Shwartz and Ben-David, 2014). The

idea of quantifying the risk of an unexpected outcome (here,

a random loss) using the expected value dates back to the

Bernoullis and Gabriel Cramer in the early 18th century

(Bassett, 1987; Hacking, 2006). In a more modern context,

the emphasis on average performance is the “general set-

ting of the learning problem” of Vapnik (1999), and plays

a central role in the decision-theoretic learning model of

Haussler (1992). Use of the expected loss to quantify off-

sample generalization has been essential to the development
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of both the statistical and computational theories of learning

(Devroye et al., 1996; Kearns and Vazirani, 1994).

While the expected loss still remains pervasive, important

new lines of work on risk-sensitive learning have begun ex-

ploring novel feedback mechanisms for learning algorithms,

in some cases derived directly from new risk functions that

replace the expected loss. Learning algorithms designed

using conditional value-at-risk (CVaR) (Curi et al., 2020)

and tilted (or “entropic”) risk (Föllmer and Knispel, 2011;

Li et al., 2021a,b) are well-known examples of location

properties which emphasize loss tails in one direction more

than the mean itself does. This is often used to increase

sensitivity to “worst-case” events (Kashima, 2007; Takeda

and Sugiyama, 2008), but in special cases where losses are

bounded below, sensitivity to tails on the downside can be

used to realize an insensitivity to tails on the upside (Lee

et al., 2020). This strong asymmetry is not specific to the

preceding two risk function classes, but rather is inherent in

much broader classes such as optimized certainty equivalent

(OCE) risk (Ben-Tal and Teboulle, 1986, 2007; Lee et al.,

2020) and distributionally robust optimization (DRO) risk

(Ben-Tal et al., 2013; Duchi and Namkoong, 2018, 2019;

Gotoh et al., 2018). Unsurprisingly, naive empirical esti-

mators of these risks are particularly fragile under outliers

coming from the “sensitive direction,” as is evidenced by

the plethora of attempts in the literature to design robust

modifications (Holland and Haress, 2021; Prashanth et al.,

2020; Zhai et al., 2021). In general, however, loss distri-

butions can display long tails in either direction over the

learning process (see Figure 3), particularly when losses

are unbounded below (e.g., negative rewards (Sutton and

Barto, 2018), unhinged loss (Van Rooyen et al., 2016)), and

loss functions whose empirical mean has no minimum ap-

pear frequently (e.g., separable logistic regression (Albert

and Anderson, 1984; Rousseeuw and Christmann, 2003)).

Since the tail behavior of stochastic losses and gradients is

well-known to play a critical role in the stability and robust-

ness of learning systems (Şimşekli et al., 2019; Zhang et al.,

2020), the inability to control tail sensitivity in both direc-

tions represents a genuine limitation to machine learning

methodology.

A natural alternative class of risk functions that gives us

control over tail sensitivity in both directions is that of the
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“M-location” of the loss distribution, namely any value in

argmin
θ∈R

Eμ ρ (L(h)− θ) ⊂ R, (1)

where ρ : R → R+ is assumed to be such that this set of

minimizers is non-empty. Here various special choices of

ρ let us recover well-known locations, such as the mean

(with ρ(·) = (·)2), median (ρ(·) = |·|), arbitrary quantiles

(via “pinball” function (Takeuchi et al., 2006)), and even

further beyond to “expectiles” (using curved variants of the

pinball function (Gneiting, 2011)). The obvious limitation

here is that while computing (1) using empirical estimates is

easy, minimization as a function of h is in general a difficult

bi-level programming problem. As an alternative approach,

in this paper we study the potential benefits and tradeoffs

that arise in using performance criteria of the form

min
θ∈R

[ηθ +Eμ ρ (L(h)− θ)] (2)

where η ∈ R. By making a sacrifice of fidelity to the M-

location (1), we see that the criterion in (2) suggests a conge-

nial objective function (joint in (h, θ)). Intuitively, one min-

imizes the sum of generalized “location” and “dispersion”

properties, and the nature of this dispersion impacts the fi-

delity of the location term to the original M-location induced

by ρ. These two locations align perfectly in the special case

where we set ρ(·) = (·)2/2 and η = 1, since (2) is equiva-

lent to the mean-variance objective Eμ L(h) + varμ L(h)/2,

but more generally, it is clear that allowing for more di-

verse choices of ρ gives us new freedom in terms of tail

control with respect to both location and dispersion. We

consider a concrete yet flexible class of risk functions that

generalizes beyond (2), allows for easy implementation, and

is analytically tractable from the standpoint of providing

formal learning guarantees. Our main contributions are as

follows:

• A new class of “threshold risks” (T-risks, §3) that pro-

vide a tractable alternative to M-locations, and a bi-

directional complement to OCE/DRO risks (cf. §2).

• A stochastic learning algorithm for T-risks that enjoys

high-probability guarantees of convergence to a station-

ary point under heavy-tailed losses/gradients, without

manual clipping (details in §4, Theorem 3).

• Strong empirical evidence of the flexibility and utility

inherent in T-risk learners. In particular: robustness to

unbalanced noisy class labels without regularization

(§5.1), sharp control over sensitivity to outliers in re-

gression with convex base losses (§C.1), and smooth

interpolation between mean and mean-variance mini-

mizers on clean, normalized benchmark classification

datasets (§C.2).

The overall flow of the paper is as follows. Background

information on notation and related literature is given in §2,

and we introduce the new risk class of interest in §3. Formal

aspects of the learning problem and algorithms centered

around these risks are treated in §4. Empirical findings for

the learning problem are explained and discussed in §C

of the supplementary materials. Detailed notation, formal

proofs and other supplementary results are organized in §A–

§F of the appendix, and code for reproducing all the results

in this paper is provided in an online repository.1

2 BACKGROUND

OCE-type risks As a computationally convenient way

to interpolate between the mean and the extreme values of

L(h), the tilted risk (Li et al., 2021a,b) is a natural choice,

defined for γ �= 0 as

Rtilt(h; γ) ..=
1

γ
log

(
Eμ e

γ L(h)
)
. (3)

This is simply a re-scaling of the cumulant distribution

function of L(h), viewed as a function of h, where taking

γ → ∞ and γ → −∞ lets us approach the supremum

and infimum of L(h), respectively. Another important class

of risk functions is based upon the conditional value-at-
risk (CVaR) (Rockafellar and Uryasev, 2000), defined for

0 ≤ β < 1 as

RCVaR(h;β) ..= Eμ

[
L(h) | L(h) ≥ Qβ(h)

]
. (4)

This is the expected loss at h, conditioned on the event that

the loss exceeds the β-quantile of L(h), denoted here by

Qβ(h)
..= inf {x ∈ R : P{L(h) ≤ x} ≥ β}. Both of these

risk functions can be re-written in a form similar to that of

(2), namely

h 	→ inf
θ∈R

[θ +Eμ φ(L(h)− θ)] (5)

where φ(x) = (eγx − 1)/γ yields Rtilt (basic calculus), and

φ(x) = max{0, x}/(1− β) yields RCVaR (see Rockafellar

and Uryasev (2000, 2002)). When φ : R → R is restricted

to be a non-decreasing, closed, convex function which sat-

isfies both φ(0) = 0 and 1 ∈ ∂φ(0), the mapping given in

(5) is called an optimized certainty equivalent (OCE) risk
(Ben-Tal and Teboulle, 1986, 2007; Lee et al., 2020). The

class of OCE risks strictly generalizes the expected value

(noting φ(x) = x is valid), and includes Rtilt(·; γ) when

γ > 0, as well as RCVaR. The mean-variance is sometimes

stated to be an OCE risk (Lee et al., 2020, Table 1), but this

fails to hold when losses are unbounded above and below.

DRO-type risks Another important class of risk functions

is that of robustly regularized risks which are designed to

ensure that risk minimizers are robust to a certain degree

of divergence in the underlying data model. Making this

concrete, it is typical to assume the random losses are the

1https://github.com/feedbackward/bdd
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outputs of a loss function 	 depending on the candidate h and

some random data Z, i.e., L(h) = 	(h;Z), with Z ∼ μ as our

reference model. To measure divergence from this reference

model, it is convenient to use the Cressie-Read family of

divergence functions (Duchi and Namkoong, 2018; Zhai

et al., 2021), namely for any c > 1 and assuming ν � μ
(absolutely continuity) holds, functions of the form

Divc(ν;μ) ..= Eμ fc

(
dν

dμ

)
, (6)

where fc(x) ..= (xc − cx+ c− 1)/c(c− 1) and dν/dμ is

the Radon-Nikodym density of ν with respect to μ.2 The

resulting risk, called the DRO risk, is defined as

RDRO(h) ..= sup {E L(h) : L ∈ L} (7)

where the constrained set of random losses L, determined

by c > 1 and a > 0, is defined as

L ..= {L(·) = 	(·;Z) : Z ∼ ν and Divc(ν;μ) ≤ a} . (8)

For this particular family of divergences, the risk can be

characterized as the optimal value of a simple optimization

problem (Duchi and Namkoong, 2018), namely we have

that RDRO(h) is equal to

inf
θ∈R

[
θ + (1 + c(c− 1)a)

1/c (
Eμ (L(h)− θ)

c∗
+

)1/c∗]
(9)

where c∗ ..= c/(c − 1). While strictly speaking this is not

an OCE risk, setting φ(x) = (1 + c(c− 1)a)c∗/c(x)c∗+ , the

DRO risk can then be written as

RDRO(h) = inf
θ∈R

[
θ + [Eμ φ(L(h)− θ)]1/c∗

]
, (10)

giving us an expression of this risk as the sum of a thresh-

old and an asymmetric dispersion. When we set c = 2,

this yields the well-known special case of χ2-DRO risk
(Hashimoto et al., 2018; Zhai et al., 2021). In addition to the

one-directional nature of the dispersion term in these risks,

all of these risks are at least as sensitive to loss tails (on the

upside) as the classical expected loss Eμ L(h) is; this holds

for CVaR (with β > 0), tilted risk (with γ > 0), and even

robust variants of DRO risk (Zhai et al., 2021).

Key differences While it is clear that the form of the pre-

ceding risk classes given in (5) and (10) based on various

choices of φ(·) is the same as our ρ(·)-based risk of interest

in (2), they are fundamentally different in that none of the

choices of φ(·) induce a meaningful M-location; since all

these φ(·) are monotonic on R, both minimization and max-

imization of θ 	→ Eμ φ(L(h)− θ) is trivially accomplished

by taking |θ| → ∞. In stark contrast, ρ(·) is assumed to be

such that the solution set in (1) is a subset of the real line.

We will introduce a concrete and flexible class from which

ρ will be taken in §3, and in Figure 1 give a side-by-side

comparison with the φ functions discussed in the preceding

paragraphs.

2For background on absolute continuity and density functions,
see Ash and Doléans-Dade (2000, §2.2).

Closely related work Of all the papers cited above, the

works of Lee et al. (2020) on OCE risks, and Li et al.

(2021b,a) on tilted risks are of a similar nature to our paper,

with the obvious difference being that the class of risks is

fundamentally different, as described in the preceding para-

graphs. Indeed, many of our empirical tests involve direct

comparison with the risk classes studied in these works (e.g.,

Figures 2, 4, and 12), and so they provide critical context for

our work. Previous work by Holland (2022) studies a rudi-

mentary special case of what we call “minimal T-risk” here;

the focus in that work was on obtaining learning guaran-

tees (in expectation) when the risk is potentially non-convex

and non-smooth in h, but with convex ρ, and no compari-

son was made with OCE/DRO risk classes. We build upon

these results here, considering a broad class of dispersions

ρ which are differentiable but need not be convex (see (15));

we how such risk classes can readily admit high-probability

learning guarantees for stochastic gradient-based algorithms

(Theorem 3), provide bounds on the average loss incurred

by empirical risk minimizers using our risk (Proposition 7),

and make detailed empirical comparisons with each of the

key existing risk classes.

3 THRESHOLD RISK

To ground ourselves conceptually, let us refer to L(h) as

the base loss incurred by h. The exact nature of h is left

completely abstract for the moment, as all that matters is

the probability distribution of this base loss. By selecting

an arbitrary threshold θ ∈ R, we define a broad class of

properties as

Rρ(h; θ, η) ..= ηθ +Eμ ρ (L(h)− θ) . (11)

Here η ∈ R is a weighting parameter allowed to be negative,

and as a bare minimum, ρ is assumed to be such that the

resulting M-location(s) are well-defined in the sense that the

inclusion in (1) holds. We call ρ (L(h)− θ) the (random)

dispersion of the base loss, taken with respect to threshold

θ, and we refer to Rρ(h; θ, η) in (11) as the threshold risk
(or simply T-risk) under ρ.

3.1 Minimal T-risk and M-location

Arguably the most intuitive special case of T-risk is the

minimal T-risk, where minimization is with respect to the

threshold θ ∈ R. Let us denote this risk and the optimal
threshold set as

Rρ(h; η)
..= inf

θ∈R

Rρ(h; θ, η)

θρ(h; η) ..= argmin
θ∈R

Rρ(h; θ, η).
(12)

Clearly, if ρ is bounded above or grows too slowly, we will

have Rρ(h; η) = −∞ and no real-valued minimizers, i.e.,

θρ(h; η) = ∅. Letting Mρ(h) denote the M-locations in (1),
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for η �= 0 we have

θρ(h; η) �= ∅ =⇒ Mρ(h) �= ∅, (13)

although the converse does not hold in general.3 When

η = 0, these two solution sets align, i.e., we have θρ(h; 0) =
Mρ(h). More generally, depending on the sign of η, the

optimal thresholds can be either larger or smaller than the

corresponding M-locations. More precisely, for any θ′ ∈
Mρ(h), as long as θρ(h; η) is non-empty, there exists θ ∈
θρ(h; η) such that θ sign(η) ≤ θ′ sign(η).

Special case minimized by quantiles The form given in

(11) is very general, but it can be understood as a straight-

forward generalization of the convex objective used to char-

acterize quantiles. More precisely, taking β ∈ (0, 1) and

denoting the β-quantile of the base loss using Qβ(h)
..=

inf {x ∈ R : P{L(h) ≤ x} ≥ β}, it is well-known that in

the special case of ρ(·) = |·|, we have

Qβ(h) ∈ θρ(h; θ, 1− 2β) (14)

for any choice of 0 < β < 1, as long as Eμ|L(h)| is finite

(Koltchinskii, 1997). The T-risk in (11) simply allows for a

more flexible choice of ρ, and thus generalizes the dispersion

term in this objective function.

