
Neural Laplace Control for Continuous-time Delayed Systems

Samuel Holt
University of Cambridge

sih31@cam.ac.uk

Alihan Hüyük
University of Cambridge

ah2075@cam.ac.uk

Zhaozhi Qian
University of Cambridge
zq224@maths.cam.ac.uk

Hao Sun
University of Cambridge

hs789@cam.ac.uk

Mihaela van der Schaar
University of Cambridge & The Alan Turing Institute

mv472@cam.ac.uk

Abstract

Many real-world offline reinforcement learning
(RL) problems involve continuous-time environ-
ments with delays. Such environments are char-
acterized by two distinctive features: firstly, the
state x(t) is observed at irregular time intervals,
and secondly, the current action a(t) only affects
the future state x(t + τ) with an unknown delay
τ > 0. A prime example of such an environ-
ment is satellite control where the communica-
tion link between earth and a satellite causes ir-
regular observations and delays. Existing offline
RL algorithms have achieved success in environ-
ments with irregularly observed states in time or
known delays. However, environments involving
both irregular observations in time and unknown
delays remains an open and challenging prob-
lem. To this end, we propose Neural Laplace
Control, a continuous-time model-based offline
RL method that combines a Neural Laplace dy-
namics model with a model predictive control
(MPC) planner—and is able to learn from an of-
fline dataset sampled with irregular time inter-
vals from an environment that has a inherent un-
known constant delay. We show experimentally
on continuous-time delayed environments it is
able to achieve near expert policy performance.

1 INTRODUCTION

Online Reinforcement learning methods struggle to be
applied to many real-world environments, for example
in healthcare, business, and autonomous driving environ-

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

ments. RL methods rely on costly trial-and-error ap-
proaches performed either online or in a realistic simulator
of the environment—which are not often readily available.
In contrast, “offline” model-based reinforcement learning
learns the environment dynamics, from a previously col-
lected dataset of state-action trajectories, which is often
readily available. It then controls the system to a desired
goal using any suitable planning method, such as training
a policy (Fujimoto et al., 2018) or using a model predictive
controller (MPC) (Williams et al., 2016).

In practice, real-world environments are continuous in time
by nature and possess constant delays τ whereby either ac-
tions are not executed instantaneously a(t + τ), or states
are not observed instantaneously x(t+τ) (we formally de-
fine these later, in Section 3). For instance, in healthcare,
observing a treatment effect a(t) from giving a patient a
medication is not observable instantaneously and is instead
delayed x(t+τ), whilst measurements may be measured at
irregular time intervals, x(t +∆i), ∆i ̸= ∆j—as is com-
mon where the frequency of observations is indicative of
the patient’s medical status (Goldberger et al., 2000). Sim-
ilarly in autonomous driving it can take more than τ = 0.4s
for a hydraulic automotive braking system to generate a de-
sired deceleration, therefore accounting for the delayed en-
vironment dynamics is crucial for correct safe control of
the vehicle (Bayan et al., 2010). All together these envi-
ronment dynamics, can often be described through sets of
delay differential equations (DDEs) (Lynch & Park, 2017),
however are often unknown.

Prior work has shown the success of model-based RL to
learn from offline datasets consisting separately of either
(1) irregularly-sampled data with no environment delays
∆i ̸= ∆j , τ = 0 (Yildiz et al., 2021) with continuous-time
methods, or (2) regularly-sampled data with environment
delays ∆i = ∆j , τ > 0 (Chen et al., 2021) with discrete-
time delay methods. However, performing offline model-
based RL with both delays τ > 0 and irregularly-sampled
data ∆i ̸= ∆j for continuous-time control tasks is a largely
understudied problem, yet an important problem setting.

mailto:sih31@cam.ac.uk
mailto:ah2075@cam.ac.uk
mailto:zq224@maths.cam.ac.uk
mailto:hs789@cam.ac.uk
mailto:mv472@cam.ac.uk

Neural Laplace Control for Continuous-time Delayed Systems

The existing two individual approaches are inherently in-
compatible with each other. On one hand, continuous-
time methods use a continuous-time model, such as neu-
ral ordinary differential equation (ODE), to learn from
irregularly-sampled observations ∆i ̸= ∆j , τ = 0 (Yildiz
et al., 2021; Du et al., 2020). However, ODEs cannot model
environments with unknown delays τ > 0 (Holt et al.,
2022). Furthermore, neural-ODE based models suffer from
poor computational efficiency, when scaling to longer time
horizons in a given trajectory (as shown in Section 5.2).

On the other hand, the existing methods for handling de-
lays only considers a discrete-time ∆i = ∆j , τ > 0 en-
vironment. Where these methods assume the delay τ is
either known a priori (Firoiu et al., 2018) or is implic-
itly learned from a discrete buffer of previously executed
actions āi−1 = {a1, . . . ,ai−1} (or states) (Chen et al.,
2021). A simple approach for handling environments with
delays τ > 0 is to greatly increase the time interval be-
tween actions performed, so as to synchronize the agent’s
actions with its delayed observations. However, such an ap-
proach would lead to a “waiting agent” that is clearly sub
optimal in most environments.

Hence, the following two properties are highly desirable
for offline model-based RL to perform in more real-world
environments.
(P1) Learn from irregular samples: able to learn from
irregularly-sampled ∆i ̸= ∆j in time offline datasets re-
sulting from a continuous-time environment.
(P2) Learn delayed dynamics: can learn the delayed dy-
namics of the environment, implicitly modeling any un-
known delays τ > 0.

To fulfill P1 and P2, we propose Neural Laplace Con-
trol (NLC), a continuous-time model-based RL method.
Rather than describing the environment dynamics with a
(neural) ODE, it uses Neural Laplace to learn implicit de-
lay differential equation dynamics, which simultaneously
accounts for unknown delays τ > 0 and continuous-time
dynamics ∆i ̸= ∆j . This brings two immediate advan-
tages. First, many continuous-time control problems in-
volving delay DEs can easily be represented and solved
in the Laplace domain (Schiff, 1999; Åström & Murray,
2021; Yi et al., 2008). Secondly, Neural Laplace Con-
trol bypasses the standard numerical ODE solvers and uses
an inverse Laplace transform algorithm (Holt et al., 2022)
to reconstruct any future state x(t + ∆i) of the dynamics
model with the same amount of compute. This makes em-
ploying more principled planning strategies such as MPC
feasible for continuous-time domains over expensive nu-
merical step wise ODE based models.

Specifically, Neural Laplace Control is able to tackle the
novel continuous-control problem formulated of having
both states observed at irregular time intervals ∆i ̸= ∆j

and an unknown fixed delay τ > 0 in the environment. We

motivate Neural Laplace Control as a principled approach
for this problem and demonstrate the empirical effective-
ness in experiments.

Contributions Our contributions are two-fold: 1⃝ In
Section 4, we formulate and motivate the novel Neu-
ral Laplace Control method, that can learn a dynamics
model that can encode an environments unknown delay
differential equation dynamics from irregularly-sampled
in time state-action trajectories (P1,P2). 2⃝ In sec-
tion 5.1, we benchmark Neural Laplace Control against
the existing continuous-time model-based approaches on
standard continuous-time delayed environments. Specifi-
cally, we demonstrate that Neural Laplace Control is able
to achieve near expert policy performance, significantly
achieving a higher episode reward than the other competing
continuous-time model-based baseline methods. We also
gain insight and understanding of how Neural Laplace Con-
trol works in Section 5.2, of how it can correctly extrapo-
late to longer time horizons for the dynamics model and is
computationally more efficient for predicting the next state
at a longer time horizon, thereby making model predictive
control feasible for longer time horizons for a fixed com-
pute budget. All together, we learn such a model from
irregularly-sampled states and actions in time ∆i ̸= ∆j

(P1) and environments that possess a delay that is unknown
τ > 0 (P2).

A PyTorch (Paszke et al., 2019) implementation of the code
is at https://github.com/samholt/NeuralLaplaceControl,
and have a broader research group codebase at
https://github.com/vanderschaarlab/NeuralLaplaceControl.

2 RELATED WORK

In offline reinforcement learning, an agent learns from a
fixed replay buffer and is not permitted to interact with the
environment (Wu et al., 2019). While both model-free (Ku-
mar et al., 2019; 2020; Fujimoto & Gu, 2021) and model-
based (Kidambi et al., 2020; Wang et al., 2021) approaches
have been proposed for offline RL, in general, model-based
methods have been shown to be more sample efficient than
model-free methods (Moerland et al., 2020). The main
challenge in model-based RL is known as “extrapolation
error” (Fujimoto et al., 2019), whereby the learnt dynam-
ics model inaccuracies compound for a larger number of
future predicted time steps. Hence, it is crucial in model-
based RL to learn an appropriate dynamics model that is
capable of accurately capturing the unique characteristics
of an environment. However, despite the fact that many en-
vironments operate in continuous-time by nature and con-
tain action or observation delays, almost all of the existing
approaches to model-based RL consider dynamics models
only suited to the conventional discrete-time ∆i = ∆j set-
ting with no delays τ = 0. We review here some of the
few approaches that go beyond the conventional setting,

https://github.com/samholt/NeuralLaplaceControl
https://github.com/vanderschaarlab/NeuralLaplaceControl

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Table 1: Comparison with related model-based approaches to RL. (P1) Learn from irregular samples—can it learn from an offline
dataset sampled at irregular times, ∆i ̸= ∆j? (P2) Learn delayed dynamics—can it learn environments that contain a delay τ > 0?
Neural Laplace Control is the only method that can both learn from irregular samples (P1) as well as learn environments that contain a
delay (P2).

Approach True Dynamics Data Available Reference Model (P1) ∆i ̸= ∆j (P2) τ > 0

Conventional model-based RL xt+1 ∼ f(xt,at) D = {(xi,ai)}ni=0 Williams et al. (2017) MDP / Neural Network ✗ ✗
Discrete-time delay methods xt+1 ∼ f(xt,at−τ) D = {(xi,ai)}ni=0 Chen et al. (2021) DA-MDP / RNN ✗ ✓

Continuous-time methods ẋ(t) = f(x(t),a(t)) D = {(x(ti),a(ti))}ni=0
s.t. ∃i,j : ti+1−ti ̸= tj+1−tj

Yildiz et al. (2021) Neural ODE ✓ ✗
Du et al. (2020) Latent ODE ✓ ✗

Neural Laplace Control ẋ(t) = f(x(t),a(t− τ)) D = {(x(ti),a(ti))}ni=0
s.t. ∃i,j : ti+1−ti ̸= tj+1−tj (Ours) Neural Laplace Control ✓ ✓

namely (i) discrete-time delay methods and (ii) continuous-
time methods.

Discrete-time Delay Methods Modeling environments
with either delayed observations x(t + τ) or delayed ac-
tions a(t + τ) are equivalent in form (Katsikopoulos &
Engelbrecht, 2003). Prior work models regular sampled
∆i = ∆j (discrete time) environments with constant time
delays τ > 0, and provides the agent with the current state
x(t), and a history of past actions performed in the envi-
ronment āi−1 = {a1, . . . ,ai−1}, whereby the history ac-
tion window is larger than or equal to the observation or
action delay in the environment (Walsh et al., 2009; Firoiu
et al., 2018; Bouteiller et al., 2020; Liotet et al., 2021; Agar-
wal & Aggarwal, 2021). Recently, Chen et al. (2021) pro-
posed delay-aware Markov decision processes (MDPs) that
are capable of modeling delayed dynamics in discrete-time
based on regularly sampled data, with an RNN encoding
the history of past actions and the current state. Moreover,
Derman et al. (2020) proposes a discrete-time known de-
lay method—whereby, Derman et al. (2020)’s App. D.2
benchmarks against a model-free A2C baseline that only
uses the current state-action fed into a RNN, that is unable
to learn the delay.

Continuous-time Methods Real world data is often
sampled irregularly ∆i ̸= ∆j , as such (Yildiz et al.,
2021) propose to use Neural ODEs (Chen et al., 2018b)
as their continuous-time dynamics model that can model
irregularly-sampled environments with no delays τ = 0.
Similarly, the work of Du et al. (2020) uses a Latent ODE
model when planning policies. Moreover, the work of
Seedat et al. (2022) uses a controlled differential equa-
tion (Kidger et al., 2020b) to model counterfactual out-
comes. However, these existing approaches are limiting,
as an ODE-based model by definition cannot handle a de-
lay differential equation, necessitating the need for a model
that can learn and model more diverse classes of differen-
tial equations. Recent models, of modeling diverse classes
of differential equations is made possible with the work of
Neural Laplace (Holt et al., 2022) by representing them in
the Laplace domain. These Laplace-based models have
been shown to be able to model such systems, be more
accurate and scale better with increasing time horizons in

time complexity. Our approach, namely Neural Laplace
Control, essentially extends Neural Laplace to the setting
of controlled systems—that is systems that evolve based
on an action signal a(t)—so that it can be used in plan-
ning policies in a RL setting. Furthermore, Bruder & Pham
(2007) provides theory for the continuous time specific set-
ting where action is an impulse, rather than a multivariate
continuous input and the environment dynamics are a dif-
fusion process.

We summarize the key related work in Table 1 and provide
an extended discussion of additional related works, includ-
ing a review of the benefits of using model-based RL and
using model predictive control, which happens to be our
preferred strategy for planning policies, in Appendix A.

3 PROBLEM FORMULATION

States & Actions For a system with state space X =
RdX and action space A = RdA , the state at time
t ∈ R is denoted as x(t) = [x1(t), . . . , xdX (t)] ∈
X and the action at time t ∈ R is denoted as
a(t) = [a1(t), . . . , adA(t)] ∈ A. We elaborate that state
trajectory x : R→ X and action trajectory a : R→ A are
both functions of time, where an individual state x(t) ∈ X
or an individual action a(t) ∈ A are points on these tra-
jectories. Given a time interval I ⊆ R, xI ∈ X I and
aI ∈ AI we denote the partial state and action trajectories
on that interval such that xI(t) = x(t) and aI(t) = a(t)
for t ∈ I. Finally, we also note that action values are usu-
ally bounded by an actuator’s limits hence we also restrict
the action space to A = [amin,amax], i.e., a box in Eu-
clidean space.

Environment Dynamics Dynamics of the system are de-
scribed by a non-autonomous non-linear controlled delay
differential equation with a constant action delay τ ∈ R+:

ẋ(t) =
dx(t)

dt
= f(x(t),a(t− τ)) (1)

where function f : X × A → RdX maps the current state
and delayed action pair x(t),a(t − τ) to a state deriva-
tive ẋ(t). We note that this setting of Continuous-time
Control (Kwakernaak & Sivan, 1972; Åström & Murray,

Neural Laplace Control for Continuous-time Delayed Systems

ILT Algorithm

Time

Observed Unobserved Observed Unobserved

Laplace Representation Network
<latexit sha1_base64="yszh+uKpfsLFJemInt4qGrJXKJA=">AAACJ3icbVBNSwMxEM36WetX1aOXYBEqSNmVop6k4MWjglWhu5Rsmu0Gs8mSzApl2X/jxb/iRVARPfpPTOsqWn0QeLw3M5l5YSq4Add9c6amZ2bn5isL1cWl5ZXV2tr6hVGZpqxDlVD6KiSGCS5ZBzgIdpVqRpJQsMvw+njkX94wbbiS5zBMWZCQgeQRpwSs1Ksd+QmBOIxyU2Bf80FsJ0QQE50qJQ1ufNk+xAxIsYu/hTTmxU6vVneb7hj4L/FKUkclTnu1R7+vaJYwCVQQY7qem0KQEw2cClZU/cywlNBrMmBdSyVJmAny8Z0F3rZKH0dK2ycBj9WfHTlJjBkmoa0cbWkmvZH4n9fNIDoMci7TDJiknx9FmcCg8Cg03OeaURBDSwjV3O6Kqc2IULDRVm0I3uTJf8nFXtPbb7bOWvV2q4yjgjbRFmogDx2gNjpBp6iDKLpF9+gJPTt3zoPz4rx+lk45Zc8G+gXn/QM2C6dS</latexit>

s ⌦ (✓,�)
Stereographic Projection

Return

Time

Query <latexit sha1_base64="7T1b5URNr7oS2flhKYx2x1Cd+vg=">AAACM3icbVDLSgMxFM3Ud31VXboJFkFByowUdVlwI64UbBU6pWTSTCc0kwzJHaEM809u/BEXgrhQxK3/YPrw1XogcDjn3pt7T5AIbsB1n5zCzOzc/MLiUnF5ZXVtvbSx2TAq1ZTVqRJK3wTEMMElqwMHwW4SzUgcCHYd9E4H/vUt04YreQX9hLVi0pU85JSAldqlcz8mEAVhZvLi7g/HvubdyE4LISI6UUoavPdl+xAxIPkB/haSiOf77VLZrbhD4GnijUkZjXHRLj34HUXTmEmgghjT9NwEWhnRwKlgedFPDUsI7ZEua1oqScxMKxvenONdq3RwqLR9EvBQ/d2RkdiYfhzYysGWZtIbiP95zRTCk1bGZZICk3T0UZgKDAoPAsQdrhkF0beEUM3trpjajAgFG3PRhuBNnjxNGocV76hSvayWa9VxHItoG+2gPeShY1RDZ+gC1RFFd+gRvaBX5955dt6c91FpwRn3bKE/cD4+AdJsrDI=</latexit>s

