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Abstract

Neyman-Scott processes (NSPs) have been ap-
plied across a range of fields to model points
or temporal events with a hierarchy of clusters.
Markov chain Monte Carlo (MCMC) is typically
used for posterior sampling in the model. How-
ever, MCMC’s mixing time can cause the re-
sulting inference to be slow, and thereby slow
down model learning and prediction. We de-
velop the first variational inference (VI) algo-
rithm for NSPs, and give two examples of suit-
able variational posterior point process distri-
butions. Our method minimizes the inclusive
Kullback-Leibler (KL) divergence for VI to ob-
tain the variational parameters. We generate
samples from the approximate posterior point
processes much faster than MCMC, as we can
directly estimate the approximate posterior point
processes without any MCMC steps or gradient
descent. We include synthetic and real-world
data experiments that demonstrate our VI al-
gorithm achieves better prediction performance
than MCMC when computational time is limited.

1 INTRODUCTION

Neyman-Scott processes (Neyman and Scott, 1958) have
achieved great success in many fields, e.g., pandemic
modeling (Park et al., 2022), neuroscience (Williams
et al., 2020), and seismology (Hong and Shelton, 2022),
where posterior sampling plays an important role. Many
MCMC algorithms (e.g., Møller and Waagepetersen, 2003;
Williams et al., 2020; Hong and Shelton, 2022) have been
proposed for the posterior sampling. However, a large
number of mixing steps is generally required for MCMC,
which makes it inefficient to generate samples from the
posterior point process.
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To accelerate the approximate posterior inference of the
hidden points, we propose a variational inference (VI) al-
gorithm. We employ an autoencoder to construct two vari-
ational posterior point processes. One of these has the same
functional form as the virtual point processes, which work
as auxiliary variables for MCMC, in Hong and Shelton
(2022), and the other uses self-attention (Vaswani et al.,
2017) to construct a more general approximation. We
can sample from our approximation much faster than from
MCMC because mixing is not needed for the approxima-
tion. With faster sampling from our approximate posterior
point processes, we are able to achieve better prediction re-
sults when there is a time constraint.

We briefly review VI and Neyman-Scott processes in
Sec. 2. Sec. 3 gives a general formula for our approximate
posterior point processes, and Sec. 4 gives two specific ex-
amples for the approximation. Sec. 5 gives details about
the inference procedure. Sec. 6 explains how to do pre-
diction and discusses why our approximate posterior point
processes can behave better than MCMC when there is a
constraint for the time. Finally, we use experiments to sup-
port our claim in Sec. 7 and conclude this paper in Sec. 8.
While our experiments are only for temporal point pro-
cesses, our algorithms can be applied to a general spatio-
temporal point process as explained in Remark 1.

2 BACKGROUND

2.1 Variational Inference

VI transforms a posterior inference problem into an opti-
mization problem, and it has already been very successful
for probabilistic modeling. Usually, VI first constructs a
family of approximate distributions q, and then adjusts the
parameters of q to approach the true posterior distribution p
by minimizing a divergence metric. Most VI algorithms try
to minimize the exclusive KL divergence, KL(q ∥ p) (e.g.,
Jordan et al., 1999; Kingma and Welling, 2014; Ranganath
et al., 2014; Blei et al., 2017). While it is computationally
efficient to optimize the exclusive KL divergence, it can
lead to underestimation of the uncertainty of the posterior
(Naesseth et al., 2020). To mitigate the underestimation is-
sue, Naesseth et al. (2020) proposed a VI algorithm, called
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Markovian score climbing (MSC), that minimizes the in-
clusive KL divergence, KL(p ∥ q). MSC uses MCMC to
get an unbiased estimate of the gradient of the inclusive KL
divergence. Naesseth et al. (2020) also shows that MSC can
be combined with maximum likelihood estimation (MLE)
to jointly learn variational parameters and model parame-
ters.

In a similar fashion, we design a VI algorithm for NSPs
that minimizes inclusive KL divergence. Different from
MSC, whose variational parameters are for Markov ker-
nels, our variational parameters are for auxiliary variables
of MCMC. Moreover, the number of dimensions is fixed in
Naesseth et al. (2020), and our MCMC has an unbounded
number of dimensions. To the best of our knowledge, we
are the first to design a VI algorithm for NSPs and there
does not exist any pre-existing work for minimizing the ex-
clusive KL divergence. While we only focus on the VI
for minimizing inclusive KL divergence in this paper, the
minimization of exclusive KL divergence could also be in-
teresting and we leave it for future research.

2.2 Neyman-Scott Processes

The Neyman-Scott process (NSP) was first proposed by
Neyman and Scott (1958). NSPs are a class of hierarchical
point process models built by stacking Poisson processes
into a network. NSPs were originally univariate, i.e., can
only be applied to events with one type or mark. Hong
and Shelton (2022) introduce multivariate NSPs with hi-
erarchical structures, called deep Neyman-Scott processes
(DNSPs). We use “deep” to differentiate our work from
other work that only has one hidden layer (e.g., Møller and
Waagepetersen, 2003; Linderman et al., 2017; Williams
et al., 2020). While Hong and Shelton (2022) only have
experiments for temporal point processes (TPPs), their al-
gorithms can be used for spatio-temporal NSPs with multi-
ple dimensions.

The major assumption of DNSPs is that the observed events
(points) are triggered by the hidden events (points). For ex-
ample, earthquakes are usually triggered by sudden energy
releases of the Earth. The times and locations of energy
releases are hidden (not directly observed) points. We can
leverage the power of DNSPs to infer the potential times
and locations of energy releases given the times, locations,
and magnitudes of the observed earthquakes. Then, based
on the inferred hidden information, we can predict the time
and the magnitude of the next future earthquake conditional
on the observed earthquakes.

More generally, the hierarchical systems of DNSPs are
formed by the iterative generation procedures of the hid-
den points. Each hidden point (parent) can trigger a set of
hidden points as its children. The generated child points
can also work as parent points and trigger their own sets of
children. This iterative process continues until the observed

points are generated. With this hierarchical structure, we
are able to infer more hidden information. For example,
we can infer the hidden triggers of the energy releases of
earthquakes. The experiments in Hong and Shelton (2022)
and our experiments in Sec. 7.2 also show that more hidden
point processes can bring better prediction performance.

We typically use conditional intensity functions (CIFs) to
describe TPPs.

Definition 1 (conditional intensity function). The condi-
tional intensity function (CIF) of a TPP is defined as

λ(t) = lim
∆t→0

Pr(One event in [t, t+∆t] | Ht)

∆t
,

whereHt represents the events that happened before t.