3.2 T-risk with scaled Barron dispersion

In order to capture a range of sensitivities to loss tails in

both directions, we would like to select ρ from a class of

functions that gives us sufficient control over scale, bound-

edness, and growth rates. As a concrete choice, we propose

to set ρ in (11) as ρ(x) = ρ(x/σ;α), where σ > 0 is a

scaling parameter, and ρ(·;α) with shape α ∈ [−∞, 2] is

a family of functions that ranges from bounded and loga-

rithmic growth on the lower end to quadratic growth on the

upper end, defined as:

ρ(x;α) ..=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x2/2, if α = 2

log
(
1 + x2/2

)
, if α = 0

1− exp
(−x2/2

)
, if α = −∞

|α−2|
α

((
1 + x2

|α−2|
)α/2

− 1

)
, otherwise.

(15)

At a high level, ρ(·;α) is approximately quadratic near zero

for any choice of shape α, but its growth as one deviates

far from zero depends greatly on α. We refer to (15) as

the Barron class of functions for computing dispersion.4

3For example, consider choices of ρ that are “re-descending”
(Huber and Ronchetti, 2009).

4The reason for this naming is that Barron (2019) recently
studied this class in the context of designing loss functions for
computer vision applications. We remark that this differs consider-
ably from our usage in computing the dispersion of random losses,
where the loss function underlying the base loss is left completely
arbitrary.

Recalling the risks reviewed in §2, since ρ(·;α) is flat at

zero and symmetric about zero, the Barron class clearly

takes us beyond the functions φ(·) allowed by OCE risks

(5) and used in typical DRO risk definitions (10); see Figure

1 for a visual comparison.

As mentioned in §B, we will often use the generic shorthand

notation ρσ(x) ..= ρ(x/σ), and drop the dependence on α
when clear from context. The shape parameter α gives us

direct control over the conditions needed for a finite T-risk

Rρ(h; θ, η), as the following lemma shows.

Lemma 1 (Finiteness and shape). Let ρ be from the Barron
class (15). Then in order to ensure Eμ ρσ(L(h)− θ) < ∞
holds for all θ ∈ R, each of the following conditions (de-
pending on the value of α) is sufficient. For 0 < α ≤ 2, let
Eμ|L(h)|α < ∞. For α = 0, let Eμ|L(h)|c < ∞ for some
c > 0. For −∞ ≤ α < 0, let L(h) be F-measurable. Fur-
thermore, for the cases where α �= 0, the above conditions
are also necessary.

Assuming μ-integrability as in Lemma 1, the Barron class

furnishes a non-empty set of M-locations Mρ(h) for any

choice of α, and when restricted to α ≥ 1 with appropri-

ate settings of η and σ, the optimal threshold set θρ(h; η)
contains a single unique solution (see Lemma 10). For any

valid choice of α, the function ρ(·;α) is twice continuously

differentiable on R (see §F.3 for exact expressions). All the

limits in α behave as we would expect: ρ(x;α) → ρ(x; c) as

α → c for c ∈ {−∞, 0, 2} (see §D.2 for details). For α ≥ 0,

the dispersion function is unbounded, with growth ranging

from logarithmic to quadratic depending on the choice of

α. For α < 0, the dispersion function is bounded. The

mapping x 	→ ρσ(x;α) is convex on R for α ≥ 1, and for

α < 1 it is only convex between ±σ
√|α− 2|/(1− α), and

concave elsewhere (see Lemma 8). The class Rρ(h; θ, η) of

T-risks (11) under the scaled Barron dispersion ρσ(x;α) is

the central focus of this paper.

3.3 Sensitivity to outliers and tail direction

Before we consider the learning problem, which typically

involves the evaluation of many different loss distributions

over the course of training, here we consider a fixed dis-

tribution, and numerically compare the T-risk (11) and M-

location (1) induced by ρ from the Barron class in §3.2,

along with the key OCE and DRO risks discussed in §2.

Experiment setup We generate random values to simulate

loss distributions, and evaluate how the values returned by

each risk function change as we modify their respective

parameters. Letting L denote the random base loss we are

simulating, we specify a parametric distribution for L, from

which we take an independent sample {L1, . . . , Lm}. In all

cases, we center the true distribution such that Eμ L = 0.

We use this common sample to compare the values returned

by each of the aforementioned risks, as well as the optimal
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Figure 1: Left-most plot: the graph of x 	→ ρ(x/σ;α) from §3.2 for varying choices of α, with σ fixed to σ = 0.2 for

visual ease. Middle two plots: graphs of φ(x) in (5) for CVaR and tilted risk, respectively over different choices of β and γ.

Right-most plot: graph of φ(x) in (10) for the χ2-DRO risk, where a ≥ 0 is re-parametrized using 0 ≤ ã < 1 using the

relation a = ((1− ã)−1 − 1)2/2.

choice of threshold parameter θ. To ensure that key trends

are consistent across samples, we take a large sample size of

m = 104. For T-risk, we adjust α and η, and for M-location,

just α. In both cases, we leave σ = 0.5 fixed. For CVaR,

we modify the quantile level 0 < β < 1. For tilted risk,

we modify the parameter γ ∈ R. For χ2-DRO risk, we

modify 0 < ã < 1, having re-parameterized a in (8) by

a ..= ((1− ã)−1−1)2/2, as is common practice (Zhai et al.,

2021).

Representative results An illustrative example is given

in Figure 2, where we look at how each risk class behaves

under a centered asymmetric distribution, before and af-

ter flipping it (i.e., under L and −L). Starting from the

two left-most plots, we show Rρ(L; η) (dashed curves)

and θρ(L; η) (solid curves) from (12) as a function of

α, coloring the area between these graphs in gray. The

first plot corresponds to η = 1, the second to η = −1.

Similarly for the M-location we plot Mρ(L) (solid) and

Mρ(L)+Eμ ρ(L−Mρ(L)) (dashed). Analogous values are

plotted for each of the other classes; note that for the tilted

risk (3) with γ > 0, the optimal threshold and the risk value

are in fact the same value (see §D.1). The right-most plot

is a histogram of the random sample {L1, . . . , Lm}, here

from a centered log-Normal distribution. All plots share a

common vertical axis, and horizontal rules are drawn at the

median (red, solid) and at the mean (gray, dotted; always

zero due to centering). The critical point to emphasize here

is how all the OCE and DRO risks here are highly asym-

metric in terms of their tail sensitivity, in stark contrast with

both the M-location and the T-risk. Turning tail sensitivity

high enough in each of these classes (e.g., α > 1.5, β > 0.5,

γ > 1.0, ã > 0.5), note how flipping the distribution tails

from the upside (top row) to the downside (bottom row)

leads to a dramatic decrease in all risks but the T-risk and

M-location. Finally, note how the T-risk thresholds θρ(L; η)
close in on the M-location Mρ(L) from above/below depend-

ing on whether η is negative/positive. Results for numerous

distributions are available in our online repository (cf. §1).

4 LEARNING ALGORITHM ANALYSIS

We now proceed to consider the learning problem, in which

the goal is ultimately to select a candidate h such that the

distribution of L(h) is “optimal” in the sense of achieving

the smallest possible value of T-risk Rρ(h; θ, η) in (11), with

ρ taken from the Barron class (15), and h taken from some

set H. An obvious take-away of the integrability conditions

(Lemma 1) is that even when the base loss is heavy-tailed in

the sense of having infinite higher-order moments, we can

always adjust the dispersion function ρ(·;α) in such a way

that transforming the base loss to obtain new feedback

Lρ(h; θ, η) ..= ηθ + ρσ(L(h)− θ;α) (16)

gives us an unbiased estimator of the finite T-risk, i.e.,

Eμ Lρ(h; θ, η) = Rρ(h; θ, η) ∈ R. Intuitively, one expects

that a similar property can be leveraged to control heavy-

tailed stochastic gradients used in an iterative learning al-

gorithm. We explore this point in detail in §4.1. We will

then complement this analysis by considering in §4.2 the

basic properties of T-risk at the minimal threshold Rρ(h; η)
given in (12), viewed from the perspectives of axiomatic

risk design and empirical risk minimization.

4.1 T-risk and stochastic gradients

For the time being let us fix an arbitrary threshold θ ∈ R,

and assuming the gradient L′(h) is μ-almost surely finite,

denote the partial derivative of the transformed losses (16)
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Figure 2: Evaluation of risk class behavior after flipping an asymmetric distribution.

with respect to h by

∂h Lρ(h; θ, η) ..= ρ′σ(L(h)− θ)L′(h). (17)

Writing ∂h Rρ for the gradient of h 	→ Rρ(h; θ, η), an ana-

logue of Lemma 1 for gradients holds.

Lemma 2 (Unbiased gradients). Let U be an open subset of
any metric space such that H ⊆ U . Let the base loss map
h 	→ L(h) be Fréchet differentiable on U (μ-almost surely),
with gradient denoted by L′(h) for each h ∈ U . Fixing any
choice of −∞ ≤ α ≤ 2, we have that

Eμ

[
sup
h∈H

‖ρ′σ(L(h))L′(h)‖
]
< ∞ =⇒ Eμ [∂h Lρ] = ∂h Rρ

(18)

with the implied equality valid on all of H× R
2.

Consider a setting in which the gradients are heavy-tailed,

i.e., where Eμ‖L′(h)‖p = ∞ for p > 2. If the ultimate goal

of learning is minimization of h 	→ Eμ L(h), then in order

to obtain high-probability guarantees of finding a nearly-

stationary point with rates matching the in-expectation case,

one cannot naively use the raw gradients L′(h), but must

rather carry out a delicate truncation which accounts for the

bias incurred (Cutkosky and Mehta, 2021; Gorbunov et al.,

2020, 2021; Nazin et al., 2019). On the other hand, if the

ultimate objective is h 	→ Rρ(h; θ, η), then using (17) there

is zero bias by design (Lemma 2), and when we take the

shape parameter of our dispersion function such that α ≤ 0,

we have

P {‖∂h Lρ(h; θ, η)‖ ≤ Γ} = 1 (19)

for an appropriate choice of 0 < Γ < ∞ under standard

loss functions such as quadratic and logistic losses, even

when the random losses and gradients are heavy-tailed (see

Corollary 4).

To see how this plays out for the analysis of learning algo-

rithms, let us consider plugging the raw stochastic gradients

∂h Lρ into a simple update procedure. Given an independent

sequence of random losses (L1, L2, . . .), let us denote by

(Lρ,1, Lρ,2, . . .) the transformed losses computed via (16),

and for a sequence (h1, h2, . . .) let Gt
..= ∂h Lρ,t(ht; θ, η)

denote the resulting stochastic gradients for any integer

t ≥ 1. Fixing θ ∈ R and letting h1 ∈ H denote an arbitrary

initial value, we consider a particular sequence generated

using the following update rule:

ht+1 = ht − atM̃t, (20)

where at is a non-negative step-size we control, and the

update direction satisfies

‖M̃t‖ = 1, 〈M̃t,Mt〉 = ‖Mt‖,
where Mt

..= bMt−1 + (1− b)Gt

(21)

with 0 < b < 1 also being a controllable parameter. This

is an unconstrained, normalized stochastic gradient descent

routine using momentum; it modifies the procedure of

Cutkosky and Mehta (2021) in that we do not truncate Gt.

Note that if H is a Banach space and H∗ its dual, in general

we have that Gt and Mt are elements of H∗. When H is re-

flexive (e.g., any Hilbert space), it is simple to construct M̃t

from Mt.
5 The following theorem shows how the gradient

norms incurred by this algorithm can be bounded with high

probability.

Theorem 3 (Stationary points with high probability). Let
H be a reflexive Banach space, with a Fréchet differentiable
norm satisfying ‖h1 + h2‖2 ≤ ‖h1‖2 + 〈∇‖h1‖2, h2〉 +
‖h2‖2 for any h1, h2 ∈ H. In addition, assume the losses
are such that (19) holds on H, Eμ‖L′(h1)− L′(h2)‖ ≤

5Given any h∗ ∈ H∗, we can always find h ∈ H such that
〈h∗, h〉 = ‖h‖‖h∗‖ (Luenberger, 1969, §5.6).
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λ1‖h1 − h2‖ for any h1, h2 ∈ H, and Eμ‖L′‖2H < ∞,
where ‖L′‖H ..= suph∈H‖L′(h)‖. Run the learning algo-
rithm in (20)–(21) for T iterations, with b = 1− 1/

√
T and

at = (1/T )3/4 for all steps t = 1, 2, . . . , T , assuming each
ht ∈ H. Taking any 0 < δ < 1, it then follows that

1

T

T∑
t=1

‖∂h Rρ(ht; θ, η)‖ ≤ c1
T 1/4

+
c2√
T

+
λ

2T 3/4

with probability no less than 1− δ, with coefficients

c1 ..= Rρ(h1; θ, η)− Rρ(hT+1; θ, η)

+ 16Γ
√
log(3Tδ−1) + 2λ

c2 ..= 20Γ log(3Tδ−1) + 2Γ

λ ..=
λ3 + λ4

σ
+

λ2

σ2
Eμ‖L′‖H, λ2

..= ‖ρ′′‖∞,

λ3
..=

(
2λ2

σ

)
Eμ‖L′‖2H, λ4

..= λ1‖ρ′‖∞

for any choice of σ > 0.

These high-probability O(T−1/4) rates match standard guar-

antees in the stochastic optimization literature under non-

convex objectives in expectation (Davis and Drusvyatskiy,

2019; Ghadimi et al., 2016). The main take-away of The-

orem 3 is that even if the random losses and gradients are

unbounded and heavy-tailed, as long as the dispersion func-

tion ρ is chosen to modulate extreme values (such that (19)

holds), we can obtain confidence intervals for the T-risk

gradient norms incurred by stochastic gradient updates.6

Distribution control is implied by the risk design, and thus

there is no additional need for truncation or bias control.

The following corollary illustrates how the bounded gra-

dient condition in Theorem 3 is satisfied under very weak

assumptions on the data.

Corollary 4. Assume the random losses L(h) are driven
by random data (X,Y), where X takes values in a Banach
space X , and H ⊂ X ∗ has finite diameter. Consider the
following losses:

E1. Quadratic loss: L(h) = (h(X)− Y)2/2, with h(X) =
〈h,X〉 and Y = 〈h∗,X〉+ ε, where ε is zero-mean, has
finite variance, and is independent of X.

