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Abstract

We study the regret for risk-sensitive reinforce-
ment learning (RL) with the exponential utility
in the episodic MDP. Recent works establish both
a lower bound Ω((e|β|(H−1)/2 − 1)

√
SAT/|β|)

and the best known (upper) bound Õ((e|β|H −
1)
√
H2SAT/|β|), where H is the length of the

episode, S the size of state space, A the size of
action space, T the total number of timesteps,
and β the risk parameter. The gap between the
upper and the lower bound is exponential and
hence is unsatisfactory. In this paper, we show
that a variant of UCB-ADVANTAGE algorithm
reduces a factor of

√
H from the best previ-

ously known bound in any arbitrary MDP. To
further sharpen the regret bound, we introduce a
brand new mechanism of regret analysis and de-
rive a problem-dependent regret bound without
prior knowledge of the MDP from the algorithm.
This bound is much tighter in MDPs with special
structures. Particularly, we show that a regret that
matches the information-theoretic lower bound
up to logarithmic factors can be attained within a
rich class of MDPs, which improves an exponen-
tial factor over the best previously known bound.
Further, we derive a novel information-theoretic
lower bound of Ω(maxh∈[H] c

∗
v,h+1

√
SAT/|β|),

where maxh∈[H] c
∗
v,h+1 is a problem-dependent

statistic. This lower bound shows that the
problem-dependent regret bound achieved by
the algorithm is optimal in its dependence on
maxh∈[H] c

∗
v,h+1.
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1 INTRODUCTION

Risk-sensitive reinforcement learning (RL) studies the
problem of an agent interacting with an unknown environ-
ment and making decisions based on both expected reward
and risk (Howard and Matheson, 1972). In contrast to con-
ventional RL, the need for treatment of risk in various real-
world applications such as portfolio optimization (Kuroda
and Nagai, 2002) and automated driving (Bernhard et al.,
2019) motivates a line of studies in risk-sensitive RL. Re-
cent studies from psychology and neuroscience also em-
ploy risk-sensitive RL to understand how the attitude to risk
influences humans’ decision process (Niv et al., 2012).

Several criteria are proposed to measure risk in RL, in-
cluding mean-variance criterion (Sani et al., 2012) and
conditional value-at-risk (Cassel et al., 2018; Huang and
Haskell, 2021). In this paper, we follow a line of stud-
ies (Howard and Matheson, 1972; Masi and Stettner, 1999;
Borkar, 2002; Cavazos-Cadena and Hernández-Hernández,
2011; Osogami, 2012; Maillard, 2013) that considers risk-
sensitive RL with the exponential utility (EU), where the
agent aims to maximize the following risk-sensitive objec-
tive function under a policy π

V π :=
1

β
ln{Eπ[e

βR]} = Eπ[R]+
β

2
Vπ[R]+O(β2) (1)

where R is the random reward and β is the risk param-
eter. To show how this utility function incorporates risk,
we apply Taylor’s expansion in the second equation, which
show clearly the expected reward Eπ[R] and the variance
of the reward Vπ[R] when adopting policy π. Intuitively,
the agent is said to be risk-seeking, risk-neutral, or risk-
averse when β > 0, β = 0, or β < 0, respectively. The
EU criterion has been applied to many real-world applica-
tions such as inventory control (Bouakiz and Sobel, 1992)
and financial markets (Rásonyi and Sayit, 2022). In some
cases, it can be more appropriate and advantageous than
other risk criteria (Smith and Chapman, 2021). To model
the uncertainty in the environment, we adopt the Markov
Decision Processes (MDP) framework, where the agent se-
quentially observes the state, takes an action, receives a
reward, and transits to the next state. Since the reward
function and the transition kernel are unknown to the agent,



A Tighter Problem-Dependent Regret Bound for Risk-Sensitive Reinforcement Learning

a great challenge is the trade-off between exploration and
exploitation, i.e., the agent faces a dilemma between ex-
ploring the unknown environment at the risk of gaining
poor utility (in order to improve long-term performance),
and maximizing the expected utility. Building upon this
fundamental feature, several performance metrics are pro-
posed to evaluate the efficiency of learning algorithms, in-
cluding sample complexity of exploration (Kakade, 2003),
average loss (Strehl and Littman, 2005), and Bayesian re-
gret (Osband et al., 2013). In this paper, we follow a line
of studies (Bartlett and Tewari, 2009; Jaksch et al., 2010;
Osband and Roy, 2016; Azar et al., 2017; Jin et al., 2018a)
that aims to minimize the regret, that is, the difference be-
tween the expected utility brought by following the opti-
mal policy and that obtained using the learning algorithm.
Our goal is to design a learning algorithm that achieves the
information-theoretic lower bound of the regret, which is
optimal in the minimax sense (Lattimore and Szepesvári,
2020).

While provably efficient learning algorithms are largely
studied in risk-neutral RL (Kearns and Singh, 2002; Strehl
and Littman, 2008; Jaksch et al., 2010; Azar et al., 2017;
Jin et al., 2018a), it is not until recently that this prob-
lem is addressed in risk-sensitive RL under the MDP
framework. Fei, Yang, Chen, Wang and Xie (2020) pro-
vide the first regret analysis and show that the Risk-
Sensitive Q-learning (RSQ) attains a regret bound of
Õ(e|β|(H

2+H)(e|β|H − 1)
√
H2SAT/|β|), where poly-

logarithmic factors (of H,S,A, T, β, etc.) are hidden
in Õ(·) notation. They also establish the information-
theoretic lower bound in Theorem 3:1

Regret(T ) ≥ Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)
(2)

Fei, Yang, Chen and Wang (2021a) eliminate the factor
e|β|(H

2+H) from the previous regret bound by utilizing the
exponential Bellman equation and designing novel bonus
terms. They then show that RSQ2, a modified version
of RSQ, attains the best previously known upper bound
Õ((e|β|H − 1)

√
H2SAT/|β|).2 Although this greatly im-

proves their previous result, there remains an exponential
gap of at least (e|β|H/2 + 1)

√
H2e|β| compared to the

information-theoretic lower bound (2), which makes it un-
satisfactory, particularly for large |β| and H .

The reason why previous studies fail in attaining the
information-theoretic lower bound (2) is that their mech-
anism of regret analysis destroys the structure of the risk-

1Note that Fei et al. (2020) only give the proof for the specific
case of S = 3 and A = 2, where S is the number of states and A
is the number of actions. We generalize their result to any S and
A. The detailed proof is left to Appendix H.

2The bound we present here is in a form slightly different from
that the authors establish in their paper. This will be discussed in
Section 5.

sensitive objective function (1). Specifically, regret anal-
ysis in the previous study relies on the convexity of the
exponential function, i.e., x − y ≤ (eβx − eβy)/β when
x ≥ y ≥ 0 and β > 0. This leads to a regret bound
that takes a recursive form that makes it impossible to
avoid the factor e|β|H (see Inequality (13) and further dis-
cussion in Section 4). To address this problem, we ex-
ploit the structure of the risk-sensitive objective function
(1) and introduce a brand new mechanism of regret anal-
ysis based on both the concavity of the logarithm, i.e.,
lnx − ln y ≤ (x − y)/y when x ≥ y, and the reference-
advantage decomposition technique (Sidford et al., 2018;
Zhang et al., 2020). When we apply it to a modified ver-
sion of UCB-ADVANTAGE (Zhang et al., 2020), we estab-
lish the recursive form (18), which avoids the factor e|β|H ,
and derive a problem-dependent regret bound, i.e., a re-
gret bound that depends on the structure of MDP without
prior knowledge of the MDP from the algorithm. Then, we
show that the information-theoretic lower bound (2) can be
attained under a mild condition.

In summary, we make the following contributions:

1. We carefully analyze the structure of the risk-sensitive
objective function (1) and design a brand new mecha-
nism to analyze the regret, which builds upon the con-
cavity of the logarithm and the reference-advantage
decomposition technique. When we apply this mech-
anism to a modified version of UCB-ADVANTAGE,
we show that it avoids the factor e|β|H in the regret
bound, unlike those utilizing the exponential Bellman
equation in the previous studies.

2. In Theorem 1, we derive a problem-dependent re-
gret bound without prior knowledge of the MDP
from the algorithm. This bound improves a fac-
tor of

√
H in any arbitrary MDP over the best pre-

viously known bound and can be much tighter in
MDPs with special structures. Further, we show
in Corollary 1.1 that within a rich class of MDPs,
this problem-dependent regret bound translates to
Õ((e|β|(H−1)/2 − 1)

√
SAT/|β|), which improves a

factor of at least (e|β|H/2 + 1)
√
H2e|β|) over the best

previously known bound. This shows that a regret that
matches the information-theoretic lower bound up to
logarithmic factors can already be achieved within a
wide range of problem instances.

3. We establish a novel information-theoretic lower
bound of Ω(maxh c

∗
v,h+1

√
SAT/|β|) in Theorem 2,

where maxh c
∗
v,h+1 is a problem-dependent statistic.

This lower bound shows that the problem-dependent
regret bound attained by the algorithm is optimal in
its dependence on maxh c

∗
v,h+1. When compared to a

problem-dependent regret bound established for risk-
neutral RL (Zanette and Brunskill, 2019), our results
show that the regret bound in the risk-sensitive RL
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is not necessarily a monotonic function of the per-
step conditional variance of the optimal (exponential)
value function.

1.1 Related Works

The problem of risk-sensitive Markov decision processes
is first proposed by Howard and Matheson (1972), where
value iteration and policy iteration are applied to learning
the optimal policy. Following this seminal work, a line
of studies has been conducted (Masi and Stettner, 1999;
Borkar, 2002; Cavazos-Cadena and Hernández-Hernández,
2011; Osogami, 2012; Bäuerle and Rieder, 2014; Chow
et al., 2015; Huang and Haskell, 2021; A. and Fu, 2021).
However, these works assume either a known transition
kernel or access to a generative model that samples from
the transition kernel in O(1) time given any state-action
pair. In contrast, we study the setting where the transition
kernel is unknown, which poses great challenges to learn-
ing and adapts to many real-world scenes. We remark that
there is another interesting line of study on risk-sensitive
Multi-armed Bandit (MAB) (Maillard, 2013; Zimin et al.,
2014; Cassel et al., 2018). However, learning in MDP is
fundamentally different from that in MAB due to its longer
planning horizon and unknown transition kernel.

In the MDP setting, Fei et al. (2020) provide the first re-
gret analysis of risk-sensitive RL, where two provably ef-
ficient model-free algorithms, Risk-Sensitive Value Itera-
tion (RSVI) and Risk-Sensitive Q-learning (RSQ), are pro-
posed, and the information-theoretic lower bound is stud-
ied. As an effort to incorporate function approximation
techniques, Fei, Yang, and Wang (2021b) study the MDP
where each transition kernel admits a linear feature repre-
sentation. They propose two algorithms and a sublinear re-
gret is attained. Fei et al. (2021a) also exploit the structure
of the exponential Bellman equation and design a doubly-
decaying bonus. Their modified algorithms, RSQ2 and
RSVI2, succeed in further minimizing the regret bound.
Later, the gap-dependent regret bound of RSQ2 and RSVI2
is studied by Fei and Xu (2022). However, these works
leave an exponential gap between the regret bounds and
information-theoretic lower bound (2), which is unsatisfac-
tory when |β| and H are large. Recently, risk-sensitive RL
has also been studied by Zhang, Yang, and Wang (2021) in
the linear-quadratic (LQ) game, who prove that an actor-
critic algorithm converges to the optimal policy.

2 PRELIMINARIES

2.1 Episodic MDP

An episodic and finite-horizon MDP (Bertsekas, 2009) is
a quintuple (S,A, H,P, r), where S is the state space, A
is the action space, H is the fixed length of each episode,
P = {Ph : S × A → ∆(S)}h∈[H] the transition ker-

nel where ∆(S) the space of probability simplex on S,
and r = {rh : S × A → [0, 1]}h∈[H] the deterministic
reward function.3 We assume that both P and r are un-
known to the agent. The agent interacts with the MDP for
K episodes. Without loss of generality, we assume that the
initial state s1 is fixed.4 Let the (deterministic) policy of the
kth episode be πk = {πk

h : S → A}h∈[H]. At timestep h of
episode k, the agent observes state skh, executes the action
akh = πk

h(s
k
h), obtains a reward rh(skh, a

k
h), and transits to

state skh+1 with probability Ph(s
k
h+1|skh, akh). The episode

ends at timestep H + 1. We denote by S := |S| the size of
the state space, and A := |A| the size of the action space.
We also define T := KH as the total timesteps.