<latexit sha1_base64="7QeDWu55RHpo43JYHonMszGKKZw=">AAACEHicbVDLSsNAFJ3UV62vqBvBzWAR6qYkUtRlxY3LCvYBTQyT6aQdOpOEmYlQQvwIv8Gtrt2JW//ApX/ipM3Cth64cDjnXu69x48Zlcqyvo3Syura+kZ5s7K1vbO7Z+4fdGSUCEzaOGKR6PlIEkZD0lZUMdKLBUHcZ6Trj29yv/tIhKRReK8mMXE5GoY0oBgpLXnmkePzNM48+pDWHI7UCCOWXmdnmWdWrbo1BVwmdkGqoEDLM3+cQYQTTkKFGZKyb1uxclMkFMWMZBUnkSRGeIyGpK9piDiRbjr9IIOnWhnAIBK6QgWn6t+JFHEpJ9zXnfmRctHLxf+8fqKCKzelYZwoEuLZoiBhUEUwjwMOqCBYsYkmCAuqb4V4hATCSoc2t8XneSb2YgLLpHNety/qjbtGtdko0imDY3ACasAGl6AJbkELtAEGT+AFvII349l4Nz6Mz1lryShmDsEcjK9f5/adnQ==</latexit>

p
(A)
i

<latexit sha1_base64="x2gZombgXvTWzY2XZQzK08km4Zc=">AAACEHicbVDLSsNAFJ34rPUVdSO4GSxC3ZREirosuHFZwT6gjWEynbRDZyZhZiKUED/Cb3Cra3fi1j9w6Z84abOwrQcuHM65l3vvCWJGlXacb2tldW19Y7O0Vd7e2d3btw8O2ypKJCYtHLFIdgOkCKOCtDTVjHRjSRAPGOkE45vc7zwSqWgk7vUkJh5HQ0FDipE2km8f9wOexplPH9JqnyM9woil3ew88+2KU3OmgMvELUgFFGj69k9/EOGEE6ExQ0r1XCfWXoqkppiRrNxPFIkRHqMh6RkqECfKS6cfZPDMKAMYRtKU0HCq/p1IEVdqwgPTmR+pFr1c/M/rJTq89lIq4kQTgWeLwoRBHcE8DjigkmDNJoYgLKm5FeIRkghrE9rcloDnmbiLCSyT9kXNvazV7+qVRr1IpwROwCmoAhdcgQa4BU3QAhg8gRfwCt6sZ+vd+rA+Z60rVjFzBOZgff0CDH+dtA==</latexit>

p
(X)
i

<latexit sha1_base64="PqOLcWVU4uJGY5aJfFLAeAC8M1c=">AAACK3icbVDLSsNAFJ34rPUVdelmsAgtSEm0qMuKG5cV7AOaGCbTaTt0JgkzE6GEfIgf4Te41bUrxY0L/8NJm4V9HLhwOOde7r3HjxiVyrI+jZXVtfWNzcJWcXtnd2/fPDhsyTAWmDRxyELR8ZEkjAakqahipBMJgrjPSNsf3WZ++4kIScPgQY0j4nI0CGifYqS05JkXZcfnSZR69DEpOxypIUYsuUkr6dkyo6ONimeWrKo1AVwkdk5KIEfDM3+cXohjTgKFGZKya1uRchMkFMWMpEUnliRCeIQGpKtpgDiRbjJ5LoWnWunBfih0BQpO1P8TCeJSjrmvO7Mr5byXicu8bqz6125CgyhWJMDTRf2YQRXCLCnYo4JgxcaaICyovhXiIRIIK53nzBafpzoTez6BRdI6r9qX1dp9rVSv5ekUwDE4AWVggytQB3egAZoAg2fwCt7Au/FifBhfxve0dcXIZ47ADIzfPxmAqLA=</latexit>

(p
(A)
i , p

(X)
i)

<latexit sha1_base64="eJKaBSRN0tEEnxfRVPP0w7luekw=">AAAB/XicbVA9SwNBEJ3zM8avqKXNYhCswp0EtQzYWEYwH5AcYW8zlyzZvTt294R4BH+DrdZ2YutvsfSfuEmuMIkPBh7vzTAzL0gE18Z1v5219Y3Nre3CTnF3b//gsHR03NRxqhg2WCxi1Q6oRsEjbBhuBLYThVQGAlvB6Hbqtx5RaR5HD2acoC/pIOIhZ9RYqTXsdZ/Q0F6p7FbcGcgq8XJShhz1Xumn249ZKjEyTFCtO56bGD+jynAmcFLsphoTykZ0gB1LIypR+9ns3Ak5t0qfhLGyFRkyU/9OZFRqPZaB7ZTUDPWyNxX/8zqpCW/8jEdJajBi80VhKoiJyfR30ucKmRFjSyhT3N5K2JAqyoxNaGFLICc2E285gVXSvKx4V5XqfbVcq+bpFOAUzuACPLiGGtxBHRrAYAQv8ApvzrPz7nw4n/PWNSefOYEFOF+/LBCWKA==</latexit>

h⇣
<latexit sha1_base64="G8OMCBd8mdsJj+bmn0myP4BSbe0=">AAAB/HicbVA9TwJBEJ3DL8Qv1NJmIzFakTtD0JLExhIT+UjgQvaWPVjZ3bvs7hnJBX+DrdZ2xtb/Yuk/cYErBHzJJC/vzWRmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NRRoghtkIhHqh1gTTmTtGGY4bQdK4pFwGkrGN1M/dYjVZpF8t6MY+oLPJAsZAQbKzWH573uE+sVS27ZnQGtEi8jJchQ7xV/uv2IJIJKQzjWuuO5sfFTrAwjnE4K3UTTGJMRHtCOpRILqv10du0EnVmlj8JI2ZIGzdS/EykWWo9FYDsFNkO97E3F/7xOYsJrP2UyTgyVZL4oTDgyEZq+jvpMUWL42BJMFLO3IjLEChNjA1rYEoiJzcRbTmCVNC/LXrVcuauUapUsnTycwClcgAdXUINbqEMDCDzAC7zCm/PsvDsfzue8NedkM8ewAOfrF/S7lXI=</latexit>

h0
⇠

<latexit sha1_base64="jbvy+bF6TUi9Ujiv0eU5eY0GJY0=">AAAB/HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxjKC+YDkCHubvWTN7t6xuyeGI/4GW63txNb/Yuk/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7J/PYjVZpF8t5MYuoLPJQsZAQbK7V6gUifpv1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Orp2iM6sMUBgpW9Kgmfp3IsVC64kIbKfAZqSXvUz8z+smJrz2UybjxFBJ5ovChCMToex1NGCKEsMnlmCimL0VkRFWmBgb0MKWQGSZeMsJrJLWRdW7rNbuapV6LU+nCCdwCufgwRXU4RYa0AQCD/ACr/DmPDvvzofzOW8tOPnMMSzA+foFpjKV4g==</latexit>x <latexit sha1_base64="jbvy+bF6TUi9Ujiv0eU5eY0GJY0=">AAAB/HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxjKC+YDkCHubvWTN7t6xuyeGI/4GW63txNb/Yuk/cS+5wiQ+GHi8N8PMvCDmTBvX/XYKa+sbm1vF7dLO7t7+QfnwqKWjRBHaJBGPVCfAmnImadMww2knVhSLgNN2ML7J/PYjVZpF8t5MYuoLPJQsZAQbK7V6gUifpv1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6KlWGE02mpl2gaYzLGQ9q1VGJBtZ/Orp2iM6sMUBgpW9Kgmfp3IsVC64kIbKfAZqSXvUz8z+smJrz2UybjxFBJ5ovChCMToex1NGCKEsMnlmCimL0VkRFWmBgb0MKWQGSZeMsJrJLWRdW7rNbuapV6LU+nCCdwCufgwRXU4RYa0AQCD/ACr/DmPDvvzofzOW8tOPnMMSzA+foFpjKV4g==</latexit>x

<latexit sha1_base64="6+ZOUOsLLivvSO3lTASYABlr+Po=">AAAB/HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kRMuAjWUE8wHJEfY2e8ma3b1jd08IR/wNtlrbia3/xdJ/4l5yhUl8MPB4b4aZeUHMmTau++0UNja3tneKu6W9/YPDo/LxSVtHiSK0RSIeqW6ANeVM0pZhhtNurCgWAaedYHKb+Z0nqjSL5IOZxtQXeCRZyAg2Vmr3A5Hi2aBccavuHGideDmpQI7moPzTH0YkEVQawrHWPc+NjZ9iZRjhdFbqJ5rGmEzwiPYslVhQ7afza2fowipDFEbKljRorv6dSLHQeioC2ymwGetVLxP/83qJCW/8lMk4MVSSxaIw4chEKHsdDZmixPCpJZgoZm9FZIwVJsYGtLQlEFkm3moC66R9VfXq1dp9rdKo5ekU4QzO4RI8uIYG3EETWkDgEV7gFd6cZ+fd+XA+F60FJ585hSU4X7+B5pXL</latexit>a

<latexit sha1_base64="ixUN2BakiRVWR7ghHY03He9XIjk=">AAACMXicbVDLSsNAFJ3UV62vqEs3g0VoQUsixceu6MZlBfuAJobJdNoOnUnCzEQoId/iR/gNbnXdnbr1J5ymWdjqgYFzz7mXe+f4EaNSWdbUKKysrq1vFDdLW9s7u3vm/kFbhrHApIVDFoqujyRhNCAtRRUj3UgQxH1GOv74duZ3noiQNAwe1CQiLkfDgA4oRkpLnnkN48fkzE6hc0OHlaGXOJGkuvJ15fg8iVKPnsI44zKtzvRq1lv1zLJVszLAv8TOSRnkaHrmp9MPccxJoDBDUvZsK1JugoSimJG05MSSRAiP0ZD0NA0QJ9JNsi+m8EQrfTgIhX6Bgpn6eyJBXMoJ93UnR2okl72Z+J/Xi9Xgyk1oEMWKBHi+aBAzqEI4ywv2qSBYsYkmCAuqb4V4hATCSqe6sMXnqc7EXk7gL2mf1+yLWv2+Xm7U83SK4AgcgwqwwSVogDvQBC2AwTN4BW/g3XgxpsaH8TVvLRj5zCFYgPH9A5BsqSI=</latexit>

u�1
⇣
g

�
pi, u(s)

�⌘

<latexit sha1_base64="9o/TVax0jStwT4YZDh7YZDZhIMY=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxjKi+YDkCHubvWTJ3t6xOyeEIz/BVms7sfXXWPpP3CRXmMQHA4/3ZpiZFyRSGHTdb6ewsbm1vVPcLe3tHxwelY9PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3Mbz9zbUSsnnCScD+iQyVCwSha6RH7ol+uuFV3DrJOvJxUIEejX/7pDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Cm5sMqAhLG2pZDM1b8TGY2MmUSB7YwojsyqNxP/87ophrd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06S1uCaGoz8VYTWCetq6p3Xa091Cr1Wp5OEc7gHC7Bgxuowz00oAkMhvACr/DmZM678+F8LloLTj5zCktwvn4BCdqUZQ==</latexit>

ti
<latexit sha1_base64="9o/TVax0jStwT4YZDh7YZDZhIMY=">AAAB+XicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxjKi+YDkCHubvWTJ3t6xOyeEIz/BVms7sfXXWPpP3CRXmMQHA4/3ZpiZFyRSGHTdb6ewsbm1vVPcLe3tHxwelY9PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8d3Mbz9zbUSsnnCScD+iQyVCwSha6RH7ol+uuFV3DrJOvJxUIEejX/7pDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Cm5sMqAhLG2pZDM1b8TGY2MmUSB7YwojsyqNxP/87ophrd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06S1uCaGoz8VYTWCetq6p3Xa091Cr1Wp5OEc7gHC7Bgxuowz00oAkMhvACr/DmZM678+F8LloLTj5zCktwvn4BCdqUZQ==</latexit>

ti
<latexit sha1_base64="Yi1bmVJO7sHFXsrphheceSrwZes=">AAACAnicbVC7SgNBFL3rM8ZX1NJmMAg2hl0JahmwsYxgHpBdwuxkNhkyj2VmVgghnd9gq7Wd2Pojlv6Jk2QLk3jgwuGcezmXE6ecGev7397a+sbm1nZhp7i7t39wWDo6bhqVaUIbRHGl2zE2lDNJG5ZZTtuppljEnLbi4d3Ubz1RbZiSj3aU0kjgvmQJI9g6KbRdhi5RqATt426p7Ff8GdAqCXJShhz1bukn7CmSCSot4diYTuCnNhpjbRnhdFIMM0NTTIa4TzuOSiyoicaznyfo3Ck9lCjtRlo0U/9ejLEwZiRitymwHZhlbyr+53Uym9xGYybTzFJJ5kFJxpFVaFoA6jFNieUjRzDRzP2KyABrTKyraSElFhPXSbDcwCppXlWC60r1oVquVfN2CnAKZ3ABAdxADe6hDg0gkMILvMKb9+y9ex/e53x1zctvTmAB3tcv28mXkQ==</latexit>

ti � !
<latexit sha1_base64="Yi1bmVJO7sHFXsrphheceSrwZes=">AAACAnicbVC7SgNBFL3rM8ZX1NJmMAg2hl0JahmwsYxgHpBdwuxkNhkyj2VmVgghnd9gq7Wd2Pojlv6Jk2QLk3jgwuGcezmXE6ecGev7397a+sbm1nZhp7i7t39wWDo6bhqVaUIbRHGl2zE2lDNJG5ZZTtuppljEnLbi4d3Ubz1RbZiSj3aU0kjgvmQJI9g6KbRdhi5RqATt426p7Ff8GdAqCXJShhz1bukn7CmSCSot4diYTuCnNhpjbRnhdFIMM0NTTIa4TzuOSiyoicaznyfo3Ck9lCjtRlo0U/9ejLEwZiRitymwHZhlbyr+53Uym9xGYybTzFJJ5kFJxpFVaFoA6jFNieUjRzDRzP2KyABrTKyraSElFhPXSbDcwCppXlWC60r1oVquVfN2CnAKZ3ABAdxADe6hDg0gkMILvMKb9+y9ex/e53x1zctvTmAB3tcv28mXkQ==</latexit>

ti � !

<latexit sha1_base64="Z+vw0kjBTJUd8KnaIlGiVJT4xhQ=">AAACBHicbVA9SwNBEJ3zM8avqKXNYhBiE+4kqGXAxjKC+YDkDHubvWTJ7t6xuyeE41p/g63WdmLr/7D0n7hJrjCJD4Z5vDfDDC+IOdPGdb+dtfWNza3twk5xd2//4LB0dNzSUaIIbZKIR6oTYE05k7RpmOG0EyuKRcBpOxjfTv32E1WaRfLBTGLqCzyULGQEGys99gKRdrLKtOnsol8qu1V3BrRKvJyUIUejX/rpDSKSCCoN4VjrrufGxk+xMoxwmhV7iaYxJmM8pF1LJRZU++ns6wydW2WAwkjZkgbN1L8bKRZaT0RgJwU2I73sTcX/vG5iwhs/ZTJODJVkfihMODIRmkaABkxRYvjEEkwUs78iMsIKE2ODWrgSiMxm4i0nsEpal1Xvqlq7r5XrtTydApzCGVTAg2uowx00oAkEFLzAK7w5z8678+F8zkfXnHznBBbgfP0CS1uY+Q==</latexit>

X(s)

Figure 1: Block diagram of Neural Laplace Control. The query points s are given by the inverse Laplace transform (ILT) algorithm
based on the time points of the future state trajectory to predict. The gradients can be back-propagated through the ILT algorithm and
stereographic projection to train networks hζ , h′

ξ, gψ .

2021), assumes deterministic environments with no obser-
vation noise—however, also consider observation noise in
Appendix J, and find NLC still performant. Furthermore,
we note that an environment that has either a constant ac-
tion delay or a constant observation state delay are both
equivalent and refer to a constant action delay throughout
(Katsikopoulos & Engelbrecht, 2003). This is evident as
an agent that interacts in an environment that only has an
action delay of τ will only observe the effect of its se-
lected action a(t) τ seconds later in the state observation—
therefore the agent has to decide an action based on a state
observation that is delayed by τ . Therefore, given an ini-
tial state x(0) as well as an action trajectory a(−τ,t−τ), the
state at time t ∈ (0,∞) can be written as

x(t) = x(0) +

∫ t

0

f(x(t′),a(t′ − τ))dt′ (2)

Consider some policy π : ∪t∈RX (−∞,t] → A that con-
trols the system by mapping state trajectories x(−∞,t] to
actions a(t) = π(x(−∞,t]). Then similarly, given an initial
state trajectory x(−∞,0], the state at time t ∈ (0,∞) for
when the system is controlled by policy π can be written as
x(π)(t) = x(0) +

∫ t
0
f(x(t′), π(x(−∞,t′−τ]))dt′.

Offline Dataset We consider the case where the environ-
ment dynamics f including the action delay τ are unknown.
Instead, we observe irregularly-sampled in time state-
action trajectories: D = {(x(k)(t

(k)
i),a(k)(t

(k)
i))}n(j)

i=0

where x(k),a(k) denotes the k-th state-action trajectory
sampled at irregular times {t(k)0 , t

(k)
1 , . . . , t

(k)

n(k)}; we drop
the trajectory index k unless explicitly needed. Letting
∆i = ti − ti−1 denote the time interval between two
consecutive samples, having irregular samples entails that
∆i ̸= ∆j for some i, j ∈ {1, . . . , n}. We also denote
with xi = x(ti) as the i-th state observation and with
ai = a(ti) as the i-th action observation.

Control O bjective Our overall objective is to control
the environment to a given goal state x∗ ∈ X . This
is achieved by defining an instantaneous reward function
r : X → R of the current state. A common reward function
in continuous-time control is the exponential of the nega-
tive distance from the current state to the goal state, that is
r(x(t)) = e−||x(t)−x∗||2—so that the instantaneous reward
is maximized when x(t) = x∗. Consequently, to achieve
our objective, we seek to find the optimal policy π∗ within
a feasible set of policies Π that maximizes the reward inte-
gral for a given final time T ∈ R+:

π∗ = argmax π∈Π

(
R(π) .=

∫ T

0

r(x(π)(t′))dt′
)

(3)

given the offline dataset D but without access to the envi-
ronment dynamics f or the action delay τ .

In practice, policies cannot observe continuous state tra-
jectories in their entirety and hence have to work with
point-wise samples instead. As such, we restrict our search
space Π to practical policies that only update their actions
whenever a state observation is made. Given sampling
times {t0, t1, . . .}, these are policies of the form

π(x(−∞,t)) =

{
0 if t ∈ (−∞, t0)
ai if t ∈ [ti, ti+1)

(4)

where actions ai are generated recursively given x(−∞,ti]

by an auxiliary policy π′ : X × ∪j∈Z+Aj → A such that
ai = π′(xi, āi−1 = {a1, . . . ,ai−1}). Note that it is suffi-
cient for the auxiliary policy to keep track of only the most
recent state observation xi due to the Markovianity of en-
vironment dynamics f , but it needs to keep track of all the
past actions due to the (unknown) action delay τ—keeping
consistent with our convention of modeling action delays,
however, note that this is equivalent for state delays. How-
ever, in the case of a having a fixed previous time window

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

ω ∈ R+, the implicit learnable delay τ is bounded by ω,
i.e., τ < ω.

4 NEURAL LAPLACE CONTROL

We follow the standard model-based framework setup (Lut-
ter et al., 2021). First, we learn a dynamics model as out-
lined in Section 4.1. Then in Section 4.2, we use this learnt
model to plan a policy via model predictive control.

4.1 Learning the Dynamics Model

In the following we propose a way to incorporate actions
into the Neural Laplace (Holt et al., 2022) model for mod-
eling diverse DE systems, also detailed in Appendix B. We
build on the Neural Laplace framework, which was orig-
inally designed to only model the state differential equa-
tion evolution. Specifically, Neural Laplace Control in-
volves three main components: (1) an encoder that learns
to infer and represent the initial representation of the cur-
rent state-action trajectory up to time t, (2) a Laplace
representation network that learns to represent the solu-
tions of the state trajectory in the Laplace domain condi-
tioned on the input state-action trajectories, and (3) an in-
verse Laplace transform (ILT) algorithm that converts the
Laplace representation back to the time domain. We also
note that Neural Laplace Control is preferable for non-
linear dynamics as nonlinear delay DE’s can be solved in
the Laplace domain, through the Laplace Adomian decom-
position method (Yousef & Ismail, 2018). We provide a
block diagram in Figure 1 and now discuss each compo-
nent in detail.