E2. Logistic loss: L(h) = log(
∑k

j=1 exp(〈hj ,X〉)) −∑k
j=1 Ỹj〈hj ,X〉, where we have k ≥ 2 classes, h =

(h1, . . . , hk) with each hj ∈ H, and (Ỹ1, . . . , Ỹk) is a
one-hot representation of the class label Y assigned to
X.

If we set ρ(·) = ρ(·;α) with α ≤ 0, then under the examples
E1–E2, as long as Eμ‖X‖2 < ∞, we have that the bounds
assumed by Theorem 3, including (19), are satisfied on H.

6One can also modify the argument slightly to obtain guaran-
tees for each individual iterate in the style of Cutkosky and Mehta
(2021, Thm. 3).

In practice, the threshold θ will not typically be fixed ar-

bitrarily, but rather selected in a data-dependent fashion,

potentially optimized alongside h; the impact of such al-

gorithmic choices will be evaluated in our empirical tests

in §C. In the following sub-section, we consider some key

properties of the special case in which threshold θ is always

taken to yield the smallest overall T-risk value.

Limitations An obvious limitation of our analysis is that

we have assumed that each ht ∈ H; this matches the

setup of (Cutkosky and Mehta, 2021), but the condition

that Eμ‖L′‖2H < ∞ will sometimes require H to have a

finite diameter. Modifying the procedure to allow for projec-

tion of the iterates to H is a point of technical interest, but

is out of this paper’s scope. Another limitation is that our

current approach using smoothness properties (Lemma 12)

necessitates an assumption of gradients with finite second-

order moments. In the special case where α = 1, arguments

based on smoothness can be replaced with arguments based

on weak convexity (Davis and Drusvyatskiy, 2019; Holland,

2022); but this fails for more general α since ρ(·;α) is not

convex for α < 1, and not Lipschitz for α > 1. Another

potential option is to split the sample, leverage stronger

guarantees available in expectation for gradient descent run

on the subsets, and robustly choose the best candidate based

on a validation set of data (Holland, 2021).

4.2 T-risk with minimizing thresholds

Recall the minimal T-risk Rρ(h; η) and optimal thresholds

θρ(h; η) defined earlier in (12), here restricted to scaled

ρ(·) = ρσ(·;α) from the Barron class (15). This is arguably

the most natural subset of T-risks, with a functional form

aligned with OCE/DRO risks discussed in §2. For readabil-

ity, we denote the dispersion of L(h) measured about θ ∈ R

using ρ as

Dρ(h; θ) ..= Eμ ρ (L(h)− θ) . (22)

Here we will overload our notation, writing Rρ(L; η),
θρ(L; η), and Dρ(L; θ) when we want to leave h abstract

and focus on random losses in a set L ∈ L. For this risk to

be finite, we require α ≥ 1, and in addition need |η| < 1/σ
for the special case of α = 1; otherwise, the dispersion term

grows too slowly and we have Rρ(L; η) = −∞ (Lemma

10). When finite, the optimal threshold is unique, and over-

loading our notation once more we use θρ(L; η) to denote it.

The following lemma summarizes some basic properties of

the minimal T-risk.

Lemma 5. Let L be such that for each L ∈ L we have
Rρ(L; η) < ∞, and let α, σ, and η be such that Rρ(L; η) >
−∞. Under these assumptions, the dispersion part of the
minimal T-risk is translation invariant, i.e., for any c ∈ R,
we have Dρ(L+c; θρ(L+c; η)) = Dρ(L; θρ(L; η)). This
dispersion term is always non-negative, and if η �= 0, then
we have Dρ(L; θρ(L; η)) > 0 for any L ∈ L, even if L is
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constant. If L is convex, then so is the map L 	→ Rρ(L; η).
The optimal threshold is translation equivariant in that we
have θρ(L+c; η) = θρ(L; η) + c for any choice of c ∈ R,
and it is monotonic in that whenever L1, L2 ∈ L and L1 ≤
L2 almost surely, we have θρ(L1; η) ≤ θρ(L2; η).

Let us briefly discuss the properties described in Lemma 5

with a bit more context. One of the best-known classes of

risk functions is that of coherent risks (Artzner et al., 1999),

typically characterized by properties of convexity, mono-

tonicity, translation equivariance, and positive homogeneity

(Ruszczyński and Shapiro, 2006). Our general notion of

“dispersion” is often referred to as “deviation” in the risk

literature, and the properties of translation invariance, sub-

linearity (implying convexity), non-negativity, and definite-

ness (i.e., zero only for constants) allow one to establish

links between deviations and coherent risks (Rockafellar

et al., 2006). In general, the risk L 	→ Rρ(L; η) takes us

outside of this traditional class, while still maintaining lucid

connections as summarized in the preceding lemma.

Remark 6 (Risk quadrangle). It should also be noted that our

T-risks are not what would typically be called “risks” in the

context of the “expectation quadrangle” in the framework

developed by Rockafellar and Uryasev (2013). With their

Example 7 as a clear reference for comparison, our function

ρ(·) corresponds to their “error integrand” e(·), and the risk

derived from their quadrangle would be

L 	→ Eμ L+Eμ ρ (L−Mρ(L)) = inf
θ∈R

[θ +Eμ v(L−θ)]

where v(x) ..= ρ(x) + x and Mρ(L) denotes the M-location

(1) under ρ. Under appropriate choice of ρ, this is an OCE-

type risk, and evidently our optimal thresholds θρ(L; η) with

η �= 0 do not make an appearance in risks of this form,

highlighting the distinct nature of Rρ(L; η).

Next, we briefly consider the question of how algorithms

designed to minimize Rρ(h; η) perform in terms of the clas-

sical risk, namely the expected loss R(h) ..= Eμ L(h). This

is a big topic, but as an initial look, we consider how the

expected loss incurred by minimizers of the empirical T-risk

can be controlled given sufficiently good concentration of

the M-estimators induced by ρ, and the empirical mean. Let

us denote any empirical T-risk minimizer by

ĥρ ∈ argmin
h∈H

[
inf
θ∈R

(
ηθ +

1

n

n∑
i=1

ρσ (Li(h)− θ)

)]
(23)

where for simplicity (L1, . . . , Ln) is an iid sample of random

losses.

Proposition 7. Take any T-risk parameters α ≥ 1, η > 0,
and σ > 0, denoting the resulting empirical (minimal) T-
risk minimizer ĥρ in (23). Let R̂(h), M̂ρ(h), θ̂ρ(h; η), and
D̂ρ(h; θ) denote the empirical analogues of R(h), Mρ(h),

θρ(h; η), and Dρ(h; θ) for each h ∈ H. Then, with ‖·‖H as
in Theorem 3, we have

R(ĥρ) ≤ R(h∗) + ‖M̂ρ − θ̂ρ‖H + 2‖M̂ρ − R‖H
+

1

η
D̂ρ(h

∗; M̂ρ(h
∗)) + 4‖R−R̂‖H

where we can freely choose h∗ to be optimal in the expected
loss, i.e., we can take h∗ ∈ argminh∈H R(h).

We have left the upper bound in Proposition 7 rather abstract

to emphasize the key factors that can be used to control

expected loss bounds for empirical T-risk minimizers and

keep the overall narrative clear. Note that in the special case

of α = 2 one has M̂ρ(h)−θ̂ρ(h; η) = η, and more generally

taking η → 0 sends this difference to zero. There exists

tension due to the 1/η coefficient on the dispersion term.

All other terms, including the dispersion itself, are free of

η. Note also that the remaining term ‖M̂ρ − R‖H is the

(uniform) difference between the M-estimator induced by ρ
and the classical risk; this can be modulated directly using

the scale parameter σ, and sharp bounds for a broad classes

of M-estimators have been established recently (Minsker,

2019). Our Proposition 7 is analogous to Theorem 7 of Lee

et al. (2020), with the key difference being that we study

(minimal) T-risks instead of OCE risks, without assuming

that losses are bounded (below or above).

5 LEARNING APPLICATIONS

To complement the “static” empirical analysis in §3.3 and

the formal insights for learning algorithms in §4, we have

also empirically investigated how risk function design and

data properties impact the behaviour of stochastic gradient-

based learners in both classification and regression tasks,

using both simulated data and well-established standard

benchmark datasets. We consider three settings:

• Classification with noisy and unbalanced labels

• Control of outlier sensitivity in regression

• Distribution control under SGD on benchmark datasets

Due to limited space, we only give details for the first of

these three experiments here; the rest are relegated to §C and

§D.5–§D.6 in the supplementary materials. The key take-

away here is that even when we introduce a random data-

driven learning algorithm into the picture, and the dynamics

of the loss/gradient distributions become very complicated,

the T-risk class offers a surprisingly high degree of control

over the test loss distribution incurred by final algorithm

output. From control of outlier sensitivity even under high-

leverage points, to a smooth interpolation between ERM and

mean-variance solutions using stochastic gradient descent

to update thousands of parameters, our initial results are

suggestive of a useful class of performance criteria that can

be used alongside OCE/DRO risks.
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Figure 3: Left-most plot: simulated binary classification data, with unbalanced classes and randomly flipped labels (indicated

by red diamonds). Remaining plots: loss distributions for three types of loss functions, evaluated at two different candidates,

corresponding to the dashed pink and dotted purple lines in the left-most plot.

Figure 4: Classification error and norm trajectories (over iteration number, log10 scale) for gradient descent implementations

of each risk class, using unhinged base loss and data given in Figure 3.

5.1 Classification with noisy and unbalanced labels

We start with what is essentially a toy example that lets us

explore how the tails and orientation of the loss distribution

impacts typical gradient-based classifiers.

Experiment setup As an initial example using simulated

data, we design a binary classification problem by generat-

ing 500 labeled data points as shown in Figure 3 (left-most

plot). The majority class comprises 95% of the sample, and

we flip 5% of the labels uniformly at random. Aside from

the flipped labels, the data is linearly separable. We consider

two candidate classifiers to initialize an iterative learning al-

gorithm: one candidate that does well on the majority class

(dotted purple), and one candidate that does well on the mi-

nority class (dashed pink). Due to class imbalance, the loss

distributions incurred by these two candidates are highly

asymmetric and differ in their long tail direction (Figure 3,

remaining plots). We run empirical risk minimization for

each risk class described in §2 (joint in (h, θ)), implemented

by 15,000 iterations of full-batch gradient descent, using a

step size of 0.01, and three different choices of base loss

function (logistic, hinge, unhinged). We run this procedure

on the same data for a wide range of risk parameters α (T-

risk), β (CVaR), γ (tilted), and a (χ2-DRO), and choose a

representative setting for each risk class as the one achieving

the best final training classification error.

Representative results The full-batch (training) classifi-

cation error and norm trajectories for these representatives

initialized at each of the two candidates just mentioned

(“mostly correct” and “mostly incorrect”) and trained using

the unhinged loss as a base loss are shown in Figure 4. Re-

gardless of the direction of the initial loss distribution tails,

we see that using the Barron-type T-risk has the flexibility

to achieve both a stable and superior long-term error rate,

while at the same time penalizing exceedingly overconfi-

dent correct examples (via bi-directionality), and thereby

keeping the norm of the linear classifier small. An almost

identical trend is also observed under the (binary) logistic

loss, whereas classification error rates under the hinge loss

tend to be less stable (see Figures 10–11 in §D.6).
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A Appendix summary

For ease of reference, we start the appendix with a concise tables of contents.

• §B: Notation

• §C: Learning applications

– §C.1: Control of outlier sensitivity

– §C.2: Distribution control under SGD on benchmark datasets

• §D: Additional information

– §B: Notation

– §D.1: Details for tilted risk

– §D.2: Details for Barron class limits

– §D.3: Additional lemmas for Barron class and T-risk

– §D.4: Smoothness of the T-risk

– §D.5: Experimental details

– §D.6: Additional figures

• §E: Detailed proofs

– §E.1: Proofs of results in the main text

– §E.2: Smoothness computations (proof of Lemma 12)

• §F: Additional technical facts

– §F.1: Lipschitz properties

– §F.2: Convexity

– §F.3: Derivatives for the Barron class

– §F.4: Elementary inequalities

– §F.5: Expected dispersion is coercive

B Notation

Random quantities To start, let us clarify the nature of the random losses we consider. With the context of the underlying

probability space (Ω,F , μ), we write L(h) ..= L(h; ·) : Ω → R to refer to a random variable (i.e., a F -measurable function)

on Ω, though we only use the form L(h) in the body of this paper. When we talk about “sampling” losses or a “random draw”

of the losses, this amounts to computing a realization L(h;ω) ∈ R. We use standard notation for taking expectation, e.g.,

Eμ L(h) ..=
∫
Ω
L(h;ω)μ(dω). These conventions extend to random quantities based on the losses (e.g., the gradient L′(h)

considered in §4.1). Similarly, we will use P as a general-purpose probability function, representing both μ and product

measures; when the source of randomness is not immediate from the context, it will be stated explicitly. We will use R(·)
as a generic symbol for risk functions (often modified with subscripts), with the understanding that R(·) maps random

losses L(h) to real values. We will overload this notation, writing R(L) when the role of h is unimportant, and writing

R(h) ..= R(L(h)) when we want to emphasize the dependence on h. This convention will be applied to other quantities as

well, such as writing Dρ(h) ..= Dρ(L(h)) ..= Eμ ρ(L(h)− θ) for the expected dispersion induced by ρ, first defined in (22).

Norms We will use ‖·‖ as a general-purpose notation for all norms that appear in this paper. That is, we do not use

different notation to distinguish different norm spaces. The reason for this is that we will never consider two distinct norms

on the same set; each norm is associated with a distinct set, and thus as long as it is clear which set a particular element

belongs to, there should be no confusion. The only exception to this rule is the special case of R, in which we write |·| for

the absolute value, as is traditional. For a function f : R → R in one variable, we use f ′ to denote the usual derivative.

More general notions (e.g., Gateaux or Fréchet differentials) only make an appearance in §4, and the generality they afford

us is not crucial to the main narrative, so the details can be easily skipped over if the reader is unfamiliar with such concepts.

All the other undefined notation we use is essentially standard, and can be found in most introductory analysis textbooks.
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Miscellaneous For a function f : R → R in one variable, we use f ′ to denote the usual derivative. More general notions

(e.g., Gateaux or Fréchet differentials) only make an appearance in §4, and the generality they afford us is not crucial to

the main narrative, so the details can be easily skipped over if the reader is unfamiliar with such concepts. All the other

undefined notation we use is essentially standard, and can be found in most introductory analysis textbooks. Particularly in

formal proofs, we will frequently make use of the notation ρσ(x) ..= ρ(x/σ), where σ > 0 is a scaling parameter.