2.2 Risk-sensitive Reinforcement Learning

In risk-sensitive RL with the exponential utility (Fei et al.,
2020, 2021a), the value function is defined for all (h, s) ∈
[H]× S and policy π as

V π
h (s) :=

1

β
ln
{
Eπ

[
eβ·

∑H
h′=h

rh′ (sh′ ,ah′ )
∣∣∣sh = s

]}
where β ̸= 0 is the risk parameter of the exponential utility.
Further, we define the Q-function for any (h, s, a) ∈ [H]×
S ×A as

Qπ
h(s, a)

:=
1

β
ln
{
Eπ

[
eβ·

∑H
h′=h

rh′ (sh′ ,ah′ )
∣∣∣sh = s, ah = a

]}
For any function f defined on S, define the operator
[Phf ](s, a) := Es′∼Ph(s′|s,a)f(s

′). The Bellman equation
of the policy π is hence given by

Qπ
h(s, a) := rh(s, a) +

1

β
ln
{
[Phe

β·V π
h+1 ](s, a)

}
(3)

V π
h (s) = Qπ

h(s, πh(s)), V
π
H+1(s) = 0.

It can be shown that V π
h (s), Qπ

h(s, a) ∈ [0, H − h+ 1] for
all (h, s, a) ∈ [H] × S × A. Let V([Phe

β·V π
h+1 ](s, a)) :=

Es′∼Ph(·|s,a)[(e
β·V π

h+1(s
′)− [Phe

β·V π
h+1 ](s, a))2] denote the

per-step conditional variance of the exponential value func-
tion (conditioned on (h, s, a)). The maximum per-step con-
ditional coefficient of variation (CV) of the exponential
value function (conditioned on (h, s, a)) is defined as

cπv,h+1 := max
s,a

√
V([Phe

β·V π
h+1 ](s, a))

[Phe
β·V π

h+1 ](s, a)
(4)

Note that we have cπv,H+1 = 1 for any policy π. In addition,
we point out that for any policy π and h ∈ [H], it holds that

3We use the notation that [N ] := {1, 2, ..., N}, for any posi-
tive integer N .

4Note that any H-length episodic MDP with a stochastic ini-
tial state is equivalent to an (H + 1)-length MDP with a dummy
initial state s0.
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cπv,h+1 ≤ O(e|β|(H−h)/2) (See Appendix D). Compared to
risk-neutral RL, the non-linearity between Qπ

h and V π
h+1

in the Bellman equation (3) poses great challenge to both
algorithmic design and regret analysis (Fei et al., 2020).
To address this problem, Fei et al. (2021a) establish the
exponential Bellman equation

eβ·Q
π
h(s,a) = eβ·rh(s,a)[Phe

β·V π
h+1 ](s, a) (5)

Under some mild conditions (Bäuerle and Rieder, 2014),
there exists an policy π∗ that attains the optimal value func-
tion, i.e., V ∗

h (s) = supπ V
π
h (s) for all (h, s) ∈ [H] × S .

The agent aims to minimize the regret within K episodes
that is given by

Regret(T ) :=
K∑

k=1

(V ∗
1 (s1)− V πk

1 (s1)). (6)

3 THE UCB-ADVANTAGE ALGORITHM
FOR RISK-SENSITIVE RL

UCB-ADVANTAGE (Zhang et al., 2020) is a model-free
RL algorithm that features upper confidence bound (UCB),
reference-advantage decomposition, and advantage-based
update rule. The idea is to first learn an optimistic estima-
tion of the optimal value function denoted by V ref and use
it for later updates. With carefully designed bonus terms
and update rules, it is shown that V ref(s) − V ∗(s) can be
upper bounded (with high probability) once the state s is
visited more than N0 times (Zhang et al., 2020, Corollary
6). This algorithm matches the information-theoretic lower
bound up to logarithm factors for risk-neutral RL. How-
ever, to our best knowledge, its potential in risk-sensitive
RL has not been studied. Adapting UCB-ADVANTAGE,
we present Algorithm 1 for risk-sensitive RL with β > 0.5

Algorithm 1 utilizes a stage-based update rule. Quanti-
ties Qh(s, a) and Vh(s) are updated only at the end of
stage i, when the state-action pair (s, a) has been vis-
ited for li times (lines 9-17), where l1 = 1, and li =
li−1 +

⌊
(1 + 1/H)i

⌋
for i ≥ 2. We also define l0 = 0 for

convenience (note that l0 /∈ L). This lazy update scheme
ensures low local switching cost and adapts to various real-
world settings (Bai et al., 2019). One difference between
Algorithm 1 and UCB-ADVANTAGE is that the reference
value V ref

h is set twice (lines 18-20). The algorithm keeps
track of two types of accumulators, the global ones and the
intra-stage ones. The global accumulators are maintained
all along the process, which include the total number of
visits Nh(s, a) of each state-action pair (s, a) and the fol-

5We illustrate our core idea with the case of a positive β.
When β < 0, the algorithm and the proofs of theorems need to be
slightly modified, as discussed in the Appendix G.

Algorithm 1 UCB-ADVANTAGE FOR RISK-SEEKING RL
(β > 0)

1: Initialize: the failure probability p in Lemmas 1 and 2;
α ← min{e−βH , e−H}; α′ ←

√
HSA; ι ← ln(2/p);

risk parameter β > 0; set all accumulators to 0;
Vh(s) ← H , Qh(s, a) ← H , V ref

h (s) ← H for all
(s, a, h) ∈ S×A× [H]; VH+1 ← 0, V ref

H+1 ← 0; L :=

{li | l1 = 1, li = li−1 +
⌊
(1 + 1/H)i

⌋
, i = 2, 3, ...}

2: for episodes k ← 1, 2, ...,K do
3: Receive s1
4: for h← 1, 2, ...,H do
5: Take action ah ← argmaxaQh(sh, a).
6: Observe the next state sh+1.
7: n := Nh(sh, ah)

+←− 1, ň := Ňh(sh, ah)
+←− 1

8: Update accumulators by rules (7∼11).
9: if n ∈ L then

10: bkh ← c1

√
σref/n−(uref/n)2

n ι +

c2

√
σ̌/ň−(∆̌/ň)2

ň ι+ c3 · eβH
(

ι
n + ι

ň + ι
3
4

n
3
4
+ ι

3
4

ň
3
4

)
11: b̄kh ← 2

√
e2βH

ň ι

12: Q′
h(sh, ah) ← rh(sh, ah) +

1
β ln

(
min

{
ǔ
ň + b̄h,

uref

n + ∆̌
ň + bh

})
13: Qh(sh, ah) ←

min{Q′
h(sh, ah), Qh(sh, ah)}

14: Vh(sh)← maxaQh(sh, a)
15: Ňh(sh, ah)← 0
16: ∆̌h(sh, ah), ǔh(sh, ah), σ̌h(sh, ah)← 0
17: end if
18: if

∑
aNh(sh, a) ∈ {N0(α), N0(α

′)} then
19: V ref

h (sh)← Vh(sh)
20: end if
21: end for
22: end for
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lowing two accumulators:

uref := uref
h (sh, ah)

+←− eβ·V
ref
h+1(sh+1) (7)

σref := σref
h (sh, ah)

+←− e2β·V
ref
h+1(sh+1) (8)

The intra-stage accumulators are maintained only within
a stage. They will be reset once the stage completes (lines
15-16). These include the number of visits Ňh(s, a) of each
state-action pair (s, a) within the current stage and the fol-
lowing three accumulators:

ǔ := ǔh(sh, ah)
+←− eβ·Vh+1(sh+1) (9)

σ̌ := σ̌h(sh, ah)
+←− (eβ·Vh+1(sh+1) − eβ·V

ref
h+1(sh+1))2

(10)

∆̌ := ∆̌h(sh, ah)
+←− eβ·Vh+1(sh+1) − eβ·V

ref
h+1(sh+1) (11)

We add a superscript k to these accumulators and other
quantities in the algorithm to indicate their values at
timestep h of the kth episode, i.e., Qk

h, V k
h , V ref,k

h , Nk
h ,

uref,k
h , ǔkh, σref,k

h , σ̌k
h, ∆̌k

h, bkh, and b̄kh. Let nkh be the number
of visits of (skh, a

k
h) prior to the current stage, i.e., nkh = lj ,

where the subscript j is a non-negative integer that satisfies
lj < Nk

h ≤ lj+1. Note that (skh, a
k
h) can be visited at most

once in each episode. Among these nkh visits, we denote by
lkh,i the (index of) episode of the ith visit. Similarly, let ňkh
be the number of visits of (skh, a

k
h) during the last stage that

Qh(s
k
h, a

k
h) is updated, i.e., ňkh = lj − lj−1 if j ≥ 1 (there

is no “last stage” when j = 0). Among these ňkh visits, we
denote by ľkh,i the episode of the ith visit. Hence, we can
rewrite the notations in Equations (7∼11) as follows.

uref,k
h =

nk
h∑

i=1

eβ·V
ref,lkh,i
h+1 (s

lkh,i
h+1), σref,k

h =

nk
h∑

i=1

e2β·V
ref,lkh,i
h+1 (s

lkh,i
h+1)

ǔkh =

ňk
h∑

i=1

eβ·V
ľkh,i
h+1 (s

ľkh,i
h+1)

σ̌k
h =

ňk
h∑

i=1

(eβ·V
ľkh,i
h+1 (s

ľkh,i
h+1) − eβ·V

ref,ľkh,i
h+1 (s

ľkh,i
h+1))2

∆̌k
h =

ňk
h∑

i=1

(eβ·V
ľkh,i
h+1 (s

ľkh,i
h+1) − eβ·V

ref,ľkh,i
h+1 (s

ľkh,i
h+1))

Let I[·] denote the indicator function. We derive some use-
ful properties of Algorithm 1, which facilitate the analy-
sis of its regret bound. To start with, the following lemma
states that with high probability, Qk

h(s, a) output from the
algorithm is an optimistic estimation of the optimal Q-
function Q∗

h(s, a). (The detailed proof can be found in Ap-
pendix A.)

Lemma 1 (Optimism). Let p ∈ (0, 1) denote the fail-
ure probability. For any (s, a, h, k) ∈ S × A ×
[H] × [K], with probability at least 1 − 2(e2βHT 3 +

3)p, it holds that Q∗
h(s, a) ≤ Qk+1

h (s, a) ≤ Qk
h(s, a).

Therefore, we have that V ∗
h (s) = maxaQ

∗
h(s, a) ≤

Qk
h(s, argmaxaQ

∗
h(s, a)) ≤ V k

h (s).

Next, the following two lemmas show that when a state s
is “sufficiently” visited, the differences between two quan-
tities output from the algorithm (V k

h (s) and V ref,k
h (s)) and

the optimal value function V ∗
h (s) can be bounded. (The de-

tailed proofs can be found in Appendix B.)

Lemma 2 (Bounded estimation error). Conditioned on
the successful events of Lemma 1, for any γ ∈ (0, eβH ],
with probability (1 − Tp) it holds that

∑K
k=1 I[eβ·V

k
h (s) −

eβ·V
∗
h (s) ≥ γ] ≤ O

(
e4βHH3SA/γ2

)
.

Lemma 3 (Good reference values). Conditioned on the
successful events of Lemmas 1 and 2, it holds that
eβ·V

∗
h (s) ≤ eβ·V

ref,k
h (s) ≤ eβ·V ∗

h (s)+γ if nkh(s) ≥ N0(γ) :=
c4e

4βHH3SAι/γ2, where c4 is a sufficiently large constant
for analysis. Therefore, we have that β(V k

h (s)−V ∗
h (s)) ≤

β(V ref,k
h (s) − V ∗

h (s)) ≤ γ when state s is visited by more
than N0(γ) times.

Note that Lemmas 1, 2, and 3 are generalizations of
Proposition 4 and Lemmas 5 and 6 in the work of
Zhang et al. (2020) for risk-seeking RL, respectively.