The log-likelihood function for a TPP defined on (0, T ] is

n∑
i=1

log λ(ti)−
∫ T

0

λ(t)dt,

where λ(t) is the CIF and t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn are the
times of observations.

Figs. 1 and 2 in Hong and Shelton (2022) provide good il-
lustrations for deep Neyman-Scott processes, where each
observed sequence of events has L hidden layers of (multi-
ple) Poisson processes. The CIF for each Poisson process
of layer l is determined by the events from the layer im-
mediately above layer l + 1. For simplicity, we omit the
data index n in the following formal description of the gen-
erative process for DNSPs, and only consider TPPs in this
paper. Let Zℓ,k represent the k-th hidden Poisson process
at layer ℓ, Kℓ be the number of point processes at layer
ℓ, ϕθ(ℓ+1,i)→(ℓ,k)

be the kernel function that connects Zℓ,k

and Zℓ+1,i, zℓ,i = {tℓ,i,j}
mℓ,i

j=1 be a realization for Zℓ,i,
zℓ = {zℓ,i}Kℓ

i=1, and z0 = x. To generate the events for the
bottom layer, we first need to generate random events from
the top layer. The CIF for ZL,k is

λL,k(t) = µk, where µk > 0.

Then, we can draw samples for each hidden Poisson pro-
cess conditional on the Poisson processes that are from the
layers immediately above. The CIF for Zℓ,k is

λℓ,k(t) =

Kℓ+1∑
i=1

∑
tℓ+1,i,j

ϕθ(ℓ+1,i)→(ℓ,k)
(t− tℓ+1,i,j). (1)

We denote this point process as the real point process
(RPP), to make a distinction with the virtual point process
(VPP), below, used to add auxiliary variables to a Markov
chain.
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2.3 Kernel Function

We choose the kernel function to be a Weibull kernel,

ϕθ(x) =

{
p · kλ

(
x
λ

)k−1
e−(x/λ)k for x > 0, k, λ > 0,

0 for x ≤ 0,

where θ = {p, k, λ}. Here, we omit the subscripts of θ
in the definition for simplicity as it is the general form.
Similar to the gamma kernel used in previous work, the
Weibull kernel converges to 0 when x goes to infinity as
the influence of the events from the past will fade even-
tually. The shape of a Weibull kernel is very similar to
a gamma kernel, and, with different combinations of the
parameters, the Weibull kernel can also monotonically de-
crease or behave like a Gaussian function. But, the Weibull
kernel has the advantage over the gamma kernel that the
gradients of the Weibull kernel function itself and the in-
tegral of the Weibull kernel function are both analytically
available. The only restriction for the kernel function is that
Eqs. 1, 2, 5, and 6 are non-negative.

2.4 Monte Carlo Expectation-Maximization

Hong and Shelton (2022) introduced a Monte Carlo
expectation-maximization (MCEM) algorithm for infer-
ence.

Virtual events work as auxiliary variables to accelerate the
mixing of MCMC chains, and are candidate events for real
events. When searching for the positions of the real events,
we only need to search where the virtual events appear in-
stead of in the whole space. Because of this, the virtual
point processes (VPPs) Z̃ are designed to be as close as
possible to the true posterior point processes of the real
point processes Z. For the same reason, the CIFs for VPPs
evolve in the reverse directions (temporally backward and
“up” the layers) relative to the real point processes (tempo-
rally forward and “down” the layers).

Similar to the RPPs, Z̃ℓ,k represents the k-th hidden Pois-
son process on layer ℓ, ϕ̃θ̃(ℓ−1,i)→(ℓ,k)

is the kernel function

connects Zℓ−1,i and Z̃ℓ,k, and µ̃ℓ,k ≥ 0 is the base rate. In
this case, the historyHt in Definition 1 becomes the events
that happened after t. Then, the CIF for Z̃ℓ,k conditioned
on Zℓ−1 is

λ̃ℓ,k(t̃) = µ̃ℓ,k+

Kℓ−1∑
i=1

∑
tℓ−1,i,j

ϕ̃θ̃(ℓ−1,i)→(ℓ,k)
(tℓ−1,i,j−t̃). (2)

We briefly outline the MCEM algorithm (Hong and Shel-
ton, 2022) in Alg. 1. log p(x, z) in line 3 is the joint
log-likelihood of the hidden RPPs and the observation
x. log q(z) in line 4 represents the log-likelihood for the
VPPs. There is a slight difference between Alg. 1 and the
employed MCEM algorithm: We directly maximize the

Algorithm 1 MCEM for DNSPs
Input: data x, modelM
Initialization: parameters for RPPs Θ0, parameters for
VPPs Θ̃0, initial sample for RPPs z0, and iterations N .
Output: ΘN ≈ Θ∗, Θ̃N ≈ Θ̃∗

1: for n = 1 to N do
2: sample zn ∼ p (z | x;Θn−1, zn−1)
3: Θn ← Θn−1 + ηn∇Θ log p(x, z;Θn−1)
4: Θ̃n ← Θ̃n−1 + η̃n∇Θ̃ log q(z;x, Θ̃n−1)
5: end for

constant rates µ instead of doing gradient ascent. Line 2
does posterior sampling via MCMC, and the previous sam-
ple zn−1 serves as the initial state of the next MCMC step.
Line 3 is used to maximize the marginal likelihood. Line
4 adjusts the parameters for VPPs to make VPPs closer to
the posterior RPPs. ηn and η̃n are step sizes for gradient
ascent.

Hong and Shelton (2022) only use Alg. 1 to learn the model
parameters for DNSPs, without any discussion of the vari-
ational inference. However, we can directly use Alg. 1 to
learn the parameters for our approximate point processes,
which is one of our main contributions.

3 APPROXIMATE POSTERIOR POINT
PROCESSES

We denote our variational approximate point processes as
ZI , and we assume they have hierarchical structures like
DNSPs. However, the approximate point processes are
generated from bottom to top (upward), instead of from top
to bottom (downward). The upward approximation mecha-
nism allows us to infer the approximate posterior distribu-
tions of the point processes directly from the observation,
which can help accelerate the sampling process for the pos-
terior point processes. Moreover, the events from the layers
immediately below can give heuristics for the positions of
the posterior events from the layers immediately above.

Generative Semantics for ZI The approximate poste-
rior point processes are generative models, and they are
denoted as ZI = {ZI

1, · · · ,ZI
L}, with ZI

ℓ = {ZI
ℓ,k}

Kℓ

k=1.

ZI
1 is assumed to be Poisson processes, and the CIF for

ZI
1,k is

λI
1,k(t) = qI1,k(t; z

I
0 = x,θI

1,k(t)), (3)

where qI1,k(t;x,θ
I
1,k(t)) is a function of t with some pa-

rameters determined by the events from the observation x,
and other parameters θI

1,k(t) that can depend on time t.