C Learning applications

To complement the “static” empirical analysis in §3.3 and the formal insights for learning algorithms in §4, here we

empirically investigate how risk function design and data properties impact the behaviour of stochastic gradient-based

learners.

C.1 Control of outlier sensitivity

Experiment setup For a crystal-clear example of real data that induces losses with heavy tails, we consider the famous

Belgian phone call dataset (Rousseeuw and Leroy, 1987; Venables and Ripley, 2002) with input features normalized to the

unit interval, and raw outputs used as-is. We conduct two regression tasks: the first uses the original data just stated, and the

second has us modify such that it is an outlier on both the horizontal and vertical axes (we just multiply the original data

point by 5); such points are said to have “high leverage” (Huber and Ronchetti, 2009, Ch. 7). For these two tasks, once

again we run empirical risk minimization under each of the risk classes of interest, implemented using 15,000 iterations of

full-batch gradient descent, with fixed step size 0.005. To illustrate the flexibility of the T-risk, here instead of minimizing

(11) jointly in (h, θ), we fix θ at the start of the learning process along with σ and η, iteratively optimizing h only (i.e., θ is

not updated at any point). For simplicity, we set θ and σ both to be the median of the losses incurred at initialization. All

other risk classes are precisely as in the previous experiment.

Representative results The final regression lines obtained under each risk setting by running the learning procedure just

described are plotted along with the data in Figure 5. Colors correspond to the individual risk function choices within each

risk family, as denoted by color bars under each plot. The gray regression line denotes the common initial value used by all

methods. Algorithm outputs using CVaR and χ2-DRO are always at least as sensitive to outliers as the ordinary least-squares

(OLS) solution. While the tilted risk does let us interpolate between lower and upper quantiles, this transition is not smooth;

even trying 20 values within the small window of γ ∈ [−0.025, 0.025], the algorithm outputs essentially jump between two

extremes. This difference is particularly lucid in the bottom plots of Figure 5, where we have a high-leverage point. In

contrast, with all other parameters of T-risk fixed, note that just tweaking α gives us a remarkable degree of flexibility to

control the final output; while the base loss is fixed to the squared error, the regression lines range from those that ignore

outliers to those that are very sensitive to outliers. In the high-leverage case, it is well-known that this cannot be achieved by

simply changing to a different convex base loss (e.g., MAE instead of OLS), giving a concise illustration of the flexibility

inherent in the T-risk class. Algorithm behavior can be sensitive to initial value; see §D.5 and Figure 13 in the appendix for

an example where the naive median-based procedure described here causes gradient-based algorithms to stall out.

C.2 Distribution control under SGD on benchmark datasets

Experiment setup Finally we consider tests using datasets and models which are orders of magnitude larger than the

previous two experimental setups. We use several well-known benchmark datasets for multi-class classification; details

are given in §D.5. All features are normalized to the unit interval (categorical variables are one-hot), and scores for each

class are computed by a linear combination of features. As a base loss, we use the multi-class logistic regression loss. Here

we investigate how a stochastic gradient descent implementation (with averaging) of the empirical T-risk minimization

(joint in (h, θ)) behaves as we control the shape parameter α of the Barron class, with σ = 0.99 and η = 1 fixed throughout.

We record the base loss (logistic loss) and zero-one loss (misclassification error) at the start and end of each epoch. We

also record the full base loss distribution after the last epoch concludes. We run 5 independent trials, in which the data is

shuffled and initial parameters are determined randomly. In each trial, for all datasets and methods, we use a mini-batch

size of 32, and we run 30 epochs. As reference algorithms, we consider “vanilla” ERM, using the traditional risk Eμ L(h),
and mean-variance implemented as a special case of T-risk (with ρ(·) = (·)2/2 and η = 1). 80% of the data is used for

training, 10% for validation, and 10% for testing. For each risk class, we try five different step sizes. Validation data is used

to evaluate different step sizes and choose the best one for each risk setting. All the results we present here are based on

loss values computed on the test set: solid lines represent averages taken over trials, and shaded areas denote ± standard
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Figure 5: Using T-risks with thresholds set to median initialization error, we can achieve a smooth transition between

outlier-robust and outlier-sensitive solutions, even under high-leverage points. Top: original “phones” dataset. Bottom:

modified data including a single high-leverage point.

deviation over trials.

Representative results In Figures 6–7, we give results based on the following two datasets: “extended MNIST” (47

classes, balanced) (Cohen et al., 2017), and “cover type” (7 classes, imbalanced) (Blackard and Dean, 1999). We plot the

average and standard deviation of the base and zero-one losses as a function of epoch number, plus give a histogram of test

(base) losses for a single trial, compared with the loss distribution incurred by a random initialization of the same model

(left-most plot; gray is test, black is training). Colors are analogous to previous experiments, here evenly spaced over the

allowable range (1 ≤ α ≤ 2). It is clear how modifying the Barron dispersion function shape across this range lets us

flexibly interpolate between the test (base) loss distribution achieved by a traditional ERM solution and a mean-variance

solution, in terms of both the mean and standard deviation. This monotonicity (as a function of α) is salient in the base

loss, but this does not always appear for the zero-one loss. Since these datasets have normalized features with negligible

label noise, egregious outliers are rare, and thus the trends observed for the mean and standard deviation here also hold for

outlier-resistant location-dispersion pairs such as the median and the median-absolute-deviations about the median. Similar

results for several other datasets are provided in §D.6, and we remark that the key trends hold across all datasets tested. We

have seen in our previous experiments how under heavy-tailed losses/gradients the T-risk solution can differ greatly from

that of the vanilla ERM solution, so it is interesting to observe how under large, normalized, clean classification datasets, the

T-risk allows us to very smoothly control a tradeoff between average test loss and variance on the test set.

D Additional information

Here we provide further details that complement the body of this paper.
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Figure 6: Using T-risk to interpolate between test loss distributions (dataset: emnist_balanced).

D.1 Details for tilted risk

Let X ∼ μ be an arbitrary random variable. Assuming the distribution is such that we can differentiate through the integral,

we have

d

dθ

[
θ +

1

γ

(
Eμ e

γ(X−θ) − 1
)]

= 0 ⇐⇒ Eμ e
γ(X−θ) = 1. (24)

Let θ∗ be any value that satisfies the first-order optimality condition in (24). It follows that

θ∗ +
1

γ

(
Eμ e

γ(X−θ∗) − 1
)
= θ∗.

It is easy to confirm that setting θ∗ = (1/γ) log(Eμ e
γX) gives us a valid solution. For more background, see the recent

works of Li et al. (2021b,a) and the references therein. Note also that this log-exponential criterion appears (with γ = 1) in

Rockafellar and Uryasev (2013, Ex. 8).

D.2 Details for Barron class limits

For the limit as α → 0, use the fact that for any a > 0, we have

lim
x→0+

(ax − 1)

x
= log(a). (25)

This equality is sometimes known as Halley’s formula. For the limit as α → −∞, first note that for any α < 0 we can write

|2− α| = 2 + |α|, and thus |α|/2 = (|2− α|/2)− 1. With this in mind, for any α < 0 we can observe(
1 +

x2

|α− 2|
)α/2

=

(
1 +

x2

|α− 2|
)−|α|/2

=

(
1 +

x2

|α− 2|
)1−(|2−α|/2)

=

(
1 + x2

|α−2|
)

√(
1 + x2

|α−2|
)|α−2|

→ 1√
exp(x2)

= exp(−x2/2),
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Figure 7: Analogous to Figure 6 (dataset: covtype).

where the limit is taken as α → −∞, and follows from the classical limit characterization of the exponential function. For

the limit as α → 2−, first note that

|α− 2|
(
1 +

x2

|α− 2|
)α/2

=
(
|α− 2|2/α + |α− 2|(2/α)−1x2

)α/2

and that as long as α < 2, we can write

|α− 2|(2/α)−1 = (2− α)(2−α)/α = (uu)
1/(2−u)

where we have introduced u ..= 2−α. Taking α → 2− amounts to u → 0+, and thus using the fact that uu → 1 as u → 0+,

the desired result follows from straightforward analysis.

D.3 Additional lemmas for Barron class and T-risk

Lemma 8 (Dispersion function convexity and smoothness). Consider ρσ(x) ..= ρ(x/σ;α) with ρ(·;α) from the Barron
class (15), with parameter −∞ ≤ α ≤ 2. The following properties hold for any choice of σ > 0.

• Case of α = 2:
ρσ is convex and 1/σ2-smooth on R.

• Case of α = 0:
ρσ is convex on [−√

2σ,
√
2σ], and is 1/(

√
2σ)-Lipschitz and 1/σ2-smooth on R.

• Case of α = −∞:
ρσ is convex on [−σ, σ], and is (1/σ) exp(−1/2)-Lipschitz and 1/σ2-smooth on R.

• Otherwise:
ρσ is 1/σ2-smooth on R. When α ≥ 1, ρσ is convex on R. When α = 1, ρσ is also 1/σ-Lipschitz on R. Else, when
α < 1, we have that ρσ is convex between ±σ

√|α− 2|/(1− α), and is (1/σ)(
√

(1− α)/|α− 2|)1−α-Lipschitz on
R.

Furthermore, all these coefficients are tight (see also Figure 9).
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Figure 8: Here we consider the function x 	→ ρ(x/σ;α), with ρ from the Barron class (15), for a variety of shape parameter

values α, with scale parameter σ = 0.5 fixed. We plot graphs for this function (left), its first derivative (center), and its

second derivative (right), each computed over ±5σ.

The dispersion Dρ(h; θ) ..= Eμ ρ(L(h)− θ) plays a prominent role in the risk definitions considered in this paper, and one

is naturally interested in the properties of the map θ 	→ Dρ(h; θ). The following lemma shows that using ρ = ρσ from the

Barron class, we can differentiate under the integral without needing any additional conditions beyond those required for

finiteness.

Lemma 9. Let ρσ be as in Lemma 8. Assume that the random loss L(h) is F -measurable in general, and that Eμ|L(h)| < ∞
holds whenever 1 < α ≤ 2. It follows that the first two derivatives are μ-integrable, namely that

|Eμ ρ
′
σ(L(h)− θ)| < ∞, |Eμ ρ

′′
σ(L(h)− θ)| < ∞ (26)

for any θ ∈ R. Furthermore, the function θ 	→ Dρ(h; θ) is twice-differentiable on R, and satisfies the Leibniz integration
property for both derivatives, that is

d

dθ
Dρ(h; θ)

∣∣∣∣
θ=u

= −Eμ ρ
′
σ(L(h)− u),

d2

dθ2
Dρ(h; θ)

∣∣∣∣
θ=u

= Eμ ρ
′′
σ(L(h)− u) (27)

for any u ∈ R.7

With first-order information about the expected dispersion in hand, one can readily obtain conditions under which the special

case of T-risk Rρ(h; η)
..= infθ∈R Rρ(h; θ, η) is finite and determined by a meaningful “optimal threshold.”

Lemma 10. Following the setup of Lemma 1, let Dρ(h; θ) < ∞ for all θ ∈ R. If α > 1, then for any choice of σ > 0 and
η ∈ R, there exists a finite optimal threshold θρ(h; η) ∈ R such that

Rρ(h; η) = ηθρ(h; η) + Dρ(h; θρ(h; η)). (28)

In the case of α = 1, we have that (28) holds if and only if |η| < 1/σ. In both cases, the optimal threshold is unique. In the
case of α < 1, then there is no minimum and thus Rρ(h; η) = −∞.

Remark 11. We have overloaded our notation θρ(h; η) in Lemma 10, recalling that we have used the same notation to denote

the set of optimal thresholds for the T-risk in (11). This saves us from having to introduce additional symbols, and should

not lead to any confusion since we only do this overloading when the solution set contains a single unique solution.

D.4 Smoothness of the T-risk

When the objective Rρ(h; θ, η) in (11) is sufficiently smooth, we can apply well-established analytical techniques to

control the gradient norms of stochastic gradient-based learning algorithms. Assuming we have unbiased first-order

stochastic feedback as in (17)–(18), we will always have to deal with terms of the form Eμ

[
ρ′σ(L(h)− θ)L′(h)

]
. Defining

7Let us emphasize that ρ′σ and ρ′′σ denote the first and second derivatives of x �→ ρ(x/σ;α), which differ from ρ′(x/σ;α) and
ρ′′(x/σ;α) by a σ-dependent factor; see §F.3 for details.
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Figure 9: Here we show zoomed-in versions of the two right-most plots in Figure 8, now with dashed horizontal lines

denoting the Lipschitz (left) and smoothness (right) coefficients stated in Lemma 8 (both positive and negative values). The

Lipschitz coefficients depend on α and σ, and the colors in the left plot reflect the α value. The smoothness coefficient 1/σ2

is independent of α, and is drawn in light gray. Numerically, we can see that the coefficients are tight, though tighter lower
bounds for the second derivatives are possible.

f(h, θ) ..= ρ′σ(L(h)− θ)L′(h) for readability, and considering the function difference at two arbitrary points (h1, θ1) and

(h2, θ2), first note that

f(h1, θ1)− f(h2, θ2)

= ρ′σ(L(h1)− θ1)
[
L′(h1)− L′(h2)

]︸ ︷︷ ︸
A

+ [ρ′σ(L(h1)− θ1)− ρ′σ(L(h2)− θ2)] L
′(h2)︸ ︷︷ ︸

B

. (29)

In the case of ρ(·) = ρ(·;α) from the Barron class (15), when −∞ ≤ α ≤ 1, we have that ρ′ is both bounded (‖ρ′‖∞ < ∞)

and Lipschitz continuous on R (see Lemma 8). This means that all we need in order to control Eμ A+ Eμ B is for L to

be smooth (for control of A) and for L′(·) to have a norm bounded over H (for control of B); see §E.2 for more details.

Things are more difficult in the case of 1 < α ≤ 2, since the dispersion function ρ is not (globally) Lipschitz, meaning

that ‖ρ′‖∞ = ∞. Even if L is smooth, when the threshold parameter is left unconstrained, it will always be possible for

‖Eμ A‖ → ∞ as |θ1| → ∞, impeding smoothness guarantees for Rρ in this setting.

Let us proceed by distilling the preceding discussion into a set of concrete conditions that are sufficient to make (h, θ) 	→
Rρ(h; θ, η) amenable to standard analysis techniques for stochastic gradient-based algorithms. For readability, we write

‖L′‖H ..= sup{‖L′(h)‖ : h ∈ H}.