(1) Learning to Represent Initial Conditions at Time t
The future state trajectory solution depends on the initial
condition of the state-action trajectories. To model the de-
lay differential equation environment dynamics fully, we
seek to encode this initial condition, whereby the dynamics
implicitly depend on the past state-action histories. There-
fore, Neural Laplace Control uses an encoder network to
learn a representation of the current initial condition at time
t by encoding the recent state-action history of the trajec-
tory up to a fixed previous time window ω ∈ R+. Note that
ideally, we want ω > τ since previous actions at least up to
a time window of τ affect how states evolve in the future.

For a sample observed at time ti, instead of encoding both
state and action histories, we note that we only need to en-
code one history and follow the convention of Walsh et al.
(2009) to only encode the current state xi = x(ti), and
the action history Hi = {(aj , tj − ti) : tj ∈ [ti − ω, ti]}
up to the previous time window ω. We highlight that the
actions encoded can be at irregular times. As the action
history varies in time, we encode it with a recurrent neural
network, that of a reverse time gated recurrent unit (Chen
et al., 2018a; Holt et al., 2022)—denoted as hζ with pa-

rameters ζ—and encode the current state with a linear neu-
ral network layer—denoted as h′ξ with parameters ξ—and
concatenate both into a latent dimension representing the
initial condition of the state-action trajectory:

pi = (p
(A)
i

.
= hζ(Hi), p(X)

i
.
= h′ξ(xi)) (5)

The vector pi ∈ P = RdP is the learned initial condition
representation, where dP ≥ dX is a hyper-parameter. The
encoders hζ , h′ξ have trainable weights ζ, ξ respectively.
Neural Laplace Control is agnostic to the exact choice of
encoder architecture.

(2) Learning DE Solutions in the Laplace Domain
Given an initial condition representation p ∈ P , we need
to learn a function l : P × CdS → CdX that mod-
els the Laplace representation of the delay DE solution,
i.e., when we take the inverse Laplace transform (ILT) of
X(s) = l(p, s), it approximates x(t) well for future t.
Here, dS ∈ N+ denotes the number of reconstruction terms
per time point and is specific to the ILT algorithm (Ap-
pendix B). However, the Laplace representation X(s) of-
ten involves singularities (Schiff, 1999), which are difficult
for neural networks to approximate or represent (Baker &
Patil, 1998). Therefore, we use the proposed stereographic
projection onto a Riemann sphere to mitigate this (Holt
et al., 2022). With the stereographic projection, we intro-
duce a feed-forward neural network g to learn the Laplace
representation of the dynamics model solution:

X(s) = u−1
(
gψ

(
p, u(s)

))
, (6)

where u is the stereographic projection and u−1 is the in-
verse stereographic projection (Appendix B), the vector
p is the output of the encoders (Equation 5), and ψ is
the trainable weights. Here the neural network’s inputs
and outputs are the coordinates on the Riemann Sphere
(θ, ϕ) ∈ D = (−π, π)× (−π2 , π2), which are bounded and
free from singularities (Holt et al., 2022).

(3) Inverse Laplace transform After obtaining the
Laplace representation X(s), we compute the predicted
or reconstructed state values x̂(t) = L−1{X}(t) for fu-
ture t, where L−1 is the inverse Laplace transform, using a
numerical inverse Laplace transform algorithm. We high-
light that we can evaluate x̂(t) at any future time t ∈ R+

as the Laplace representation is independent of time once
learnt. In practice, we use the well-known ILT Fourier se-
ries inverse algorithm (ILT-FSI), which can obtain the most
general time solutions whilst remaining numerically stable
(Dubner & Abate, 1968; De Hoog et al., 1982; Kuhlman,
2013; Holt et al., 2022).

Loss Function Neural Laplace Control trains its dynam-
ics model end-to-end using the mean squared error loss of

Neural Laplace Control for Continuous-time Delayed Systems

the next step ahead prediction error,

J (ζ, ξ, ψ) =
∑

t∈{ti+1,...,tn}
∥x̂(t)− x(t)∥22 (7)

where x̂(t) = L−1{X(·) = u−1(gψ(pi, u(·))}(t) (8)

We minimize the above loss function J to learn the en-
coders hζ , hξ and the Laplace representation network gψ .
This training is summarized in Appendices B and G.

4.2 Planning with the Learnt Dynamics Model

Once we have learnt the dynamics model, any arbitrary
model-based reinforcement learning framework can be
used for planning. The straightforward choice would be
to perform deep Q-learning using the dynamics model as
a simulator. Ideally, we want to pursue a more principled
approach that can accommodate the Laplace-domain rep-
resentation of the dynamics more readily. Specifically, this
Laplace-domain representation provides us with the impor-
tant benefit of being able to simulate state trajectories for
arbitrarily long control signals without requiring any addi-
tional compute. This is not the case for neural ODEs (Holt
et al., 2022), as shown in Section 5.2.

Laplace-model with MPC We opt to use the model
predictive controller of Model Predictive Path Integral
(MPPI) (Williams et al., 2017). This uses a zeroth or-
der particle-based trajectory optimizer method with our
learned Laplace dynamics model. Specifically, this com-
putes a discrete action sequence up to a fixed time hori-
zon of H ∈ R+, and then executes the first element in the
planned action sequence. We note that our continuous-time
Laplace-based dynamics model can be used to reconstruct
a trajectory at any future time horizon up to H seconds,
however it requires that the corresponding control input
up to that future time horizon is input into the dynamics
model, i.e., a[t,t+H). To simplify the planning problem,
we assume a state, and action history tuple is given to the
Laplace-based dynamics model, along with the time inter-
val to predict the dynamics model next future state at, i.e.,
an input of (xt,a[t−ω:t], δ), to predict xt+δ . Where we
denote δ ∈ R+ as the observation time interval, that is the
time between two consecutive state observations 1. It is nat-
ural for online control problems to be controlled at discrete-
time steps of δ, where δ can be varied. Therefore, the MPPI
plans actions at discrete-time steps δ, up to a fixed horizon
H by planning ahead N ∈ Z+ steps into the future, thus
the planning horizon is determined by H = δ · N . This
leverages a number of parallel roll-outs M ∈ Z+, a hyper
parameter, which can be tuned. As MPPI is a Monte Carlo
based sampler, increasing the number of roll-outs improves
the input trajectory optimization, however scales the run-
time complexity as O(NM). Although planning benefits

1We note that the observation state time interval δ is the same
as the time interval between the executed actions.

from having a longer time horizon to use when optimiz-
ing the next action trajectory, it becomes computationally
infeasible to do so for a large N . Naturally with the Neu-
ral Laplace Control dynamics model representation we can
change the observation interval δ time step, to increase it to
enable planning at a longer time horizon. Clearly, however,
planning at a longer horizon can compound model inaccu-
racies (Williams et al., 2017)—which can become signifi-
cant, rendering the model uncontrollable within that plan-
ning regime, and is further explored in Section 5.2. Ad-
ditionally, we also detail the MPC MPPI pseudocode and
planner implementation in Appendix C.

5 EXPERIMENTS AND EVALUATION

Benchmark Environments We use the continuous-time
control environments from the ODE-RL suite (Yildiz et al.,
2021), as they provide true irregular samples in time of
state observations and are fully continuous in time, un-
like discrete environments (Brockman et al., 2016). We
adapt these to incorporate an arbitrary fixed delayed action
time, turning the ODE environments into delay DE envi-
ronments. This ODE-RL suite consists of three environ-
ments of the Pendulum, Cartpole and Acrobot. The starting
state for all tasks is hanging down and the goal is to swing
up and stabilize the pole(s) upright (Yildiz et al., 2021).
Here, each environment uses the reward function of the ex-
ponential of the negative distance from the current state to
the goal state x∗, whilst also penalizing the magnitude of
action, and we assume we are given this reward function
when planning. We detail all environments in Appendix D.

Benchmark Dynamic Models We select benchmark dy-
namics models for our specific setting of having both states
observed at irregular time intervals ∆i ̸= ∆j and an un-
known fixed delay τ > 0 in the environment. We bench-
mark against a discrete-delay method of a RNN over the
action buffer and current state (Chen et al., 2021), and adapt
it to model continuous-time with a new input of the time in-
crement to predict the next state for (∆t−RNN) 2. We also
compare with the true environment dynamics (Oracle),
an augmented Neural-ODE (NODE) (Chen et al., 2018b),
Latent-ODE (Latent-ODE) (Rubanova et al., 2019b) and
our Neural Laplace Control (NLC) model. We plan all
dynamics models with the MPC MPPI method (Williams
et al., 2017), and further compare against a random pol-
icy (Random). We provide further details of model selec-
tion, hyperparameter selection and implementation details
in Appendix E.

2We note to adapt discrete-time models to continuous-time we
add an additional input parameter, that of the time difference be-
tween the current time and the next state observation to predict,
i.e., δ, e.g., xi+1 = xi + f(xi,ai, δ). (Yildiz et al., 2021)

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Table 2: Normalized scores R of the offline model-based agents, where the irregularly-sampled (P1) offline dataset consists of an action
delay (P2) of {1, 2, 3} multiples of the environments observation interval time step ∆̄ = 0.05 seconds. Averaged over 20 random seeds,
with ± standard deviations. Scores are un-discounted cumulative rewards normalized to be between 0 and 100, where 0 corresponds
to the Random agent and 100 corresponds to the expert with the known world model (Oracle+MPC). Negative normalized scores, i.e.,
worse than random are set to zero. Full results are included in the Appendix H.

Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot

Random 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Oracle 100.0±0.15 100.0±3.14 100.0±2.19 100.0±0.04 100.0±2.57 100.0±1.79 100.0±0.08 100.0±2.57 100.0±1.26
∆t−RNN 95.28±0.4 1.14±6.31 18.95±7.6 97.01±0.31 9.94±2.48 28.39±9.73 97.8±0.25 11.81±11.93 3.89±6.72
Latent-ODE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.24±20.67 8.91±13.62 41.56±47.07 3.26±12.24 9.19±9.08
NODE 85.09±7.95 0.63±5.16 23.07±6.94 90.75±1.34 0.0±0.0 10.92±10.09 94.55±1.08 1.97±4.01 11.78±8.33

NLC (Ours) 99.83±0.19 98.31±3.51 99.12±1.7 99.88±0.1 93.28±4.96 100.44±2.13 99.92±0.12 98.98±1.32 99.46±1.88

Offline Dataset Generation For each environment we
generate an offline state-action trajectory dataset by using
an agent that uses an oracle dynamics model combined with
MPC and has additional noise added to the agents selected
action, π̄(t) = π(t) + ϵ, ϵ ∼ N (0,amax). This “noisy
expert” agent interacts with the environment and observes
observations at irregular unknown times, where we sam-
ple the time interval to the next observation from an ex-
ponential distribution, i.e., ∆ ∼ Exp(∆̄), with a mean of
∆̄ = 0.05 seconds 3 (Yildiz et al., 2021). We assume a
fixed action delay τ , and evaluate discrete multiples of this
delay of the mean sampling time ∆̄, i.e., τ = ∆̄ for one
step delay, τ = 2∆̄ for two step delay etc. We enforce
the observed action history buffer that includes past actions
back to ω = 4∆̄ seconds. We provide further details on the
dataset generation and model training in Appendix G.

Evaluation For each environment, with a different delay
setting (described above) we collect an offline dataset of
irregularly-sampled trajectories, consisting of 1e6 samples
from the “noisy expert” agent interacting within that en-
vironment. For each benchmark dynamics model, we fol-
low the same two step evaluation process of, firstly, training
the dynamics model on that environment’s collected offline
dataset using a MSE error loss for the next step ahead state
prediction x̂(ti+1). Then, secondly, taking the same pre-
trained model and freezing the weights, and only using it
for planning with the MPPI (MPC) planner at run-time in
an environment episode, that lasts for 10 seconds. In total,
we evaluate our model-based control algorithms online in
the same environment, running each one for a fixed obser-
vation interval of δ = ∆̄ = 0.05 seconds (as is the nominal
value for these environments (Yildiz et al., 2021; Brock-
man et al., 2016)), and take the cumulative reward value
after running one episode of the planner (policy) and repeat
this for 20 random seed runs for each result. We quote the
normalized scoreR (Yu et al., 2020) of the policy in the en-
vironment, averaged over the 20 random seed run episodes,
with standard deviations throughout. The scores are un-

3We note other irregular sampling types are possible, however
Yildiz et al. (2021) has shown they are approximately equivalent.

discounted cumulative rewards normalized to lie roughly
between 0 and 100, where a score of 0 corresponds to a ran-
dom policy, and 100 corresponds to an expert (oracle with
a MPC planner). We further detail our evaluation metrics
and experimental setup in Appendix F.

5.1 Main results

We compared all the benchmark methods against each en-
vironment, which consists of a continuous-time environ-
ment with a specific delay—with normalized scores R are
tabulated in Table 2. Neural Laplace Control achieves high
normalized scores (high episode rewards) on all the envi-
ronments. Specifically, NLC is able to model naturally
a variety of different delay environment dynamics (P2),
whereas existing delay methods adapted to continuous-time
(∆t−RNN) struggle to learn appropriate dynamics mod-
els for a range of different challenging environments. Im-
portantly, NLC performs well by learning a good dynam-
ics model from the irregularly-sampled offline datasets,
whereas the standard continuous-time methods (NODE,
Latent-ODE) struggle to learn such a model from environ-
ments that have an inherent delay. We also observe similar
patterns from additional experiments in Appendix J.

5.2 Insight and Understanding of How Neural
Laplace Control Works

In this section we seek to gain further insight into how Neu-
ral Laplace Control outperforms the benchmarks. In the
following we seek to understand if NLC is able to learn
from irregularly-sampled state-action offline datasets (P1),
whilst learning the delayed dynamics of the environment
(P2). Furthermore, we also explore the benefits of the NLC
approach for planning at longer time horizons with a fixed
amount of compute and being sample efficient.

Can NLC Learn a Good Dynamics Model? To explore
if NLC is able to learn a suitable dynamics model, we plot
the trained models next step ahead prediction error with
that of the ground truth for a varying observation interval δ
for the Cartpole environment with a delay of ∆̄, as shown

Neural Laplace Control for Continuous-time Delayed Systems

Figure 2: Next step ahead validation error (MSE) at a variable
time step of an observation interval δ of the learnt baseline dynam-
ics models, for the irregularly-sampled Cartpole environment with
a fixed action delay of τ = ∆̄. The black dotted line indicates the
environments run-time observation interval δ = ∆̄ = 0.05 s.
Here, we observe Neural Laplace Control learns a good dynam-
ics model over a wide range of observation intervals δ, correctly
learning from the irregularly-sampled offline dataset (P1).

Figure 3: Next step ahead validation error (MSE) at a variable
time step of an observation interval δ of the learnt Neural Laplace
Control dynamics models, for each delayed environment versions
τ = {0, ∆̄, 2∆̄, 3∆̄} of the specific Cartpole environment. The
black dotted line indicates the environments run-time observation
interval δ = ∆̄ = 0.05 s. Here, Neural Laplace Control is able
to correctly learn and capture the delayed dynamics (P2), as the
forward MSE errors are low and similar—whereas neural-ODE
methods have a greater increasing forward MSE, Appendix I.

in Figure 2. Empirically we observe that NLC using its
Laplace-based dynamics model is able to better approxi-
mate a wider range of observation intervals δ and achieve a
good global approximation compared to the recurrent neu-
ral network and ODE based models. We note that due to
the offline dataset being sampled with trajectories that have
irregular sampling times (P1), where the sampling times
are defined by an exponential distribution with a mean of
∆̄ = 0.05 seconds; the other competing methods seem to
over-fit purely to the median sample time of the exponen-
tial distribution, i.e., 0.05 · ln(2) = 0.034 s. Other works
have shown a more accurate next step prediction model cor-
relates to a higher environment episode reward (Williams
et al., 2017).

Can NLC Learn Delay Environment Dynamics? To
investigate this, we similarly plot the trained NLC dynam-
ics models next step ahead prediction error with that of
the ground truth for a varying observation interval δ, for
each of the delayed environment versions of the specific
Cartpole environment, as show in Figure 3. Empirically

Figure 4: Normalized score R of the baseline methods on the
Cartpole environment with an action delay of τ = ∆̄ = 0.05 sec-
onds, plotted against an increasing time horizon H , by increas-
ing the observation interval δ. NLC, maintains a high performing
policy at a longer time horizon—whilst using the same amount of
constant planning time per action O as a ∆t−RNN.

we observe that the NLC dynamics models correctly learnt
the delay dynamics (P2) of each individual environment,
as they each have a similar low forward MSE error for the
varying levels of inherent delay. In contrast, neural-ODE
models are unable to model the delay dynamics correctly,
and we observe that they have a higher rate of increasing
forward MSE error, that can also increase for an increasing
environment delay and is shown further in Appendix I.

Can NLC Plan with a Longer Time Horizon Using
a Fixed Amount of Compute? We investigate this by
planning with a MPC planner, increasing the observation
interval δ and keeping N fixed, therefore the time hori-
zon H increases—as shown in Figure 4. Here we mea-
sure the total planning time taken to plan the next action
as O seconds 4 and observe that planning with the NLC
dynamics model takes the same amount of planning time,
and hence a fixed amount compute for planning at a greater
time horizon H—which is the same as a ∆t−RNN. This
is achieved by the Laplace-based dynamics model that can
predict a future state at any future time interval using the
same number of forward model evaluations, and hence the
same amount of compute. In contrast, this is not read-
ily achievable with neural-ODE continuous-time methods
that use a larger number of numerical forward steps with
a numerical ODE step-wise solver for a increasing time
horizon—leading to an increasing planning time for an in-
creasing time horizon, i.e., O ∝ H . Furthermore, we high-
light, that there exists a trade-off of the time horizon H
to plan at—as we wish to use a large “enough” horizon
that captures sufficient future dynamics, whilst minimizing
compounded model inaccuracies at a larger planning time
horizon. Therefore these two opposing factors, give rise to
the maxima of the normalized score R at a time horizon
H = 2 seconds, as seen in Figure 4.

We further investigate an alternative setup in Figure 5, and

4We perform all results using a Intel Core i9-12900K CPU @
3.20GHz, 64GB RAM with a Nvidia RTX3090 GPU 24GB.