Next, we draw samples for each ZI
ℓ conditional on the sam-

ples zIℓ−1 from ZI
ℓ−1. The CIF for ZI

ℓ,k conditional on ZI
ℓ−1
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Figure 1: Comparison Between UNSP and USAP

is
λI
ℓ,k(t) = qIℓ,k(t; z

I
ℓ−1,θ

I
ℓ,k(t)), (4)

where qIℓ,k(t; z
I
ℓ−1,θ

I
ℓ,k(t)) is a function of t with some pa-

rameters determined by the events from zIℓ−1, and other
parameters can also depend on time t.

4 EXAMPLES FOR VARIATIONAL
POINT PROCESSES

As explained above, there are two major goals when
constructing the approximations: (1) the approximations
should be able to propagate the information from the ob-
servations to the top, and (2) the approximate posterior
point processes should be close to the true posterior point
processes. For these purposes, we consider the following
two examples of functional forms for qIℓ,k(·) in this paper:
upward Neyman-Scott processes and upward self-attention
processes.

Upward Neyman-Scott Processes (UNSPs) Like the
virtual point processes, we can assume the approximate
point processes are NSPs evolving in an upward direction.

In this case, the CIF is

λI
ℓ,k(t)=qIℓ,k

(
t; zI

ℓ−1,θ
I
ℓ,k

)
=µI

ℓ,k +

Kℓ−1∑
i=1

∑
tℓ−1,i,j

ϕθI
(ℓ−1,i)→(ℓ,k)

(tℓ−1,i,j − t), (5)

where ΘI
ℓ,k =

{
µI
ℓ,k,
{
θI
(ℓ−1,i)→(ℓ,k)

}Kℓ−1

i=1

}
and µI

ℓ,k ≥

0. We see that Eq. 5 has the same functional form as Eq. 2.

Upward Self-Attention Processes (USAPs) Self-
attention has been widely used in the modeling for point
processes (e.g., Zuo et al., 2020; Zhang et al., 2020; Chen
et al., 2021). Here, we use self-attention to encode the event
information from a layer below to a layer above. Each
event tℓ−1,i,j is encoded into a hidden vector hℓ−1,i,j =

fAttn(tℓ−1,i,j , z
I
ℓ−1 = {{tℓ−1,i,j}

mℓ−1,i

j=1 }Kℓ−1

i=1 }) through
self-attention. The CIF for tℓ−1,i,j−1 < t ≤ tℓ−1,i,j

becomes

λI
ℓ,k(t) = qIℓ,k

(
t; zIℓ−1,θ

I
ℓ,k

)
= µI

ℓ,k + ϕθI
ℓ−1,i,j

(tℓ−1,i,j − t), (6)

where ΘI
ℓ,k =

{
µI
ℓ,k,

{{
θI
ℓ−1,i,j

}Kℓ−1

i=1

}mℓ−1,i

j=1

}
, µI

ℓ,k ≥

0, and θI
ℓ,k is the output of a linear transformation of

the hidden vector hℓ−1,i,j . More details can be found in
Appx. A.

Comparison We plot the intensity functions estimated
by using UNSPs, USAPs, and MCMC in Fig. 1 to com-
pare the approximation abilities of UNSPs and USAPs. We
choose 3 events by hand in the observation (times at 6, 10,
and 20) to illustrate the VI effects in a clean and typical
example, and we use MCMC, UNSPs, and USAPs to infer
the posterior point processes.

The model parameters for the underlying DNSP are fixed.
We only adjust the variational parameters to let the vari-
ational point processes (USAPs and UNSPs) approximate
the posterior point processes. Layer 2 is further away from
the observation than layer 1. The yellow lines with many
spikes are the approximate intensity functions estimated by
using the samples from MCMC. We divide the time inter-
val into many small subintervals, and for each small subin-
terval, the approximate intensity function is the number of
events in that small subinterval divided by the length of that
small subinterval. The blue solid lines are approximate in-
tensity functions for VI. We obtain the intensity function
for layer 1 directly from qI1,0(·). For the approximate in-
tensity function for layer 2, we first generate many samples
from qI1,0(·) which induce samples of qI2,0(·). Then the ap-
proximate intensity function for layer 2 is the mean of all
the samples for qI2,0(·). We see that USAP fits the approx-
imate intensity functions estimated by the MCMC better
than UNSP.
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The better approximation of USAPs in Fig. 1 comes from
the fact that the kernel function can adjust its parameters at
each interval independently. While for UNSPs, the CIF at
each interval is affected by all the kernel functions that are
triggered by the events which happen after that interval and
are from the layer immediately below.

In addition, for the CIFs of the approximate posterior point
processes at time t, USAPs can capture the information
from both the events happening before t and the events hap-
pening after t, while UNSPs can only propagate the infor-
mation from the future to the past. Both the events hap-
pening before t and the events happening after t have an
influence on the posterior point processes at time t (Hong
and Shelton, 2022, Proposition 1). Therefore, USAPs are
better than UNSPs, since UNSPs only include the informa-
tion of the events happening after t.

Algorithm 2 Prediction with MCMC or approximation
Input: observed data x = {e1, e2, · · · , en}, where
ei = (ti, ki), sampler G(x,ΘG), and modelM.
Initialization: Θ, Θ̃, and sample size S.
Output: time prediction t̂n+1, type prediction k̂n+1

▷ If we are predicting using MCMC,
G(x,ΘG) = p(z | x;Θ), where ΘG = Θ.

▷ If we are predicting using approximation,
G(x,ΘG) = q(z;x,ΘI), where ΘG = ΘI .

1: for s = 1 to S do
2: sample zs ∼ G(x,ΘG)
3: end for
4: estimate the CIFs for the top layer based on {zs}Ss=1

(MLE)
5: for s = 1 to S do
6: sample zs ∼ G(x,ΘG)

7: sample the future time t̂sn+1 based on zs

8: sample the future type k̂sn+1 based on zs

9: end for

10: t̂n+1 = 1
S

S∑
s=1

t̂sn+1

11: k̂n+1 = argmax
k∈{1,...,K0}

S∑
s=1

1k(k̂
s
n+1)

Remark 1. Similar to Hong and Shelton (2022), we can
simply replace the kernel function with a non-causal kernel
(i.e., a kernel function that has positive values for all inputs
with any dimensionality) to apply UNSPs in general Eu-
clidean space (not just a timeline). It is not as straightfor-
ward to apply USAPs to spatial point processes (SPPs) with
multiple dimensions, as we need to identify the “bounding”
events for any point in space.