A1. Moment bound for loss gradient. For any choice of h1, h2 ∈ H, 0 < c < 1, and k ∈ {1, 2}, the loss L is differentiable

at ch1 + (1− c)h2, and satisfies

Eμ

(
sup

0<c<1
‖L′(ch1 + (1− c)h2)‖

)k

≤ Eμ‖L′‖kH < ∞. (30)

A2. Loss is smooth in expectation. There exists 0 < λ1 < ∞ such that for any choice of h1, h2 ∈ H, we have

Eμ‖L′(h1)− L′(h2)‖ ≤ λ1‖h1 − h2‖.

A3. Dispersion is Lipschitz and smooth. The function ρ is such that ‖ρ′‖∞ < ∞, and there exists 0 < λ2 < ∞ such that

|ρ′(x1)− ρ′(x2)| ≤ λ2|x1 − x2| for all x1, x2 ∈ R.

If H is a convex set, then the first inequality in A1 holds trivially. Note that under A2, the right-hand side of (30) will be

finite for k = 1 whenever H has bounded diameter and Eμ‖L′(h)‖ < ∞ for some h ∈ H. As for A3, all the requirements
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are clearly met by the Barron class with −∞ ≤ α ≤ 1. These conditions imply a Lipschitz property for the gradients, as

summarized in the following lemma.

Lemma 12. Let the conditions A1, A2, and A3 hold. Then, the T-risk map (h, θ) 	→ Rρ(h; θ, η) defined in (11) is smooth
on H× R in the sense that

‖R′
ρ(h1; θ1, η)− R′

ρ(h2; θ2, η)‖ ≤
(
λ5

σ
+

λ2

σ2
Eμ‖L′‖H

)
(‖h1 − h2‖+ |θ1 − θ2|)

for any choice of h1, h2 ∈ H and θ1, θ2 ∈ R. Here the factor λ5 is defined λ5
..= λ3 + λ4, where

λ3
..=

(
λ2

σ

)[
Eμ‖L′‖2H + sup

h∈H
Eμ‖L′(h)‖

]
, λ4

..= λ1‖ρ′‖∞.

Remark 13 (Norm on product spaces). In Lemma 12 we have to deal with norms on product spaces, and in all cases we just

use the traditional choice of summing the norms of the constituent elements, i.e., on H× R, we have ‖(h, θ)‖ ..= ‖h‖+ |θ|.
Similarly, we have that the gradient R′

ρ(h; θ, η) = (∂h Rρ(h; θ, η), ∂θ Rρ(h; θ, η)), a pair of linear functionals. As such, the

norm of R′
ρ(h; θ, η) defined as the sum of the norms of these two constituent functionals.

Proving Lemma 12 is straightforward but somewhat tedious. Detailed computations as well as a direct proof are organized

in §E.2 for easy reference.

D.5 Experimental details

Here we provide some additional details for the empirical analysis carried out in §3.3 and §C. Detailed hyperparameter

settings and seeds for exact re-creation of all the results in this paper are available at the GitHub repository cited in §1, and

thus here we will not explicitly write all the step sizes, shape settings, etc., but rather focus on concise exposition of points

on which we expect readers to desire clarification.

Static risk analysis For our experiments in §3.3, we gave just one plot using a log-Normal distribution, but analogous

tests were run for a wide variety of parametric distributions. In total, we have run tests for Bernoulli, Beta, χ2, Exponential,

Gamma, log-Normal, Normal, Pareto, Uniform, Wald, and Weibull distributions. The settings of each distribution to be

sampled from has not been tweaked at all; we set the parameters rather arbitrarily before running any tests. As for the

fixed value of σ = 0.5 in the T-risk across all tests, we tested several values of σ ranging from 0.1 to 10, and based on the

rough position of θρ(L; η) in the Normal case, we determined 0.5 as a reasonable representative value; indeed, this settings

performs quite well across a very wide range of distributions. Regarding the optimization involved in solving for the optimal

threshold θ (for T-risk, OCE risks, and DRO risk), we use minimize_scalar from SciPy, with bounded solver type, and

valid brackets set manually.

Noisy linear classification In the tests described in §5.1, we only give error/norm trajectories for “representative” settings

of each risk class (Figure 4). For T-risk we consider different choices of 1 ≤ α ≤ 2, for CVaR we consider 0.025 ≤ β ≤ 0.75,

for tilted risk we consider γ between ±0.05, and for χ2-DRO we consider 0.025 ≤ ã ≤ 0.35. For each of these ranges,

we evaluate five evenly-spaced candidates (via np.linspace), and representative settings were selected as those which

achieved the best classification error (average zero-one loss) after the final iteration. In the event of ties, the smaller

hyperparameter value was always selected (via np.argmin).

Regression under outliers For the tests introduced in §C.1, we have given results for learning algorithms started at a

point which is quite accurate for the majority of the data points, but incurs extremely large errors on the outlying minority.

This choice of initial value naturally has a strong impact on the behavior of learning algorithms under each risk. For some

perspective, in Figure 13 we provide results using a different initial value (again, in gray), which complement Figure 5. Since

the naive strategy fixing θ at the initial median sets the scale extremely large and close to the loss incurred at most points,

even a large number of gradient-based updates result in minimal change. The basic reason for this is quite straightforward.

Since the T-risk gradient is modulated by ρ′σ(L(h) − θ), and all points are such that either Li(h) � θ (the minority) or

Li(h) ≈ θ (the majority), both cases shrink the norm of the update direction vector α ≤ 1. When implementing T-risk in

the more traditional way (jointly in (h, θ)) and choosing α ∈ [1, 2], we see results that are very similar to CVaR. Finally,

we remark that here we have set the hyperparameter ranges with upper bounds low enough that the learning procedure

described here does not run into overflow errors.
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Classification under larger benchmark datasets In §C.2 we make use of several well-known benchmark datasets, and in

our figures we identify them respectively by the following keywords: adult,8 australian,9 cifar10,10 covtype,11

emnist_balanced,12 fashion_mnist,13 and protein.14 For further background on all of these datasets, please

access the URLs provided in the footnotes. As mentioned in the §C, for a k-class problem with d features, the predictor is

characterized by k weighting vectors (w1, . . . , wk), each of which is wj ∈ R
d and computes scores as w�

j x for x ∈ R
d.

These weight vectors are penalized using the usual multi-class logistic loss, namely the negative log-likelihood of the

k-Categorical distribution that arises after passing these scores through the (logistic) softmax function. Regarding step sizes,

we consider choices of factor c ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, and set step size to c/
√
kd, where d and k are as just stated. In

Figures 14–18 of §D.6, we provide additional results for the datasets not covered in Figures 6–7.

D.6 Additional figures

Here we include a number of figures that complement those provided in §C. A brief summary is given below.

• Figures 10–11 are additional results from the experiments described in §5.1, here using logistic and hinge losses instead

of the unhinged loss.

• Figures 12–13 are related to the regression under outliers task described in §C.1. The first figure shows how different

regression lines incur very different loss distributions under different convex base loss functions. The second figure

illustrates how a different initial value impacts the learned regression lines under each risk class.

• Figures 14–18 are all completely analogous to Figure 6 given in §C.2, but for additional benchmark datasets.

8https://archive.ics.uci.edu/ml/datasets/Adult
9https://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)

10https://www.cs.toronto.edu/~kriz/cifar.html
11https://archive.ics.uci.edu/ml/datasets/covertype
12https://www.nist.gov/itl/products-and-services/emnist-dataset
13https://github.com/zalandoresearch/fashion-mnist
14https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data
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Figure 10: Analogous to Figure 4, this time using logistic loss.

Figure 11: Analogous to Figure 4, this time using the hinge loss.
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Figure 12: Here the left-most plot is the Belgian phone call dataset for use in a one-dimensional regression task, with two

linear regression candidates. The remaining three plots show histograms of the loss distributions incurred by each of these

candidates using three loss functions commonly used in regression.

Figure 13: Same procedure as in Figure 5, but this time started from a different initial value.
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Figure 14: Using T-risk to interpolate between test loss distributions (dataset: adult).

Figure 15: Using T-risk to interpolate between test loss distributions (dataset: australian).

Figure 16: Using T-risk to interpolate between test loss distributions (dataset: cifar10).
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Figure 17: Using T-risk to interpolate between test loss distributions (dataset: fashion_mnist).

Figure 18: Using T-risk to interpolate between test loss distributions (dataset: protein).
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E Detailed proofs

E.1 Proofs of results in the main text

Proof of Lemma 8. In this proof, without further mention, we will make regular use of the following two helper results:

Lemma 14 (bounded gradient implies Lipschitz continuity) and Lemma 15 (positive definite Hessian implies convexity).

For reference, the first and second derivatives of ρσ are given in §F.3. We take up each α setting one at a time.

First, the case of α = 2. For this case, clearly ρ′σ is unbounded, and thus ρσ is not (globally) Lipschitz on R. On the other

hand, since ρ′′σ(x) = 1/σ2, we have that ρ′σ is λ-Lipschitz with λ = (1/σ2).

Next, the case of α = 0. For any fixed σ > 0, in both the limits x → 0 and |x| → ∞, we have ρ′σ(x) → 0. Maximum and

minimum values are achieved when ρ′′σ(x) = 0, and this occurs if and only if x2 = 2σ2. It follows from direct computation

that ρ′σ(±
√
2σ) = ±1/(

√
2σ), and thus ρσ is λ-Lipschitz with λ = 1/(

√
2σ). Next, recalling that ρ′′σ takes the form

ρ′′σ(x) =
2

x2 + 2σ2

(
1− 2x2

x2 + 2σ2

)
,

we see that this is a product of two factors, one taking values in (0, 1/σ2), and one taking values in (−1, 1). The absolute

value of both of these factors is maximized when x = 0, and so |ρ′′σ(x)| ≤ ρ′′σ(0) = 1/σ2, meaning that ρ′σ is λ-Lipschitz

with λ = 1/σ2. Finally, regarding convexity, we have that ρ′′σ(x) ≥ 0 if and only if |x| ≤ √
2σ.

Next, the case of α = −∞. For any fixed σ > 0, we have ρ′σ(x) → 0 in both the limits x → 0 and |x| → ∞.

Furthermore, it is immediate that ρ′′σ(x) = 0 at the points x = ±σ. Evaluating ρ′σ at these stationary points we have

ρ′σ(±σ) = ±(1/σ) exp(−1/2), and thus ρσ is λ-Lipschitz with λ = (1/σ) exp(−1/2). Regarding bounds on ρ′′σ , first note

that ρ′′σ(x) → 0 as |x| → ∞, and ρ′′σ(0) = 1/σ2. Then to identify stationary points, note that

ρ′′′σ (x) =
1

σ2
exp

(
−1

2

(x
σ

)2
)[

x

σ2

(
x2

σ2
− 1

)
− 2x

σ2

]
and thus ρ′′′σ (x) = 0 if and only if (x/σ)2 − 1 = 2, i.e., the stationary points are x = ±√

3σ, both of which yield the same

value, namely ρ′′σ(±
√
3σ) = −(2/σ2) exp(−3/2). Since 2 exp(−3/2) ≈ 0.45 < 1, we conclude that ρ′σ is λ-Lipschitz

with λ = 1/σ2. Finally, since ρ′′σ(x) ≥ 0 if and only if |x| ≤ σ, this specifies the region on which ρσ is convex.

Finally, all that remains is the general case of −∞ < α < 2 where α �= 0. Note that in order for ρ′′σ(x) = 0 to hold, we

require

2(x/σ)2

1 + (x/σ)2/|α− 2| =
|α− 2|

1− (α/2)
,

which via some basic algebra is equivalent to (x
σ

)2

=
|α− 2|
1− α

.

Clearly, this is only possible when α < 1, so we consider this sub-case first. This implies stationary points ±x∗ ..=
±σ

√|α− 2|/(1− α), for which we have

ρ′σ(±x∗) = ± 1

σ

√
|α− 2|
1− α

(
2− α

1− α

)(α/2)−1

= ± 1

σ

(√
|α− 2|
1− α

)α−1

= ± 1

σ

(√
1− α

|α− 2|

)1−α

.

Since ρ′σ(x) → 0 in both the limits x → 0 and |x| → ∞, we have obtained a maximum value for ρ′σ at x∗, thus implying for

the case of α < 1 that ρσ is λ-Lipschitz, with a coefficient of λ = (1/σ)(
√
(1− α)/|α− 2|)1−α. For the case of α = 1,

direct inspection shows

|ρ′σ(x)| =
|x/σ2|√
1 + (x/σ)2

=
1

σ2
√

(1/x2) + (1/σ2)
,

a value which is maximized in the limit |x| → ∞. As such, for α = 1, we have that ρσ is λ-Lipschitz with λ = 1/σ. For

the case of 1 < α < 2, ρ′σ is unbounded. To see this, note that for x > 0 we have

ρ′σ(x) =
1

σ2

(
1 + (x/σ)2/|α− 2|)

((1/x) + x/(σ2|α− 2|)) ≥
(

1

σ2+α
√|α− 2|α

)
xα

((1/x) + x/(σ2|α− 2|)) ,
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and since α > 1, sending x → ∞ clearly implies ρ′σ(x) → ∞, and this means that ρσ cannot be Lipschitz on R when

α > 1. As for bounds on ρ′′σ , recall that

ρ′′σ(x) =
1

σ2

(
1 +

(x/σ)2

|α− 2|
)(α/2)−1

︸ ︷︷ ︸
A(x)

⎛⎜⎜⎜⎝1− 1− (α/2)

|α− 2|
2(x/σ)2

1 + (x/σ)2/|α− 2|︸ ︷︷ ︸
B(x)

⎞⎟⎟⎟⎠
where we have introduced the labels A(x) and B(x) just as convenient notation. Fixing any σ > 0, first note that since

α < 2, we have (α/2)− 1 < 0 and thus 0 ≤ A(x) ≤ 1. Next, direct inspection shows 0 ≤ B(x) ≤ 2(1− (α/2)). These

two facts immediately imply an upper bound ρ′′σ(x) ≤ 1/σ2 and a lower bound ρ′′σ(x) ≥ −(1− α)/σ2, both of which hold

for any α < 2. Furthermore, for the case of 1 ≤ α < 2, we thus have 0 ≤ ρ′′σ(x) ≤ 1/σ2. When α < 1 however, ρ′′σ can be

negative. To get matching lower bounds requires A(x)(1 − B(x)) ≥ −1, or A(x)(B(x) − 1) ≤ 1. To study conditions

under which this holds, first note that B(x) can be re-written as

B(x) =

(
2− α

|α− 2|
)

(x/σ)2

1 + (x/σ)2

|α−2|
=

(x/σ)2

1 + (x/σ)2

|α−2|
,

and thus we have

A(x)(B(x)− 1) =
(x/σ)2(

1 + (x/σ)2

|α−2|
)2−(α/2)

− 1(
1 + (x/σ)2

|α−2|
)1−(α/2)

. (31)

To get a more convenient upper bound on this, observe that (1+x)1−(α/2) ≤ (1+x)2−(α/2) for any x ≥ 0 and −∞ ≤ α ≤ 2.