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Figure 5: Normalized score R of the baseline methods on the
Cartpole environment with an action delay of τ = ∆̄ = 0.05s,
plotted against an increasing observation interval δ. Here, the
time horizon is fixed at H = 2s, thus increasing the observation
interval δ decreases the number of MPC forward planning steps
needed (i.e., N = H

δ
). The black dotted line indicates the envi-

ronments run-time observation interval δ = ∆̄ = 0.05 s. NLC
demonstrates that it can still outperform the baselines, achieving
a near optimal policy—whilst reducing the planning time taken O
needed to generate the next action.

keep the time horizon fixed at H = 2 seconds and increase
the observation interval δ—allowing us to reduce N the
number of MPC forward planning steps (i.e., N = H

δ).
Importantly, this reduces the planning time O needed to
generate the next action, enabling a method to use a higher
frequency of executing actions to control the dynamics—
whilst still planning at the same fixed time horizonH . NLC
is able to still outperform the baselines, achieving a high
performing policy—even when using a lesser amount of
planning compute per action. The numeric values, along
with those for other environments are provided in Ap-
pendix I.

Is NLC Sample Efficient? We observe in Figure 6 that
NLC can still learn a suitable dynamics model, and per-
form well on the Cartpole environment with a delay of
τ = ∆̄ = 0.05 seconds, when trained with an offline
irregularly-sampled in time dataset that contains only 200
random samples—which corresponds 10 seconds of inter-
action time of a noisy expert (expert with random action
noise) agent from the delayed environment. We further de-
tail full results, including other environment results in Ap-
pendix I.

Can NLC Incorporate Adaptive State-based Con-
straints Using an MPC planner, NLC can naturally han-
dle unseen state-based constraints, and we show this in Ap-
pendix I.

6 DISCUSSION AND FUTURE WORK

Discussion In this work, we have proposed and validated
a novel model-based offline RL method, which combines
a Neural Laplace dynamics model with a MPC planner.
This novel method performs RL in continuous-time, train-

Figure 6: Normalized score R of the baseline methods on the
Cartpole environment with an action delay of τ = ∆̄ = 0.05s,
plotted against the number of samples in the irregularly-sampled
offline dataset used to train the dynamics model of each method.
The two closest highest performing baselines are plotted here, and
refer to Appendix I for others. NLC can maintain a high perform-
ing policy—even from the challenging case of only learning a dy-
namics model from 200 samples from an irregularly-sampled in
time offline dataset D.

ing only on offline irregularly-sampled data that has an
inherent delay. We have shown experimentally that these
Laplace-domain models outperform their neural-ODE and
recurrent neural-network based counterparts on irregularly-
sampled datasets, and make model predictive control feasi-
ble for longer time horizons, with a fixed compute budget.

Future Works Our current focus is on continuous-time
environments with unknown fixed delays. We consider
learning in environments with unknown and variable de-
lays an important area for future work. Furthermore, in the
current work, we solely explored using only one instance
of the dynamics model. However, we note that we can ex-
tend NLC trivially to create an ensemble of Neural Laplace
Control models, thereby providing uncertainty estimation
(epistemic uncertainty) of the future state prediction.

Societal Impact We envisage Neural Laplace Control as
a tool to perform offline RL in realistic continuous-control
settings, although emphasize that the dynamics action con-
trol trajectory proposed would need to be further verified
by a human expert or via experimentation.

Acknowledgements

SH would like to acknowledge and thank AstraZeneca for
funding. This work was additionally supported by the Of-
fice of Naval Research (ONR) and the NSF (Grant number:
1722516). Moreover, we would like to warmly thank all
the anonymous reviewers, alongside research group mem-
bers of the van der Scaar lab, for their valuable input, com-
ments and suggestions as the paper was developed—where
all these inputs ultimately improved the paper.

References

Mridul Agarwal and Vaneet Aggarwal. Blind decision
making: Reinforcement learning with delayed observa-
tions. Pattern Recognition Letters, 150:176–182, 2021.

Neural Laplace Control for Continuous-time Delayed Systems

Arthur Argenson and Gabriel Dulac-Arnold. Model-based
offline planning. In International Conference on Learn-
ing Representations, 2020.

Karl Johan Åström and Richard M Murray. Feedback sys-
tems. Princeton university press, 2010.

Karl Johan Åström and Richard M Murray. Feedback
systems: an introduction for scientists and engineers.
Princeton university press, 2021.

Mark R Baker and Rajendra B Patil. Universal approxi-
mation theorem for interval neural networks. Reliable
Computing, 4(3):235–239, 1998.

Andrew G Barto, Richard S Sutton, and Charles W Ander-
son. Neuronlike adaptive elements that can solve dif-
ficult learning control problems. IEEE transactions on
systems, man, and cybernetics, (5):834–846, 1983.

Fawzi P Bayan, Anthony D Cornetto, Ashley Dunn, and
Eric Sauer. Brake timing measurements for a tractor-
semitrailer under emergency braking. SAE International
Journal of Commercial Vehicles, 2(2):245–255, 2010.

Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame,
Christopher Pal, and Jonathan Binas. Reinforcement
learning with random delays. In International confer-
ence on learning representations, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

Benjamin Bruder and Huyên Pham. Impulse control prob-
lem on finite horizon with intervention lag and execution
delay. 2007.

Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao.
Delay-aware model-based reinforcement learning for
continuous control. Neurocomputing, 450:119–128,
2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David Duvenaud. Neural ordinary differential equations.
arXiv preprint arXiv:1806.07366, 2018a.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing sys-
tems, 31, 2018b.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

Frank R De Hoog, JH Knight, and AN Stokes. An im-
proved method for numerical inversion of laplace trans-
forms. SIAM Journal on Scientific and Statistical Com-
puting, 3(3):357–366, 1982.

Esther Derman, Gal Dalal, and Shie Mannor. Acting in
delayed environments with non-stationary markov poli-

cies. In International Conference on Learning Represen-
tations, 2020.

J Du, J Futoma, and F Doshi-Velez. Model-based rein-
forcement learning for semi-Markov decision processes
with neural ODEs. In Proceedings of the 34th Confer-
ence on Neural Information Processing Systems, 2020.

Harvey Dubner and Joseph Abate. Numerical inversion of
laplace transforms by relating them to the finite fourier
cosine transform. Journal of the ACM (JACM), 15(1):
115–123, 1968.

Vlad Firoiu, Tina Ju, and Josh Tenenbaum. At human
speed: Deep reinforcement learning with action delay.
arXiv preprint arXiv:1810.07286, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. D4rl: Datasets for deep data-driven re-
inforcement learning. arXiv preprint arXiv:2004.07219,
2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist
approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–
20145, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Address-
ing function approximation error in actor-critic meth-
ods. In International conference on machine learning,
pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without exploration.
In International conference on machine learning, pp.
2052–2062. PMLR, 2019.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jef-
frey M Hausdorff, Plamen Ch Ivanov, Roger G Mark,
Joseph E Mietus, George B Moody, Chung-Kang Peng,
and H Eugene Stanley. Physiobank, physiotoolkit, and
physionet: components of a new research resource for
complex physiologic signals. circulation, 101(23):e215–
e220, 2000.

David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic ac-
tor. In International conference on machine learning, pp.
1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors
by latent imagination. arXiv preprint arXiv:1912.01603,
2019.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal
difference learning for model predictive control. arXiv
preprint arXiv:2203.04955, 2022.

Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar.
Neural laplace: Learning diverse classes of differential

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

equations in the laplace domain. In International Con-
ference on Machine Learning, pp. 8811–8832. PMLR,
2022.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey
Levine. When to trust your model: Model-based policy
optimization. Advances in Neural Information Process-
ing Systems, 32, 2019.

Konstantinos V Katsikopoulos and Sascha E Engelbrecht.
Markov decision processes with delays and asyn-
chronous cost collection. IEEE transactions on auto-
matic control, 48(4):568–574, 2003.

Li Kexue and Peng Jigen. Laplace transform and fractional
differential equations. Applied Mathematics Letters, 24
(12):2019–2023, 2011.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli,
and Thorsten Joachims. Morel: Model-based offline re-
inforcement learning. Advances in neural information
processing systems, 33:21810–21823, 2020.

Patrick Kidger, Ricky TQ Chen, and Terry Lyons. ” hey,
that’s not an ode”: Faster ode adjoints with 12 lines of
code. arXiv preprint arXiv:2009.09457, 2020a.

Patrick Kidger, James Morrill, James Foster, and Terry
Lyons. Neural controlled differential equations for ir-
regular time series. In Conference on Neural Informa-
tion Processing Systems. Neural Information Processing
Systems Foundation, 2020b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2017.

Marin Kobilarov. Cross-entropy motion planning. The
International Journal of Robotics Research, 31(7):855–
871, 2012.

Kristopher L Kuhlman. Review of inverse laplace trans-
form algorithms for laplace-space numerical approaches.
Numerical Algorithms, 63(2):339–355, 2013.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker,
and Sergey Levine. Stabilizing off-policy q-learning via
bootstrapping error reduction. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 33:1179–1191, 2020.

H Kwakernaak and R Sivan. Linear Optimal Control Sys-
tems. Wiley InterScience, New York, 1972.

Wook Hyun Kwon, Jin Won Kang, Young Sam Lee, and
Young Soo Moon. A simple receding horizon control for
state delayed systems and its stability criterion. Journal
of Process Control, 13(6):539–551, 2003.

Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan, and
Ken Goldberg. Dart: Noise injection for robust imitation
learning. In Conference on robot learning, pp. 143–156.
PMLR, 2017.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. arXiv preprint arXiv:1509.02971, 2015.

Pierre Liotet, Erick Venneri, and Marcello Restelli. Learn-
ing a belief representation for delayed reinforcement
learning. In 2021 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Pierre Liotet, Davide Maran, Lorenzo Bisi, and Marcello
Restelli. Delayed reinforcement learning by imitation.
In International Conference on Machine Learning, pp.
13528–13556. PMLR, 2022.

Michael Lutter, Leonard Hasenclever, Arunkumar Byra-
van, Gabriel Dulac-Arnold, Piotr Trochim, Nicolas
Heess, Josh Merel, and Yuval Tassa. Learning dynam-
ics models for model predictive agents. arXiv preprint
arXiv:2109.14311, 2021.

Kevin M Lynch and Frank C Park. Modern robotics. Cam-
bridge University Press, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

Thomas M Moerland, Joost Broekens, and Catholijn M
Jonker. Model-based reinforcement learning: A survey.
arXiv preprint arXiv:2006.16712, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning li-
brary. Advances in neural information processing sys-
tems, 32, 2019.

Igor Podlubny. The laplace transform method for linear dif-
ferential equations of the fractional order. arXiv preprint
funct-an/9710005, 1997.

Alexander D Poularikas. Transforms and applications
handbook. CRC press, 2018.

Tobias Raff, Carsten Angrick, Rolf Findeisen, Jung-Su
Kim, and Frank Allgower. Model predictive control for
nonlinear time-delay systems. IFAC Proceedings Vol-
umes, 40(12):60–65, 2007.

Jacques Richalet, André Rault, JL Testud, and J Papon.
Model predictive heuristic control: Applications to in-
dustrial processes. Automatica, 14(5):413–428, 1978.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud.
Latent odes for irregularly-sampled time series. CoRR,
abs/1907.03907, 2019a.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud.
Latent ordinary differential equations for irregularly-
sampled time series. Advances in neural information
processing systems, 32, 2019b.

Neural Laplace Control for Continuous-time Delayed Systems

Walter Rudin. Real and Complex Analysis, 3rd Ed.
McGraw-Hill, Inc., USA, 1987. ISBN 0070542341.

Tim Salzmann, Elia Kaufmann, Marco Pavone, Davide
Scaramuzza, and Markus Ryll. Neural-mpc: Deep learn-
ing model predictive control for quadrotors and agile
robotic platforms. arXiv preprint arXiv:2203.07747,
2022.

Joel L Schiff. The Laplace transform: theory and applica-
tions. Springer Science & Business Media, 1999.

Nabeel Seedat, Fergus Imrie, Alexis Bellot, Zhaozhi Qian,
and Mihaela van der Schaar. Continuous-time model-
ing of counterfactual outcomes using neural controlled
differential equations. arXiv preprint arXiv:2206.08311,
2022.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Ku-
mar, and Karol Hausman. Dynamics-aware unsuper-
vised discovery of skills. In International Conference
on Learning Representations, 2019.

Steven W. Smith. The Scientist and Engineer’s Guide to
Digital Signal Processing. California Technical Publish-
ing, USA, 1997. ISBN 0966017633.

Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L
Littman. Learning and planning in environments with
delayed feedback. Autonomous Agents and Multi-Agent
Systems, 18(1):83–105, 2009.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu,
Siyuan Li, and Chongjie Zhang. Offline reinforcement
learning with reverse model-based imagination. Ad-
vances in Neural Information Processing Systems, 34:
29420–29432, 2021.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang,
Yeming Wen, Eric Langlois, Shunshi Zhang, Guodong
Zhang, Pieter Abbeel, and Jimmy Ba. Benchmark-
ing model-based reinforcement learning. arXiv preprint
arXiv:1907.02057, 2019.

Grady Williams, Paul Drews, Brian Goldfain, James M
Rehg, and Evangelos A Theodorou. Aggressive driv-
ing with model predictive path integral control. In 2016
IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 1433–1440. IEEE, 2016.

Grady Williams, Nolan Wagener, Brian Goldfain, Paul
Drews, James M Rehg, Byron Boots, and Evangelos A
Theodorou. Information theoretic mpc for model-based
reinforcement learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp.
1714–1721. IEEE, 2017.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior reg-
ularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361, 2019.

Sun Yi, A Galip Ulsoy, and Patrick W Nelson. Solution of
systems of linear delay differential equations via laplace

transformation. In Proceedings of the 45th IEEE Con-
ference on Decision and Control, pp. 2535–2540. IEEE,
2006.

Sun Yi, Patrick W Nelson, and A Galip Ulsoy. Controlla-
bility and observability of systems of linear delay dif-
ferential equations via the matrix lambert w function.
IEEE Transactions on Automatic Control, 53(3):854–
860, 2008.

Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki.
Continuous-time model-based reinforcement learning.
In International Conference on Machine Learning, pp.
12009–12018. PMLR, 2021.

Hamood M Yousef and AIB MD Ismail. Application of
the laplace adomian decomposition method for solution
system of delay differential equations with initial value
problem. In AIP Conference Proceedings, volume 1974,
pp. 020038. AIP Publishing LLC, 2018.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon,
James Y Zou, Sergey Levine, Chelsea Finn, and Tengyu
Ma. Mopo: Model-based offline policy optimization.
Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit
Chakraborty. Symplectic ode-net: Learning hamil-
tonian dynamics with control. arXiv preprint
arXiv:1909.12077, 2019.

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Contents of supplementary materials:

1. Appendix A: Extended Related Work

2. Appendix B: Problem and Background

3. Appendix C: MPC MPPI Pseudocode and Planner Implementation Details

4. Appendix D: Environment Selection and Details

5. Appendix E: Benchmark Method Implementation Details

6. Appendix F: Evaluation Metrics

7. Appendix G: Dataset Generation and Model Training

8. Appendix H: Raw Results

9. Appendix I: Insight Experiments

10. Appendix J: Additional Experiments

Code We have released a PyTorch implementation (Paszke et al., 2019) at
https://github.com/samholt/NeuralLaplaceControl. Additionally, we have a research group codebase, available at
https://github.com/vanderschaarlab/NeuralLaplaceControl.

AISTATS 2022 Checklist For all models and algorithms presented, check if you include:

1. A clear description of the mathematical setting, assumptions, algorithm, and/or model. (Yes, see Section 3.)

2. An analysis of the properties and complexity (time, space, sample size) of any algorithm. (Yes, see Section 5.2 and
Appendix I.)

3. (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
(https://github.com/samholt/NeuralLaplaceControl.)

For any theoretical claim, check if you include:

1. A statement of the result. (Not applicable.)

2. A clear explanation of any assumptions. (Not applicable.)

3. A complete proof of the claim. (Not applicable.)

For all figures and tables that present empirical results, check if you include:

1. A complete description of the data collection process, including sample size. (Yes, see Section 5 and Appendix G.)

2. A link to a downloadable version of the dataset or simulation environment. (Yes, see Appendix D.)

3. An explanation of any data that were excluded, description of any pre-processing step. (Yes, see Appendix G.)

4. An explanation of how samples were allocated for training / validation / testing. (Yes, see Appendix G.)

5. The range of hyper-parameters considered, method to select the best hyper-parameter configuration, and specification
of all hyper-parameters used to generate results. (Yes, see Appendix E.)

6. The exact number of evaluation runs. (Yes, see Section 5.)

7. A description of how experiments were run. (Yes, see Section 5 and Appendix F.)

8. A clear definition of the specific measure or statistics used to report results. (Yes, see Section 5 and Appendix F.)

9. Clearly defined error bars. (Yes, see Section 5 and Appendix F.)

10. A description of results with central tendency (e.g., mean) & variation (e.g., stddev). (Yes, see Section 5, and results
throughout.)

11. A description of the computing infrastructure used. (Yes, see Section 5.2. and Appendix F.)

https://github.com/samholt/NeuralLaplaceControl
https://github.com/vanderschaarlab/NeuralLaplaceControl
https://github.com/samholt/NeuralLaplaceControl

Neural Laplace Control for Continuous-time Delayed Systems

A EXTENDED RELATED WORK

Table 3: Comparison with related model-based approaches to RL. (P1) Learn from irregular samples—can it learn from an offline
dataset sampled at irregular times, ∆i ̸= ∆j? (P2) Learn delayed dynamics—can it learn environments that contain a delay τ > 0?
Neural Laplace Control is the only method that can both learn from irregular samples (P1) as well as learn environments that contain a
delay (P2).

Approach True Dynamics Data Available Reference Model (P1) ∆i ̸= ∆j (P2) τ > 0

Conventional model-based RL xt+1 ∼ f(xt,at) D = {(xi,ai)}ni=0 Williams et al. (2017) MDP / Neural Network ✗ ✗
Discrete-time delay methods xt+1 ∼ f(xt,at−τ) D = {(xi,ai)}ni=0 Chen et al. (2021) DA-MDP / RNN ✗ ✓

Continuous-time methods ẋ(t) = f(x(t),a(t)) D = {(x(ti),a(ti))}ni=0
s.t. ∃i,j : ti+1−ti ̸= tj+1−tj

Yildiz et al. (2021) Neural ODE ✓ ✗
Du et al. (2020) Latent ODE ✓ ✗

Neural Laplace Control ẋ(t) = f(x(t),a(t− τ)) D = {(x(ti),a(ti))}ni=0
s.t. ∃i,j : ti+1−ti ̸= tj+1−tj (Ours) Neural Laplace Control ✓ ✓

In the following we summarize the key related work in Table 3 and provide an extended discussion of additional related
works including a review of the benefits of using model-based RL and using model predictive control, which happens to
be our preferred strategy for planning policies.