5 INFERENCE

5.1 Inference for the Model Parameters

While Hong and Shelton (2022) view the line 3 in Alg. 1
as a part of ascent-based MCEM, we can also view it as
an unbiased estimator of the gradient of the marginal like-
lihood log p(x;Θ) based on the Fisher identity (Ou and
Song, 2020; Naesseth et al., 2020),

∇Θ log p(x;Θ) = Ep(z|x;Θ) [∇Θ log p(z,x;Θ)] . (7)

Based on Eq. 7, we can update the model parameters by
stochastic gradient ascent. The full convergence analysis
for the model parameters has not been well-established,
and it is still an active research area (Neath et al., 2013;
Hong and Shelton, 2022).

5.2 Inference for the Variational Parameters

Variational inference with the inclusive KL divergence and
unbiased gradient has demonstrated the ability to help mit-
igate the issue of the underestimation of the variance of the
posterior (Naesseth et al., 2020). The inclusive KL diver-
gence between the true posterior point processes and the
approximate point processes KL(p ∥ qI) is

Ep(z|x;Θ)

[
log p(z | x;Θ)− log q(z;x,ΘI)

]
,

where ΘI =

{{
ΘI

ℓ,k

}L

ℓ=1

}Kℓ

k=1

, log q(z;x,ΘI) is the

log-likelihood of the approximate point processes, and

log q(z;x,ΘI)=

L∑
ℓ=1

log q(zℓ; zℓ−1,Θ
I
ℓ )

=

L∑
ℓ=1

Kℓ∑
k=1

∑
tℓ,k,j

logλI
ℓ,k(tℓ,k,j)−

∫ T

0

λI
ℓ,k(t)dt

.

The gradient of the KL divergence w.r.t the variational pa-
rameters ΘI is

Ep(z|x;Θ)[−∇ΘI log q(z;x,ΘI)], (8)

because p(z | x;Θ) does not depend on ΘI .

Naesseth et al. (2020) prove the convergence of the vari-
ational parameters under some regularity conditions for
MCMC with a fixed number of dimensions. However, our
Markov chains have an unbounded number of dimensions.
We leave the research for the convergence of our variational
parameters for future work.

According to Eq. 8 and line 4 in Alg. 1, we can see that
the gradient of the inclusive KL divergence is identical to
the gradient of the log-likelihood of the virtual point pro-
cesses if we let the virtual point processes be our approx-
imate point processes (i.e., let Θ̃ = ΘI ). Therefore, we
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can use Alg. 1 to train our approximate point processes
and the parameters for the virtual point processes would
just be the parameters for our approximate point processes.
Then, when doing sampling for the approximate posterior
point processes, we can directly sample from it using the
inversion sampling without involving any gradient ascent
or MCMC steps. This is especially helpful when doing pre-
diction because we can avoid the time-consuming mixing
steps of MCMC for the prediction of each event. We will
explain more about this in Sec. 6.

We use Adam (Kingma and Ba, 2015) to optimize both the
model parameters and variational parameters.

6 PREDICTION

We follow the prediction procedures with MCMC devel-
oped by Hong and Shelton (2022) in Alg. 2. Suppose
we are given a sequence of events {e1, e2, · · · , en}, where
ei = (ti, ki), ti and ki represent the time and the type for
the i-th event respectively, and t1 ≤ t2 ≤ t3 ≤ · · · ≤ tn.
We initialize RPPs with parameters Θ, VPPs with param-
eters Θ̃. These parameters were obtained by MCEM run-
ning on the training data. We first generate posterior sam-
ples to estimate the constant rates for the top layer. Sup-
pose the number of events for the s-th sample of ZL,k

is ms
L,k and the time period is [0, T ], then the MLE for

the constant rate is µk = 1
S
∑S

s=1

ms
L,k

T . After getting
new constant rates for the top layer, we can generate a
new set of posterior samples, starting the initial state of
the Markov chain to be the last sample of the previous
MCMC sampling. Conditional on the generated poste-
rior sample z, we can extend the CIFs of RPPs to the fu-
ture (i.e., the CIFs at the time period (tn,∞)), because
the CIFs only depend on the history of the events. Then,
we can sample the time and the type for the next fu-
ture event. Suppose the samples for the next future event
(en+1) are (t1n+1, k

1
n+1), (t

2
n+1, k

2
n+1), . . . , (t

S
n+1, k

S
n+1),

where (tsn+1, k
s
n+1) represents the s-th sample of the time

and the type for the (n + 1)-th event, then the time pre-
diction is t̂n+1 = 1

S
∑S

s=1 t
s
n+1 and the type prediction

is k̂n+1 = argmaxk∈{1,...,K0}
∑S

s=1 1k(k
s
n+1), where

1k(k
s
n+1) is equal to 1 iff k = ksn+1. After each predic-

tion, we record the last posterior sample as the initial state
of the next MCMC step, and we also update the constant
rates for the top layer using MLE.

In Alg. 2, we can replace the MCMC sampling with the
sampling from our approximate posterior point processes
to get our proposed method for prediction. Sampling from
q(z;x,ΘI) is much faster than sampling from MCMC, be-
cause we can directly use the inversion method (Çinlar,
2013) to sample instead of performing many MCMC steps.
Faster sampling can help us achieve better prediction per-
formance when only a limited amount of time is allowed,

which we will use experiments to demonstrate in Sec. 7.

7 EXPERIMENTS

The code is available online at https://github.com/
hongchengkuan/Inclusive_VI_NSPs. We implement
all the algorithms on the same code base using Pytorch,
so the implementation has little influence on the time com-
parison.

Following Hong and Shelton (2022), we use root mean
square error (RMSE) to compare the time prediction and
use accuracy to compare the type prediction. The models
we use for DNSPs are 1-hidden and 2-hidden as explained
in Hong and Shelton (2022). Each dataset is split into
training, validation, and test sets. We use training sets to
train our model parameters and variational parameters, use
validation sets to stop early, and use test sets to calculate
the metrics used to compare the performance. When per-
forming prediction, we use different numbers of samples
to measure the performance. Different numbers of sam-
ples correspond to different computational time budgets, as
more time is needed for a larger sample size. We add a tiny
background base rate (1 × 10−10) to the intensity for the
observation to prevent NaN and Inf issues. More details
about the experiments can be found in Appx. B.