It follows immediately that

A(x)(B(x)− 1) ≤ (x/σ)2 − 1(
1 + (x/σ)2

|α−2|
)2−(α/2)

. (32)

To get the right-hand side of (32) to be no greater than 1 is equivalent to

(x/σ)2 − 1 ≤
(
1 +

(x/σ)2

|α− 2|
)2−(α/2)

. (33)

For the case of 0 ≤ α < 1, note that 1 ≤ |α− 2| = 2− α < 2− (α/2), and using the helper inequality (69), we have(
1 +

(x/σ)2

|α− 2|
)2−(α/2)

≥
(
1 +

(x/σ)2

|α− 2|
)|α−2|

≥ 1 + (x/σ)2 > (x/σ)2 − 1,

which implies (33) for 0 ≤ α < 1. All that remains is the case of −∞ < α < 0, which requires a bit more care. Returning

to the exact form of A(x)(B(x)− 1) given in (31), note that the inequality

(x/σ)2 −
(
1 +

(x/σ)2

|α− 2|
)

≤
(
1 +

(x/σ)2

|α− 2|
)2−(α/2)

(34)

is equivalent to the desired property, i.e., A(x)(B(x)− 1) ≤ 1 ⇐⇒ (34). Using Bernoulli’s inequality (71), we can bound

the right-hand side of (34) as (
1 +

(x/σ)2

|α− 2|
)2−(α/2)

≥ 1 +

(
2− (α/2)

|α− 2|
)
(x/σ)2.

Subtracting the left-hand side of (34) from the right-hand side of the preceding inequality, we obtain(
1 +

(x/σ)2

|α− 2|
)2−(α/2)

−
[
(x/σ)2 − 1− (x/σ)2

|α− 2|
]
≥ 2 +

(
2− (α/2)

|α− 2| − 1 +
1

|α− 2|
)
(x/σ)2

= 2 +

(
1− (|α|/2)
2 + |α|

)
(x/σ)2, (35)
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where the second step uses the fact that for α < 0, we can write |α− 2| = 2+ |α| and 2−(α/2) = 2+(|α|/2). Note that the

right-hand side of (35) is non-negative for all x ∈ R whenever −2 ≤ α < 0, which via (34) tells us that A(x)(B(x)−1) ≤ 1
indeed holds in this case as well. For the case of −∞ < α < −2, note that showing (34) holds is equivalent to showing

fα(x) ≥ 0 for all x ≥ 0, where for convenience we define the polynomial

fα(x) ..= 1 +

(
1

2 + |α| − 1

)
x+

(
1 +

x

2 + |α|
)2+(|α|/2)

.

The first derivative is

f ′
α(x) =

2 + (|α|/2)
2 + |α|

(
1 +

x

2 + |α|
)1+(|α|/2)

+
1

2 + |α| − 1,

and with this form in hand, solving for fα(x) = 0, it is straightforward to confirm that x∗
α given below is a stationary point:

x∗
α

..= (2 + |α|)
[(

1 + |α|
2 + (|α|/2)

) 1
1+(|α|/2)

− 1

]
.

Furthermore, it is clear that f ′′
α ≥ 0, implying that fα is convex, and that x∗

α is a minimum. As such, the minimum value

taken by fα on R+ is

fα(x
∗
α) =

(
1 + |α|

2 + (|α|/2)
) 1

1+(|α|/2)
− (2 + |α|)

[(
1 + |α|

2 + (|α|/2)
) 1

1+(|α|/2)
− 1

]
+

(
1 + |α|

2 + (|α|/2)
) 2+(|α|/2)

1+(|α|/2)

= (2 + |α|) +
(

1 + |α|
2 + (|α|/2)

) 2+(|α|/2)
1+(|α|/2)

− (1 + |α|)
(

1 + |α|
2 + (|α|/2)

) 1
1+(|α|/2)

= (2 + |α|)− (1 + |α|)
(

1 + |α|
2 + (|α|/2)

) 1
1+(|α|/2)

[
1− 1

2 + (|α|/2)
]

= 1 + (1 + |α|)
[
1−

(
1 + |α|

2 + (|α|/2)
) 1

1+(|α|/2)
[
1− 1

2 + (|α|/2)
]]

.

We require fα(x
∗
α) ≥ 0 for all −∞ < α < −2. From the preceding equalities, note that a simple sufficient condition for

fα(x
∗
α) ≥ 1 is

(
1 + |α|

2 + (|α|/2)
) 1

1+(|α|/2)
[
1− 1

2 + (|α|/2)
]
≤ 1

or equivalently (
1− 1

2 + (|α|/2)
)1+(|α|/2)

≤
(
2 + (|α|/2)
1 + |α|

)
. (36)

Applying the helper inequality (70) to the left-hand side of (36), we have

(
1− 1

2 + (|α|/2)
)1+(|α|/2)

≤ 1 +

(
−(1+(|α|/2))
2+(|α|/2)

)
(
1− −|α|/2

2+(|α|/2)
) = 1−

(
1 + (|α|/2)
2 + |α|

)
=

1 + (|α|/2)
2 + |α|

≤ 2 + (|α|/2)
1 + |α| .

This is precisely the desired inequality (36), implying fα(x
∗
α) ≥ 1 > 0 for all −∞ < α < −2, and in fact all real α < 0. To

summarize, we have A(x)(B(x)− 1) ≤ 1 for all x ∈ R, and thus the desired 1/σ2-smoothness result follows, concluding

the proof.
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Proof of Lemma 1. Let X denote any F -measurable random variable. The continuity of ρ implies that the integral Eμ ρσ(X−
θ) exists for any σ > 0; we just need to prove it is finite.15 Since we are taking ρ from the Barron class (15), we consider

each α setting separately. Starting with α = 2, note that

ρσ(X− θ; 2) =
1

2

(
X− θ

σ

)2

and thus Eμ X
2 < ∞ is sufficient and necessary. For α = 0, first note that we have

ρσ(X− θ; 0) = log

(
1 +

1

2

(
X− θ

σ

)2
)
.

Let f1(x) ..= log(1 + x) and f2(x) ..= xc/c, where 0 < c < 1. Note that f1(0) = f2(0) = 0, and furthermore that for any

x > 0,

f ′
1(x) =

1

1 + x
<

(
1

1 + x

)1−c

<

(
1

x

)1−c

= f ′
2(x).

We may thus conclude that f1(x) ≤ f2(x) for all x ≥ 0, and thus for any 0 < c < 1 we have

log

(
1 +

1

2

(
X− θ

σ

)2
)

≤ 1

c

(
X− θ√

2σ

)2c

.

It follows that to ensure Eμ ρσ(X− θ; 0) < ∞, it is sufficient if we assume Eμ|X|c < ∞ for some c > 0. Proceeding to the

case of α = −∞, we have

ρσ(X− θ;−∞) = 1− exp

(
−1

2

(
X− θ

σ

)2
)
.

Any composition of measurable functions is measurable, and since the right-hand side is bounded above by 1 and below by

0, we have that ρσ(X− θ;−∞) is μ-integrable without requiring any extra assumptions on X besides measurability. All that

remains for the Barron class is the case of non-zero −∞ < α < 2, where we have

ρσ(X− θ;α) =
|α− 2|

α

⎛⎝(
1 +

1

|α− 2|
(
X− θ

σ

)2
)α/2

− 1

⎞⎠ .

Let us break this into two cases: −∞ < α < 0 and 0 < α < 2. Starting with the former case, this is easy since(
1 + x2

)α/2
=

1(√
1 + x2

)−α

which is bounded above by 1 and below by 0 for any α < 0 and x ∈ R, which means the random variable ρσ(X− θ;α) is

μ-integrable without any extra assumptions on X. As for the latter case of 0 < α < 2, first note that the monotonicity of

(·)α/2 on R+ implies

(1 + x2)α/2 ≥ |x|α

which means Eμ|X|α < ∞ is necessary. That this condition is also sufficient is immediate from the form of ρσ(X−θ;α) just

given. This concludes the proof; the desired result stated in the lemma follows from setting X = L(h) and the observation

that the choice of θ ∈ R in the preceding discussion was arbitrary.

Proof of Lemma 9. Referring to the derivatives (67)–(68) in §F.3, we know that ρ′σ is measurable, and by the proof of

Lemma 8, we know that ‖ρ′‖∞ < ∞ for all α ≤ 1. Thus, as long as L(h) is F-measurable, we have that ρ′σ(L(h)− θ) is

μ-integrable. For the case of 1 < α ≤ 2, note that |ρ′σ(x)| ≤ |x|/σ2 holds, meaning that Eμ|L(h)| < ∞ implies integrability.

15This uses the fact that any composition of (Borel) measurable functions is itself measurable (Ash and Doléans-Dade, 2000, Lem. 1.5.7).



Matthew J. Holland

Similarly for the second derivatives, from the proof of Lemma 8, we see that ‖ρ′′‖∞ < ∞ for all −∞ ≤ α ≤ 1, implying

the μ-integrability of ρ′′σ(L(h)− θ).

The Leibniz integration property follows using a straightforward dominated convergence argument, which we give here for

completeness. Letting (ak) be any non-zero real sequence such that ak → 0, we can write

d

dθ
Dρ(h; θ) = lim

k→∞
Dρ(h; θ + ak)−Dρ(h; θ)

ak

= lim
k→∞

Eμ

[
ρσ(L(h)− (θ + ak))− ρσ(L(h)− θ)

ak

]
.

For notational convenience, let us denote the key sequence of functions by

fk ..=
ρσ(L(h)− (θ + ak))− ρσ(L(h)− θ)

ak

and note that fk → f ..= −ρ′σ(L(h)− θ) pointwise as k → ∞. We can then say the following: for all k, we have that

|fk| ≤ sup
0<c<1

|ρ′σ(L(h)− (θ + cak))| ≤ g ..= |ρ′σ(L(h)− θ′)|

for an appropriate choice of θ′ ∈ R. The first inequality follows from the helper Lemma 14. We can always find an

appropriate θ′ because the sequence (ak) is bounded and ρ′ is eventually monotone, regardless of the choice of α. With the

fact |fk| ≤ g in hand, recall that we have already proved that Eμ g < ∞ under the assumptions we have made, and thus

Eμ fk → Eμ f by dominated convergence.16 As such, we have

d

dθ
Dρ(h; θ) = lim

k→∞
Eμ fk = Eμ f = −Eμ ρ

′
σ(L(h)− θ),

which is the desired Leibniz property for the first derivative. A completely analogous argument holds for the second

derivative, yielding the desired result.

Proof of Lemma 10. From Lemma 9, we know that the map θ 	→ Dρ(h; θ) is differentiable and thus continuous. Using

continuity, taking any a < b and constructing a closed interval [a, b], the Weierstrass extreme value theorem tells us that

Dρ(h; θ) achieves its maximum and minimum on [a, b]. Furthermore, note that ρ taken from the Barron class (15) satisfies

all the requirements of our helper Lemma 16, and thus implies Dρ(h; θ) → sup{ρ(x) : x ∈ R} as |θ| → ∞. We can thus

always take the interval [a, b] wide enough that

θ /∈ [a, b] =⇒ Dρ(h; θ) ≥ max
a≤x≤b

Dρ(h;x) ≥ min
a≤x≤b

Dρ(h;x).

This proves the existence of a minimizer of θ 	→ Dρ(h; θ) on R.

Next, considering the T-risk Rρ(h; θ, η) and minimization with respect to θ, since we are doing unconstrained optimization,

any solution θρ(h; η) must satisfy η + dθ Dρ(h; θρ(h; η)) = 0, where dθ ..= d/ dθ. Using Lemma 9 again, this can be

equivalently re-written as

Eμ ρ
′
σ (L(h)− θρ(h; η)) = η. (37)

When α > 1, the derivative of the dispersion function has unbounded range, i.e., ρ′σ(R) = R. As such, an argument identical

to that used in the proof of Lemma 16 implies that for any η ∈ R, we can always find a θη(h) ∈ R such that (37) holds,

recalling that continuity follows via Lemma 9. Combining this with convexity gives us a valid solution. The special case of

α = 1 requires additional conditions, since from Lemma 8, we know that in this case |ρ′σ| ≤ 1/σ, and thus by an analogous

argument, whenever |θρ(h; η)| < 1/σ we can find a finite solution.

To prove uniqueness under 1 ≤ α ≤ 2, direct inspection of the second derivative in (68) shows us that ρ′′σ(x) > 0 on R

whenever we have

2(x/σ)2(
1 + (x/σ)2

|α−2|
) <

|α− 2|
1− (α/2)

.

16See for example Ash and Doléans-Dade (2000, Thm. 1.6.9).
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Re-arranging the above inequality yields an equivalent condition of (x/σ)2(1 − α) < |α− 2|, a condition which holds

on R if and only if 1 ≤ α ≤ 2. Since ρ′′σ is positive on R, this implies that Eμ ρ
′′
σ(L(h) − θ) > 0 for all θ ∈ R. Using

Lemma 9, we have that Eμ ρ
′′
σ(L(h)− θ) is equal to the second derivative of Dρ(h; θ) with respect to θ, which implies that

θ 	→ Dρ(h; θ) and θ 	→ Dρ(h; θ) + ηθ are strictly convex on R, and thus their minimum must be unique.17

Proof of Lemma 5. For random loss L, using Lemma 9, first-order optimality conditions require

Eμ ρ
′
σ (L−Mρ(L)) = 0, Eμ ρ

′
σ (L−θρ(L; η)) = η. (38)

If these conditions hold, then from direct inspection, the same conditions will clearly hold if we replace L by L+c, Mρ(L)
by Mρ(L) + c, and θρ(L; η) by θρ(L; η) + c. This implies both translation-invariance of the dispersions and the translation-

equivariance of the optimal thresholds. Non-negativity follows trivially from the fact that ρ(·) ≥ 0. Noting that ρ(x) > 0
for all x �= 0, we have that Dρ(L; θ) = 0 if and only if L = θ almost surely.18 Since Dρ(L;Mρ(L)) ≤ Dρ(L; θρ(L; η)) by

the optimality of Mρ(L), it follows that for any non-constant L, we must have Dρ(L; θρ(L; η)) > 0. Furthermore, from the

optimality condition (38) for θρ(L; η), even when L is constant, we must have Dρ(L; θρ(L; η)) > 0 whenever η �= 0, since

ρ′σ(x) = 0 if and only if x = 0.