4 REGRET ANALYSIS

In this section, we shall adopt a widely used method
for computing the regret bound of algorithms based on
UCB (Azar et al., 2017; Jin et al., 2018b). By Lemma 1,
we first note that Regret(T ) ≤

∑K
k=1(V

k
1 − V πk

1 ), where
V k
h is the value at timestep h of the kth episode, and
V πk

h is the value function of the policy used at episode
k (see Equation (3)). Building upon the convexity of the
exponential function, i.e., x − y ≤ (eβx − eβy)/β for
x ≥ y ≥ 0, and note that V k

1 ≥ V ∗
1 ≥ V πk

1 for any
k ∈ [K] from Lemma 1, Fei et al. (2021a) first derive

V k
1 − V πk

1 ≤ (eβ·V
k
1 − eβ·V πk

1 )/β. Then, they utilize the
exponential Bellman equation (5) to establish the following
recursive form (with constant terms omitted),

1

β

K∑
k=1

(eβ·V
k
h − eβ·V

πk

h )

≤ 1

β

K∑
k=1

(
eβ(1 +

1

H
)(eβ·V

k
h+1 − eβ·V

πk

h+1) +Bk
h +Mk

h

)
(12)

Iterating this recursive form over h, the regret is bounded
by only the bonus terms Bk

h and the martingale terms Mk
h ,

that is,

Regret(T ) ≤ 1

β

K∑
k=1

(eβ·V
k
1 − eβ·V

πk

1 )
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≤ 1

β

K∑
k=1

(
eβ(1 +

1

H
)(eβ·V

k
2 − eβ·V

πk

2 ) +Bk
1 +Mk

1

)

≤ 1

β

H∑
h=1

K∑
k=1

eβ(h−1)(1 +
1

H
)h−1

(
Bk

h +Mk
h

)
≤Õ

(
eβH − 1

β

√
H2SAT

)
(13)

Unfortunately, the recursive form (12) is undesirable be-
cause an extra factor eβ is introduced after each rollout
of h, which makes it impossible to attain the information-
theoretic lower bound (2). To address this problem, in
this paper we propose a new mechanism of regret analy-
sis. When we apply it to Algorithm 1, we establish the
following recursive form

K∑
k=1

(V k
h − V πk

h )

≤ 1

β

K∑
k=1

λh+1(1 +
1

H
)2(V k

h+1 − V πk

h+1)

+
1

β

K∑
k=1

bkh +mk
h

[Phe
β·V ∗

h+1 ](skh, a
k
h)

where bkh are the bonus terms, mk
h are the martingale terms,

and λh+1 is the problem-dependent statistic (to be de-
fined in Equation (16)), which avoids the factor of eβH

in the regret bound. Therefore, the rest of this section
will be devoted to establishing this recursive form. De-
fine δkh := V k

h (skh) − V ∗
h (s

k
h) and ϱkh := eβ·V

k
h (skh) −

eβ·V
ref,k
h (skh). Let V REF

h (s) be the reference value of any
(s, h) ∈ S × [H] when the Kth episode is finished. Recall
that [Phf ](s, a) := Es′∼Ph(s′|s,a)f(s

′), for any function
f defined on S. We denote by [P̂hf ](s

k
h, a

k
h) := f(skh+1)

the empirical counterpart of [Phf ]. For convenience, we
rewrite lkh,i and ľkh,i as li and ľi, respectively, when the con-
text is clear. Following the update rules (7∼11), we obtain,

ζkh := V k
h (skh)− V πk

h (skh)

≤Qk
h(s

k
h, a

k
h)−Qπk

h (skh, a
k
h)

≤I[nkh = 0]H +
1

β
ln

(
uref,k
h

nkh
+

∆̌k
h

ňkh
+ bkh

)

− 1

β
ln

(
[Phe

β·V πk

h+1 ](skh, a
k
h)

)
=I[nkh = 0]H − 1

β
ln

(
[Phe

β·V πk

h+1 ](skh, a
k
h)

)
+

1

β
ln

(
[Phe

β·V ∗
h+1 ](skh, a

k
h)

[Phe
β·V ∗

h+1 ](skh, a
k
h)

)

+
1

β
ln

(
1

nkh

nk
h∑

i=1

eβ·V
ref,li
h+1 (s

li
h+1) +

1

ňkh

ňk
h∑

i=1

ϱľih+1 + bkh

)

≤I[nkh = 0]H − 1

β
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)

+
1

β
ln

(Ph(
1

nkh

nk
h∑

i=1

eβ·V
ref,li
h+1 +

1

ňkh

ňk
h∑

i=1

ϱľih+1)

 (skh, a
k
h)

+ 2bkh

)
+ λh+1(ζ

k
h+1 − δkh+1) +

1

β
ϕkh+1

(14)

≤I[nkh = 0]H + λh+1(ζ
k
h+1 − δkh+1) +

1

β
ϑkh+1

+
λh+1

β

1

ňkh

ňk
h∑

i=1

(eβδ
ľi
h+1 − 1) (15)

where

λh+1 = max
π,s,a,s′:Ph(s′|s,a)>0

eβ·V
π
h+1(s

′)

[Phe
β·V π

h+1 ](s, a)
(16)

ψk
h+1 :=

1

nkh

nk
h∑

i=1

[Ph(e
β·V ref,li

h+1 − eβ·V
REF
h+1)](skh, a

k
h)

ξkh+1 :=

1
ňk
h

∑ňk
h

i=1[(Ph − P̂h)(e
β·V ľi

h+1 − eβ·V
∗
h+1)](skh, a

k
h)

[Phe
β·V ∗

h+1 ](skh, a
k
h)

ϕkh+1 := ln

 [Phe
β·V ∗

h+1 ](skh, a
k
h)

eβλh+1·V ∗
h+1(s

k
h+1)

· e
βλh+1·V πk

h+1(s
k
h+1)

[Phe
β·V πk

h+1 ](skh, a
k
h)


ϑkh+1 :=

2bkh
[Phe

β·V ∗
h+1 ](skh, a

k
h)

+ ψk
h+1 + ξkh+1 + ϕkh+1

Here, the first line of Inequality (14) is implied by the suc-
cessful events in the proof of Lemma 1 (See Appendix A).
Notice that ψk

h+1 ≥ 0 and [Phe
β·V ∗

h+1 ](s, a) ≥ 1 for any
(s, a, h) ∈ S × A × [H]. A key step in our mechanism is
to derive Inequality (15), where we utilize the concavity of
the logarithm, i.e., lnx − ln y ≤ (x − y)/y when x ≥ y,
and the definition of λh+1. To further bound

∑K
k=1 ζ

k
h , an-

other key step is to use the reference-advantage technique
to handle the last term of Inequality (15). Summing this
term over k and note that λh+1 is invariant to k, we derive

λh+1

β

K∑
k=1

1

ňkh

ňk
h∑

i=1

(eβδ
ľi
h+1 − 1)

≤(1 + 1

H
)λh+1

K∑
j=1

eβδ
j
h+1 − 1

βδjh+1

δjh+1

≤(1 + 1

H
)λh+1

K∑
k=1

eα − 1

α
δkh+1

+ (1 +
1

H
)λh+1

K∑
k=1

I[nkh < N0(α)]
eβH − 1

β

(17)

where α = min{e−βH , e−H} is an input of Algorithm 1.
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Here, the first inequality is implied by the stage-based up-
date of the algorithm (See Equation (15) and Inequality
(16) in (Zhang et al., 2020)). The second inequality uti-
lizes the reference-advantage technique, i.e., the successful
events of Lemma 3, and the fact that (ex − 1)/x is non-
decreasing when x ≥ 0. Next, summing the both sides of
Inequality (15) over k and together with Inequality (17), we
derive the following recursive form,

K∑
k=1

ζkh ≤ HSA+
1

β

K∑
k=1

ϑh+1 + (1 +
1

H
)2λh+1

K∑
k=1

ζkh+1

+ (1 +
1

H
)
eβH − 1

β
λh+1S ·N0(α)

(18)
where we utilize the fact that (eα − 1)/α < 1 + 1/H ,6∑K

k=1 I[nkh = 0] ≤ SA,
∑K

k=1 I[nkh < N0(α)] ≤ S ·
N0(α), and ζkh ≥ δkh for any (h, k) ∈ [H] × [K]. Define
Λh = λh+1Λh−1 for h ∈ [H − 1] and Λ0 = 1. Using
the similar trick in Inequality (13), we iterate the recursive
form (18) over h and derive

Regret(T ) ≤ 1

β

H∑
h=1

K∑
k=1

(1 +
1

H
)2(h−1)Λh−1ϑ

k
h+1 + C

(19)
where C :=

∑H
h=1(1 + 1/H)2(h−1)Λh−1(λh+1(1 +

1/H)S ·N0(α)(e
βH − 1)/β +HSA).

5 MAIN RESULTS

In Section 4, we analyze the regret for risk-seeking RL
(β > 0). The counterpart case of risk-averse RL (β < 0)
is similar, and is presented in the Appendix G. We are now
ready to state the main results. We first present a problem-
dependent regret bound that depends on the structure of the
MDP without prior knowledge of the MDP from the al-
gorithm, as follows. (The detailed proof can be found in
Appendix C.)

Theorem 1 (Problem-dependent regret bound). For any
p ∈ (0, 1), with probability at least 1 − p and when T
is sufficiently large, the regret of Algorithm 1 is bounded by
the minimum between

Õ

(
e|β|H − 1

|β|
√
HSAT

)
(20)

and

Õ

(
1

|β|
max
h∈[H]

{
Λh−1 · c∗v,h+1

}√
max{SA,H}HT

)
(21)

6Recall that α = min{e−βH , e−H} ≤ e−H . Since we have
ln( 1

α
) < 1

α
, we obtain that eα−α−1

α
ln( 1

α
) < eα−α−1

α2 < e−2 <

1. Dividing both sides by ln( 1
α
) and rearranging the terms, we

derive that eα−1
α

< 1 + 1/ ln( 1
α
) ≤ 1 + 1

H
.

where c∗v,h+1 := cπ
∗

v,h+1 is the maximum per-step condi-
tional coefficient of variation (CV) defined in Equation (4)
of the exponential optimal value function, λh+1 is given by
Equation (16), and Λh = λh+1Λh−1 for h ∈ [H−1] where
Λ0 = 1.

The first term (20) shows that our algorithm improves
over the best previously known bound Õ((e|β|H −
1)
√
H2SAT/|β|) in any arbitrary MDP by a factor of√

H .7 As β → 0, it translates to Õ(
√
H3SAT ) and re-

covers the regret bound of Q-learning with UCB-Bernstein
for risk-neutral RL (Jin et al., 2018a). While the first term
holds in the worst case and is invariant to the structure
of the MDP, the second term (21) is problem-dependent.
It implies that the regret bound can be significantly im-
proved (tightened) in MDPs with special structure, i.e.,
small c∗v,h+1 and λh+1. Next, we show in Corollary 1.1
that within a class of MDPs, our algorithm improves a fac-
tor of at least (e|β|H/2+1)

√
H2e|β| over the best previously

known bound (Fei et al., 2021a). (The detailed proof can
be found in Appendix D.)

Corollary 1.1. When SA ≥ H and maxh λh+1 ≤
H− 1

2 e
|β|
2 , the regret bound in Theorem 1 translates to

Õ

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)

Corollary 1.1 states that, given a particular β, our al-
gorithm attains a regret bound of Õ((e|β|(H−1)/2 −
1)
√
SAT/|β|) within a class of problems. Particu-

larly, this class of problems includes a subset of MDPs
where it holds that mins,a,s′:Ph(s′|s,a)>0 Ph(s

′|s, a) ≥√
He−|β|/2. (In this case, we have that maxλh+1 ≤

(mins,a,s′:Ph(s′|s,a)>0 Ph(s
′|s, a))−1 ≤ H−1/2e|β|/2.)

Note that the RHS of the inequality e−|β|/2 is close to zero
for relatively large |β|. This class of problems contains
a wide range of MDPs. Therefore, Corollary 1.1 shows
that a regret that matches the information-theoretic lower
bound (2) up to logarithmic factors can already be achieved
within a wide range of MDPs.

To further interpret the dependence in the regret bound (21)
on the maximum per-step conditional covariance c∗v,h+1

of the exponential value function, we establish a novel
problem-dependent lower bound as follows, which shows
that such a dependence is unavoidable in the worst case.
(The detailed proof can be found in Appendix E.)

7Note that the original regret bound established in (Fei et al.,
2021a, Theorem 2) is Õ((e|β|H − 1)

√
H3SAK/|β|H). How-

ever, we find that there is a typo in its proof (Appendix. C), where
an extra

∑
h∈[H] is included in the LHS of the first line in In-

equality (38). Hence, adopting their definition of δkh, we have that∑K
k=1 δ

k
1 ≤ Õ((e|β|H − 1)

√
H2SAT ) after iterating Inequality

(37) over h. Therefore, the established regret bound should be
Õ((e|β|H − 1)

√
H2SAT/|β|) instead.
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Theorem 2 (Problem-dependent information-theoretic
lower bound). For any t ∈ [0, (H − 1)/2] and ctv := e|β|t,
define the class of problems

M(ctv) := {M : Exists deterministic π∗ of M such that

max
h

cπ
∗

v,h+1 = O(ctv)} (22)

Then, for sufficiently large K, there exists an absolute con-
stant c0 and a problem instance M ∈ M(c∗v) such that for
any online algorithm, it holds that

Regret(T,M(t)) ≥ Ω

(
ctv
|β|
√
SAT

)
(23)

When t = (H − 1)/2 and |β|(H − 1) ≥ ln 4, the problem-
dependent information-theoretic lower bound (23) trans-
lates to

Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)

Theorem 2 shows that for the class of MDPs where
maxh c

∗
v,h+1 has the order O(e|β|t), the worst-case regret

is at least Ω(e|β|t
√
SAT/|β|). Compared to the problem-

invariant lower bound (2) proposed by Fei et al. (2020),
our problem-dependent lower bound (23) is tighter since it
always holds that maxh c

∗
v,h+1 ≤ O(e|β|(H−1)/2) in any

MDP. In the worst case of t = (H − 1)/2, our problem-
dependent regret bound recovers the information-theoretic
lower bound (2). Further,it shows that the regret bound (21)
is unimprovable in its dependence on maxh c

∗
v,h+1 in the

worst case. In risk-neutral RL, the problem-dependent
regret bound established by Zanette and Brunskill indi-
cates that the regret bound is a monotonic function of the
(maximum) per-step conditional variance of the optimal
value function when the reward function is determinis-
tic (Zanette and Brunskill, 2019). One may wonder if this
is still the case when the exponential value function is
used in risk-sensitive RL. By the definition of c∗v,h+1 :=

maxs,a([Phe
β·V ∗

h+1 ](s, a))−1(V([Phe
β·V ∗

h+1 ](s, a)))1/2,
the regret bound in an MDP is not necessarily a mono-
tonic function of the per-step conditional variance
V([Phe

β·V ∗
h+1 ](s, a)) of the exponential optimal value

function, as it also depends on the expected exponential
optimal value function [Phe

β·V ∗
h+1 ](s, a). In contrast, our

algorithm may attain a higher regret bound in an MDP
with a smaller V([Phe

β·V ∗
h+1 ](s, a)), provided that there

is an even smaller [Phe
β·V ∗

h+1 ](s, a). However, we are
unaware of whether the dependence on λh+1 in the regret
bound is necessary and we leave it as future work.