In Figs. 2, 3, 4 and 5, we use different line styles with dif-
ferent colors to represent the results from different mod-
els or algorithms, where DNSP-MCMC represents the re-
sults obtained by performing prediction using MCMC for
DNSPs, DNSP-UNSP represents the results obtained by
performing prediction using approximation with UNSPs
for DNSPs, DNSP-USAP represents the results obtained
by performing prediction using approximation with US-
APs, THP represents transformer Hawkes process (Zuo
et al., 2020), SAHP represents self-attentive Hawkes pro-
cess (Zhang et al., 2020), NHP represents neural Hawkes
process (Mei and Eisner, 2017), and MTPP is a multitask
point process model (Lian et al., 2015). The vertical axes
represent the RMSE or accuracy. The horizontal axes rep-
resent the time used to do sampling with various sample
sizes for the predictions for all events from all sequences.
Among UNSPs, USAPs, and MCMC, UNSPs are the best
in the areas filled with light orange, and USAPs are the best
in the areas filled with light green. A table of results with
performance compared at fixed time-points is presented in
Appx. B.3, where “/” means there is no result for that entry.

Our experiments show that when only a limited amount of
time is available, UNSPs and USAPs perform better than
MCMC for both time prediction and type prediction. US-
APs are clearly better than UNSPs in terms of time pre-
diction, and the type predictions of USAPs and UNSPs are
similar, although USAPs require more computational re-
sources than UNSPs. Moreover, DNSPs-based methods are

https://github.com/hongchengkuan/Inclusive_VI_NSPs
https://github.com/hongchengkuan/Inclusive_VI_NSPs
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Figure 2: Synthetic Dataset
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Figure 3: Retweet Dataset
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Figure 4: Earthquake Dataset
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Figure 5: Homicide Dataset
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better than non-DNSPs-based methods for all these real-
world datasets.

7.1 Synthetic Data Experiments

We construct 2 synthetic datasets. One dataset is generated
from a 1-hidden model and the other is generated from a 2-
hidden model. We use the 1-hidden DNSP to learn from the
dataset generated from 1-hidden, and the 2-hidden DNSP
to learn from the dataset generated from 2-hidden. For sim-
plicity, k is set to be 1 and fixed for the Weibull kernel, so
that it becomes an exponential function.

Fig. 2 summarizes the results for our synthetic datasets.
It shows that when we increase the sample size, the pre-
diction performance of UNSPs, USAPs, and MCMC be-
come better, at a cost of running time. The improvement
of MCMC is more significant, as MCMC becomes closer
to the true posterior point processes when we sample more
from MCMC, while USAPs and UNSPs will never con-
verge to the true posterior point processes. It also demon-
strates that USAPs and UNSPs can achieve better predic-
tion results for both the time and the type than MCMC
when only a small period of time is allowed. When we
can run our programs long enough, MCMC achieves the
best results for all these experiments, which is reasonable
because MCMC converges to the true posterior distribution
when the sample size goes to infinity and the synthetic data
is generated from DNSPs.

USAPs are better than UNSPs with regards to RMSE for
both 1-hidden and 2-hidden datasets (Figs. 2a and 2c).
There is a significant drop for the RMSE when we increase
the sample size; it is because we may have no or very few
hidden events in our posterior samples when the sample
size is too small, causing the CIFs for the top layer or for
the future to be very small. With a small CIF, the sample
for the next future event would be very far away from the
next true future event.

For accuracy, USAPs are clearly better than UNSPs for the
2-hidden synthetic dataset (Fig. 2d) and they have similar
performance for the 1-hidden synthetic dataset (Fig. 2b).

7.2 Real-World Data Experiments

Similar to Hong and Shelton (2022), the datasets we use
are of retweets (Zhao et al., 2015), earthquakes (NCEDC,
2014; BDSN, 2014; HRSN, 2014; BARD, 2014), and
homicides (COC, 2022). More details of the datasets can be
found in Appx. B. We compare MCMC, UNSPs, and US-
APs for DNSPs with other state-of-the-art methods: trans-
former Hawkes process (THP) (Zuo et al., 2020), self-
attentive Hawkes process (SAHP) (Zhang et al., 2020),
neural Hawkes process (NHP) (Mei and Eisner, 2017),
and MTPP (Lian et al., 2015). THP, SAHP, and NHP are
neural-network-based Hawkes processes. MTPP is a Cox-

process-based model. We split each real-world dataset into
training, validation, and test sets. We train, validate and test
for all these models using the same split. For retweets, we
use mini-batch gradient ascent, and we use batch gradient
ascent for other datasets. The training and prediction pro-
cedures of the methods are the same as in Hong and Shelton
(2022). We do not fix k for the Weibull kernel as we did in
the synthetic data experiments.

Figs. 3, 4 and 5 summarize the experimental results for
retweets, earthquakes, and homicides respectively. Similar
to the experimental results for the synthetic dataset, UNSPs
and USAPs are better than MCMC for both the time pre-
diction and the type prediction when we only have a small
number of samples from the approximate posterior distri-
bution. As we increase the sample size, UNSPs, USAPs,
and MCMC all gain some improvement to various degrees.

For the time prediction, DNSPs with MCMC or approxi-
mate posterior point processes achieve the best prediction
results in all these experiments (Figs. 3a, 3c, 4a, 4c, 5a, and
5c). UNSPs or USAPs are better than other non-DNSPs
baselines for all these experiments (Figs. 3a, 3c, 4a, 4c, 5a,
and 5c). USAPs are better than UNSPs for all of these ex-
periments in the end (Figs. 3a, 3c, 4a, 4c, 5a, and 5c). UN-
SPs are better than USAPs for retweets and earthquakes
when we only have a small number of samples (Figs. 3a,
3c, 4a, and 4c). USAPs are always better than UNSPs for
homicides in terms of time prediction (Figs. 5a and 5c).

For the type prediction, DNSPs with MCMC or approxi-
mate posterior point processes achieve the best prediction
results for all these datasets (Fig. 3d for retweets, 4d for
earthquakes, Fig. 5d for homicides). UNSPs or USAPs are
better than other non-DNSPs baselines for all these datasets
(Fig. 3d for retweets, 4d for earthquakes, Fig. 5d for homi-
cides). In Figs. 3b and 5d, USAPs are better than UNSPs,
while UNSPs are better than USAPs in Figs. 3d and 4d.
USAPs and UNSPs have similar performance in Figs. 4b
and 5b.

Compared with the results in Hong and Shelton (2022),
DNSP-MCMC in this paper is better in terms of accuracy
and RMSE. The performance of MCMC differs because we
use a Weibull kernel in this paper, while Hong and Shelton
(2022) adopt a gamma kernel, as explained in Sec. 2.3.

7.3 Computational Complexity

The full analysis requires the bound for the mixing steps of
MCMC. The analysis is not trivial and we do not have this
bound (see Hong and Shelton, 2022, Appx. G.5).