Why model-based reinforcement learning? Model-based RL holds the promise to enable creating policies for real
world tasks in the offline setting where the true environment dynamics are unknown, and instead we require to learn a
dynamics model from a dataset of demonstrations from agents acting within the environment. Although existing model-
free RL approaches have shown effective performance (Fujimoto et al., 2018), they have the inherent disadvantages of
being less sample efficient (Lutter et al., 2021) where they require interacting either online or with the known environment
dynamics, and often require millions or billions of interactions with the environment to learn a good policy. Furthermore,
learning a dynamics model of the environment, allows planning over that dynamics model to optimize actions (MPC) rather
than learning a specific policy—by planning, a model can easily adapt to different goals or tasks at run-time. Whereas a
policy trained for a specific task or goal would often have to be re-trained for a new task or goal, making it difficult
for a policy to adapt to multi-task settings (Lutter et al., 2021). Naturally in continuous-control settings the dynamics
model (e.g., the physics of the environment) is independent of the reward function (e.g., the goal state to reach), therefore
changing tasks are straightforward by changing the reward function arbitrarily. An important property of model-based
reinforcement learning is that in general it is more sample-efficient than model-free methods in conventional control tasks
(Wang et al., 2019; Moerland et al., 2020). While model-free methods learn to master challenging tasks (Mnih et al., 2015;
Lillicrap et al., 2015) and improves learning efficiency in high-dimensional continuous control tasks (Fujimoto et al., 2018;
Haarnoja et al., 2018), it was later shown in Ha & Schmidhuber (2018); Janner et al. (2019) that model-based methods have
much higher sample efficiency once properly tuned. Furthermore, Hafner et al. (2019); Sharma et al. (2019) propose to
learn dynamics in a latent space, and similar insights have been applied to further improve the model-based reinforcement
learning performance (Hansen et al., 2022).

In offline reinforcement learning, an agent learns from a fixed replay buffer and is not permitted to interact with the
environment (Wu et al., 2019). While both model-free (Kumar et al., 2019; 2020; Fujimoto & Gu, 2021) and model-based
(Kidambi et al., 2020; Wang et al., 2021) approaches have been proposed for offline RL, in general, model-based methods
have been shown to be more sample efficient than model-free methods (Moerland et al., 2020). The main challenge in
model-based RL is known as “extrapolation error” (Fujimoto et al., 2019), whereby the learnt dynamics model inaccuracies
compound for a larger number of future predicted time steps. Hence, it is crucial in model-based RL to learn an appropriate
dynamics model that is capable of accurately capturing the unique characteristics of an environment. However, even though
many environments operate in continuous-time by nature and contain action or observation delays, almost all the existing
approaches to model-based RL consider dynamics models only suited to the conventional discrete-time ∆i = ∆j setting
with no delays τ = 0. We review here some of the few approaches that go beyond the conventional setting, namely (i)
discrete-time delay methods and (ii) continuous-time methods.

Discrete-time delay methods One approach for handling environment observation delays is to increase the time step till
the next action is performed, that is to synchronize an agent’s actions with its delayed observations. However, such an
approach is infeasible in most environments (for example dynamics involving momentum), and even when it is feasible,
such a “wait agent” is often sub optimal, as it is possible to perform better by acting before receiving the most recent
observation (Walsh et al., 2009). We note that modeling environments with either delayed observations x(t+τ) or delayed
actions a(t+τ) are equivalent in form (Katsikopoulos & Engelbrecht, 2003). Prior work models regular sampled ∆i = ∆j

(discrete time) environments with constant time delays τ > 0, and provides the agent with the current state x(t), and a

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

history of past actions performed in the environment āi−1 = {a1, . . . ,ai−1}, whereby the history action window is larger
than or equal to the observation or action delay in the environment (Walsh et al., 2009; Firoiu et al., 2018; Bouteiller et al.,
2020). Recently, Chen et al. (2021) proposed delay-aware Markov decision processes (MDPs) that are capable of modeling
delayed dynamics in discrete-time based on regularly sampled data, with an RNN encoding the history of past actions and
the current state.

Continuous-time methods A standard approach for applying model-based RL to irregular sampled time series is to di-
vide the timeline into equally sized intervals and impute or aggregate state and action tuples using averages (Rubanova
et al., 2019b). Thus, turning a continuous-time environment into a discrete-time environment approximation; however,
such pre-processing destroys information, particularly about the timing of measurements and the specific underlying en-
vironment dynamics. Real world data is often sampled irregularly ∆i ̸= ∆j , as such (Yildiz et al., 2021) propose to use
Neural-ODEs (Chen et al., 2018b) as their continuous-time dynamics model can model irregularly-sampled environments
with no delays τ = 0. Similarly, the work of Du et al. (2020) uses an a Latent-ODE model when planning policies.
However, these existing approaches are limiting, as an ODE-based model by definition cannot handle a delay differential
equation, necessitating the need for a model that can learn and model more diverse classes of differential equations. Recent
models, of modeling diverse classes of differential equations is made possible with the work of Neural Laplace (Holt et al.,
2022) by representing them in the Laplace domain. These Laplace-based models have been shown to be able to model such
systems, be more accurate and scale better with increasing time horizons in time complexity. Our approach, namely Neural
Laplace Control, essentially extends Neural Laplace to the setting of controlled systems—that is systems that evolve based
on an action signal a(t)—so that it can be used in planning policies in a RL setting.

Model predictive control (MPC) Principally relies on a good dynamics model, historically using simple first principle
known dynamic models (Richalet et al., 1978; Salzmann et al., 2022). Recently, MPC Model Predictive Path Integral
(MPPI) (Williams et al., 2017) is a zeroth order particle-based trajectory optimizer method that is capable of handling
complex cost criteria and general nonlinear dynamics. Specifically, Williams et al. (2017) showed it could be used with
a neural network learned dynamics model and used to drive a toy vehicle on a dirt track. MPC, and hence MPPI is
often computationally infeasible for long time horizons, therefore often only being run for a fixed receding time horizon
optimization into the future with a dynamics model. Using an MPC planner benefits from being able to handle arbitrary
state constraints, and changing goals. Here MPPI is the state-of-the-art for MPC with a learned dynamics model, improving
upon the previous cross-entropy method (CEM) (Kobilarov, 2012) MPC method. These naturally can incorporate new
state-based constraints at run time.

Hybrid MPC Various ways of combining a powerful MPC planner with an accurate dynamics model is another fruitful
thread (Argenson & Dulac-Arnold, 2020). All existing hybrid works, work only on discrete domains where demonstration
data is collected on regular time intervals. These include MBOP (Argenson & Dulac-Arnold, 2020), TD-MPC (Hansen
et al., 2022) and DADS (Sharma et al., 2019). We highlight that hybrid methods that plan in the latent space, i.e., TD-MPC
and DADS are unable to incorporate state-based constraints. However, these methods still struggle with scaling MPC
computational complexity forwards for longer time horizons.

Control literature We perform full system identification, i.e., learning the nonlinear dynamics model that has an un-
known inherent delay. Whereas the existing control literature provides control algorithms for known forms (often linear)
dynamics models for a known delay (Kwon et al., 2003; Raff et al., 2007)—therefore are not comparable. Moreover, there
exists a wealth of orthogonal related work on stability analysis in Control (Åström & Murray, 2010).

Learning from noisy demonstrations It is preferable to learn a dynamics model on state-action trajectories that come
from a “noisy” expert. As a noisy expert can provide better trajectories than an expert as it shows how to recover from
“bad” states (Laskey et al., 2017)—specifically we assume the true expert is unknown. Moreover, as we only have access
to trajectories from a noisy expert, performing imitation learning (Liotet et al., 2022) would propagate the noisy behavior,
achieving a poor performance.

B NEURAL LAPLACE BACKGROUND

In the following we provide a brief Laplace background, specifically from that of the Neural Laplace (Holt et al., 2022)
model for modeling diverse differential equation (DE) systems—in the context of Neural Laplace Control. We defer the
reader to the work of Holt et al. (2022) for a full comprehensive explanation of the original Neural Laplace model.

Neural Laplace Control for Continuous-time Delayed Systems

States & actions For a system with state space X = RdX and action space A = RdA , the state at time t ∈ R is denoted
as x(t) = [x1(t), . . . , xdX (t)] ∈ X and the action at time t ∈ R is denoted as a(t) = [a1(t), . . . , adA(t)] ∈ A. We
elaborate that state trajectory x : R→ X and action trajectory a : R→ A are both functions of time, where an individual
state x(t) ∈ X or an individual action a(t) ∈ A are points on these trajectories. Given a time interval I ⊆ R, xI ∈ X I

and aI ∈ AI we denote the partial state and action trajectories on that interval such that xI(t) = x(t) and aI(t) = a(t)
for t ∈ I.

Laplace Transform The Laplace transform of a trajectory x is defined as (Schiff, 1999)

X(s) = L{x}(s) =
∫ ∞

0

e−stx(t)dt, (9)

where s ∈ CdX is a vector of complex numbers and X(s) ∈ CdX is called the Laplace representation. The X(s) may
have singularities, i.e., points where X(s)→∞ for one component (Schiff, 1999). Importantly, the Laplace transform is
well-defined for trajectories that are piecewise continuous, i.e., having a finite number of isolated and finite discontinuities
(Poularikas, 2018). This property allows a learned Laplace representation to model a dynamics model that can have delay
differential equation solutions (Holt et al., 2022).

Inverse Laplace Transform The inverse Laplace transform (ILT) is defined as

x̂(t) = L−1{X(s)}(t) = 1

2πi

∫ σ+i∞

σ−i∞
X(s)estds, (10)

where the integral refers to the Bromwich contour integral in CdX with the contour σ > 0 chosen such that all the
singularities of X(s) are to the left of it (Schiff, 1999). Many algorithms have been developed to numerically evaluate
Equation 10. On a high level, they involve two steps: (Dubner & Abate, 1968; De Hoog et al., 1982; Kuhlman, 2013).

Q(t) = ILT-Query(t) (11)

x̂(t) = ILT-Compute
(
{X(s)|s ∈ Q(t)}

)
(12)

To evaluate x(t) on time points t ∈ T ⊂ R+, the algorithms first construct a set of query points s ∈ Q(T) ⊂ C. They
then compute x̂(t) using the X(s) evaluated on these points. The number of query points scales linearly with the number
of time points, i.e., |Q(T)| = dS |T |, where the constant dS > 1, denotes the number of reconstruction terms per time
point and is specific to the algorithm. Importantly, the computation complexity of ILT only depends on the number of time
points, but not their values (e.g., ILT for t = 0 and t = 100 requires the same amount of computation). The vast majority
of ILT algorithms are differentiable with respect to X(s), which allows the gradients to be back propagated through the
ILT transform (Holt et al., 2022).

Intuitively, the inverse Laplace transform (ILT) (Equation 10) reconstructs the dynamics model time solution with the basis
functions of complex exponentials est, which exhibit a mixture of sinusoidal and exponential components (Schiff, 1999;
Smith, 1997; Kuhlman, 2013).

Solving control of differential equations in the Laplace domain A key application of the Laplace transform is to solve
broad classes of DEs (Podlubny, 1997; Yousef & Ismail, 2018; Yi et al., 2006; Kexue & Jigen, 2011). Due to the Laplace
derivative theorem (Schiff, 1999), the Laplace transform can convert a DE into an algebraic equation even when the DE
contains historical states x(t− τ) (as in a delayed DE). It also applies to coupled DEs and can allow decoupled solutions
to coupled DEs for dynamical systems (Åström & Murray, 2010). The resulting algebraic equation can either be solved
analytically or numerically to obtain the solution of the DE, X(s), in the Laplace domain. Finally, one can obtain the time
solution x(t) by applying the ILT on X(s). For instance, we could use the concise Laplace transform method to solve the
(delay) differential equations to get solutions for the state trajectories conditioned on a control input trajectory (Yi et al.,
2008).

Stereographic projection However, the Laplace representation X(s) often involves singularities (Schiff, 1999), which
are difficult for neural networks to approximate or represent (Baker & Patil, 1998). We instead propose to use a stere-
ographic projection u(s) = (θ, ϕ) to translate any complex number s ∈ C into a coordinate on the Riemann Sphere

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

(θ, ϕ) ∈ D = (−π, π)× (−π2 , π2) (Rudin, 1987), i.e.,

u(s) =

(
arctan

(
Im(s)

Re(s)

)
, arcsin

(|s|2 − 1

|s|2 + 1

))
(13)

Where the associated inverse transform, u−1 : D → C, is given as

s = u−1(θ, ϕ) = tan

(
ϕ

2
+
π

4

)
eiθ (14)

A nice example of this map is the function of 1/s, which corresponds to a rotation of the Riemann-sphere 180◦ about the
real axis. Therefore, a representation of 1/s under this transformation becomes the map θ, ϕ 7→ −θ,−ϕ (Rudin, 1987).

<latexit sha1_base64="NYiXKnXvNifPUCVCj+SpH6YTqPg=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1JMUvHisYD+gDWWznbRLN5uwOxFK6I/w4kERr/4eb/4bN20O2vpg4PHeDDPzgkQKg6777ZTW1jc2t8rblZ3dvf2D6uFR28Sp5tDisYx1N2AGpFDQQoESuokGFgUSOsHkLvc7T6CNiNUjThPwIzZSIhScoZU6fRwDssqgWnPr7hx0lXgFqZECzUH1qz+MeRqBQi6ZMT3PTdDPmEbBJcwq/dRAwviEjaBnqWIRGD+bnzujZ1YZ0jDWthTSufp7ImORMdMosJ0Rw7FZ9nLxP6+XYnjjZ0IlKYLii0VhKinGNP+dDoUGjnJqCeNa2FspHzPNONqE8hC85ZdXSfui7l3VLx8ua43bIo4yOSGn5Jx45Jo0yD1pkhbhZEKeySt5cxLnxXl3PhatJaeYOSZ/4Hz+ANw5j0E=</latexit>

✓

<latexit sha1_base64="d+Nc0EeM9pIJfusqHoL0j8m47W8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1JMUvHisYNpCG8pmO2mXbjZhdyOU0t/gxYMiXv1B3vw3btoctPXBwOO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfju9xvP6HSPJGPZpJiENOh5BFn1FjJ76UjXulXa27dnYOsEq8gNSjQ7Fe/eoOEZTFKwwTVuuu5qQmmVBnOBM4qvUxjStmYDrFrqaQx6mA6P3ZGzqwyIFGibElD5urviSmNtZ7Eoe2MqRnpZS8X//O6mYlugimXaWZQssWiKBPEJCT/nAy4QmbExBLKFLe3EjaiijJj88lD8JZfXiWti7p3Vb98uKw1bos4ynACp3AOHlxDA+6hCT4w4PAMr/DmSOfFeXc+Fq0lp5g5hj9wPn8ASvGOWA==</latexit>

�

<latexit sha1_base64="hZSwcsuFFk4NujusUg6JoHWjNgw=">AAAB+nicbVBNSwMxEM3Wr1q/tnr0EiyCp7Irop6k4MVjFfsB7VKy6bQNzSZLklXK2p/ixYMiXv0l3vw3Zts9aOuDgcd7M8zMC2POtPG8b6ewsrq2vlHcLG1t7+zuueX9ppaJotCgkkvVDokGzgQ0DDMc2rECEoUcWuH4OvNbD6A0k+LeTGIIIjIUbMAoMVbqueWujEERI5UgEaR3MO25Fa/qzYCXiZ+TCspR77lf3b6kSQTCUE607vhebIKUKMMoh2mpm2iICR2TIXQszfboIJ2dPsXHVunjgVS2hMEz9fdESiKtJ1FoOyNiRnrRy8T/vE5iBpdBykScGBB0vmiQcGwkznLAfaaAGj6xhFDF7K2Yjogi1Ni0SjYEf/HlZdI8rfrn1bPbs0rtKo+jiA7RETpBPrpANXSD6qiBKHpEz+gVvTlPzovz7nzMWwtOPnOA/sD5/AHy1JRy</latexit>

Re

<latexit sha1_base64="fY4AI85UGaDOWdmiLAMUaKrxD0A=">AAAB+nicbVBNSwMxEJ2tX7V+bfXoJVgET2VXRD1JwYveKtgPaJeSTdM2NNksSVYpa3+KFw+KePWXePPfmG33oK0PBh7vzTAzL4w508bzvp3Cyura+kZxs7S1vbO755b3m1omitAGkVyqdog15SyiDcMMp+1YUSxCTlvh+DrzWw9UaSajezOJaSDwMGIDRrCxUs8td2VMFTZSRVjQ9FZMe27Fq3ozoGXi56QCOeo996vblyQRNDKEY607vhebIMXKMMLptNRNNI0xGeMh7Via7dFBOjt9io6t0kcDqWxFBs3U3xMpFlpPRGg7BTYjvehl4n9eJzGDyyBlUZwYGpH5okHCkZEoywH1maLE8IklmChmb0VkhBUmxqZVsiH4iy8vk+Zp1T+vnt2dVWpXeRxFOIQjOAEfLqAGN1CHBhB4hGd4hTfnyXlx3p2PeWvByWcO4A+czx/xRpRx</latexit>

Im

Figure 7: Geometry of the Riemann sphere map for a complex number C into a spherical co-ordinate representation of θ, ϕ.

Inverse Laplace transform After obtaining the Laplace representation X(s) from Equation 6 (see main paper), we
compute the predicted or reconstructed state values x̂(t) using the ILT. We highlight that we can evaluate x̂(t) at any
future time t ∈ R+ as the Laplace representation is independent of time once learnt. In practice, we use the well-known ILT
Fourier series inverse algorithm (ILT-FSI), which can obtain the most general time solutions whilst remaining numerically
stable (Dubner & Abate, 1968; De Hoog et al., 1982; Kuhlman, 2013). We use the specific ILT Fourier series algorithm
from Holt et al. (2022) and use their code implementation of the ILT algorithm.

C MPC MPPI PSEUDOCODE AND PLANNER IMPLEMENTATION DETAILS

We opt to use the model predictive controller of Model Predictive Path Integral (MPPI) (Williams et al., 2017). This uses
a zeroth order particle-based trajectory optimizer method with our learned Laplace dynamics model. Specifically, this
computes a discrete action sequence up to a fixed time horizon of H ∈ R+ seconds, and then executes the first element
in the planned action sequence. Where we denote δ ∈ R+ as the observation time interval, that is the time between two
consecutive state observations. It is natural for online control problems to be controlled at discrete-time steps of δ, where δ
can be varied. Therefore, the MPPI plans actions at discrete-time steps δ, up to a fixed time horizon H by planning ahead
N ∈ Z+ steps into the future, thus the planning time horizon is determined by H = δ · N . This leverages a number of
parallel roll-outs M ∈ Z+, a hyper parameter, which can be tuned. As MPPI is a Monte Carlo based sampler, increasing
the number of roll-outs improves the input trajectory optimization, however, scales the run-time complexity as O(NM).