6 CONCLUSIONS

In this paper, we study the regret bound of risk-sensitive
RL with the exponential utility function in an episodic

MDP setting. We introduce a brand new mechanism
and use it to analyze the regret of a modified version
of UCB-ADVANTAGE (Zhang et al., 2020), which avoids
the factor e|β|H in the regret bound, unlike those utiliz-
ing the exponential Bellman equation in the previous stud-
ies. We derive a problem-dependent regret bound without
prior knowledge of the MDP from the algorithm. This
bound improves a factor of

√
H over the best previously

known bound in any arbitrary MDP. In MDPs with spe-
cial structure, this bound can be even tighter. Further,
we show that this problem-dependent regret bound trans-
lates to Õ((e|β|(H−1)/2 − 1)

√
SAT/|β|) within a rich

class of MDPs, which improves the best previously known
bound by at least a factor of (e|β|H/2 + 1)

√
H2e|β|. This

shows that a regret bound that matches the information-
theoretic lower bound up to logarithmic factors can be at-
tained within a wide range of problem instances. Further,
we establish a novel information-theoretic lower bound of
Ω(maxh c

∗
v,h+1

√
SAT/|β|), where where maxh c

∗
v,h+1 is

a problem-dependent statistic. It shows that the regret
bound attained by the algorithm is optimal in its depen-
dence on maxh c

∗
v,h+1. When compared to the problem-

dependent regret bound established by Zanette and Brun-
skill (2019) for risk-neutral RL, our results show that the
regret bound in the risk-sensitive RL is not necessarily a
monotonic function of the per-step conditional variance of
the optimal (exponential) value function.
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A PROOF OF LEMMA 1

Proof. We prove by backward induction. Suppose that Qk
h(s, a) ≥ Q∗

h(s, a) for any (h, s, a) ∈ [H] × S × A at the k
episode. If no update is conducted at episode k + 1, then we have eβ·Q

k+1
h (s,a) = eβ·Q

k
h(s,a) ≥ eβ·Q

∗
h(s,a). Otherwise, we

have

eβ·Q
k+1
h (s,a) = min

{
eβrh(s,a)

(
ǔ

ň
+ b̄kh

)
, eβrh(s,a)

(
uref

n
+

∆̌

ň
+ bkh

)
, eβ·Q

k
h(s,a)

}
(24)

In the rest of the proof, we show that with high probability, the first two terms in the RHS of Equation (24) is no less than
eβ·Q

∗
h(s,a) (since this holds for the last term by assumption). Recall that p is the failure probability defined in Lemma 1 and

ι = log( 2p ). For the first case, by Azuma-Hoeffding’s inequality, with probability at least 1− p, it holds that

eβ·(Q
k+1
h (s,a)−rh(s,a)) =

ǔ

ň
+ b̄kh =

1

ň

ň∑
i=1

eβ·V
ľi
h+1(s

ľi
h+1) + b̄kh

≥ 1

ň

ň∑
i=1

eβ·V
∗
h+1(s

ľi
h+1) + 2

√
e2βH

ň
ι

≥
[
Phe

β·V ∗
h+1

]
(s, a) = eβ·(Q

∗
h(s,a)−rh(s,a))

(25)

For the second case, we have

eβ·(Q
k+1
h (s,a)−rh(s,a)) =

uref

n
+

∆̌

ň
+ bkh

=

[
Ph

(
1

n

n∑
i=1

eβ·V
ref,li
h+1 +

1

ň

ň∑
i=1

(
eβ·V

ľi
h+1 − eβ·V

ref,ľi
h+1

))]
(s, a) + χ1 + χ2 + bkh

≥

[
Ph

(
1

ň

ň∑
i=1

eβ·V
ľi
h+1

)]
(s, a) + χ1 + χ2 + bkh

≥
[
Phe

β·V ∗
h+1

]
(s, a) + χ1 + χ2 + bkh

=eβ·(Q
∗
h(s,a)−rh(s,a)) + χ1 + χ2 + bkh

(26)

where

χ1 :=
1

n

n∑
i=1

[(
P̂h − Ph

)
eβ·V

ref,li
h+1

]
(s, a)

χ2 :=
1

ň

ň∑
i=1

[(
P̂h − Ph

)(
eβ·V

ľi
h+1 − eβ·V

ref,ľi
h+1

)]
(s, a)

Next, it suffices to show that bh > |χ1| + |χ2|. By (Zhang et al., 2020, Lemma 10) with c = eβH and ϵ = 1
T 2 , with

probability at least 1− 2(e2βHT 3 + 1)p, it holds that

|χ1| ≤ 2

√√√√ ι
∑n

i=1 V
([
Phe

β·V ref,li
h+1

]
(s, a)

)
n2

+ 2

√
ι

Tn
+

2eβHι

n
(27)

|χ2| ≤ 2

√√√√√ ι
∑ň

i=1 V
([
Ph

(
eβ·V

ľ
h+1 − eβ·V

ref,ľi
h+1

)]
(s, a)

)
ň2

+ 2

√
ι

T ň
+

2eβHι

ň
(28)

Further, following the exact analysis in the proof of (Zhang et al., 2020, Lemma 12), with probability at least 1 − 2p, it
holds that

n∑
i=1

V
([
Phe

β·V ref,li
h+1

])
≤ nνref + 3e2βH

√
nι (29)
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where

νref :=
σref

n
−
(
uref

n

)2

(30)

Combining Inequality (27) and Inequality (29), we have

|χ1| ≤ 2

√
νrefι

n
+

5eβHι
3
4

n
3
4

+
2
√
ι

Tn
+

2eβHι

n
(31)

Similarly, by (Zhang et al., 2020, Lemma 13), with probability at least 1− 2p, it holds that

|χ2| ≤ 2

√
ν̌ι

ň
+

5eβHι
3
4

ň
3
4

+
2
√
ι

T ň
+

2eβHι

ň
(32)

where

ν̌ :=
σ̌

ň
−
(
∆̌

ň

)2

(33)

Let c1 = 2, c2 = 2, and c3 = 5 in the construction of bh (line 10 of Algorithm 1). With probability at least 1−2(e2βHT 3+
3)p, we have that bkh ≥ |χ1|+ |χ2|, which concludes the proof.

B PROOF OF LEMMA 2

Proof. For convenience, we define τkh := eβ·V
k
h (skh) − eβ·V ∗

h (skh). Similar to the proof of (Zhang et al., 2020, Lemma 5),
we will establish that for any weight sequence {wk}Kk=1 such that wk ≥ 0, it holds that

K∑
k=1

wkτkh ≤ 240H
3
2 e2βH

√
||w||∞ · SA||w||1ι+ 3e2βHHSA||w||∞ (34)

where ||w||∞ = maxk w
k and ||w||1 =

∑
k w

k. Note that if Inequality (34) holds, then replacing wk by I[τkh ≥ γ] yields

γ

K∑
k=1

I[τkh ≥ γ] ≤
K∑

k=1

I[τkh ≥ γ]τkh ≤ 240H
3
2 e2βH

√√√√SAι

K∑
k=1

I[τkh ≥ γ] + 3e2βHHSA

which leads to
K∑

k=1

I[τkh ≥ γ] ≤ O
(
e4βHH3SAι

γ2

)
(35)

and concludes the proof. Now, we will prove Inequality (34). Conditioned on the successful events of Lemma 1, we have

τkh =eβ·V
k
h (skh) − eβ·V

∗
h (skh) ≤ eβ·Q

k
h(s

k
h,a

k
h) − eβ·Q

∗
h(s

k
h,a

k
h)

≤I[nkh = 0]eβH + eβ

b̄kh +
1

ňkh

ňk
h∑

i=1

eβ·V
ľi
h+1(s

ľi
h+1) − [Phe

β·V ∗
h+1 ](skh, a

k
h)


≤I[nkh = 0]eβH + eβ

2b̄kh +
1

ňkh

ňk
h∑

i=1

eβ·V
ľi
h+1(s

ľi
h+1) − eβ·V

∗
h+1(s

ľi
h+1)


=I[nkh = 0]eβH + eβ(2b̄kh +

1

ňkh

ňk
h∑

i=1

τ ľih+1)

Let w̃k =
∑K

j=1
wj

ňj
h

∑ňj
h

i=1 I[k = ľjh,i]. By the exact analysis of Inequality (17), we have

K∑
k=1

wkτkh ≤ eβ(2
K∑

k=1

wk b̄kh +

K∑
k=1

w̃kτkh+1) + eβHSA||w||∞ (36)
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To bound the first term in the RHS of Inequality (36), following the exact analysis in the proof of (Zhang et al., 2020,
Lemma 5), we obtain that

K∑
k=1

wk b̄kh ≤ 20
√
e2βHι(1 +

1

H
)
√
||w||∞ ·HSA||w||1 (37)

Plugging Inequality (37) into Inequality (36) yields

K∑
k=1

wkτkh ≤ eβ(80eβH
√
||w||∞ ·HSA||w||1ι+

K∑
k=1

w̃kτkh+1) + eβHSA||w||∞ (38)

Iterating Inequality (38) from H to h, and using the fact that ||w̃||∞ ≤ (1 + 1
H )||w||∞ and ||w̃||1 = ||w||1, we obtain

K∑
k=1

wkτkh ≤ 240He2βH
√
||w||∞ ·HSA||w||1ι+ 3e2βHHSA||w||∞

which concludes the proof.

C PROOF OF THEOREM 1

Proof. We consider the case of β > 0.8 To begin with, Term (20) is derived by the following lemma. (The detailed proof
can be found in Appendix E.)

Lemma 4. With probability at least 1−O(e2βHT 3p · T (HSA)2p′) and when T is sufficiently large, it holds that

Regret(T ) ≤ 1

β

H∑
h=1

K∑
k=1

(1 +
1

H
)2(h−1)Λh−1

(
2bkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

+ ψk
h+1 + ξkh+1 + ϕkh+1

)

≤Õ
(
1

β
max
h∈[H]

{
Λh−1 · c∗v,h+1

}√
max{SA,H}HT

)

where c∗v,h+1 = maxs,a([Phe
β·V ∗

h+1 ](s, a))−1

√
V([Phe

β·V ∗
h+1 ](s, a)) is the maximum per-step conditional coefficient of

variation (CV) defined in Equation (4) of the exponential optimal value function. Here, p′ ∈ (0, 1) defined in the proof is
the failure probability of events that are independent of the successful events of Lemmas 1 and 2.