8 CONCLUSION

VI and point processes have both attracted great attention
due to their excellent performance. However, little atten-
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tion has been given to developing VI algorithms for point
processes with hierarchical structures. We develop the first
VI algorithm for NSPs (a class of point processes with hi-
erarchical structures) in this paper.

Typically, posterior inference for NSPs is considered a very
hard problem, and MCMC is required, as it involves an un-
bounded number of points in the posterior point processes.
We incorporate MCMC into our VI algorithm, treating the
samples from our approximate posterior point processes
as the candidates for the posterior point processes. Dur-
ing training processes, we gradually update our approxi-
mations to make our approximations become closer and
closer to the posterior point processes through the mini-
mization of the inclusive KL divergence. Our experiments
show that our approximate posterior point processes (US-
APs and UNSPs) can fit the true posterior point processes
very well. When time constraint is a concern, USAPs and
UNSPs provide a very good alternative to MCMC.

In our VI algorithm, we bring 4 active research areas
(MCMC, VI, neural networks, and point processes) to-
gether, and we have found many research topics that we
believe will be of interest to many researchers in these ar-
eas, e.g., analysis of the mixing time of MCMC, conver-
gence analysis of variational parameters, efficient and well-
behaved architectures of neural networks, and the construc-
tion of spatio-temporal point processes with hierarchies.

Acknowledgements

Computational resources were provided through Office of
Naval Research grant N00014-18-1-2252.

Data for this study came from the Berkeley Digital Seis-
mic Network (BDSN), doi:10/7932/BDSN; the High Reso-
lution Seismic Network (HRSN), doi:10.7932/HRSN; and
the Bay Area Regional Deformation Network (BARD),
doi:10.7932/BARD, all operated by the UC Berkeley
Seismological Laboratory and archived at the North-
ern California Earthquake Data center (NCEDC), doi:
10/7932/NCEDC.

References

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer
normalization.

BARD (2014). Bay area regional deformation network. UC
Berkeley Seismological Laboratory. dataset.

BDSN (2014). Berkeley digital seismic network. UC
Berkeley Seismological Laboratory. dataset.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017).
Variational inference: A review for statisticians. Journal
of the American statistical Association, 112(518):859–
877.
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A NETWORK STRUCTURES FOR USAPS

Event Embedding Each event eℓ,i,j = (tℓ,i,j , ppidℓ,i =
∑ℓ−1

w=0 Kw + i) consists of the time tℓ,i,j and the identifier
ppidℓ,i. Similar to Vaswani et al. (2017); Zuo et al. (2020); Zhang et al. (2020), we first encode the event time into a
dM -dimensional vector peℓ,i,j though positional encoding,

pekℓ,i,j =

{
cos(tℓ,i,j/10000

k−1
dM ), if k is odd,

sin(tℓ,i,j/10000
k

dM ), if k is even,

where pekℓ,i,j is the k-th dimension of peℓ,i,j .

We also train an embedding matrix Weid ∈ RdM×npp , where npp =
∑L

w=0 Kw, for the identifiers. For each event
with identifier ppidℓ,i, the embedding for the identifier is Weid · pℓ,i, where pℓ,i ∈ Rnpp×1 is a one-hot vector. The
(
∑ℓ−1

w=0 Kw + i)-th entry of pℓ,i is 1, and the other entries are all 0.

To incorporate the information from both the time and the identifier, the embedding xe
ℓ,i,j of each event eℓ,i,j can be

represented as
xe
ℓ,i,j = peℓ,i,j +Weid · pℓ,i.

Self-Attention The parameters of the intensity function λI
ℓ,k(t) are determined by all the events from the point processes

which are connected to the point process Zℓ−1,i. For each interval (tℓ−1,i,j−1, tℓ−1,i,j ], we use self-attention (Vaswani
et al., 2017; Zhang et al., 2020; Zuo et al., 2020) to encode the events in the layer immediately below to a hidden vector,

ha
ℓ−1,i,j =

(mℓ−1,i∑
t=1

f
(
Wq · LayerNorm(xe

ℓ−1,i,j),Wk · xe
ℓ−1,i,t

)
·
(
Wv · xe

ℓ−1,i,t

))

/

mℓ−1,i∑
t=1

f
(
Wq · LayerNorm(xe

ℓ−1,i,j),Wk · xe
ℓ−1,i,t

)
, (9)

where LayerNorm(·) is a layer normalization (Ba et al., 2016) operation, Wq ∈ Rdk×dM , Wk ∈ Rdk×dM , and
Wv ∈ Rdv×dM are all linear transformation matrices that transfer the event embedding vectors to queries, keys and values
respectively, and f(x1,x2) = exp(xT

1 x2) is a similarity function to capture the relationship between a query and a key.
Notice that unlike the self-attention adopted in (Zhang et al., 2020; Zuo et al., 2020), we not only consider the influence
of the events that happened before the query, but the events that happened after the query. Because for each hidden point
process, the posterior distribution of the hidden events can be influenced by all the events from the point processes that are
connected to this hidden point process (Hong and Shelton, 2022, Proposition 1).

Eq. 9 works as a single-head self-attention, we can also concatenate multiple single-head attentions together to build a
multi-head attention (Vaswani et al., 2017). We can rewrite Eq. 9 as

ha
ℓ−1,i,j = Self-Attention(xe

ℓ−1,i,j ,Wq,Wk,Wv),

then the multi-head attention version for ha
ℓ−1,i,j would be

ha
ℓ−1,i,j =Multi-Head-Self-Attention(xe

ℓ−1,i,j)

=Concat(head1, · · · , headh) ·Wo, (10)

where headd = Self-Attention(xe
ℓ−1,i,j ,W

d
q ,W

d
k ,W

d
v ), W

d
q ∈ Rdk×dM , W d

k ∈ Rdk×dM , W d
v ∈ Rdv×dM , and Wo ∈

Rhdv×dM .

Multi-head self-attention can also be stacked into a deep structure, but we do not have this deep structure in our experiment.

Position-Wise Feed-Forward Layer The hidden vector ha
ℓ−1,i,j and the residual xe

ℓ−1,i,j are then fed into a position-
wise feed-forward layer with the number of neurons in the hidden layer as dH , generating the final output for the hidden
vector,

hℓ−1,i,j =
(
WF

2 (GELU(WF
1 (LayerNorm(input)) + bF1 )) + bF2

)
+ input, (11)

where input = ha
ℓ−1,i,j + xe

ℓ−1,i,j , WF
1 ∈ RdH×dM , bF1 ∈ RdH×1, WF

2 ∈ RdM×dH , bF2 ∈ RdM×1 , and GELU is the
Gaussian Error Linear Unit (Hendrycks and Gimpel, 2016).
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Output for the Parameters We apply a linear transformation to the final hidden vector hℓ−1,i,j to get the kernel param-
eters,

θI
ℓ,k = W θ

ℓ,khℓ−1,i,j + bθℓ,k,

where W θ
ℓ,k ∈ Rnθ×dM , bθℓ,k ∈ Rnθ×1, and nθ is the number of parameters for θI

ℓ,k.