We use the standard MMPI algorithm (Williams et al., 2017) with our dynamics model F , with the slight modification
where we provide the dynamics model the current state, action and a buffer of previous actions back to ω seconds, i.e.,
xt+δ = F (xt,a[t−ω:t], δ). For simplification of notation, as MPPI plans at discrete time steps of δ seconds, we relax
the δ notation to discrete time steps of δ, where δ = ∆̄ = 0.05 seconds at run-time. Specifically, for ω = 4∆̄ = 4δ
we denote the discrete multiple of δ as ω̄ = 4, the next state estimate is given by xt+1 = F (xt,a[t−ω̄:t]). Furthermore,
MPPI requires us to keep in memory the global action trajectory T ∈ R(N+ω̄)×dA buffer of the previously planned action

Neural Laplace Control for Continuous-time Delayed Systems

trajectory. With slight abuse of notation, we define the global action trajectory that is used to plan ahead N discrete time
steps to also contain the past ω̄ action histories, i.e., T[0−ω̄:N]. We detail the MPPI pseudocode with the high-level policy
in Algorithm 1 and the MPPI action trajectory optimizer in Algorithm 2.

Algorithm 1 High-Level MPPI Policy

Input: Pre-trained dynamics model F .
T 0 ← [00−ω̄, . . . ,0N−1] ▷ Initialize planned action trajectory.
for t = 1 . . .∞ do

xt ← Observe xt
T t ← MPPI-Trajectory-Optimization(F,xt,T t−1) ▷ Update planned trajectory T t starting with T[0−ω̄:0].
at ← T t

0 ▷ Use first action T0 as π(xt).
end for

Algorithm 2 MPPI-Trajectory-Optimization

Input: Pre-trained dynamics model F , starting state x, previous global action trajectory T , steps to plan ahead for N ,
number of parallel roll-outs M , noise covariance Σ, hyper parameters λ, action max amax, action min amin.
RM ← 0M ▷ This holds our M trajectory returns.
AM,N+ω̄ ← 0M,N+ω̄ ▷ This holds our M action trajectories of length N .
A′
M,[0−ω̄:N−1] ← 0M,N+ω̄ ▷ This holds M action trajectories of length N that are perturbed by noise.

εM,N+ω̄ ← 0M,N+ω̄ ▷ This holds the generated scaled action noise.

AM,[0−ω̄:N−1] ← T[1−ω̄:N]/amax ▷ Broadcast previous scaled down action trajectory T to M roll-outs.
for m = 0 . . .M − 1 do ▷ Sample M trajectories over the horizon N .

x0 ← x
for n = 0 . . . N − 1 do

εm,n ← N (0,Σ) ▷ Sample action noise.
A′
m,n ← Am,n + ϵm,n ▷ Perturb action by noise.

A′
m,n ← min(max(A′

m,n,−1),+1) ▷ Clip normalized perturbed noise (to bound actions to their limits).
εm,n ← A′

m,n −Am,n ▷ Update noise after bounding, so we do not penalize clipped noise.
end for
for n = 0 . . . N − 1 do

xn+1 ← F (xn,A
′
[n−ω̄:n] · amax) ▷ Sample next state from pre-trained dynamics model F .

Rm ← Rm + r(xn,Am,n)− λAT
m,nΣ

−1εm,n ▷ Accumulate the current state reward.
end for

end for
κ← minm[Rm]

T ′
n = Tn +

∑M−1
m=0 exp(1

λ (Rm−κ))εm,n∑M−1
m=0 (1

λ (Rm−κ)) · amax,∀n ∈ [0, N − 1] ▷ Generate the return-weighted trajectory update.

Return: T ′

D ENVIRONMENT SELECTION AND DETAILS

In the following we discuss our reasoning for why we selected the delay τ > 0 adapted continuous-time control envi-
ronments from the ODE-RL suite (Yildiz et al., 2021) 5 and the reasoning behind our choice of sampling irregularly in
time ∆i ̸= ∆j of state-action trajectories (x(t+∆i),a(t+∆i)) from these environments. We first outline why existing
environment offline datasets are not suitable.

Why we cannot use an offline dataset of agent trajectories in an un-delayed discrete-time environment It is straight-
forward, and there exists standard datasets (Fu et al., 2020) of state-action trajectories of (expert) agents interacting with
environments that have no delays τ = 0 and are sampled at regular times ∆i = ∆j . In the following we outline why these
datasets cannot be used:

5The ODE-RL suite of the environments used can be downloaded freely available from https://github.com/
cagatayyildiz/oderl.

https://github.com/cagatayyildiz/oderl
https://github.com/cagatayyildiz/oderl

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

• Presence of a constant delay τ > 0 in the environment. Intuitively one might suggest taking a standard dataset and
shift the actions by a fixed delay. However, we note this dataset is then unrealistic, as it violates causal information—
as a hypothetical action would know how its current action affected future states before it had even observed them.
Due to this fact, this prevents us from using existing standard offline datasets (Fu et al., 2020). Thus, this motivates
the need to sample agents that interact within an environment that has an inherent delay of a constant delayed action
(or constant delayed state observation).

• Presence of irregularly sampled in time ∆i ̸= ∆j state-action trajectories. Let us hypothetically imagine that
there exists a regularly-sampled ∆i = ∆j in time state-action trajectory offline dataset from an environment that has
an inherent constant action delay τ > 0. Can we then sample them irregularly? One could suppose that we use some
form of interpolation (e.g., splines or similar) to interpolate to irregular time steps between states and actions, however
doing so would lead to errors in the sampled state-action trajectories in comparison to the true irregularly-sampled
state-action trajectories at those non-uniform time points. These errors could compound over a dynamics model being
trained on these; therefore, we highlight that this approach is unsuitable. Another approach would be to start with a
regularly sampled state-action trajectory t ∈ T ∈ {0, ∆̄, 2∆̄, . . . , N∆̄} then sub-sample state-action times from that
regular grid of collected times t ⊂ T . Again we indicate this approach unsuitable, as often environments are captured
at run-time with a particular observation interval ∆̄ seconds, and only observing multiples of this would mean gaps
between observations, where the mean of the observation intervals is larger than that of the environments nominal
run-time observation interval ∆̄Sub-sample > ∆̄Original Trajectory. We note that this becomes a different problem, and as
there is less information in the state-action trajectories with large observation interval gaps. Instead to mitigate both of
these issues we prefer to collect an offline dataset ourselves of an agent interacting with the delay environments with
true irregular observation intervals, where we sample the time interval to the next observation from an exponential
distribution, i.e., ∆ ∼ Exp(∆̄), with a mean of ∆̄ = 0.05 seconds.

Given the above reasoning, we take the approach to collect offline datasets of a noisy agent interacting with the delay
environments, where the observations occur at irregular time intervals given by ∆ ∼ Exp(∆̄), with a mean of ∆̄ = 0.05
seconds. We note this approach is similar to Fu et al. (2020) and provides a more realistic offline dataset to train our
dynamics models on.

We use the continuous-time control environments from the ODE-RL suite (Yildiz et al., 2021), as they provide true irregular
samples in time of state observations and are fully continuous in time, unlike discrete environments (Brockman et al.,
2016). We adapt these to incorporate an arbitrary fixed delayed action time, turning the ODE environments into delay DE
environments. We do this by keeping a buffer of the previous actions that have been produced by the policy, which captures
the previous actions generated in the past ω = 4∆̄ seconds. In practice this buffer is 4 action elements long and is fed
into the dynamics model in its entirety. The true environment then executes the action at the previous time of the constant
action delay, which is one of τ = {0, ∆̄, 2∆̄, 3∆̄} and is unknown to the dynamics model. Thus, the dynamics model sees
the entire action buffer and must instead learn implicitly the delay of the environment by modeling the dynamics of the
environment accurately.

The starting state for all tasks is hanging down and the goal is to swing up and stabilize the pole(s) upright (Yildiz et al.,
2021) in each environment. In all environments the actions are continuous and bounded to a defined range [amin,amax.
Here we assume a given state x(t) is composed of the position state q and their respective velocities q̇, i.e., x(t) =
{q(t), q̇(t)}. Here, each environment uses the reward function of the exponential of the negative distance from the current
state to the goal state q∗, whilst also penalizing the magnitude of action, and we assume that we are given this reward
function when planning—as we often know the desired goal state q∗ and our current state q. Therefore, the reward
function for the environments has the following form:

r({q(t), q̇(t)},a(t)) = exp(−||q(t)− q∗||22 − b||q̇(t)||22)− c||a(t)||22 (15)

Where b and c are specific environment constants (Yildiz et al., 2021). Specifically, when we use our MPC planner we
observe that it plans better without the exponential operator, therefore remove it, and use the following reward function
throughout, r({q(t), q̇(t)},a(t)) = −||q(t) − q∗||22 − b||q̇(t)||22 − c||a(t)||22. Yildiz et al. (2021) set the environments
parameters of b, c to penalize large values and enforce exploration from trivial states, and we use their same values which
are also tabulated in Table 4.

The goal states for all environments is when the poles, each of length L are fully upright, such that their x, y co-ordinates
of the tip of the pole reach the goal state. Where q∗ is: [0, L] for the Pendulum environment, [0, 0, L] for the Cartpole
environment—where the additional 0 is zero for the cart’s x location and in Acrobot is [0, 2L] as there are two poles

Neural Laplace Control for Continuous-time Delayed Systems

Table 4: Environment specification parameters of the ODE-RL suite (Yildiz et al., 2021).

Base Environment b c amax xInit q∗

Pendulum 1e− 2 1e− 2 [2] [0.1, 0.1] [0, L]
Cartpole 1e− 2 1e− 2 [3] [0.05, 0.05, 0.05, 0.05] [0, 0, L]
Acrobot 1e− 4 1e− 2 [4, 4] [0.1, 0.1, 0.1, 0.1] [0, 2L]

connected to each other. Furthermore, upon restarting the environment the initial state x is sampled from the uniform
distribution of x0 ∼ U [−xInit,xInit] (Yildiz et al., 2021), then the θ states are added with set angle such that the pole(s) are
pointing downwards (i.e., Cartpole θ′ = θInit + π).

We note that existing offline RL methods have only been developed for discrete-time ∆i = ∆j settings and environments
that do not possess a delay dynamics τ = 0 (Argenson & Dulac-Arnold, 2020), therefore they are not applicable—instead
we opt to train an environment dynamics model and use a planner to select the next action to take.

In the following we describe each of our environments introducing the vanilla environment with a screenshot figure.

D.1 Cartpole (swing up) Environment

Figure 8: Screen shots of the Cartpole environment. The task is to swing up a pole attached to a cart that can move horizontally along a
rail. In the following we see: (a) the starting downward state with an additional small amount of perturbation, (b) the optimal trajectory
solution found by a policy that scores R = 100% including our NLC model and an expert + MPC and (c) the final goal state that has
been reached, that is, to swing up the pole and stabilize it upwards—which is a challenging control task. We note that the control actuator
is bounded and limited, and the force is such that the Cartpole cannot be directly swung up—rather it must gain momentum through a
swing and then stabilize this swing to not overshoot when stabilizing the pole upwards in the goal position, as indicated when the tip of
the pole reaches the centre of the red target square. Furthermore, we note this environment is an underactuated system.

We can see in Figure 8, an illustration of the starting state Figure 8 (a) with a small perturbed random initial start. Here a
pole is attached to an un-actuated joint to a cart that moves along a frictionless track (Barto et al., 1983). The pendulum
starts in the downward position Figure 8 (a) and the goal is to swing the pendulum upwards and then balance the pole
upright by applying forces to the left or right horizontal direction of the cart. This environment has the state of [x, ẋ, θ, θ̇]
and a corresponding observation of [x, ẋ, cos(θ), sin(θ), θ̇], where θ ∈ (−π, π) is measured from the upward vertical of
the pole. We note that this environment is an underactuated system, as it has two degrees of freedom [x, θ], however only
the carts position is actuated, leaving θ indirectly controlled.

D.2 Pendulum Environment

We can see in Figure 9, an illustration of the starting state Figure 9 (a) with a small perturbed random initial start. Here
a pole (pendulum) is attached to a fixed point at one end with the other end being free (Barto et al., 1983; Yildiz et al.,
2021). The pendulum starts in the downward position Figure 9 (a) and the goal is to swing the pendulum upwards and
then balance the pole upright by applying torques about the fixed point, as indicated in the Figure 9 with a visualisation
showing the torque direction and magnitude based on the size of the arrow. This environment has the state of [θ, θ̇] and a
corresponding observation of [sin(θ), cos(θ), θ̇].

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Figure 9: Screen shots of the Pendulum environment. The task is to swing up the pole (pendulum). In the following we see: (a)
starting downward state with an additional small amount of perturbation, (b) the optimal trajectory solution found by a policy that scores
R = 100% including our NLC model and an expert + MPC and (c) the final goal state that has been reached, that is, to swing up the
pole and stabilize it upwards. We note that the control actuator is bounded and limited, and the force is such that the Pendulum cannot
be directly swung up—rather it must gain momentum through a swing and then stabilize this swing to not overshoot when stabilizing
the pole upwards in the goal position.

Figure 10: Screen shots of the Acrobot environment. The task is to swing up the 2-link pendulum. In the following we see: (a)
starting downward state with an additional small amount of perturbation, (b) the optimal trajectory solution found by a policy that scores
R = 100% including our NLC model and an expert + MPC and (c) the final goal state that has been reached, that is, to swing up
the 2-link pendulum and stabilize it upwards. We note that the control actuator is bounded and limited, and the force is such that the
2-link pendulum cannot be directly swung up—rather it must gain momentum through a 2-link swing and then stabilize this swing to
not overshoot when stabilizing the 2-link pendulum upwards in the goal position.

D.3 Acrobot Environment

We can see in Figure 10, an illustration of the starting state Figure 10 (a) with a small perturbed random initial start. It
is a 2-link pendulum with the individual joints actuated (Brockman et al., 2016). The 2-link pole starts in the downward
position Figure 10 (a) and the goal is to swing the 2-link pendulum upwards and then balance the pole(s) upright by
applying torques about their fixed points. This environment has the state of [θ1, θ̇1, θ2, θ̇2] and a corresponding observation
of [sin(θ1), cos(θ1), θ̇1, sin(θ2), cos(θ2), θ̇2]. Here the Acrobot environment is fully actuated, as no method has been able
to solve the underactuated balancing problem (Yildiz et al., 2021; Zhong et al., 2019).

E BENCHMARK METHOD IMPLEMENTATION DETAILS

We tuned all the baseline dynamics models to have the same approximate number of parameters, as can be seen in Table
5—to ensure fair comparison for any gains in modeling complexity. We train and evaluate all the dynamics models and all
data used with double point floating precision, as is recommended when using an inverse Laplace transform (ILT) to aid the
ILT stability (Holt et al., 2022; Kuhlman, 2013). Further all dynamics models are implemented in PyTorch (Paszke et al.,

Neural Laplace Control for Continuous-time Delayed Systems

Table 5: Benchmark dynamic models implemented and their number of parameters for each model.

Dynamics model # Parameters

∆t−RNN 79,075
NODE 76,956
Latent-ODE 76,453
Neural Laplace Control 81,772

2019), and trained with an Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1e-4. Each baseline dynamics
model are:

Discrete-delay method We implemented the discrete-delay method similar to Chen et al. (2021), a RNN over the action
buffer and current state, and adapt it to model continuous-time with a new input of the time increment to predict the next
state for (∆t−RNN). We note to adapt discrete-time models to continuous-time we add an additional input parameter,
that of the time difference between the current time and the next state observation to predict, i.e., δ, e.g., xi+1 = xi +
f(xi,ai, δ). (Yildiz et al., 2021). Specifically, we feed the action buffer Hi into a gated recurrent neural (GRU) network
with a hidden size of 160 features in the hidden state and feed the final hidden state and concatenate it with the current
observed state and time increment to predict the next state which is all input into a linear layer to produce the output state
prediction.

Continuous-time methods We implemented an augmented Neural-ODE (NODE) (Chen et al., 2018b), using their code
and corresponding implementation provided, and set their ODE function f(t,x(t),a(t)) to be a 3-layer multilayer per-
ceptron (MLP), of 270 units, with tanh activation functions—with an additional augmented dimension of zeros. As
neural-ODE does not have an encoder, we feed the most recent action taken at time t, i.e., a(t) into the MLP f function
instead. Further, to allow for fair comparison we use the semi-norm trick for faster back propagation Kidger et al. (2020a),
and use the ’euler’ solver throughout. We also use the reconstruction MSE for training.

We also compare with Latent-ODE (Rubanova et al., 2019a), which uses an ODE-RNN encoder and an ODE model
decoder. We feed this the action history bufferHi concatenated with an equivalent state history bufferH′

i = {(xj , tj−ti) :
tj ∈ [ti − ω, ti]} for the same sample times. We use their code provided, setting the units to be 128 for the GRU and ODE
function f(t,x(t),a(t)) net, with tanh activation functions and use the ’dopri5’ solver. We also use their reconstruction
variational loss function for training.

Neural Laplace Control This paper uses a GRU encoder hζ (Cho et al., 2014), to encode the action buffer Hi with 2
layers and a hidden size of 64 features in the hidden state, with a final linear layer on the final hidden to output p(A)

i .
We do not encode the state and instead feed it directly as p(X)

i = xi. Therefore, we encode both into a latent dimension
pi = (p

(A)
i ,p

(X)
i). For the Laplace representation model, gψ we use a 3-layer MLP with 128 units, with tanh activations.

As recommended by Holt et al. (2022) we further use a tanh on the output to constrain the output domain to be (θ, ϕ) ∈
D = (−π, π) × (−π2 , π2) for each output state prediction. For a given state prediction, we encode the action buffer and
state into pi and concatenate this with u(s) as the input to gψ , i.e., gψ

(
p, u(s)), where s is given by the ILT algorithm for a

future time point to predict the state for. Specifically, we use the Fourier-series inverse algorithm (ILT-FSI), with dS = 17
reconstruction terms. Where we use the specific ILT-FSI from Holt et al. (2022) and use their code implementation of the
ILT algorithm.

MPPI Implementation We use the MPPI algorithm, with pseudocode and is further described in Appendix C. Specifi-
cally, as is recommended by Lutter et al. (2021) we optimized the MPPI hyperparameters through a grid search with the true
(Oracle) dynamics model for a single environment setting, that of the Cartpole environment with a delay of τ = ∆̄ = 0.05
seconds, and fix these for planning with all the learned dynamics models throughout. Specifically, our final optimized
hyperparameter combination is N = 40,M = 1, 000, λ = 1.0, σ = 1.0. Where Σ the MPPI action noise is defined as:

Σ =

[σ2] if dA = 1
[
σ2 0.5σ2

0.5σ2 σ2

]
if dA = 2

(16)

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Where the Cartpole and Pendulum environments have dA = 1 and Acrobot environment has dA = 2. These hyperparam-
eters were found by searching over a grid of possible values, which is detailed in Table 6.