In the special case where 1 ≤ α ≤ 2, we have that ρ′′σ is positive on R (see §F.3 and Fig. 8). This implies that ρσ is strictly

convex, and ρ′σ is monotonically increasing. Let L1 ≤ L2 almost surely, but say Mρ(L1) > Mρ(L2). Using the optimality

condition (38), uniqueness of the solution via Lemma 10, and the aforementioned monotonicity of ρ′σ , we have

0 = Eμ ρ
′
σ (L1 −Mρ(L1)) < Eμ ρ

′
σ (L1 −Mρ(L2)) ≤ Eμ ρ

′
σ (L2 −Mρ(L2)) = 0.

This is a contradiction, and thus we must have Mρ(L1) ≤ Mρ(L2). An identical argument using the exact same properties

proves that θρ(L1; η) ≤ θρ(L2; η) also holds. Finally, to prove convexity, take any L1, L2 ∈ L, θ1, θ2 ∈ R, and a ∈ (0, 1),
and note that

Rρ(a L1 +(1− a) L2; η) ≤ Dρ(a L1 +(1− a) L2; aθ1 + (1− a)θ2) + η (aθ1 + (1− a)θ2)

= Eμ ρσ (a(L1 −θ1) + (1− a)(L2 −θ2)) + η (aθ1 + (1− a)θ2)

≤ a (Dρ(L1; θ1) + ηθ1) + (1− α) (Dρ(L2; θ2) + ηθ2) .

The first inequality uses optimality of the threshold in the definition of Rρ, whereas the second inequality uses the convexity

of ρσ . Since the choice of θ1 and θ2 here were arbitrary, we can set θ1 = θρ(L1; η) and θ2 = θρ(L2; η) to obtain the desired

inequality

Rρ(a L1 +(1− a) L2; η) ≤ aRρ(L1; η) + (1− a)Rρ(L2; η)

giving us convexity of the threshold risk. As a direct corollary, setting η = 0 yields the convexity result for L 	→
Dρ(L;Mρ(L)).

Proof of Lemma 2. The crux of this result is an analogue to Lemma 9 regarding the differentials of Dρ(h; θ), this time taken

with respect to h, rather than θ. Fixing arbitrary g, h ∈ H, let us start by considering the following sequence of random

variables:

fk ..=
ρσ(L(h+ akg)− θ)− ρσ(L(h)− θ)

ak
(39)

where (ak) is any sequence of real values such that ak → 0+ as k → ∞. Before getting into the details, let us unpack the

differentiability assumption made on the base loss. Before random sampling, the map h 	→ L(h) is of course a map from H
to the set of measurable functions {L(h) : h ∈ H}, but after sampling, there is no randomness and it is simply a map from

H to R. Having sampled the random loss, the property we desire is that for each h ∈ H, there exists a continuous linear

functional L′(h) : U → R such that

lim
‖g‖→0

|L(h+ g)− L(h)− L′(h)(g)|
‖g‖ = 0. (40)

17See for example Boyd and Vandenberghe (2004, Sec. 3.1.4).
18This fact follows from basic Lebesgue integration theory (Ash and Doléans-Dade, 2000, Thm. 1.6.6).
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The differentiability condition in the lemma statement is simply that

μ{ equality (40) holds } = 1. (41)

On this “good” event, since the map x 	→ ρσ(x) is differentiable by definition, we have that the composition h 	→
ρσ(L(h) − θ) is also differentiable for any choice of θ ∈ R, and a general chain rule can be applied to compute the

differentials.19 In particular, we have a pointwise limit of

f ..= lim
k→∞

fk = ρ′σ(L(h)− θ)L′(h)(g) (42)

which also uses the fact that the Fréchet and Gateaux differentials are equal here.20 Technically, it just remains to obtain

conditions which imply Eμ fk → Eμ f . In pursuit of a μ-integrable upper bound on the sequence (fk), note that for large

enough k, we have

|fk| ≤ 1

ak
‖akg‖ sup

0<a<ak

‖ρ′σ(L(h+ ag)− θ)L′(h+ ag)‖

≤ ‖g‖ sup{‖ρ′σ(L(h0)− θ)L′(h0)‖ : h0 ∈ H}
≤ ‖g‖

σ2
sup

{|L(h0)− θ|‖L′(h0)‖ : h0 ∈ H}
. (43)

The key to the first of the preceding inequalities is a generalized mean value theorem.21 Both the first and second inequalities

also use the fact that h+ akg ∈ H eventually. The final inequality uses the fact that ρ′σ(x) = ρ′(x/σ)/σ ≤ |x|/σ2 for any

choice of −∞ ≤ α ≤ 2. This inequality suggests a natural condition of

Eμ

[
sup
h0∈H

‖L(h0)L
′(h0)‖

]
< ∞ (44)

under which we can apply a standard dominated convergence argument.22 In particular, the key implication is that

(44) =⇒ lim
k→∞

Eμ fk = Eμ f. (45)

Since we have

lim
k→∞

Eμ fk = lim
a→0+

Eμ

[
ρσ(L(h+ ag)− θ)− ρσ(L(h)− θ)

a

]
= D′

ρ(h; θ)(g),

where D′
ρ(h; θ) : U → R denotes the gradient of h 	→ Dρ(h; θ), we see that by applying the preceding argument

(culminating in (45)) to the modified losses (16), we readily obtain the desired result.

Proof of Theorem 3. To begin, let us consider the smoothness of the objective h 	→ Rρ(h; θ, η) under the present assump-

tions. From Lemma 12 and the basic properties of the Barron class of dispersion functions (Lemma 8), it follows that this

function is λ-smooth with coefficient

λ ..=
λ5

σ
+

λ2

σ2
Eμ‖L′‖H, (46)

where λ5
..= λ3 + λ4, and

λ3
..=

(
λ2

σ

)[
Eμ‖L′‖2H + sup

h∈H
Eμ‖L′(h)‖

]
, λ4

..= λ1‖ρ′‖∞.

From here, we can leverage the main argument of Cutkosky and Mehta (2021, Thm. 2), utilizing the smoothness property

given by (46) above, and the Γ-bound of (19). For completeness and transparency we include the key details here. First,

19See Penot (2012, Thm. 2.47) for this key fact, where “X” is U here, and both “Y ” and “Z” are R here.
20Luenberger (1969, §7.2, Prop. 2)
21Considering the proof of Lemma 14 due to Luenberger (1969, §7.3, Prop. 2), just generalize the one-dimensional part of the argument

from the original interval [0, 1] to the interval [0, ak] here.
22See for example Ash and Doléans-Dade (2000, Thm. 1.6.9). If (43) holds for say all k ≥ k0, then we can just bound |fk| by the

greater of maxj≤k0 |fj | (clearly μ-integrable) and the right-hand side of (43).
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note that if we define εt ..= Gt − ∂h Rρ(ht; θ, η), ε̂t ..= Mt − ∂h Rρ(ht; θ, η), and S(ht, ht+1) ..= ∂h Rρ(ht; θ, η) −
∂h Rρ(ht+1; θ, η), our definitions imply that for each t ≥ 1, we have

Mt+1 = ∂h Rρ(h; θ, η) + b (ε̂t + S(ht, ht+1)) + (1− b)εt+1 (47)

Using the form (47), it follows immediately that

ε̂t+1 = b (ε̂t + S(ht, ht+1)) + (1− b)εt+1 (48)

again for each t ≥ 1. By setting M0
..= 0 and h0

..= h1, we trivially have

ε̂0 = −∂h Rρ(h0; θ, η) = −∂h Rρ(h1; θ, η)

and one can then easily check that (48) holds for all t ≥ 0. Expanding the recursion of (48), we have

ε̂t+1 = (1− b)

t∑
k=0

bkεt−k+1 +

t+1∑
k=1

bkS(ht−k+1, ht−k+2) + bt+1ε̂0. (49)

We take the summands of (49) one at a time. Since the stochastic gradients are Γ-bounded, we have that bk‖εt−k+1‖ ≤ 2Γ
for all 0 ≤ k ≤ t. Furthermore, we have Eμ εt−k+1 = 0 (Lemma 2) and Eμ(b

k‖εt−k+1‖)2 ≤ (2bkΓ)2 for each k. These

bounds can be passed to standard concentration inequalities for martingales on Banach spaces (Cutkosky and Mehta, 2021,

Lem. 14), which using the smoothness property of H that we assumed tell us that with probability no less than 1− δ, we

have ∥∥∥∥∥
t∑

k=0

bkεt−k+1

∥∥∥∥∥ ≤ 10Γmax
{
1, log(3δ−1)

}
+ 8Γ

√√√√max {1, log(3δ−1)}
t∑

k=0

b2k. (50)

Moving on to the second term of (49), note that using λ-smoothness of the risk function with coefficient λ given by (46),

along with the definition of the update procedure (20)–(21), we have

‖S(ht, ht+1)‖ ≤ λ‖ht − ht+1‖ = λat‖M̃t‖ = λat.

This implies that using a constant step size at = a, we can control the sum as∥∥∥∥∥
t+1∑
k=1

bkS(ht−k+1, ht−k+2)

∥∥∥∥∥ ≤ λ

t+1∑
k=1

at−k+1b
k ≤ aλ

1− b
. (51)

Finally, the third term of (49) is easily controlled as ‖ε̂0‖ = ‖∂h Rρ(h1; θ, η)‖ ≤ Γ. Taking this bound along with (50) and

(51), we see that ‖ε̂t+1‖ can be bounded above by

(1− b)

⎛⎝10Γmax
{
1, log(3δ−1)

}
+ 8Γ

√√√√max {1, log(3δ−1)}
t∑

k=0

b2k

⎞⎠+
aλ

1− b
+ bt+1Γ (52)

on the high-probability event mentioned earlier. To make use of the bound (52), note that using the λ-smoothness of the

losses, the update procedure used here can be shown (Cutkosky and Mehta, 2021, Lem. 1) to satisfy

t∑
k=1

‖∂h Rρ(ht; θ, η)‖ ≤ Rρ(h1; θ, η)− Rρ(ht+1; θ, η)

a
+ 2

t∑
k=1

‖ε̂k‖+
(
λa

2

)
t. (53)

Using a union bound, we have that the bound of (52) holds for all ε̂1, . . . , ε̂t with probability no less than 1− tδ. To get

some clean bounds out of (52) and (53), first we loosen

(1− b)

√√√√ t∑
k=0

b2k ≤ 1− b√
1− b2

≤ 1− b√
1− b

=
√
1− b
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and note that 0 < δ < 1 and t ≥ 1 ≥ e/3 implies log(3tδ−1) ≥ 1. This means that with probability no less than 1− δ, we

have

2
t∑

k=1

‖ε̂k‖ ≤ (1− b)20Γt log(3tδ−1) + 16Γt
√

(1− b) log(3tδ−1) +
2aλt

1− b
+

2Γ

1− b
.

Dividing both sides by t and plugging in the prescribed settings of a and b, we have

2

t

t∑
k=1

‖ε̂k‖ ≤ 20Γ log(3tδ−1)√
t

+
16Γ

√
log(3tδ−1)

t1/4
+

2λ

t1/4
+

2Γ√
t
. (54)

Taking this bound and our a setting and applying it to (53), we obtain

1

t

t∑
k=1

‖∂h Rρ(ht; θ, η)‖ ≤ Rρ(h1; θ, η)− Rρ(ht+1; θ, η)

t1/4
+ (RHS of (54)) +

λ

2t3/4
. (55)

To clean this all up, we have

1

t

t∑
k=1

‖∂h Rρ(ht; θ, η)‖ ≤ 1

t1/4

(
Rρ(h1; θ, η)− Rρ(ht+1; θ, η) + 16Γ

√
log(3tδ−1) + 2λ

)
+

1√
t

(
20Γ log(3tδ−1) + 2Γ

)
+

λ

2t3/4
.

For readability, the proof uses a slightly looser choice of λ3, and instead of t iterations, it is stated for T iterations.

Proof of Corollary 4. Let α = 0, and note from §F.3 that we have

ρσ(x) =
2x

x2 + 2σ2
.

It thus follows from (17) that

∂h Lρ(h; θ, η) =
2(L(h)− θ)

(L(h)− θ)2 + 2σ2
L′(h).

In the case of the quadratic loss with a linear model as assumed here, this becomes

∂h Lρ(h; θ, η) =
2(L(h)− θ)

(L(h)− θ)2 + 2σ2
(h(X)− Y)X

=
2(L(h)− θ)

√
2 L(h)

(L(h)− θ)2 + 2σ2
sign(h(X)− Y)X.

Regarding growth in X, note that since L(h) = O(‖X‖2), both the numerator and denominator are O(‖X‖4). As for growth

in L(h) which accounts for the random noise ε as well, the numerator is O(|L|3/2) whereas the denominator is O(|L|2), and

thus accounting for the randomness of X and ε which can both be potentially unbounded and heavy-tailed, we see that the

norm of ∂h Lρ(h; θ, η) must be bounded as the norm of the inputs, noise, and/or loss grow large. Trivially, since σ > 0, the

limits where L(h) → θ also result in ∂h Lρ(h; θ, η) with a norm that is almost surely bounded.

Proceeding to the case of the logistic loss, an analogous argument yields the desired result. First note that under the linear

model assumed here, the gradient with respect to any hj takes the form

∂hj
Lρ(h; θ, η) =

2(L(h)− θ)

(L(h)− θ)2 + 2σ2
(pj(h)− Ỹj)X

where pj(h) ..= exp(hj(X))/
∑k

i=1 exp(hi(X)), i.e., the softmax transformation of the score assigned by hj . By definition,

the coefficients (pj(h)− Ỹj) are bounded. Furthermore, using our linear model assumption, we have that L(h) = O(‖X‖),
and as such the numerator and denominator are both O(‖X‖2), implying the desired boundedness.