B EXPERIMENT DETAILS

B.1 Datasets

Synthetic Datasets The point processes are defined in the interval (0, 20]. The constant rate for the top layer is set to
be 0.15. We fix the kernel parameters and k is set to be 1 for the Weibull kernel functions. The sampling procedure is the
same as the generative process, and we do this for both the 1-hidden and 2-hidden models.

Retweets (Zhao et al., 2015) The retweet dataset consists of a set of tweet streams. The original tweet of a tweet stream
has time 0, and the times of the other tweets are the retweet times relative to the original tweet. We have 3 types of events
(small, medium, and large) for different numbers of followers. The “small” group consists of users with fewer than 120
users, the “medium” group consists of users with greater than 120 users but fewer than 1363 users, and the “large” group
consists of the rest of the users.

Earthquakes (NCEDC, 2014; BDSN, 2014; HRSN, 2014; BARD, 2014) The earthquake dataset contains the times and
magnitudes of the earthquakes collected from northern California earthquake catalog. The times of the earthquakes are
constrained to be from 01/01/2014 00:00:00 to 01/01/2020 00:00:00. The region is spanning between 34.5◦ and 43.2◦

latitude and between −126.00◦ and −117.76◦ longitude. We divide the earthquakes into 2 types. The earthquakes with a
magnitude smaller than 1 are small earthquakes, and the others are big earthquakes.

Homicides (COC, 2022) The homicide dataset includes the information of homicides that happened in Chicago. We
choose 5 contiguous regions in Chicago with the most homicides. The time for the homicides is from 01/01/2001 00:00:00
to 01/01/2020 00:00:00. 5 types of this dataset correspond to 5 different regions in Chicago. The terms of use can be found
in https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html.

The statistics of the datasets are shown in Table 1.

Table 1: Datasets Statistics

DATASETS # OF TYPES # OF PREDICTIONS
# OF SEQUENCES

TRAINING VALIDATION TEST

1-HIDDEN SYNTHETIC 2 1563 1000 100 100
2-HIDDEN SYNTHETIC 2 4664 1000 100 100
RETWEETS 3 216465 20000 2000 2000
EARTHQUAKES 2 25646 209 53 53
HOMICIDES 5 997 6 2 2

B.2 Self-Attention Training Details

For all our experiments, we use 1 layer of multi-head self-attention block with 4 heads. The number of dimensions can be
found in Table 2, where dk, dv , dM , and dH appear in Eqs. 10 and 11, MPSS stands for model parameters step size, and
SASS stands for self-attention step size.

https://www.chicago.gov/city/en/narr/foia/data_disclaimer.html
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Table 2: Self-Attention Dimensions

DATASETS MODEL dk dv dM dH MPSS SASS

1-HIDDEN SYNTHETIC USAP(1-HIDDEN) 8 8 32 64 0.01 0.010

2-HIDDEN SYNTHETIC USAP(2-HIDDEN) 8 8 32 64 0.01 0.010

RETWEETS
USAP(1-HIDDEN) 16 16 64 128 1.00 0.001
USAP(2-HIDDEN) 16 16 64 128 1.00 0.001

EARTHQUAKES
USAP(1-HIDDEN) 16 16 64 128 1.00 0.001
USAP(2-HIDDEN) 16 16 64 128 1.00 0.010

HOMICIDES
USAP(1-HIDDEN) 8 8 32 64 1.00 0.010
USAP(2-HIDDEN) 16 16 64 128 1.00 0.010

B.3 Experiments

Table 3: 1-Hidden RMSE For Synthetic Dataset

MODEL
TIME(S)

16 32 64 128 256

DNSP-MCMC 1.24E+09 1.79E+00 1.54E+00 1.37E+00 1.33E+00

DNSP-UNSP 1.63E+08 1.12E+01 1.03E+01 8.46E+00 8.43E+00

DNSP-USAP 4.28E+00 4.30E+00 4.21E+00 4.09E+00 4.06E+00

Table 4: 1-Hidden Accuracy For Synthetic Dataset

MODEL
TIME(S)

16 32 64 128 256

DNSP-MCMC 5.56E-01 5.77E-01 5.78E-01 5.98E-01 6.02E-01

DNSP-UNSP 5.82E-01 5.92E-01 5.94E-01 5.98E-01 5.98E-01

DNSP-USAP 5.94E-01 5.94E-01 5.93E-01 5.93E-01 5.91E-01

Table 5: 2-Hidden RMSE For Synthetic Dataset

MODEL
TIME(S)

500 900 2000 4000 8000

DNSP-MCMC 3.91E+08 2.38E+08 7.33E-01 6.95E-01 6.64E-01

DNSP-UNSP \ 1.02E+01 9.44E+00 9.04E+00 8.97E+00

DNSP-USAP 3.44E+00 3.43E+00 3.30E+00 3.28E+00 3.28E+00

Table 6: 2-Hidden Accuracy For Synthetic Dataset

MODEL
TIME(S)

500 900 2000 4000 8000

DNSP-MCMC 8.08E-01 8.26E-01 8.48E-01 8.55E-01 8.68E-01

DNSP-UNSP \ 8.30E-01 8.32E-01 8.36E-01 8.36E-01

DNSP-USAP 8.40E-01 8.40E-01 8.52E-01 8.60E-01 8.59E-01
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Table 7: Results Of Baselines For Retweet Dataset

MODEL RMSE ACCURACY

THP 1.56E+04 6.1E-01

SAHP 1.67E+04 4.5E-01

NHP 1.66E+04 4.9E-01

MTPP 1.66+E04 3.6E-01

Table 8: 1-Hidden RMSE For Retweet Dataset

MODEL
TIME(S)

21500 43000 86000 172000 250000

DNSP-MCMC 1.45E+12 9.07E+11 4.52E+11 1.22E+11 5.05E+03

DNSP-UNSP 5.80E+10 9.65E+09 9.42E+03 9.40E+03 9.39E+03

DNSP-USAP 6.72E+10 1.76E+10 7.05E+03 7.05E+03 7.04E+03

Table 9: 1-Hidden Accuracy For Retweet Dataset

MODEL
TIME(S)