Table 6: MPPI hyperparameter grid search sweep values.

Hyperparameter Grid values searched over

N {1, 2, 4, 8, 16, 20, 40, 50, 60, 70, 80, 90, 100, 128, 256, 512, 1024, 2048}
M {1, 2, 4, 8, 16, 20, 40, 50, 60, 70, 80, 90, 100, 128, 256, 500, 1000, 2000, 4000, 8000}
λ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 0.8, 1.0, 1.5, 2.0, 10.0, 100.0, 1000.0}
σ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 0.8, 1.0, 1.5, 2.0, 10.0, 100.0, 1000.0}

F EVALUATION METRICS

For each environment, with a different delay setting we collect an offline dataset of irregularly-sampled in time trajectories,
consisting of 1e6 samples from the “noisy expert” agent interacting within that environment (Section 5 & Appendix G). For
each benchmark dynamics model, we follow the same two step evaluation process of, firstly, training the dynamics model
on that environment’s collected offline dataset using a MSE error loss for the next step ahead state prediction x̂(ti+1). Then,
secondly, taking the same pre-trained model and freezing the weights, and only using it for planning with the MPPI (MPC)
planner at run-time in an environment episode, that lasts for 10 seconds. In total, we evaluate our model-based control
algorithms online in the same environment, running each one for a fixed observation interval of δ = ∆̄ = 0.05 seconds
(as is the nominal value for these environments (Yildiz et al., 2021; Brockman et al., 2016), unless specified otherwise),
and take the cumulative reward value after running one episode of the planner (policy) and repeat this for 20 random seed
runs for each result. We quote the normalized score R (Yu et al., 2020) of the policy in the environment, averaged over
the 20 random seed run episodes, with standard deviations throughout. The scores are un-discounted cumulative rewards
normalized to lie roughly between 0 and 100, where a score of 0 corresponds to a random policy, and 100 corresponds to
an expert (oracle with a MPC planner). Specifically, when we evaluate the insights experiments in Section 5.2, where we
change the planning observation interval δ, this changes the number of steps taken in an episode, therefore we quote the
un-discounted average rewards normalized to lie roughly between 0 and 100, where a score of 0 corresponds to a random
policy, and 100 corresponds to an expert (oracle with a MPC planner). We note that a normalized cumulative reward for an
episode and an average reward for an episode for the same number of steps in an episode are equivalent. Furthermore, we
also track the metric of total planning time taken to plan the next action as O seconds and perform all experiments using a
single Intel Core i9-12900K CPU @ 3.20GHz, 64GB RAM with a Nvidia RTX3090 GPU 24GB.

G DATASET GENERATION AND MODEL TRAINING

For each environment we generate an offline state-action trajectory dataset by using an agent that uses an oracle dynamics
model combined with MPC and has additional noise added to the agents selected action, π̄(t) = π(t)+ ϵ, ϵ ∼ N (0,amax).
This “noisy expert” agent interacts with the environment and observes observations at irregular unknown times, where
we sample the time interval to the next observation from an exponential distribution, i.e., ∆ ∼ Exp(∆̄), with a mean of
∆̄ = 0.05 seconds. We note other irregular sampling types are possible, however Yildiz et al. (2021) has shown they are
approximately equivalent. We assume a fixed action delay τ , and evaluate discrete multiples of this delay of the mean
sampling time ∆̄, i.e., τ = ∆̄ for one step delay, τ = 2∆̄ for two step delay etc. We enforce the observed action history
buffer that includes past actions back to ω = 4∆̄ seconds. For each specific delay version of each base environment
class (Cartpole, Pendulum and Acrobot) we collect a total of 1e6 irregular state-action samples in time (unless otherwise
specified). Using the whole collected dataset we pre-process this by a standardization step, to make each dimension of the
samples have zero mean and unit variance (by taking away the mean for each dimension and then dividing by the standard
deviation for each dimension)—we also use this step during run-time for each dynamics model. Furthermore, we train all
the baseline models on all the samples collected in the offline dataset (all samples are training data), training the models
parameters with the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 1e-4 throughout. Specifically, we train
all the baseline dynamics models on a given offline dataset by training each model for 2 hours and 15 minutes. We also ran
a further experiment where we trained all the models for a fixed number of epochs instead, detailed further in Appendix
J.1. For the insights experiments in Section 5.2 that quote a validation dataset error, we achieve this by generating a new
offline dataset using the same setup described above with a different random seed to use as a validation dataset.

Neural Laplace Control for Continuous-time Delayed Systems

H RAW RESULTS

The full results from Table 2, are in Table 7 along with their un-normalized versions in Table 8.

High variance in Latent-ODE and NODE We detail their poor performance to: (1) both these models do not support
batches of trajectories evaluated at different non-uniform time points—therefore, they are trained with a batch size of 1,
(2) we only train a single dynamics model, unlike other works (Yildiz et al., 2021) that train an ensemble of models, and
(3) Latent-ODE is trained using the recommended variational loss of the next step ahead prediction.

Table 7: Normalized scores R of the offline model-based agents, where the irregularly-sampled (P1) offline dataset consists of an
action delay (P2) of {0, 1, 2, 3} multiples of the environments observation interval time step ∆̄ = 0.05 seconds. Averaged over 20
random seeds, with ± standard deviations. Scores are un-discounted cumulative rewards normalized to be between 0 and 100, where 0
corresponds to the Random agent and 100 corresponds to the expert with the known world model (oracle+MPC). Negative normalized
scores, i.e., worse than random are set to zero.

Action Delay τ = 0 Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot

Random 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Oracle 100.0±0.04 100.0±3.34 100.0±1.84 100.0±0.15 100.0±3.14 100.0±2.19 100.0±0.04 100.0±2.57 100.0±1.79 100.0±0.08 100.0±2.57 100.0±1.26
∆t−RNN 96.76±0.34 32.73±7.09 12.61±4.65 95.28±0.4 1.14±6.31 18.95±7.6 97.01±0.31 9.94±2.48 28.39±9.73 97.8±0.25 11.81±11.93 3.89±6.72
Latent-ODE 0.0±0.0 8.08±8.45 4.45±8.81 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.24±20.67 8.91±13.62 41.56±47.07 3.26±12.24 9.19±9.08
NODE 70.08±2.94 12.89±4.19 0.0±0.0 85.09±7.95 0.63±5.16 23.07±6.94 90.75±1.34 0.0±0.0 10.92±10.09 94.55±1.08 1.97±4.01 11.78±8.33

NLC (Ours) 99.87±0.1 101.52±3.3 99.16±1.91 99.83±0.19 98.31±3.51 99.12±1.7 99.88±0.1 93.28±4.96 100.44±2.13 99.92±0.12 98.98±1.32 99.46±1.88

Table 8: Un-normalized scores R of the offline model-based agents, where the irregularly-sampled (P1) offline dataset consists of an
action delay (P2) of {0, 1, 2, 3} multiples of the environments observation interval time step ∆̄ = 0.05 seconds. Averaged over 20
random seeds, with ± standard deviations. Scores are un-discounted cumulative rewards.

Action Delay τ = 0 Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot

Random -14246.3±0.0 -616.77±0.0 -2948.64±0.0 -9713.19±0.0 -575.98±0.0 -2910.5±0.0 -15097.54±0.0 -584.8±0.0 -2938.69±0.0 -20798.89±0.0 -596.38±0.0 -2885.99±0.0
Oracle -139.69±5.27 -121.05±16.54 -571.11±43.7 -146.26±13.95 -123.44±14.2 -558.76±51.41 -145.56±5.26 -125.08±11.79 -582.01±42.1 -153.19±16.72 -133.51±11.88 -588.61±28.84
∆t−RNN -597.21±47.95 -454.51±35.13 -2648.73±110.56 -598.27±37.96 -570.82±28.57 -2464.87±178.77 -592.66±46.17 -539.12±11.39 -2269.64±229.3 -607.96±51.11 -541.71±55.22 -2796.69±154.29
Latent-ODE -152488.09±89951.95 -576.69±41.91 -2842.9±209.42 -814206.21±292756.78 -696.61±71.72 -2911.94±263.25 -1539109.96±288324.7 -579.11±95.01 -2728.8±320.88 -12217.77±9717.18 -581.29±56.67 -2674.88±208.65
NODE -4359.77±415.24 -552.86±20.78 -3048.13±79.08 -1572.47±760.41 -573.12±23.33 -2368.03±163.25 -1528.85±200.28 -613.56±16.01 -2681.39±237.74 -1277.55±222.61 -587.27±18.57 -2615.45±191.46

NLC (Ours) -158.31±14.66 -113.52±16.35 -591.16±45.46 -162.47±18.31 -131.07±15.9 -579.39±39.92 -163.0±14.67 -155.96±22.82 -571.64±50.1 -170.17±25.59 -138.23±6.13 -601.04±43.17

I INSIGHT EXPERIMENTS

In this section we seek to gain further insight into how Neural Laplace Control outperforms the benchmarks. In the
following we seek to understand if NLC is able to learn from irregularly-sampled state-action offline datasets (P1), whilst
learning the delayed dynamics of the environment (P2). Furthermore, we also explore the benefits of the NLC approach
for planning at longer time horizons with a fixed amount of compute and being sample efficient.

I.1 Can the baseline dynamics models learn a good model?

To explore if NLC is able to learn a suitable dynamics model, we plot the trained dynamics models next step ahead
prediction error with that of the ground truth for a varying observation interval δ for the Cartpole environment with a
delay of ∆̄, as shown in Figure 11. Empirically we observe that NLC using its Laplace-based dynamics model is able
to better approximate a wider range of observation intervals δ and achieve a good global approximation compared to the
recurrent neural network and ODE based models. We note that due to the offline dataset being sampled with trajectories
that have irregular sampling times (P1), where the sampling times are defined by an exponential distribution with a mean
of ∆̄ = 0.05 seconds; the other competing methods seem to over-fit purely to the median sample time of the exponential
distribution, i.e., 0.05 · ln(2) = 0.034 s. Other works have shown a more accurate next step prediction model correlates to
a higher environment episode reward (Williams et al., 2017).

I.2 Can the baseline dynamics models learn delay environment dynamics?

To investigate this, we similarly plot the trained NLC dynamics models next step ahead prediction error with that of the
ground truth for a varying observation interval δ, for each of the delayed environment versions of the specific Cartpole
environment, as show in Figure 12 (d). Empirically we observe that the NLC dynamics models correctly learnt the delay
dynamics (P2) of each individual environment, as they each have a similar low forward MSE error for the varying levels of

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

(a) (b)

(c)

Figure 11: Next step ahead validation error (MSE) at a variable time step of an observation interval δ of the learnt baseline dynamics
models, for the irregularly-sampled Cartpole environment with a fixed action delay of τ = ∆̄. Where in each sub-figure we have the
same results plotted at: (a) a zoomed-in y-limit, (b) a zoomed-out y-limit and (c) a log scale plot. The black dotted line indicates the
environments run-time observation interval δ = ∆̄ = 0.05 s. Here, we observe Neural Laplace Control learns a good dynamics model
over a wide range of observation intervals δ, correctly learning from the irregularly-sampled offline dataset (P1).

inherent delay. In contrast, neural-ODE models are unable to model the delay dynamics correctly, and we observe that they
have a higher rate of increasing forward MSE error Figure 12 (a) & (b), that can also increase for an increasing environment
delay and is shown further in Figure 12 for the Latent-ODE model—intuitively this may occur as increasing the delay in a
delay differential equation driven environment dynamics becomes less like that of an ordinary differential equation driven
environment dynamics, which neural-ODE methods implicitly assume.

(a) (b)

(c) (d)

Figure 12: Next step ahead validation error (MSE) at a variable time step of an observation interval δ of the learnt baseline dynamics
models, for each delayed environment versions τ = {0, ∆̄, 2∆̄, 3∆̄} of the specific Cartpole environment. Where in each sub-figure we
have: (a) NODE, (b) Latent-ODE, (c) ∆t−RNN and (d) NLC. The black dotted line indicates the environments run-time observation
interval δ = ∆̄ = 0.05 s. Here, Neural Laplace Control is able to correctly learn and capture the delayed dynamics (P2), as the forward
MSE errors are low and similar—whereas neural-ODE methods (a) & (b) have a greater increasing forward MSE.

Neural Laplace Control for Continuous-time Delayed Systems

I.3 Can NLC plan with a longer time horizon using a fixed amount of compute?

We investigate this by planning with a MPC planner, increasing the observation interval δ and keeping N fixed, therefore
the time horizon H increases—as shown in Figure 4. Here we measure the total planning time taken to plan the next
action as O seconds 6 and observe that planning with the NLC dynamics model takes the same amount of planning time,
and hence a fixed amount compute for planning at a greater time horizon H—which is the same as a ∆t−RNN. This is
achieved by the Laplace-based dynamics model that can predict a future state at any future time interval using the same
number of forward model evaluations, and hence the same amount of compute. In contrast, this is not readily achievable
with neural-ODE continuous-time methods that use a larger number of numerical forward steps with a numerical ODE
step-wise solver for an increasing time horizon—leading to an increasing planning time for an increasing time horizon,
i.e., O ∝ H . Furthermore, we highlight, that there exists a trade-off of the time horizon H to plan at—as we wish to use
a large “enough” horizon that captures sufficient future dynamics, whilst minimizing compounded model inaccuracies at a
larger planning time horizon. Therefore, these two opposing factors, give rise to the maxima of the normalized score R at
a time horizon H = 2 seconds, as seen in Figure 13. The numeric values for each environment are tabulated in Tables 9,
10 & 11.

(a) (b)

(c)

Figure 13: Normalized score R of the baseline methods on the three environments with an action delay of τ = ∆̄ = 0.05 seconds,
plotted against an increasing time horizon H , by increasing the observation interval δ. Specifically in: (a) the Cartpole environment, (b)
the Pendulum environment and (c) the Acrobot environment. NLC, maintains a high performing policy at a longer time horizon—whilst
using the same amount of constant planning time per action O as a ∆t−RNN.

Table 9: Numerical results of the Cartpole environment, of the planning time taken O to generate the next action, and normalized scores
R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing time horizon H—by
increasing the observation interval δ. NLC, maintains a high performing policy at a longer time horizon—whilst using the same amount
of constant planning time per action O as a ∆t−RNN.

H=0.8 s H=2.0 s H=4.0 s H=6.0 s H=8.0 s H=10.0 s H=12.0 s
Dynamics Model N=40, δ=0.02 s N=40, δ=0.05 s N=40, δ=0.1 s N=40, δ=0.15 s N=40, δ=0.2 s N=40, δ=0.25 s N=40, δ=0.3 s

∆t−RNN O 0.08±0.0 0.08±0.0 0.08±0.0 0.08±0.0 0.08±0.0 0.08±0.0 0.08±0.0
R (95.85±0.34) (96.88±0.34) (97.18±0.35) (97.37±0.26) (97.32±0.84) (92.75±3.09) (76.16±8.36)

NODE O 0.069±0.0 0.117±0.0 0.165±0.0 0.236±0.0 0.284±0.0 0.361±0.02 0.403±0.0
R (92.56±0.16) (78.24±1.96) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0)

NLC (Ours) O 0.094±0.0 0.094±0.0 0.094±0.0 0.094±0.0 0.094±0.0 0.094±0.0 0.094±0.0
R (98.13±0.16) (99.83±0.14) (99.08±0.29) (98.34±0.43) (97.38±0.53) (96.2±1.19) (92.65±3.45)

6We perform all results using a Intel Core i9-12900K CPU @ 3.20GHz, 64GB RAM with a Nvidia RTX3090 GPU 24GB.

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Table 10: Numerical results of the Pendulum environment, of the planning time taken O to generate the next action, and normalized
scores R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing time horizon
H—by increasing the observation interval δ. NLC, maintains a high performing policy at a longer time horizon—whilst using the same
amount of constant planning time per action O as a ∆t−RNN.

H=0.8 s H=2.0 s H=4.0 s H=6.0 s H=8.0 s H=10.0 s H=12.0 s
Dynamics Model N=40, δ=0.02 s N=40, δ=0.05 s N=40, δ=0.1 s N=40, δ=0.15 s N=40, δ=0.2 s N=40, δ=0.25 s N=40, δ=0.3 s

∆t−RNN O 0.355±0.04 0.362±0.03 0.369±0.03 0.372±0.04 0.359±0.04 0.364±0.04 0.361±0.03
R (0.0±0.0) (37.11±3.79) (32.67±5.23) (20.28±5.13) (15.46±3.15) (15.07±4.4) (9.12±2.22)

NODE O 0.84±0.1 1.014±0.07 1.164±0.13 1.364±0.19 1.494±0.2 1.76±0.21 2.007±0.14
R (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0)

NLC (Ours) O 0.493±0.08 0.469±0.06 0.466±0.05 0.466±0.04 0.468±0.04 0.471±0.04 0.462±0.04
R (60.31±6.39) (97.98±3.21) (89.04±7.04) (76.73±9.15) (79.7±11.59) (71.8±27.86) (83.44±32.02)

Table 11: Numerical results of the Acrobot environment, of the planning time taken O to generate the next action, and normalized scores
R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing time horizon H—by
increasing the observation interval δ. NLC, maintains a high performing policy at a longer time horizon—whilst using the same amount
of constant planning time per action O as a ∆t−RNN.

H=0.8 s H=2.0 s H=4.0 s H=6.0 s H=8.0 s H=10.0 s H=12.0 s
Dynamics Model N=40, δ=0.02 s N=40, δ=0.05 s N=40, δ=0.1 s N=40, δ=0.15 s N=40, δ=0.2 s N=40, δ=0.25 s N=40, δ=0.3 s

∆t−RNN O 0.387±0.04 0.394±0.02 0.4±0.03 0.393±0.02 0.401±0.03 0.406±0.03 0.407±0.02
R (0.0±0.0) (19.78±7.95) (26.49±6.0) (28.62±9.1) (23.51±9.02) (24.34±12.93) (17.28±16.53)

NODE O 0.94±0.17 1.058±0.09 1.194±0.14 1.401±0.2 1.529±0.21 1.795±0.22 2.084±0.19
R (25.1±5.12) (26.13±9.13) (11.59±22.12) (0.0±0.0) NA NA NA

NLC (Ours) O 0.588±0.05 0.574±0.02 0.571±0.01 0.571±0.01 0.569±0.01 0.566±0.01 0.571±0.01
R (85.62±1.85) (99.49±1.87) (89.93±2.8) (78.4±4.96) (57.32±10.5) (37.56±18.32) (20.16±19.83)

I.4 Can NLC use less compute to plan with the same time horizon?