To derive Term (21), note that

Regret(T ) ≤
K∑

k=1

(
V k
1 (s1)− V πk

1 (s1)
)
≤ 1

β

(
eβ·V

k
1 (s1) − eβ·V

πk

1 (s1)

)
Next, we establish the following recursive form for the exponential Bellman equation

ςkh := eβ·V
k
h (skh) − eβ·V

πk

h (skh) ≤ eβ·Q
k
h(s

k
h,a

k
h) − eβ·Q

πk

h (skh,a
k
h)

≤I[nkh = 0]eβH + eβ

((
uref,k
h

nkh
+

∆̌k
h

ňkh
+ bkh

)
− [Phe

β·V πk

h+1 ](skh, a
k
h)

)

=I[nkh = 0]eβH + eβ

((
uref,k
h

nkh
+

∆̌k
h

ňkh
+ bkh

)
− [Phe

β·V ∗
h+1 ](skh, a

k
h)

)

+ eβ
(
eβ·V

∗
h+1(s

k
h+1) − eβ·V

πk

h+1(s
k
h+1) + [(Ph − P̂h)(e

β·V ∗
h+1 − eβ·V

πk

h+1)](skh, a
k
h)

)

≤I[nkh = 0]eβH + eβ

(Ph − P̂h)

 1

ňkh

ňk
h∑

i=1

(
eβ·V

ľi
h+1 − eβ·V

∗
h+1

) (skh, a
k
h) + ψk

h+1 + 2bkh


8We provide the modified algorithm and a sketch of proof for a negative β in Appendix G.
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+ eβ

 1

ňkh

ňk
h∑

i=1

(
eβ·V

ľi
h+1(s

ľi
h+1) − eβ·V

∗
h+1(s

ľi
h+1)

)
+ eβ·V

∗
h+1(s

k
h+1) − eβ·V

πk

h+1(s
k
h+1)


+ eβ [(Ph − P̂h)(e

β·V ∗
h+1 − eβ·V

πk

h+1)](skh, a
k
h) (39)

Summing over k and using the similar trick in Inequality (17), we derive

K∑
k=1

ςkh ≤ eβHSA+ eβ(1 +
1

H
)

K∑
k=1

ςkh+1 +

K∑
k=1

eβ [(Ph − P̂h)(e
β·V ∗

h+1 − eβ·V
πk

h+1)](skh, a
k
h)

+

K∑
k=1

eβ

(Ph − P̂h)

 1

ňkh

ňk
h∑

i=1

(
eβ·V

ľi
h+1 − eβ·V

∗
h+1

) (skh, a
k
h) + ψk

h+1 + 2bkh

 (40)

Iterating over h, we obtain

K∑
k=1

ςk1 ≤ e2βHHSA+

K∑
k=1

H∑
h=1

[
eβ(1 +

1

H
)

]h−1

[(Ph − P̂h)(e
β·V ∗

h+1 − eβ·V
πk

h+1)](skh, a
k
h)

+

K∑
k=1

H∑
h=1

[
eβ(1 +

1

H
)

]h−1
(Ph − P̂h)

 1

ňkh

ňk
h∑

i=1

(
eβ·V

ľi
h+1 − eβ·V

∗
h+1

) (skh, a
k
h)

+

K∑
k=1

H∑
h=1

[
eβ(1 +

1

H
)

]h−1

(ψk
h+1 + 2bkh) (41)

By slightly modifying the proof of Lemma 4, we have that with probability at least (1−O(e2βHT 3p · T (HSA)2p′)) and
when T is sufficiently large,

K∑
k=1

ςk1 ≤ Õ
(
(eβH − 1)

√
HSAT

)
(42)

We set p← p/poly(e2βH , T ) and p′ ← 1/poly(H,S,A, T ) and conclude the proof.

D PROOF OF COROLLARY 1.1

Proof. To prove this corollary, we first show that c∗v,h+1 ≤ O(e|β|(H−h)/2). When β > 0 and a fixed h, assume that
[Phe

β·V ∗
h+1 ](s, a) has an order of O

(
eβt
)

where t ∈ [0, H − h]. For any state s′ that Ph(s
′|s, a) > 0, we denote by

O(eβqs′ ) the order of eβ·V
∗
h+1(s

′) where qs′ ∈ [0, H − h]. If qs′ > t, we have that Ph(s
′|s, a) = O(eβ(t−qs′ )). By simple

calculation, we derive that V([Phe
β·V ∗

h+1 ](sh, ah)) ≤ O(
∑

s′:qs′>t(e
βqs′ − eβt)2eβ(t−qs′ ) + e2βt) = O(eβ(maxs′ qs′+t)).

Therefore, we have that c∗v,h+1 ≤ O(eβ(maxs′ qs′−t)/2) ≤ O(eβ(H−h)/2). When β < 0, we only have to replace maxs′ qs′

by mins′ qs′ and derive that c∗v,h+1 ≤ O(e−β(H−h)/2). Next, we show that when maxh λh+1 ≤ H−1/2e|β|/2, we have

that maxh{Λh−1 · c∗v,h+1} ≤ H−1/2e|β|(H−1)/2. Since we have that Λh−1 =
∏h−1

i=1 λi+1 ≤ H−1/2e|β|(h−1)/2 for h ≥ 2

and Λ0 = 1. Hence, we have that maxh{Λh−1 · c∗v,h+1} ≤ H−1/2e|β|(H−1)/2, which concludes the proof.

E PROOF OF THEOREM 2

Proof. Given any 0 ≤ t ≤ (H − 1)/2 and ctv = e|β|t, we show that there is an problem instance M ∈ M(ctv) such that
any online algorithm suffers a regret Ω(ctv

√
SAT/|β|), where the class of problemsM(ctv) is defined in Equation (22).

Since the proof for β > 0 and β < 0 is similar, we focus on the case β > 0. Inspired by the proof of (Fei et al., 2020,
Theorem 3), we construct the following hard instance M :

• The state space is S := {si}i∈[S] ∪ {sg, sb}. There are S “bandit states” {si}i∈[S], one “good state” sg , and one “bad
state” sb.
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• The action space is A := [A].

• Transition kernel P: Each bandit state si, i ∈ [S] can only transit to either the “good state” sg or the “bad state” sb.
Particularly, for some fixed a∗ ∈ [A], it holds that Ph(sg|si, a∗) = δ+ϵ and Ph(sb|si, a∗) = 1−δ−ϵ for some δ, ϵ > 0
that will be specified later and any h ∈ [H]. For any a ̸= a∗, we have that Ph(sg|si, a∗) = δ and Ph(sb|si, a∗) = 1−δ
for any h ∈ [H]. Both the “good state” sg and the “bad state” sb are absorbing, i.e., Ph(sg|sg, a) = Ph(sb|sb, a) = 1
for any (h, a) ∈ [H]× [A].

• Reward function r: At each bandit state si, i ∈ [S] and the “bad state” sb, all actions yield no reward, i.e., rh(sb, a) =
rh(si, a) = 0 for any (h, a) ∈ [H] × [A]. In addition, at the “good state” sg , any action yields a reward 1, i.e.,
rh(sg, a) = 1 for any (h, a) ∈ [H]× [A].

• Initial state distribution is uniform on the bandit states, i.e., S1 ∼ Unif{si}i∈[S].

We first show that this problem instance M belongs to the class of problemsM(t) when δ and ϵ are carefully selected. Let
p1 := δ + ϵ and p2 := δ. Note that the optimal policy π∗ is to select arm a∗ with probability 1 at any bandit state at the
first timestep (and to select any arbitrary action in the rest of the episode since the agent transits to either sg or sb after the
first timestep and is absorbed in that state in the rest of the episode), we have that

max
h

cπ
∗

v,h+1 = cπ
∗

v,2 =

√
p1 − p21(eβ(H−1) − 1)

p1eβ(H−1) + (1− p1)

where the first equation holds by the fact that cπ
∗

v,h+1 = 0 for any h = 2, ...,H . Hence, if p1 is selected such that

max
h

cπ
∗

v,h+1 =

√
p1 − p21(eβ(H−1) − 1)

p1(eβ(H−1) − 1) + 1
= O(ctv)

then we have that M ∈ M(t). This can be achieved by setting p1 = O(e2β(t−H+1)). In addition, by the construction
of M , at each bandit state si at the first timestep, the MDP can be reduced to an A-armed bandit where all arms are i.i.d.
(H − 1) · Ber(δ), but one arm a∗ is i.i.d. (H − 1) · Ber(δ + ϵ) for some δ, ϵ > 0. Therefore, we can simply work on this
MAB problem instead of the original problem instanceM . Consider that the agent interacts with the MAB forK episodes.
For the kth episode, let Sk

1 be the initial state and we denote by πk : S → ∆([A]) the policy used by the agent, where
πk(a|Sk

1 ) =: P(πk = a) is the probability that arm a is selected according πk. Therefore, we have that for any k ∈ [K]

V ∗
1 (S

k
1 ) =

1

β
lnEeβ·r(a

∗)

V πk

1 (Sk
1 ) =

1

β
lnEeβ·rk =

1

β
ln

∑
a∈[A]

P(πk = a) · Eeβ·r(a)


where we denote by rk the (random) reward received at the kth episode following policy πk and we denote by r(a) the
(random) reward when pulling the ath arm. For any a ∈ [A], a ̸= a∗ and k ∈ [K], let

∆ :=
Eeβ·r(a∗) − Eeβ·r(a)

Eeβ·r(a∗)

=
p1e

β(H−1) + (1− p1)− [p2e
β(H−1) + (1− p2)]

Eeβ·r(a∗)
=
ϵ(eβ(H−1) − 1)

Eeβ·r(a∗)

Let ak denote the arm pulled by the agent at the kth episode. Hence, the regret at the kth episode is

V ∗
1 (S

k
1 )− V πk

1 (Sk
1 ) =

1

β
ln

(∑
a∈[A] P(πk = a) · Eeβ·r(a∗)∑
a∈[A] P(πk = a) · Eeβ·r(a)

)

=
1

β
ln

(
1 +

∑
a∈[A],a̸=a∗ P(πk = a) ·

(
Eeβ·r(a∗) − Eeβ·r(a)

)∑
a∈[A] P(πk = a) · Eeβ·r(a)

)

≥ 1

β
ln

(
1 +

∑
a∈[A],a̸=a∗ P(πk = a) ·

(
Eeβ·r(a∗) − Eeβ·r(a)

)
Eeβ·r(a∗)

)
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=
1

β
ln
(
1 + E{I[ak ̸= a∗]|ak ∼ πk(·|Sk

1 )}∆
)

≥ 1

2β
· E{I[ak ̸= a∗]|ak ∼ πk(·|Sk

1 )} ·∆

where the last inequality holds by ln(1 + x) ≥ x/2 for any x ∈ [0, 1]. Therefore, we further have that

EM

[
K∑

k=1

(
V ∗
1 (S

k
1 )− V πk

1 (Sk
1 )
)]
≥ 1

2β
·

K∑
k=1

EM,πk {I[ak ̸= a∗]} ·∆ (43)

where the expectation Eπk is w.r.t the randomness during the algorithm execution within MDP M . To further derive a
lower bound of the RHS of Inequality (43), we first consider the regret when the agent is uninformative about the optimal
action a∗.

Regret of an uninformative agent. We consider a problem instance M0 that has the same construction as the above
problem instance M except that there is no “special” action a∗, i.e., it holds that Ph(sg|si, a∗) = δ and Ph(sb|si, a∗) =
1 − δ for any (h, i) ∈ [H] × [S]. When the agent interacts with M0, she is uninformative in the sense no information is
provided on the action a∗. Therefore, we have that

K∑
k=1

EM0,πk {I[ak ̸= a∗]} =
K∑

k=1

A− 1

A
= K

(
1− 1

A

)
(44)

We now establish that, if ϵ = Ph(sg|si, a∗) − Ph(sg|si, a), a ̸= a∗ is sufficiently small, then over a limited time hori-
zon, the observation from interacting with the problem instance M cannot be significantly different from the observation
from interacting with the problem instance M0. If that is the case, then

∑K
k=1 EM,πk{I[ak ̸= a∗]} should be close to∑K

k=1 EM0,πk{I[ak ̸= a∗]}. To formalize this idea, we first introduce some useful notations. Note that each episode
starts at a random bandit state and the rewards of the arms at these bandit states are independent and identically distributed.
Therefore, we can consider each bandit state si, i ∈ [S] independently. We denote byHi

k = (si, a1, r1, · · · , si, ak−1, rk−1)
any possible sequence of histories starting from state si from interacting with the problem instance M . Similarly,
we define H̃i

k = (si, ã1, r̃1, · · · , si, ãk−1, r̃k−1) any possible sequence of histories from interacting with the prob-
lem instance M0. Since the initial distribution is uniform over all bandit states, each state si is expected to be vis-
ited at the first timestep by K/S times. Let BK/S

k,i := (rk, · · · , rK/S) and B̃
K/S
k,i := (r̃k, · · · , r̃K/S). We define

P (b
K/S
k,i |Hk) := P(BK/S

k,i = b
K/S
k,i |Hk) and P̃ (bKk,i|H̃k) := P(B̃K/S

k,i = b
K/S
k,i |H̃k). To quantify the difference between

these two distributions, we employ the following notion of KL divergence

dKL

(
P̃ (b

K/S
k,i |H̃

i
k), P (b

K/S
k,i |H

i
k)
)
= E

∑
b
K/S
k,i

P̃ (b
K/S
k,i |H̃

i
k) ln

(
P̃ (b

K/S
k,i |H̃i

k)

P (b
K/S
k,i |Hi

k)

)
Applying the chain rule of KL divergence, we obtain that

dKL

(
P̃ (b

K/S
1,i |H̃

i
k), P (b

K/S
1,i |H

i
k)
)
=

K/S∑
k=1

dKL

(
P̃ (bkk,i|H̃i

k), P (b
k
k,i|Hi

k)
)

=

K/S∑
k=1

P[ãk = a∗]

(
δ ln

(
δ

p1

)
+ (1− δ) ln

(
1− δ
1− p1

))
=
K

SA

(
δ ln

(
δ

p1

)
+ (1− δ) ln

(
1− δ
1− p1

))
≤ K

SA

ϵ2

δ ln 2

where the last inequality holds by (Osband and Roy, 2016, Proposition 1) Let niK/S(a
∗) :=