Taking the previous two paragraphs together, we have that the bound (19) is satisfied for a finite Γ under α = 0, even when

the data is unbounded and potentially heavy-tailed. For α < 0, the derivative of ρ shrinks even faster, so the same result

follows a fortiori from the α = 0 case. Finally, the λ1-smoothness assumption in Theorem 3 follows from direct inspection

of the forms of L′(h) given here for each loss, using our assumption of ‖X‖2 having bounded second moments.
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Proof of Proposition 7. To begin, recall from §3 the notation Mρ(h) ..= argminθ∈R
Dρ(h; θ) for the M-locations and

θρ(h; η) ..= argminθ∈R
Rρ(h; θ, η) for the T-risk optimal thresholds. By Lemma 10, both Mρ(h) and θρ(h; η) have unique

solutions, and thus we overload this notation to represent the unique solution. By definition, we have

Rρ(h; η) = Rρ(h; θρ(h; η)) ≤ ηMρ(h) + Dρ(h;Mρ(h))

= ηR(h) + η(Mρ(h)− R(h)) + Dρ(h;Mρ(h)).

Similarly, we can obtain a lower bound using the optimality of Mρ(h) and θρ(h; η) as

Rρ(h; η) = ηθρ(h; η) + Dρ(h; θρ(h; η))

≥ ηθρ(h; η) + Dρ(h;Mρ(h))

= ηR(h) + η(θρ(h; η)− R(h)) + Dρ(h;Mρ(h)).

Taking these two bounds together, we have

η(θρ(h; η)− R(h)) + Dρ(h;Mρ(h)) ≤ Rρ(h; η)− ηR(h) ≤ η(Mρ(h)− R(h)) + Dρ(h;Mρ(h)) (56)

for any choice of η ∈ R. The bounds in (56) are stated for ideal risk quantities for the true distribution under μ, but an

identical argument holds if we replace μ by the empirical measure induced by an iid sample L1, . . . , Ln. Writing this out

explicitly, let D̂ρ, R̂ρ, and R̂ denote the empirical analogues of Dρ, Rρ, and R, and similarly let M̂ρ and θ̂ρ be the empirical

analogues of Mρ and θρ. From the argument leading to (56), it follows that

η(θ̂ρ(h; η)− R̂(h)) + D̂ρ(h; M̂ρ(h)) ≤ R̂ρ(h; η)− ηR̂(h) ≤ η(M̂ρ(h)− R̂(h)) + D̂ρ(h; M̂ρ(h)). (57)

Next, using the lower bound in (57), for any η ≥ 0 we have that

ηR(h) = η
(
R̂(h) + (R(h)− R̂(h))

)
≤ η

(
R̂(h) + ‖R−R̂‖H

)
≤ R̂ρ(h; η)− η(θ̂ρ(h; η)− R̂(h))− D̂ρ(h; M̂ρ(h)) + η‖R−R̂‖H
≤ R̂ρ(h; η) + η(R̂(h)− θ̂ρ(h; η)) + η‖R−R̂‖H. (58)

Letting ĥ be a minimizer of R̂ρ, using the upper bound in (57) and any choice of h∗, we have

R̂ρ(ĥ; η) ≤ R̂ρ(h
∗; η) ≤ ηR̂(h∗) + η(M̂ρ(h

∗)− R̂(h∗)) + D̂ρ(h
∗; M̂ρ(h

∗))

≤ ηR(h∗) + η(M̂ρ(h
∗)− R̂(h∗)) + D̂ρ(h

∗; M̂ρ(h
∗)) + η‖R−R̂‖H. (59)

Combining (58) and (59), we have that ηR(ĥ) is bounded above by

ηR(h∗) + η(M̂ρ(h
∗)− θρ(ĥ; η)) + η(R̂(ĥ)− R̂(h∗)) + D̂ρ(h

∗; M̂ρ(h
∗)) + 2η‖R−R̂‖H. (60)

Some elementary manipulations let us bound the key differences in (60) as

M̂ρ(h
∗)− θρ(ĥ; η) + R̂(ĥ)− R̂(h∗) ≤ 2‖M̂ρ − R‖H + 2‖R−R̂‖H + ‖M̂ρ − θρ‖H,

and thus dividing by η > 0, we end up with a final bound taking the form

R(ĥ) ≤ R(h∗) + ‖M̂ρ − θρ‖H + 2‖M̂ρ − R‖H +
1

η
D̂ρ(h

∗; M̂ρ(h
∗)) + 4‖R−R̂‖H.

The desired result is just the special case where we set h∗ is the expected loss minimizer.
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E.2 Smoothness computations (proof of Lemma 12)

Here we provide detailed computations for the smoothness coefficients used in Lemma 12. We assume here that the

assumptions A1, A2, and A3 are satisfied. Starting with the difference of expected gradients, using Jensen’s inequality and

the smoothness assumption A2, we have

‖Eμ

[
L′(h1)− L′(h2)

]‖ ≤ Eμ‖L′(h1)− L′(h2)‖
≤ λ1‖h1 − h2‖. (61)

As discussed in §D.4, differences of gradients modulated by ρ′ are slightly more complicated. In particular, recalling the

equality (29), the norm of the difference

Eμ ρ
′
σ(L(h1)− θ1)L

′(h1)−Eμ ρ
′
σ(L(h2)− θ2)L

′(h2) (62)

can be bounded above by the sum of

Eμ‖L′(h1)‖|ρ′σ(L(h1)− θ1)− ρ′σ(L(h2)− θ2)| (63)

and

Eμ|ρ′σ(L(h2)− θ2)|‖L′(h1)− L′(h2)‖. (64)

We take up (63) and (64) one at a time. Starting with (63), from A3 we know that the dispersion derivative ρ′ is λ2-Lipschitz,

and thus we have

(63) ≤
(
λ2

σ

)
Eμ‖L′(h1)‖ (|L(h1)− L(h2)|+ |θ1 − θ2|)

≤
(
λ2

σ

)
Eμ‖L′(h1)‖

(
‖h1 − h2‖ sup

0<c<1
‖L′((1− c)h1 − ch2)‖+ |θ1 − θ2|

)
≤

(
λ2

σ

)(
‖h1 − h2‖Eμ‖L′‖2H + |θ1 − θ2| sup

h∈H
Eμ‖L′(h)‖

)
≤ λ3 (‖h1 − h2‖+ |θ1 − θ2|) . (65)

Here, the second inequality uses the helper Lemma 14 and our assumption of differentiability, while the third inequality uses

our assumption on the expected squared norm of the gradient. We have set the Lipschitz coefficient λ3 in (65) to be

λ3
..=

(
λ2

σ

)[
Eμ‖L′‖2H + sup

h∈H
Eμ‖L′(h)‖

]
.

This gives us a bound on (63). Moving on to (64), if ρ′ is bounded on R, then we have

(64) ≤ ‖ρ′‖∞ Eμ‖L′(h1)− L′(h2)‖
≤ λ4‖h1 − h2‖ (66)

with λ4
..= λ1‖ρ′‖∞, recalling the bound (61). To summarize, we can use (65) and (66) to control (62) as follows:

(62) ≤ (63) + (64)

≤ λ3 (‖h1 − h2‖+ |θ1 − θ2|) + λ4‖h1 − h2‖
≤ λ5 (‖h1 − h2‖+ |θ1 − θ2|)

where λ5
..= λ3 + λ4. With these preparatory details organized, it is straightforward to obtain a Lipschitz property on the

gradient of Rρ(·), as summarized in Lemma 12, and detailed in the proof below.

Proof of Lemma 12. Using our upper bounds on (61) and (62), we have

‖∂h Rρ(h1; θ1, η)− ∂h Rρ(h2; θ2, η)‖

≤
(
1

σ

)∥∥∥∥Eμ

[
ρ′

(
L(h1)− θ1

σ

)
L′(h1)− ρ′

(
L(h2)− θ2

σ

)
L′(h2)

]∥∥∥∥
≤

(
λ5

σ

)
(‖h1 − h2‖+ |θ1 − θ2|) .
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Next, let us look at the partial derivative taken with respect to the threshold parameter θ. To bound the absolute value of

these differences, using the generalized mean value theorem (Lemma 14), we have

|∂θ Rρ(h1; θ1, η)− ∂θ Rρ(h2; θ2, η)| ≤
(
1

σ

) ∣∣∣∣Eμ

[
ρ′

(
L(h1)− θ1

σ

)
− ρ′

(
L(h2)− θ2

σ

)]∣∣∣∣
≤

(
λ2

σ2

)
(Eμ|L(h1)− L(h2)|+ |θ1 − θ2|)

≤
(
λ2

σ2
Eμ‖L′‖H

)
(‖h1 − h2‖+ |θ1 − θ2|) .

Taking the preceding upper bounds together, the gradient difference for Rρ can be bounded as

‖R′
ρ(h1; θ1, η)− R′

ρ(h2; θ2, η)‖
= ‖∂h Rρ(h1; θ1, η)− ∂h Rρ(h2; θ2, η)‖+ |∂θ Rρ(h1; θ1, η)− ∂θ Rρ(h2; θ2, η)|

≤
((

λ5

σ

)
+

ηλ2

σ2
Eμ‖L′‖H

)
(‖h1 − h2‖+ |θ1 − θ2|) ,

noting that the initial equality follows from the fact that we are using the sum of norms for our product space norm here (see

also Remark 13). These bounds on the gradient differences are precisely the desired result.

F Additional technical facts

F.1 Lipschitz properties

Here we give a fundamental property of differentiable functions that generalizes the mean value theorem.

Lemma 14. Let U and V be normed linear spaces, and let f : U → V be Fréchet differentiable on an open set S ⊆ U .
Taking any u ∈ S, we have

‖f(u+ u′)− f(u)‖ ≤ ‖u′‖ sup
0<c<1

‖f ′(u+ cu′)‖

for any u′ ∈ U such that u+ cu′ ∈ S for all 0 ≤ c ≤ 1.

Proof. See Luenberger (1969, §7.3, Prop. 2).

Note that Lemma 14 has the following important corollary: bounded gradients imply Lipschitz continuity. In particular, if

‖f ′(u)‖ ≤ λ < ∞ for all u ∈ S, then it follows immediately that f is λ-Lipschitz on S.

A closely related result goes in the other direction. Let f : U → R be convex and λ-Lipschitz. If f is sub-differentiable at a

point u ∈ U , then we have

|〈∂f(u), u′ − u〉| ≤ |f(u′)− f(u)| ≤ λ‖u′ − u‖.

As such, for convex, sub-differentiable functions, λ-Lipschitz continuity implies that all sub-gradients are bounded as

‖∂f(x)‖ ≤ λ.

F.2 Convexity

Lemma 15. Let function f : Rd → R be twice continuously differentiable. Then f is convex if and only if its Hessian is
positive semi-definite, namely when

〈f ′′(v)u, u〉 ≥ 0

for all u, v ∈ R
d.

Proof. See Nesterov (2004, Thm. 2.1.4).
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F.3 Derivatives for the Barron class

Let ρ(·;α) be defined according to (15). Here we compute derivatives of the map x 	→ ρσ(x;α), using the shorthand notation

ρσ(x;α) ..= ρ(x/σ;α). We denote the first derivative of ρσ(·;α) evaluated at x ∈ R by ρ′σ(x;α), which is computed as

ρ′σ(x;α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x/σ2, if α = 2

2x/(x2 + 2σ2), if α = 0

(x/σ2) exp
(−(x/σ)2/2

)
, if α = −∞

x
σ2

(
1 + (x/σ)2

|α−2|
)(α/2)−1

, otherwise.

(67)

In the same way, letting ρ′′σ(x;α) denote the second derivative of ρσ(·;α) evaluated at x ∈ R, this is computed as

ρ′′σ(x;α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1/σ2, if α = 2
2

x2+2σ2

(
1− 2x2

x2+2σ2

)
, if α = 0

(1/σ2) exp
(−(x/σ)2/2

) (
1− (

x
σ

)2)
, if α = −∞

1
σ2

(
1 + (x/σ)2

|α−2|
)(α/2)−1 (

1− 1−(α/2)
|α−2|

2(x/σ)2

1+(x/σ)2/|α−2|
)
, otherwise.

(68)

We emphasize that ρ′σ(x;α) and ρ′′σ(x;α) are not equal to ρ′(x/σ;α) and ρ′′(x/σ;α), but by a simple application of the

chain rule are easily seen to satisfy the relations

ρ′σ(x;α) =
1

σ
ρ′(x/σ;α), ρ′′σ(x;α) =

1

σ2
ρ′′(x/σ;α)

for any x ∈ R, σ > 0, and α ∈ [−∞, 2].

F.4 Elementary inequalities

The following elementary inequalities will be of use.(
1 +

x

p

)p

≥
(
1 +

x

q

)q

, ∀x ≥ 0, p > q > 0 (69)

(1 + x)c ≤ 1 +
cx

1− (c− 1)x
, −1 ≤ x <

1

c− 1
, c > 1 (70)

The inequality below is sometimes referred to as Bernoulli’s inequality.

(1 + x)
a ≥ 1 + ax, ∀x > −1, a ≥ 1. (71)

F.5 Expected dispersion is coercive

Lemma 16 (Expected dispersion is coercive). Let f : R → R+ be any non-negative function which is even (i.e., f(x) =
f(−x) for all x ∈ R) and non-decreasing on R+. Let X be any random variable such that Eμ f(X− θ) < ∞ for all θ ∈ R.
Then, we have

lim
|θ|→∞

Eμ f(X− θ) = lim
x→∞ f(x)

and note that this includes the divergent case where f(x) → ∞ as |x| → ∞.

Proof of Lemma 16. By our assumptions, we have f(x) ≥ 0 and f(−x) = f(x) for all u ∈ R, and f(x1) ≤ f(x2)
whenever 0 ≤ x1 ≤ x2. With these facts in place, note that for any choice of a ≥ 0 and θ such that |θ| ≥ a, we have

Eμ f(X− θ) = Eμ f(|θ − X|)
≥ Eμ f (||θ| − |X||)
≥ Eμ I{|X|≤a} f (||θ| − |X||)
≥ f (|θ| − a)P{|X| ≤ a}. (72)
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For readability, let us write f(+∞) for the limit of f(x) as |x| → ∞. Trivially, we know that Eμ f(X − θ) ≤ f(+∞).
Using the preceding inequality (72), we have a lower bound of Eμ f(X − θ) ≥ f(+∞)P{|X| ≤ a} that holds for any

a ≥ 0. When f(+∞) = ∞, the desired result is immediate. When f(+∞) < ∞, simply note that {|X| ≤ a} ↑ Ω as

a ↑ ∞, and thus using the continuity of probability measures, we have P{|X| ≤ a} → 1 as a → ∞.23 Thus, the lower

bound (72) can be taken arbitrarily close to f(+∞), implying the desired result.

23All countably additive set functions on σ-fields satisfy such continuity properties (Ash and Doléans-Dade, 2000, Thm. 1.2.7).