We further investigate an alternative setup in Figure 14, and keep the time horizon fixed at H = 2 seconds and increase the
observation interval δ—allowing us to reduce N the number of MPC forward planning steps (i.e., N = H

δ). Importantly,
this reduces the planning time O needed to generate the next action, enabling a method to use a higher frequency of
executing actions to control the dynamics—whilst still planning at the same fixed time horizon H . NLC is able to still
outperform the baselines, achieving a high performing policy—even when using a lesser amount of planning compute per
action. The numeric values for each environment are tabulated in Tables 12, 13 & 14.

Table 12: Numerical results of the Cartpole environment, of the planning time taken O to generate the next action, and normalized scores
R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing observation interval δ.
Here, the time horizon is fixed at H = 2s, thus increasing the observation interval δ decreases the number of MPC forward planning
steps needed (i.e., N = H

δ
). NLC demonstrates that it can still outperform the baselines, achieving a near optimal policy—whilst

reducing the planning time taken O needed to generate the next action.

H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s
Dynamics Model N=100, δ=0.02 s N=40, δ=0.05 s N=20, δ=0.1 s N=13, δ=0.15 s N=10, δ=0.2 s N=8, δ=0.25 s N=6, δ=0.33 s N=5, δ=0.4 s

∆t−RNN O 0.197±0.0 0.08±0.0 0.04±0.0 0.027±0.0 0.021±0.0 0.017±0.0 0.013±0.0 0.011±0.0
R (95.95±0.4) (96.79±0.25) (96.95±0.27) (94.79±0.49) (88.59±2.68) (81.81±7.97) (80.47±17.05) (70.48±23.23)

NODE O 0.168±0.0 0.117±0.0 0.083±0.0 0.077±0.0 0.072±0.0 0.072±0.0 0.068±0.0 0.066±0.0
R (92.57±0.13) (77.49±1.77) (66.49±2.8) (37.18±6.9) (17.23±15.49) (18.08±21.49) (34.32±24.34) (16.81±38.05)

NLC (Ours) O 0.25±0.0 0.101±0.0 0.051±0.0 0.033±0.0 0.026±0.0 0.021±0.0 0.016±0.0 0.013±0.0
R (99.23±0.3) (99.85±0.13) (99.95±0.12) (99.82±0.15) (99.51±0.18) (99.32±0.27) (99.06±0.44) (98.13±0.16)

I.5 Can NLC learn from few samples?

We observe in Figure 15 that NLC can still learn a suitable dynamics model and perform well across the environments
with a delay of τ = ∆̄ = 0.05 seconds, when trained with an offline irregularly-sampled in time dataset that contains a
limited number of samples. Specifically, it is able to learn with only 200 random samples on the Cartpole and Pendulum
environments—which corresponds 10 seconds of interaction time of a noisy expert (expert with random action noise) agent
from the delayed environment. Also, on the Acrobot environment, a more challenging environment it is able to learn a
sufficient dynamics model from only 1,000 random samples.

Neural Laplace Control for Continuous-time Delayed Systems

(a) (b)

(c)

Figure 14: Normalized score R of the baseline methods on the three environments in each sub-figure with an action delay of τ = ∆̄ =
0.05s, plotted against an increasing observation interval δ. Specifically in: (a) the Cartpole environment, (b) the Pendulum environment
and (c) the Acrobot environment. Here, the time horizon is fixed at H = 2s, thus increasing the observation interval δ decreases the
number of MPC forward planning steps needed (i.e., N = H

δ
). NLC demonstrates that it can still outperform the baselines, achieving a

near optimal policy—whilst reducing the planning time taken O needed to generate the next action.

Table 13: Numerical results of the Pendulum environment, of the planning time taken O to generate the next action, and normalized
scores R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing observation interval
δ. Here, the time horizon is fixed at H = 2s, thus increasing the observation interval δ decreases the number of MPC forward planning
steps needed (i.e., N = H

δ
). NLC demonstrates that it can still outperform the baselines, achieving a near optimal policy—whilst

reducing the planning time taken O needed to generate the next action.

H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s
Dynamics Model N=100, δ=0.02 s N=40, δ=0.05 s N=20, δ=0.1 s N=13, δ=0.15 s N=10, δ=0.2 s N=8, δ=0.25 s N=6, δ=0.33 s N=5, δ=0.4 s

∆t−RNN O 1.49±0.2 0.699±0.1 0.414±0.06 0.299±0.04 0.251±0.04 0.223±0.03 0.186±0.03 0.169±0.02
R (0.0±0.0) (37.11±3.79) (42.7±4.37) (20.51±0.6) (12.32±1.09) (10.81±2.27) (7.07±4.99) (12.12±6.86)

NODE O 2.788±0.86 1.749±0.52 1.196±0.78 1.005±0.79 0.889±0.69 0.836±0.63 0.728±0.51 0.638±0.4
R (0.0±0.0) (0.0±0.0) (12.78±7.86) (0.0±0.0) (0.0±0.0) (0.0±0.0) (0.0±0.0) (3.22±5.19)

NLC (Ours) O 2.329±0.57 0.813±0.18 0.434±0.1 0.301±0.06 0.241±0.05 0.2±0.04 0.163±0.03 0.145±0.03
R (83.55±3.02) (97.98±3.21) (103.55±2.84) (106.13±0.41) (107.22±1.03) (107.28±0.93) (105.27±0.98) (50.73±30.43)

Table 14: Numerical results of the Acrobot environment, of the planning time taken O to generate the next action, and normalized scores
R of the baseline methods with an environment action delay of τ = ∆̄ = 0.05s, varying against an increasing observation interval δ.
Here, the time horizon is fixed at H = 2s, thus increasing the observation interval δ decreases the number of MPC forward planning
steps needed (i.e., N = H

δ
). NLC demonstrates that it can still outperform the baselines, achieving a near optimal policy—whilst

reducing the planning time taken O needed to generate the next action.

H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s H=2.0 s
Dynamics Model N=100, δ=0.02 s N=40, δ=0.05 s N=20, δ=0.1 s N=13, δ=0.15 s N=10, δ=0.2 s N=8, δ=0.25 s N=6, δ=0.33 s N=5, δ=0.4 s

∆t−RNN O 2.037±0.29 0.96±0.08 0.558±0.06 0.405±0.04 0.348±0.03 0.292±0.03 0.243±0.02 0.243±0.02
R (0.0±0.0) (21.04±7.06) (30.4±9.03) (32.44±9.69) (14.59±5.5) (18.49±7.6) (0.0±0.0) (0.0±0.0)

NODE O 5.631±2.99 2.095±0.73 1.455±1.12 1.256±1.12 1.108±1.01 1.045±0.93 0.915±0.78 0.815±0.67
R (28.09±6.18) (22.63±7.97) (10.96±22.24) (11.48±24.95) (12.67±17.63) (8.41±16.82) (0.0±0.0) (0.0±0.0)

NLC (Ours) O 3.902±0.52 1.452±0.09 0.755±0.06 0.521±0.05 0.419±0.04 0.349±0.04 0.283±0.03 0.251±0.03
R (85.6±4.98) (99.05±2.06) (105.71±0.92) (105.39±1.24) (104.15±0.9) (104.18±2.61) (91.49±20.89) (0.0±0.0)

I.6 Can NLC incorporate state-based constraints?

We show that using a MPC planner, we can easily incorporate a new state-based constraint at test time (run-time) in
Figure 16. Here, using the Cartpole environment we add an additional constraint on the horizontal x position of the cart.

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

(a) (b)

(c)

Figure 15: Normalized score R of the baseline methods on the three environments in each sub-figure with an action delay of τ = ∆̄ =
0.05s, plotted against the number of samples in the irregularly-sampled offline dataset used to train the dynamics model of each method.
Specifically, in: (a) the Cartpole environment, (b) the Pendulum environment and (c) the Acrobot environment. NLC can maintain a
high performing policy on the Cartpole and Pendulum environments—even from the challenging case of only learning a dynamics model
from 200 samples from an irregularly-sampled in time offline dataset D.

Specifically, we illustrate that a “left constrained” (x < 0) version at run-time can still be solved by our NLC method and
similarly for a “right constrained” (x > 0) version can be solved—this is made possible as the planner only generates
feasible trajectories where these additional state-based constraints are satisfied, which is further illustrated in Figure 16.
Therefore, using a MPC planner we can easily incorporate new additional unseen state constraints at run-time, whereas
using a learnt policy (q-learner) would be unable to do this and would have to re-train a new policy for each new state
constraint. We note that this benefit of using a MPC planner to incorporate additional state-based constraints has been
shown by others (Lutter et al., 2021).

J ADDITIONAL EXPERIMENTS

In this section we seek to gain further insight into how the baseline dynamics models compare when trained using the same
number of fixed training epochs on each dataset, and an ablation by training the dynamics models on regularly-sampled
offline datasets.

J.1 Training dynamics models for a fixed number of epochs

Here we changed the training setup to train each of the dynamics models for the same number of 10 epochs, with the same
batch size, that of 1 (As NODE and Latent-ODE are only able to support a batch size of 1 using our offline dataset) on the
irregularly sampled offline dataset consisting of only 10,000 random state-action samples. The benchmark methods against
each environment, which consists of a continuous-time environment with a specific delay—with normalized scores R are
tabulated in Table 15. We observe that the results are consistent and similar to the original results reported in Table 2 in
the paper—where each dynamics model received the same number of training iterations, and this is less training than our
original results tabulated in Table 2 in the paper. Given less training iterations, NLC is still able to outperform the baseline
dynamics models.

J.2 Ablation by training dynamics models on regularly-sampled offline datasets

We further investigate how the baseline models perform by training on regularly-sampled offline datasets, i.e., datasets
that are collected with a noisy agent that observes the next observation x(t+∆i) with the same discrete time observation
interval ∆i = ∆j . These results are tabulated in Table 16. We observe a similar pattern, where NLC is still able to learn a
good dynamics model and outperform the baselines.

Neural Laplace Control for Continuous-time Delayed Systems

Figure 16: Screen shots of the Cartpole environment, with an action delay of τ = ∆̄ = 0.05s using the NLC dynamics model. We see
additional new state-based constraints given at run-time, and the MPC planner is able to incorporate these such that the action trajectories
generated and executed satisfy the state constraint, here on the horizontal x position of the cart. Specifically, in sub-figures we observe:
(a) a “left constrained” (x < 0) version, (b) a “right constrained” (x > 0) version and in (c) a standard version with no state constraints.
Specifically in each sub-figure, we have further sub-figures where: (i) shows the starting screenshot, (ii) a visualization of the trajectory
followed (with past screenshots superimposed, where the more faded image is oldest), (iii) the final state reached and in (iv) the state
x trajectory plotted over the entire episode’s length of 10 seconds. Therefore, using a MPC planner we can easily incorporate new
additional unseen state constraints at run-time, whereas using a learnt policy (q-learner) would be unable to do this and would have to
re-train a new policy for each new state constraint.

J.3 Environments with observational noise

We performed an additional experiment of adding observation noise, specifically, perturbing the state with Gaussian noise
N (0, 0.012). We observe in Table 17 that NLC is still performant under this observation noise. Here, the noisy expert
datasets are collected with this observation noise, and the same observation noise is used at run-time evaluation for each
method. We also see this same effect for increasing noise, in Figure 17.

Samuel Holt, Alihan Hüyük, Zhaozhi Qian, Hao Sun, Mihaela van der Schaar

Table 15: Normalized scores R of the offline model-based agents, where the irregularly-sampled (P1) offline dataset consists of an
action delay (P2) of {0, 1, 2, 3} multiples of the environment’s observation interval time step ∆̄ = 0.05 seconds. Averaged over 20
random seeds, with ± standard deviations. Scores are un-discounted cumulative rewards normalized to be between 0 and 100, where 0
corresponds to the Random agent and 100 corresponds to the expert with the known world model (oracle+MPC). Negative normalized
scores, i.e., worse than random are set to zero. Specifically, we trained each dynamics model for the same number of 10 epochs, with
a batch size of 1 from an offline dataset consisting of only 10,000 random state-action samples—we note that each dynamics model
received the same number of training iterations, and this is less training than our original results tabulated in Table 2 in the paper. Given
less training iterations, NLC is still able to outperform the baseline dynamics models.

Action Delay τ = 0 Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot

Random 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Oracle 100.0±0.04 100.0±3.59 100.0±2.61 100.0±0.02 100.0±3.15 100.0±1.8 100.0±0.03 100.0±2.42 100.0±1.64 100.0±0.04 100.0±2.6 100.0±1.42
∆t−RNN 97.13±0.27 19.86±5.2 30.9±8.19 98.59±0.13 13.02±11.0 25.16±9.86 98.02±0.17 19.64±6.21 33.67±7.71 96.89±0.29 13.18±4.4 26.27±6.03
Latent-ODE 0.0±0.0 0.0±0.0 5.99±9.64 0.0±0.0 5.26±11.63 6.45±13.78 0.0±0.0 2.86±14.97 7.97±9.31 35.81±55.95 5.29±12.05 12.22±6.08
NODE 95.63±0.19 0.0±0.0 16.04±10.68 93.43±4.1 0.0±0.0 1.7±6.73 0.0±0.0 6.19±3.16 5.5±10.52 95.49±0.12 4.4±5.13 23.98±8.18

NLC (Ours) 99.54±0.12 92.65±4.43 57.1±22.72 99.39±0.02 95.78±2.35 66.55±6.59 99.71±0.07 99.01±4.13 57.73±20.73 97.16±0.24 91.56±4.73 80.48±14.03

Table 16: Normalized scores R of the offline model-based agents, where we use a regularly-sampled offline dataset—that consists of
an action delay (P2) of {0, 1, 2, 3} multiples of the environments observation interval time step ∆̄ = 0.05 seconds. Averaged over 20
random seeds, with ± standard deviations. Scores are un-discounted cumulative rewards normalized to be between 0 and 100, where 0
corresponds to the Random agent and 100 corresponds to the expert with the known world model (oracle+MPC). Negative normalized
scores, i.e., worse than random are set to zero.

Action Delay τ = 0 Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot Cartpole Pendulum Acrobot

Random 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Oracle 100.0±0.06 100.0±3.59 100.0±1.98 100.0±0.03 100.0±3.05 100.0±1.18 100.0±0.1 100.0±2.57 100.0±2.27 100.0±0.03 100.0±2.7 100.0±1.7
∆t−RNN 97.17±0.42 0.0±0.0 3.07±6.09 97.18±0.32 0.0±0.0 7.03±7.53 96.54±0.35 0.0±0.0 5.39±6.0 98.01±0.31 0.0±0.0 10.47±7.09
Latent-ODE 0.0±0.0 0.0±0.0 12.26±9.47 0.0±0.0 0.0±0.0 3.34±25.49 0.0±0.0 0.0±0.0 12.81±14.84 0.0±0.0 0.0±0.0 19.47±10.4
NODE 0.0±0.0 49.8±7.27 27.18±10.36 0.0±0.0 39.12±5.54 32.06±10.84 54.19±51.77 0.0±0.0 24.31±10.38 0.0±0.0 0.0±0.0 25.49±11.89

NLC (Ours) 100.01±0.04 99.95±3.74 99.39±2.31 99.97±0.1 101.14±3.7 101.38±2.14 100.03±0.05 99.45±2.98 99.74±1.79 99.93±0.08 99.81±3.17 100.11±1.92

Table 17: Normalized scores R of the offline model-based agents, where the irregularly-sampled (P1) offline dataset consists of an action
delay (P2) of {0, 1, 2, 3} multiples of the environments observation interval time step ∆̄ = 0.05 seconds. Averaged over 20 random
seeds, with ± standard deviations. Here we add observation noise—whereby the state is perturbed with Gaussian noise N (0, 0.012).
Scores are un-discounted cumulative rewards normalized to be between 0 and 100, where 0 corresponds to the Random agent and 100
corresponds to the expert with the known world model (Oracle+MPC). Negative normalized scores, i.e., worse than random are set to
zero.

Action Delay τ = 0 Action Delay τ = ∆̄ Action Delay τ = 2∆̄ Action Delay τ = 3∆̄
Dynamics Model Cartpole Cartpole Cartpole Cartpole

Random 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Oracle 100.0±0.04 100.0±0.02 100.0±0.02 100.0±0.02
∆t−RNN 98.33±0.26 97.96±0.24 97.8±0.25 97.99±0.27
Latent-ODE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
NODE 0.0±0.0 0.0±0.0 0.0±0.0 9.86±56.04

NLC (Ours) 99.99±0.03 99.97±0.04 99.91±0.08 99.9±0.03

J.4 Environment with friction

We also performed an additional experiment of adding friction to the environment. We observe in Figure 18 that NLC is
still performant under this friction for the Cartpole environment. Here, the expert datasets are collected with this friction,
and the same friction is used at run-time evaluation for each method. Specifically, we used a fiction coefficient of 5e-4 for
the cart and a friction coefficient of 2e-6 for the pole.

Neural Laplace Control for Continuous-time Delayed Systems

Figure 17: Normalized score R of the baseline methods on the Cartpole environment with an action delay of τ = ∆̄ = 0.05s. Here
adding observation noise, specifically, perturbing the state with Gaussian noise N (0, σ2), plotted against noise σ. NLC can maintain a
high performing policy on the Cartpole with noise—however degrades like the other closest performing policy with increasing noise, as
there becomes less signal to noise in the enviroment observations.

Figure 18: Normalized score R of the baseline methods on the Cartpole environment against an action delay of {0, 1, 2, 3} multiples of
the environments observation interval time step ∆̄ = 0.05 seconds. Here the Cartpole environment has friction added to it. NLC can
maintain a high performing policy on the Cartpole with friction.

	INTRODUCTION
	RELATED WORK
	PROBLEM FORMULATION
	NEURAL LAPLACE CONTROL
	Learning the Dynamics Model
	Planning with the Learnt Dynamics Model

	EXPERIMENTS AND EVALUATION
	Main results
	Insight and Understanding of How Neural Laplace Control Works

	DISCUSSION AND FUTURE WORK
	EXTENDED RELATED WORK
	NEURAL LAPLACE BACKGROUND
	MPC MPPI PSEUDOCODE AND PLANNER IMPLEMENTATION DETAILS
	ENVIRONMENT SELECTION AND DETAILS
	Cartpole (swing up) Environment
	Pendulum Environment
	Acrobot Environment

	BENCHMARK METHOD IMPLEMENTATION DETAILS
	EVALUATION METRICS
	DATASET GENERATION AND MODEL TRAINING
	RAW RESULTS
	INSIGHT EXPERIMENTS
	Can the baseline dynamics models learn a good model?
	Can the baseline dynamics models learn delay environment dynamics?
	Can NLC plan with a longer time horizon using a fixed amount of compute?
	Can NLC use less compute to plan with the same time horizon?
	Can NLC learn from few samples?
	Can NLC incorporate state-based constraints?

	ADDITIONAL EXPERIMENTS
	Training dynamics models for a fixed number of epochs
	Ablation by training dynamics models on regularly-sampled offline datasets
	Environments with observational noise
	Environment with friction