∑K/S
k=1 I[ak = a∗] denote the

(random) number of times that arm a∗ is chosen in these K/S episodes that starts from the bandit state si in the problem
instance M . Similarly, we denote by ñiK/S(a

∗) :=
∑K/S

k=1 I[ãk = a∗] the (random) number of times that arm a∗ is chosen
in these K/S episodes that starts from the bandit state si in the problem instance M0. Using Pinsker’s inequality, we have
that

E

[
niK/S(a

∗)

K/S
−
ñiK/S(a

∗)

K/S

]
≤
√

1

2
dKL

(
P̃ (b

K/S
k,i ), P (b

K/S
k,i )

)



Xiaoyan Hu, Ho-fung Leung

Since E[ñiK/S(a
∗)] = K/(SA) due to the fact that the agent is uninformative, it holds that

E

[
niK/S(a

∗)

K/S

]
≤
√

1

2
dKL

(
P̃ (b

K/S
k,i ), P (b

K/S
k,i )

)
+

1

A
(45)

Since Inequality (45) holds for any arbitrary bandit state si, i ∈ [S]. Therefore, if δ ∈ [0, 1/2] and ϵ ≤ 1−2δ, then through
a simple substitution in deriving Inequality (44), we have that

K∑
k=1

EM0,πk {I[ak ̸= a∗]} =
∑
i∈[S]

K

S

(
1− 1

A
−
√

1

2
dKL

(
P̃ (b

K/S
k,i ), P (b

K/S
k,i )

))

≥K

(
1− 1

A
−
√

K

SA

ϵ2

2δ

)
Plugging in Inequality (43), we obtain that

EM

[
K∑

k=1

(
V ∗
1 (S

k
1 )− V πk

1 (Sk
1 )
)]
≥ 1

2β
K

(
1− 1

A
−
√

K

SA

ϵ2

2δ

)
·∆

≥ 1

2β
K

(
1− 1

A
−
√

K

SA

ϵ2

2δ

)
ϵ(eβ(H−1) − 1)

Eeβ·r(a∗)

=
1

8β

√
δ(eβ(H−1) − 1)

Eeβ·r(a∗)

√
SAK by setting ϵ2 =

δSA

8K

≥ 1

8β

√
p1 − p21(eβ(H−1) − 1)

Eeβ·r(a∗)

√
SAK for sufficiently large K such that ϵ ≤ (δ + ϵ)2

=
1

8β
·max

h
cπ

∗

v,h+1 ·
√
SAK

=Ω

(
ctv
β

√
SAK

)
Further, since the transition kernel is timestep-dependent by definition, i.e., P1, P2, ..., PH may not be identical. We
augment the state from S to be HS as in the proof of (Jin et al., 2018b, Theorem 3). Recall that T := KH . Since the case
of β < 0 can be proved similarly, therefore, we conclude that

Regret(T,M(t)) ≥ Ω

(
e|β|t

|β|
√
SAT

)
Note that maxh c

π∗

v,h+1 ≤ O(e|β|(H−1)/2) for any MDP (See Appendix D). Hence, when |β|(H − 1) is sufficiently large,
this bound translates to

Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)
in the worst case, which concludes the proof.

F PROOF OF LEMMA 4

Let p′ ∈ (0, 1) denote the failure probability of events that are independent of the successful events of Lemmas 1 and 2. In
the rest of the proof, we define ηh := (1 + 1

H )2(h−1)Λh−1 and ι′ := ln(2/p′).

F.1 Upper Bound ψk
h+1 Term.

Lemma 5. With probability at least 1− (HSA+ 1)p′, it holds that

1

β

H∑
h=1

K∑
k=1

ηhψ
k
h+1 ≤

1

β
ΛH−1(ln(T ) + 1)

(
Nα′

p′ · eβHHSA+ 2N0(α
′) ·H 3

2S
3
2A

1
2 + 2

√
HSATι′

)



A Tighter Problem-Dependent Regret Bound for Risk-Sensitive Reinforcement Learning

where α′ =
√
HSA is the input of Algorithm 1 and Nα′

p′ is defined in Equation (6).

Proof. Let γ ∈ (0, eβH ]. Define φk
h+1(s, a, γ) := I[∨s′:Ph(s′|s,a)>S−1e−βHγ(N

k
h (s

′) < N0(γ))]. That is, φk
h+1(s, a, γ) =

1 means that there exists some state s′ such that Ph(s
′|s, a) > S−1e−βH is visited by less than N0(γ) times. For

convenience, we denote φ̄k
h+1(s, a, γ) := I[∧s′:Ph(s′|s,a)>S−1e−βHγ(N

k
h (s

′) ≥ N0(γ))] = 1 − φk
h+1(s, a, γ). Again,

φ̄k
h+1(s, a, γ) = 1 means that any such states of taking action a at state s at timestep h are visited by more than N0(γ)

times. We have that

H∑
h=1

K∑
k=1

ηhψ
k
h+1

≤e2ΛH−1

H∑
h=1

H∑
j=1

[
Ph(e

β·V ref,j
h+1 − eβ·V

REF
h+1)

]
(sjh, a

j
h)

K∑
k=1

1

nkh

nk
h∑

i=1

I[lkh,i = j]

≤2e2ΛH−1(ln(T ) + 1)

H∑
h=1

K∑
k=1

[
Ph(e

β·V ref,k
h+1 − eβ·V

REF
h+1)

]
(skh, a

k
h) (46)

≤2e2ΛH−1(ln(T ) + 1)

(
H∑

h=1

K∑
k=1

eβHφk
h+1(s

k
h, a

k
h, α

′) +

H∑
h=1

K∑
k=1

φ̄k
h+1(s

k
h, a

k
h, α

′)
[
Ph(e

β·V ref,k
h+1 − eβ·V

REF
h+1)

]
(skh, a

k
h)

)
(47)

where Inequality (46) follows from the same trick in the derivation of (Zhang et al., 2020, Inequality (58)). To further
obtain an upper bound, we first state an important result.

Lemma 6. Let p′ ∈ (0, 1) denote the failure probability and γ ∈ (0, eβH ]. We define

Nγ
p′ :=min{n ∈ N+ | n · S−1e−βHγ −

√
2Sn ln(2/p′) > N0(γ)}

=

(√
N0(γ)

S−1e−βHγ
+

2S ln(2/p′)

4S−2e−2βHγ2
+

√
2S ln(2/p′)

2S−1e−βHγ

)2 (48)

where N0(γ) = c4e
4βHH3SAι/γ2 is defined in Lemma 3. For any (s, a, h) ∈ S × A × [H], if N j

h(s, a) ≥ Nγ
p′

holds at episode j, then we have that N j
h+1(s

′) :=
∑

a∈AN
j
h+1(s

′, a) N j
h(s, a) ≥ N0(γ) for any s′ ∈ S such that

Ph(s
′|s, a) ≥ S−1e−βHγ.

Proof. The proof relies on the L1 deviation bound for a multinomial distribution (Weissman et al., 2003), which is stated
as follows without proof.

Lemma 7. Let p′ ∈ (0, 1) denote the failure probability. For any (s, a, h) ∈ S ×A× [H], it holds that

P

(
|Nh+1(s

′)−Nh(s, a) · Ph(s
′|s, a)| ≤

√
2SNh(s, a) · ln(

2

p′
)

)
≥ 1− p′,∀s′ ∈ S

where Nh+1(s
′) is the number of visits to state s′ at timestep h + 1 after taking action a at state s at timestep h, and

Nh(s, a) is the number of visits to (h, s, a).

Note that Nh+1(s
′) ≥ 1

Ph(s′|s,a)

(
Nh(s, a)−

√
2SNh(s, a) · ln( 2

p′ )
)

. Letting the RHS no less than N0(γ) yields the
result.

Intuitively, Lemma 6 states that any state s′ that can be reached by taking action a at state s at timestep h with probability
no less than S−1e−βHγ is visited more than N0(γ) times when (h, s, a) is experienced Nγ

p′ times. Therefore, we have that

H∑
h=1

K∑
k=1

φk
h+1(s

k
h, a

k
h, α

′) ≤ HSA ·Nα
p′ (49)
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Further, note that when φ̄k
h+1(s, a, γ) = 1, we have that[

Ph(e
β·V ref,k

h+1 − eβ·V
REF
h+1)

]
(s, a)

=
∑

s′:Ph(s′|s,a)≥S−1e−βHγ

Ph(s
′|s, a)(eβ·V

ref,k
h+1 − eβ·V

REF
h+1) +

∑
s′:Ph(s′|s,a)<S−1e−βHγ

Ph(s
′|s, a)(eβ·V

ref,k
h+1 − eβ·V

REF
h+1)

≤
∑

s′:Ph(s′|s,a)≥S−1e−βHγ

Ph(s
′|s, a)γ +

∑
s′:Ph(s′|s,a)<S−1e−βHγ

S−1e−βHγ · eβH

≤γ + S · S−1e−βHγ · eβH = 2γ

Therefore, we derive that

H∑
h=1

K∑
k=1

φ̄k
h+1(s

k
h, a

k
h, α

′)
[
Ph(e

β·V ref,k
h+1 − eβ·V

REF
h+1)

]
(skh, a

k
h)

≤2α′
H∑

h=1

K∑
k=1

φ̄k
h+1

(
skh, a

k
h, α

′) (I[Nk
h (s) < N0(α

′)] +
[
(Ph − P̂h)I[Nk

h (s) < N0(α
′)]
]
(skh, a

k
h)
)

≤2N0(α
′) · α′HS + 2

√
α′2Tι′ (50)

which concludes the proof.

F.2 Upper Bound ξkh+1 Term.

Lemma 8. With probability at least 1− ((T + 1)HSAp′), it holds that

1

β

H∑
h=1

K∑
k=1

ηhξ
k
h+1 ≤

1

β
ΛH−1 ·O

(
eβHN

√
H

p′ HSA+
√
HTι′ +

√
HSATι′

)
where N

√
H

p′ is defined in Equation (6).

Proof. Define θkh+1 = ηh
∑K

k=1(1/ň
k
h)
∑ňk

h
i=1 I[ľkh,i = j], θ̃kh+1 = ηh · ⌊(1 + 1/H)xjh⌋/x

j
h, and xjh is the number of

elements in the current stage with respect to (sjh, a
j
h, h). Similar to the analysis in the proof of Lemma 5, we derive

H∑
h=1

K∑
k=1

ηhξ
k
h+1

=

H∑
h=1

K∑
j=1

ηh

[(
Ph − P̂h

)
(eβ·V

j
h+1 − eβ·V

∗
h+1)

]
(sjh, a

j
h)[

Phe
β·V ∗

h+1

]
(sjh, a

j
h)

K∑
k=1

1

ňkh

ňk
h∑

i=1

I[ľkh,i = j]

=

H∑
h=1

K∑
k=1

θkh+1

[(
Ph − P̂h

)
(eβ·V

k
h+1 − eβ·V

∗
h+1)

]
(skh, a

k
h)[

Phe
β·V ∗

h+1

]
(skh, a

k
h)

≤
H∑

h=1

K∑
k=1

θkh+1

φk
h+1(s

k
h, a

k
h, γ)e

βH + φ̄k
h+1(s

k
h, a

k
h, γ)

[(
Ph − P̂h

)
(eβ·V

k
h+1 − eβ·V

∗
h+1)

]
(skh, a

k
h)[

Phe
β·V ∗

h+1

]
(skh, a

k
h)


≤ΛH−1 ·O

(
eβHNγ

p′HSA
)
+

H∑
h=1

K∑
k=1

θkh+1φ̄
k
h+1(s

k
h, a

k
h, γ)

[(
Ph − P̂h

)
(eβ·V

k
h+1 − eβ·V

∗
h+1)

]
(skh, a

k
h)[

Phe
β·V ∗

h+1

]
(skh, a

k
h)

=ΛH−1 ·O
(
eβHNγ

p′HSA
)
+

H∑
h=1

K∑
k=1

θ̃kh+1φ̄
k
h+1(s

k
h, a

k
h, γ)

[(
Ph − P̂h

)
(eβ·V

k
h+1 − eβ·V

∗
h+1)

]
(skh, a

k
h)[

Phe
β·V ∗

h+1

]
(skh, a

k
h)
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+

H∑
h=1

K∑
k=1

(θkh+1 − θ̃kh+1)φ̄
k
h+1(s

k
h, a

k
h, γ)

[(
Ph − P̂h

)
(eβ·V

k
h+1 − eβ·V

∗
h+1)

]
(skh, a

k
h)[

Phe
β·V ∗

h+1

]
(skh, a

k
h)

≤ΛH−1 ·O
(
eβHNγ

p′HSA+
√
γ2Tι′ +

√
γ2SATι′

)
(51)

Here, the second inequality holds with probability (1 − HSAp′) by lemma 7 and a union bound over all (s, a, h) ∈
S ×A× [H]. The last inequality happens with probability (1− (T + 1)p′) by Azuma-Hoeffding’s inequality following a
similar analysis in the proof of Lemma 15 in (Zhang et al., 2020). Set γ ←

√
H and we conclude the proof.