21500 43000 86000 172000 250000

DNSP-MCMC 5.01E-01 5.33E-01 5.55E-01 5.71E-01 5.79E-01

DNSP-UNSP 5.11E-01 5.14E-01 5.15E-01 5.17E-01 5.17E-01

DNSP-USAP 5.30E-01 5.36E-01 5.41E-01 5.43E-01 5.43E-01

Table 10: 2-Hidden RMSE For Retweet Dataset

MODEL
TIME(S)

10300 20600 41200 82400 200000

DNSP-MCMC 9.93E+10 7.08E+10 4.84E+10 2.17E+10 3.98E+09

DNSP-UNSP 6.58E+10 1.24E+10 1.44E+09 9.42E+03 \
DNSP-USAP 2.66E+10 1.29E+10 4.76E+09 2.49E+09 6.28E+03

Table 11: 2-Hidden Accuracy For Retweet Dataset

MODEL
TIME(S)

10300 20600 41200 82400 200000

DNSP-MCMC 6.36E-01 6.90E-01 7.30E-01 7.69E-01 7.87E-01

DNSP-UNSP 7.16E-01 7.20E-01 7.20E-01 7.21E-01 \
DNSP-USAP 6.89E-01 6.92E-01 6.95E-01 6.95E-01 6.97E-01



Chengkuan Hong, Christian R. Shelton

Table 12: Results Of Baselines For Earthquake Dataset

MODEL RMSE ACCURACY

THP 1.93E+03 6.0E-01

SAHP 1.79E+03 5.5E-01

NHP 1.95E+03 4.0E-01

MTPP 1.93E+03 5.1E-01

Table 13: 1-Hidden RMSE For Earthquake Dataset

MODEL
TIME(S)

2900 6200 11100 36200 60000

DNSP-MCMC 1.27E+12 7.56E+11 5.10E+09 1.26E+03 1.25E+03

DNSP-UNSP 2.03E+03 2.02E+03 2.02E+03 2.01E+03 \
DNSP-USAP 4.83E+09 1.74E+03 1.73E+03 1.73E+03 1.73E+03

Table 14: 1-Hidden Accuracy For Earthquake Dataset

MODEL
TIME(S)

2900 6200 11100 36200 60000

DNSP-MCMC 5.82E-01 5.90E-01 5.99E-01 6.02E-01 6.02E-01

DNSP-UNSP 6.02E-01 6.02E-01 6.02E-01 6.02E-01 \
DNSP-USAP 6.00E-01 6.01E-01 6.01E-01 6.02E-01 6.02E-01

Table 15: 2-Hidden RMSE For Earthquake Dataset

MODEL
TIME(S)

7200 14400 28800 57600 116016

DNSP-MCMC 4.92E+10 3.83E+10 2.55E+10 1.78E+10 1.44E+10

DNSP-UNSP 2.09E+03 2.09E+03 2.08E+03 2.08E+03 \
DNSP-USAP 2.16E+10 1.54E+10 1.53E+10 1.21E+09 1.42E+03

Table 16: 2-Hidden Accuracy For Earthquake Dataset

MODEL
TIME(S)

7200 14400 28800 57600 116016

DNSP-MCMC 6.05E-01 6.14E-01 6.22E-01 6.30E-01 6.48E-01

DNSP-UNSP 6.87E-01 6.87E-01 6.87E-01 6.87E-01 \
DNSP-USAP 6.04E-01 6.06E-01 6.06E-01 6.07E-01 6.07E-01
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Table 17: Results Of Baselines For Homicide Dataset

MODEL RMSE ACCURACY

THP 1.80E+05 2.96E-01

SAHP 1.80E+05 2.10E-01

NHP 1.80E+05 1.57E-01

MTPP 1.80E+05 2.05E-01

Table 18: 1-Hidden RMSE For Homicide Dataset

MODEL
TIME(S)

483 966 1932 3864 5800

DNSP-MCMC 1.72E+05 1.47E+05 1.31E+05 1.21E+05 1.17E+05

DNSP-UNSP 1.56E+05 1.56E+05 1.55E+05 1.55E+05 1.55E+05

DNSP-USAP 1.43E+05 1.40E+05 1.40E+05 1.39E+05 1.40E+05

Table 19: 1-Hidden Accuracy For Homicide Dataset

MODEL
TIME(S)

483 966 1932 3864 5800

DNSP-MCMC 2.02E-01 2.11E-01 2.11E-01 2.40E-01 2.55E-01

DNSP-UNSP 2.25E-01 2.42E-01 2.40E-01 2.49E-01 2.64E-01

DNSP-USAP 2.21E-01 2.44E-01 2.45E-01 2.56E-01 2.57E-01

Table 20: 2-Hidden RMSE For Homicide Dataset

MODEL
TIME(S)

8300 16000 27000

DNSP-MCMC 1.77E+05 1.50E+05 1.37E+05

DNSP-UNSP 1.61E+05 1.60E+05 1.60E+05

DNSP-USAP 1.58E+05 1.58E+05 1.58E+05

Table 21: 2-Hidden Accuracy For Homicide Dataset

MODEL
TIME(S)

8300 16000 27000

DNSP-MCMC 3.32E-01 3.92E-01 4.44E-01

DNSP-UNSP 6.64E-01 6.72E-01 6.93E-01

DNSP-USAP 7.65E-01 8.17E-01 8.50E-01

B.4 Hardware and Software

We run the experiments for synthetic datasets, retweets, and earthquakes in a cluster. For each job, we use two cores from
a Intel® Xeon® Silver 4214 CPUs running at 2.20GHz and 1 GeForce® RTX 2080 Ti.
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We run each experiment for homicides in a machine with a core from Intel® i7-5930K CPU and 1 GeForce® GTX 1080
Ti.

We use Pytorch to implement our algorithms.

B.5 Implementation of MCMC for GPUs

We re-implemented the MCMC algorithm to use GPUs. We do not randomly select a move from resampling, flip, and
swap, instead, we have a deterministic order for these moves. We choose this setting to minimize the number of dimension
changes of the tensors used to store the events.

We store the real events and the virtual events in the same tensor. The only move that changes the dimension of this tensor
is to re-sample the virtual events. For each MCMC sampling step, we first do a re-sampling, then followed by 3 flips, 1
swap, 3 flips, and 1 swap.

C SOCIETAL IMPACT

Our proposed inference algorithm can be used to predict future earthquakes, violent crimes, and severe medical complica-
tions when speed is the top concern. The successful application of our method can help save a lot of lives.

The misuse of our algorithm may also cause some problems. For example, some companies may use our algorithm to
predict the customers’ behavior and manipulate their buying activity, so customers may tend to buy more than what they
need and then can cause some waste.
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