F.3 Upper Bound ϕkh+1 Term.

Lemma 9. With probability (1− p′), it holds that

1

β

H∑
h=1

K∑
k=1

ηhϕ
k
h+1 ≤ ΛH−1 ·O

(√
H2Tι′

)
Proof. Define

zπh (s, a) :=
[Phe

β·V π
h+1 ](s, a)

eβλh+1·[PhV π
h+1](s,a)

(52)

By the definition of λh+1 in Equation (16), we have

∂zh(s, a)

∂V π
h+1(s

′)
∝ eβ·V

π
h+1(s

′) − λh+1[Phe
β·V π

h+1 ](s, a) ≤ 0 (53)

Therefore, we have for any policy π and any (h, s, a) ∈ [H]× S ×A

[Phe
β·V ∗

h+1 ](s, a)

eβλh+1·[PhV ∗
h+1](s,a)

≤ [Phe
β·V π

h+1 ](s, a)

eβλh+1·[PhV π
h+1](s,a)

(54)

Notice that ηhλh+1 = (1+1/H)2(h−1)Λh−1λh+1 = (1+1/H)2(h−1)Λh ≤ e2ΛH−1. By Azuma-Hoeffding’s inequality,
we can easily derive

1

β

H∑
h=1

K∑
k=1

ηhϕ
k
h+1

=

H∑
h=1

K∑
k=1

ηh

 1

β
ln

(
[Phe

β·V ∗
h+1 ](skh, a

k
h)

eβλh+1·V ∗
h+1(s

k
h+1)

)
− 1

β
ln

 [Phe
β·V πk

h+1 ](skh, a
k
h)

eβλh+1·V πk

h+1(s
k
h+1)


=

H∑
h=1

K∑
k=1

ηh
1

β
ln

(
zπ

∗

h (skh, a
k
h)

zπ
k

h (skh, a
k
h)

)
+

H∑
h=1

K∑
k=1

ηhλh+1

[
(Ph − P̂h)(V

∗
h+1 − V πk

h+1)
]
(skh, a

k
h)

≤O
(
ΛH−1

√
H2Tι′

)
(55)

F.4 Upper Bound bkh Term.

Lemma 10. Recall that p ∈ (0, 1) is the failure probability defined in Lemmas 1 and 2 and ι = log(2/p). With probability
at least 1− 4p, it holds that

2

β

H∑
h=1

K∑
k=1

ηh
bkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

≤ 1

β
·O

(
max
h
{Λh−1 · c∗v,h+1}

√
HSATι

+ ΛH−1

(√
eβHαHSATι+

√
α2HSATι+ eβH(HSAι)

3
4T

1
4 + eβHHSA

√
SN0(α)ι ln(T )

))
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Proof. Define νref,k
h = σref,k

nk
h

− (u
ref,k

nk
h

)2 and ν̌kh =
σ̌k
h

ňk
h

− (
∆̌k

h

ňk
h

)2. By the definition of bkh, we have that

2

H∑
h=1

K∑
k=1

ηh
bkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

≤2e2
H∑

h=1

K∑
k=1

Λh−1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

c1
√
νref,k
h

nkh
ι+ c2

√
ν̌kh
ňkh
ι


+ 2e2ΛH−1

H∑
h=1

K∑
k=1

(
c3

(
eβHι

nkh
+
eβHι

ňkh
+
eβHι

3
4

(nkh)
3
4

+
eβHι

3
4

(ňkh)
3
4

))

≤O

(
H∑

h=1

K∑
k=1

Λh−1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

√νref,k
h

nkh
ι+

√
ν̌kh
ňkh
ι


+ eβHΛH−1H

2SA ln(T )ι+ eβHΛH−1H
3
2 (SAι)

3
4T

1
4

)

(56)

The following Lemma is a counterpart of Lemma 18 in (Zhang et al., 2020).

Lemma 11. With probability at least 1− 4p, it holds that

νref,k
h − V([Phe

β·V ∗
h+1 ](skh, a

k
h)) ≤ 4eβHα+

6e2βHSN0(α)

nkh
+ 14e2βH

√
ι

nkh

Next, we bound the first two terms respectively. For the first term, we have

H∑
h=1

K∑
k=1

Λh−1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

√
νref,k
h

nkh
ι

≤
H∑

h=1

K∑
k=1

Λh−1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

√√√√V
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)

nkh
ι

+ ΛH−1

H∑
h=1

K∑
k=1

√√√√(4eβHα

nkh
+

6e2βHN0(α) · S
(nkh)

2
+ 14e2βH

√
ι

(nkh)
3
2

)
ι

≤O

(
max
s,a,h

Λh−1

√
V
(
[Phe

β·V ∗
h+1 ](s, a)

)
[Phe

β·V ∗
h+1 ](s, a)

H∑
h=1

K∑
k=1

√
1

nkh
ι

+ ΛH−1

H∑
h=1

K∑
k=1

√√√√(4eβHα

nkh
+

6e2βHN0(α) · S
(nkh)

2
+ 14e2βH

√
ι

(nkh)
3
2

)
ι

)

≤O

(
max
s,a,h

Λh−1

√
V
(
[Phe

β·V ∗
h+1 ](s, a)

)
[Phe

β·V ∗
h+1 ](s, a)

√
HSATι

+ ΛH−1

∑
s,a,h

√
NK+1

h (s, a)eβHαι+ eβHHSA
√
N0(α) · Sι ln(T ) + eβH(HSAι)

3
4T

1
4

)

≤O

(
max
h
{Λh−1 · c∗v,h+1}

√
HSATι

+ ΛH−1

(√
eβHαHSATι+ eβHHSA

√
N0(α) · Sι ln(T ) + eβH(HSAι)

3
4T

1
4

))
(57)
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where we utilize the definition that c∗v,h+1 = maxs,a([Phe
β·V ∗

h+1 ](s, a))−1

√
V([Phe

β·V ∗
h+1 ](s, a)) in Equation (4). For the

second term, since we have that

ν̌kh ≤
1

ňkh

ňk
h∑

i=1

(
eβ·V

ref,ľi
h+1 (s

ľi
h+1) − eβ·V

∗
h+1(s

ľi
h+1)

)

≤ 1

ňkh

ňk
h∑

i=1

(e2βHw
ňk
h

h+1(s
ľi
h+1) + α2) ≤ 1

ňkh
e2βHN0(α) · S + α2 (58)

We derive that

H∑
h=1

K∑
k=1

Λh−1

√
ν̌kh
ňkh
ι ≤ΛH−1

H∑
h=1

K∑
k=1

(√
α2

ňkh
ι+

√
e2βHSN0(α)ι

ňkh

)
≤O

(
ΛH−1

(√
α2HSATι+ eβHHSA

√
N0(α) · Sι ln(T )

)) (59)

F.5 Putting Everything Together

Recall that α = e−βH and α′ =
√
HSA. Note that c∗v,H+1 = 1. When T is sufficiently large, we conclude that,

1

β

H∑
h=1

K∑
k=1

(1 +
1

H
)2(h−1)Λh−1

(
2bkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

+ ψk
h+1 + ξkh+1 + ϕkh+1

)

≤ 1

β
·O

(
max
h
{Λh−1 · c∗v,h+1}

√
HSATι

+ ΛH−1

(√
eβHαHSATι+

√
α2HSATι+ eβH(HSAι)

3
4T

1
4

)
+ ΛH−1

(
eβHHSA

(
Nα′

p′ +
√
N0(α) · Sι

)
+N0(α) ·H

3
2S

3
2A

1
2 +
√
HSATι′

)
ln(T )

+ ΛH−1

(
eβHN

√
H

p′ HSA+
√
HTι′ +

√
HSATι′ + β

√
H2Tι′

))

≤ 1

β
·O
(
max
h∈[H]

{
Λh−1 · c∗v,h+1

}√
max{SA,H}HTι′ ln(T )

)
=
1

β
· Õ
(
max
h∈[H]

{
Λh−1 · c∗v,h+1

}√
max{SA,H}HT

)

which concludes the proof.

G MODIFIED ALGORITHM AND A SKETCH OF REGRET ANALYSIS FOR
RISK-AVERSE RL

G.1 UCB-ADVANTAGE FOR RISK-AVERSE RL

The modified algorithm for risk-averse RL is presented in Algorithm 2. We provide the counterparts of Lemmas 1, 2, and
3 as follows, which can be proved similarly.
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Lemma 12 (Optimism). Let p ∈ (0, 1), for any s, a, h, k ∈ S × A × [H] × [K], with probability at least
1 − 2(T 3 + 3)p, it holds that Q∗

h(s, a) ≤ Qk
h(s, a) ≤ Qk

h(s, a). Therefore, we have that V ∗
h (s) = maxaQ

∗
h(s, a) ≤

Qk
h(s, argmaxaQ

∗
h(s, a)) ≤ V k

h (s).

Lemma 13 (Bounded estimation error). Conditioned on the successful events of Lemma 12, for any γ ∈ (0, 1], with
probability (1− Tp) it holds that

∑K
k=1 I[eβ·V

∗
h (s) − eβ·V k

h (s) ≥ γ] ≤ O
(
e4βHH3SA/γ2

)
.

Lemma 14 (Good reference values). Conditioned on the successful events of Lemma 12 and Lemma 13, it holds that
eβ·V

∗
h (s) ≥ eβ·V

ref,k
h (s) ≥ eβ·V

∗
h (s) − γ if nkh(s) ≥ N0(γ) := c4e

4βHH3SAι/γ2, where c4 is a sufficiently large constant
for analysis.

Note that when β < 0, if Qk
h(s, a) is an optimistic estimation of Q∗

h(s, a), i.e., Qk
h(s, a) ≥ Q∗

h(s, a), then we have that
eβ·Q

k
h(s,a) ≤ eβ·Q∗

h(s,a). Therefore, Lemmas 13 and 14 states that eβ·V
∗
h (s)− eβ·V k

h (s) ≥ γ, which is slightly different from
Lemmas 2 and 3.

Algorithm 2 UCB-ADVANTAGE FOR RISK-AVERSE RL (β < 0)

1: Initialize: α ← min{e−H , eβH

4(H+1)}; α
′ ← eβH

√
HSA; ι← ln(2/p) where p is the failure probability in Lemmas 1

and 2; risk parameter β < 0; set all accumulators to 0; Vh(s)← H−h+1,Qh(s, a)← H−h+1, V ref
h (s)← H−h+1

for all (s, a, h) ∈ S ×A× [H]; VH+1 ← 0, V ref
H+1 ← 0; L := {li | l1 = 1, li = li−1 +

⌊
(1 + 1/H)i

⌋
, i = 2, 3, ...}

2: for episodes k ← 1, 2, ...,K do
3: Receive s1
4: for h← 1, 2, ...,H do
5: Take action ah ← argmaxaQh(sh, a) and observe the next state sh+1

6: n := Nh(sh, ah)
+←− 1, ň := Ňh(sh, ah))

+←− 1, and update by rules (9), (10), and (11)
7: if n ∈ L then
8: bh ← c1

√
σref/n−(uref/n)2

n ι+ c2

√
σ̌/ň−(∆̌/ň)2

ň ι+ c3

(
ι
n + ι

ň + ι
3
4

n
3
4
+ ι

3
4

ň
3
4

)
9: b̄h ← 2

√
1
ň ι

10: b̃h ← 2
√

1
n ι

11: zh ← max
{
eβ(H−h+1), ǔň − b̄h,

uref

n − b̃h,
uref

n + ∆̌
ň − bh

}
12: Qh(sh, ah)← min

{
rh(sh, ah) +

1
β ln (zh) , Qh(sh, ah)

}
13: Vh(sh)← maxaQh(sh, a)
14: Ňh(sh, ah), ∆̌h(sh, ah), ǔh(sh, ah), σ̌h(sh, ah)← 0
15: end if
16: if

∑
aNh(sh, a) = N0(α) or

∑
aNh(sh, a) = N0(α

′) then
17: V ref

h (sh)← Vh(sh)
18: end if
19: end for
20: end for

G.2 A Sketch of Regret Analysis of Algorithm 2

Next, we provide a sketch of regret analysis. Observe that when β < 0, we have that

Regret(T ) ≤
K∑

k=1

(
V k
1 (s1)− V πk

1 (s1)
)
≤ e|β|H

|β|

K∑
k=1

(
eβ·V

πk

1 (s1) − eβ·V
k
1 (s1)

)
Hence, we can derive Term (20) of Theorem 1 by a similar analysis in Appendix C. To derive Term (21) of Theorem 1, we
establish the recursive form that is similar to Inequality (18). Note that by Lemma 12, we have that

ζkh :=V k
h (skh)− V πk

h (skh)

≤ 1

β
ln(zkh)−

1

β
ln

(
[Phe

β·V πk

h+1 ](skh, a
k
h)

)
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=
1

|β|
ln

(
[Phe

β·V πk

h+1 ](skh, a
k
h)

)
− 1

|β|
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)
+

1

|β|
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)
− 1

|β|
ln(zkh)

=λh+1

(
V ∗
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
− 1

|β|

ln

(
[Phe

β·V ∗
h+1 ](skh, a

k
h)

eβ·V
∗
h+1(s

k
h+1)

)
− ln

 [Phe
β·V πk

h+1 ](skh, a
k
h)

eβ·V
πk

h+1(s
k
h+1)


+

1

|β|
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)
− 1

|β|
ln(zkh)

≤λh+1ζ
k
h+1 − λh+1δ

k
h+1 −

1

|β|
ϕkh+1 +

1

|β|
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)
− 1

|β|
ln(zkh) (60)

Let κkh := I[[Phe
β·V ∗

h+1 ](skh, a
k
h)− zkh > eβH

H+1 ]. Note that when κkh = 0, we have that

[Phe
β·V ∗

h+1 ](skh, a
k
h)− zkh

zkh
=

(
[Phe

β·V ∗
h+1 ](skh, a

k
h)

[Phe
β·V ∗

h+1 ](skh, a
k
h)− zkh

− 1

)−1

≤ (1 +
1

H
)
[Phe

β·V ∗
h+1 ](skh, a

k
h)− zkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

where the inequality holds by (x− 1)−1 ≤ (1 + 1/H)x−1 when x ≥ H + 1. Hence, we obtain that

1

|β|
ln
(
[Phe

β·V ∗
h+1 ](skh, a

k
h)
)
− 1

|β|
ln(zkh)

≤H · κkh + (1− κkh)
1

|β|
[Phe

β·V ∗
h+1 ](skh, a

k
h)− zkh

zkh

≤H · κkh + (1 +
1

H
)
1

|β|
[Phe

β·V ∗
h+1 ](skh, a

k
h)− zkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

≤H · κkh + (1 +
1

H
)
1

|β|

1
ňk
h

∑ňk
h

i=1[Ph(e
β·V ∗

h+1 − eβ·V
ľi
h+1)](skh, a

k
h)− ψk

h+1 + 2bkh

[Phe
β·V ∗

h+1 ](skh, a
k
h)

(61)

where the first inequality holds by ln(x) − ln(y) ≤ x−y
y , x ≥ y > 0. Further, by the exact analysis in deriving Inequal-

ity (17), we obtain that

1

|β|

K∑
k=1

1
ňk
h

∑ňk
h

i=1[Ph(e
β·V ∗

h+1 − eβ·V
ľi
h+1)](skh, a

k
h)

[Phe
β·V ∗

h+1 ](skh, a
k
h)

=
1

|β|

K∑
k=1

1
ňk
h

∑ňk
h

i=1(e
β·V ∗

h+1(s
k
h+1) − eβ·V

ľi
h+1(s

k
h+1))

[Phe
β·V ∗

h+1 ](skh, a
k
h)

+
1

β

K∑
k=1

ξkh+1

≤λh+1

ňkh

K∑
k=1

ňk
h∑

i=1

eβδ
ľi
h+1 − 1

βδľih+1

δľih+1 +
1

β

K∑
k=1

ξkh+1

≤(1 + 1

H
)λh+1

eα − 1

α

K∑
k=1

δkh+1 + (1 +
1

H
)λh+1

eβH − 1

β

K∑
k=1

I[nkh < N0(α)] +
1

β

K∑
k=1

ξkh+1 (62)

where α = min{e−H , eβH

4(H+1)} is an input of Algorithm 2. Hence, combining Inequalities (60), (61), and (62) yields

K∑
k=1

ζkh ≤H ·
K∑

k=1

κkh + (1 +
1

H
)λh+1

eβH − 1

β

K∑
k=1

I[nkh < N0(α)]

+ λh+1

K∑
k=1

ζkh+1 +

(
(1 +

1

H
)2 − 1

)
λh+1

K∑
k=1

δkh+1

− (1 +
1

H
)
1

β

K∑
k=1

2bkh − ψk
h+1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

+
1

β

K∑
k=1

ϕkh+1 +
1

β

K∑
k=1

ξkh+1
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where we use the fact that eα−1
α ≤ 1 + 1

H (See Footnote 6 in the main paper). Note that ζkh ≥ δkh+1 for any (h, k) ∈
[H]× [K]. Therefore, we derive

K∑
k=1

ζkh ≤H ·
K∑

k=1

κkh + (1 +
1

H
)λh+1

eβH − 1

β

K∑
k=1

I[nkh < N0(α)]

+ (1 +
1

H
)2λh+1

K∑
k=1

ζkh+1 +
1

β

K∑
k=1

(
ϕkh+1 + ξkh+1 − (1 +

1

H
)

2bkh − ψk
h+1

[Phe
β·V ∗

h+1 ](skh, a
k
h)

) (63)

which is the counterpart of the recursive form (18) for Algorithm 2. Following a similar analysis in the proof of Lemma 4,
we can derive Term (21) for risk-averse RL. It remains to show that

∑K
k=1 κ

k
h can be bounded by a constant. Note that by

line 10 of Algorithm 2, we have that

zkh ≥
uref,k
h

nkh
− b̃h

where uref,k
h =

∑nk
h

i=1 e
β·V ref,li

h+1 (s
li
h+1). Hence, we derive that

[Phe
β·V ∗

h+1 ](skh, a
k
h)− zkh

≤[Phe
β·V ∗

h+1 ](skh, a
k
h)−

uref,k
h

nkh
+ b̃h

≤ 1

nkh

nk
h∑

i=1

[Ph(e
β·V ∗

h+1 − eβ·V
ref,li
h+1 )](skh, a

k
h) +

1

nkh

nk
h∑

i=1

[(Ph − P̂h)e
β·V ref,li

h+1 ](skh, a
k
h) + b̃h

≤ 1

nkh

nk
h∑

i=1

[Ph(e
β·V ∗

h+1 − eβ·V
ref,li
h+1 )](skh, a

k
h) + Õ

(√
1

nkh

)

≤
(1− eβH)Nα

p + α · (nkh −Nα
p )

nkh
+ Õ

(√
1

nkh

)
(64)

where α = min{e−H , eβH

4(H+1)} and Nα
p is a constant defined in Equation (48). Let N denote the minimum nkh such

that both the first and the second term of Inequality (64) is smaller than eβH

2(H+1) , which is also a constant. Therefore,∑K
k=1 κ

k
h ≤ I[nkh ≤ N ] ≤ NSA.

H PROOF OF THE LOWER BOUND

Theorem 3. If |β|(H − 1) and K is sufficiently large, the regret of any policy obeys

Regret(T ) ≥ Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)

Proof. We first note that the key to proving the generalized information-theoretic lower bound (3) is the following lemma,
which is the counterpart of (Osband and Roy, 2016, Theorem 1) for risk-sensitive multi-armed bandit (MAB). In fact, it
corresponds to the hard instance in (Fei et al., 2020, Figure 2) in the proof of (Fei et al., 2020, Theorem 3) for arbitrary A.

Lemma 15. Let sup be the supermum over all distributions of rewards such that for each a = 1, ..., A the rewards
r(1)t, ..., r(A)t are i.i.d. and let inf be the infimum over all reinforcement learning algorithms. Then

inf sup

(
max

a
v(a)K − E

[
K∑
t=1

v(ãt)

])
≥ 1

72

e
|β|·(H−1)

2 − 1

|β|
√
AK

where v(a) = 1
β ln{Er(a)[e

β·r(a)]}.
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Proof. Since the proof for β > 0 and β < 0 is similar, we focus on the case β > 0. We consider a A-armed bandit where
all arms are i.i.d. (H − 1) · Ber(δ), but one arm a∗ is i.i.d. (H − 1) · Ber(δ + ϵ) for some δ, ϵ > 0. We define an auxiliary
r̃t(a) = rt(a) for all a ̸= a∗, but with the rewards of the action a∗ replaced by the draw r̃t ∼ Ber(δ). We consider an
auxiliary sequence of actions ãt ∼ πt(H̃t) for H̃t = (ã1, r̃1, ..., ãt−1, r̃t−1) as the history generated by an agent with no
feedback informing them about a∗. Let nK(a) := |{at = a|t = 1, ...,K}| and ñK(a) := |{ãt = a|t = 1, ...,K}| denote
the number of times arm a has been selected by timeK under at and ãt, respectively. The following lemma is a counterpart
of (Osband and Roy, 2016, Lemma 1) for risk-sensitive MAB.

Lemma 16. (Regret of an Uninformed Agent). For all δ, ϵ > 0 and all learning algorithms π, it holds that

max
a

v(a)K − E

[
K∑
t=1

v(ãt)

]
≤ A− 1

A
Kϵ′

where

v(a) =

{
1
β ln

(
δeβ·(H−1) + (1− δ)

)
, if a ̸= a∗

1
β ln

(
(δ + ϵ)eβ·(H−1) + (1− δ − ϵ)

)
, if a = a∗

ϵ′ =
1

β
ln

(
(δ + ϵ)eβ·(H−1) + (1− δ − ϵ)

δeβ·(H−1) + (1− δ)

)
Proof. We have that

max
a

v(a)K − E

[
K∑
t=1

v(ãt)

]
= E

∑
a̸=a∗

ñK(a)ϵ′


= ϵ′(K − ñK(a∗))

= ϵ′K

(
1− 1

A

)
where the last equation follows from a symmetry argument, since a∗ is independent of ñt(a) for all actions a, which
concludes the proof.

We now establish that, if ϵ is sufficiently small, then over a limited time horizon the distributions of r̃t(at) cannot be
significantly different from the outcomes rt(at). We compare the conditional distributions over the choice of action P
with the choice of action P̃ which would have arisen under the uninformative data H̃t. To be more precise we define
P (zKt |Ht) := P(rKt = zKt |Ht) and P̃ (zKt |H̃t) := P(r̃Kt = zKt |H̃t), where we denote by rKt := (rt(at)), ..., rK(at)) the
sequence of rewards from time t to K and similarly for r̃Kt . To quantify the difference between two distributions we utilize
the following KL divergence

dKL

(
P̃ (zKt |H̃t), P (z

K
t |Ht)

)
= E

∑
zK
t

P̃ (zKt |H̃t) ln

(
P̃ (zKt |H̃t)

P (zKt |Ht)

)
By (Osband and Roy, 2016, Lemma 3) and through a simple substitution in Lemma 15, for all δ, ϵ > 0 and all learning
algorithms π, it holds that

max
a

v(a)K − E

[
K∑
t=1

v(ãt)

]
≥ ϵ′K

(
1− 1

A
−
√

1

2
dKL

(
P̃ (zKt |H̃t), P (zKt |Ht)

))
(65)

Further, combining (Osband and Roy, 2016, Proposition 1) and Inequality (65), we have that

max
a

v(a)K − E

[
K∑
t=1

v(ãt)

]
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≥ϵ′K

(
1− 1

A
−
√
ϵ2

2δ

K

A

)
for all ϵ

≥ 1

2β

ϵ(eβ·(H−1) − 1)

δ(eβ·(H−1) − 1) + 1
K

(
1− 1

A
−
√
ϵ2

2δ

K

A

)
for ϵ ≤ δ

≥ 1

2β

ϵ(eβ·(H−1) − 1)

3
K

(
1− 1

A
−
√
ϵ2

2δ

K

A

)
by setting δ = e−β·(H−1)

≥e
β·(H−1) − 1

6β

√
δA

8K
K

(
1− 1

A
− 1

4

)
by setting ϵ2 =

δA

8K

≥ 1

72

e
β·(H−1)

2 − 1

β

√
AK (66)

where the second inequality follows from the fact that ln(1 + x) ≥ x/2 for x ∈ [0, 1]. Therefore, we conclude the
proof.

Next, we extend the Lemma 15 from MAB to reinforcement learning with S ≥ 2. Consider a finite-horizon MDP that
starts from state s0. The agent ends up in states 1 to S with equal probability, independent of the action. At each such state
i = 1, ..., S, the agent faces the hard instance constructed in the proof of Lemma 15. Since the expected number of times
of visiting each state i is K/S, we derive the counterpart of Inequality (66) in the following,

∑
i

max
a

v(a)
K

S
− E

[
K∑
t=1

v(ãt)

]

≥ϵ′K

(
1− 1

A
−
√
ϵ2

2δ

K

SA

)

≥e
β·(H−1) − 1

6β

√
δSA

8K
K

(
1− 1

A
− 1

4

)
by setting δ = e−β·(H−1) and ϵ2 =

δSA

8K

≥ 1

72

e
β·(H−1)

2 − 1

β

√
SAK

That is, the regret of interacting with this MDP for K episodes is lower bounded by

Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAK

)

Further, since the transition kernel is timestep-dependent by definition, i.e., P1, P2, ..., PH may not be the same. We
augment the state from S to be HS as in the proof of (Jin et al., 2018b, Theorem 3). Recall that T := KH , we have that

Regret(T ) ≥ Ω

(
e

|β|(H−1)
2 − 1

|β|
√
SAT

)

which concludes the proof.
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