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Abstract

In the paper, we propose a class of faster
adaptive Gradient Descent Ascent (GDA) meth-
ods for solving the nonconvex-strongly-concave
minimax problems by using the unified adap-
tive matrices, which include almost all exist-
ing coordinate-wise and global adaptive learn-
ing rates. In particular, we provide an effective
convergence analysis framework for our adaptive
GDA methods. Specifically, we propose a fast
Adaptive Gradient Descent Ascent (AdaGDA)
method based on the basic momentum technique,
which reaches a lower gradient complexity of
Õ(κ4ϵ−4) for finding an ϵ-stationary point with-
out large batches, which improves the existing
results of the adaptive GDA methods by a fac-
tor of O(

√
κ). Moreover, we propose an acceler-

ated version of AdaGDA (VR-AdaGDA) method
based on the momentum-based variance reduced
technique, which achieves a lower gradient com-
plexity of Õ(κ4.5ϵ−3) for finding an ϵ-stationary
point without large batches, which improves the
existing results of the adaptive GDA methods by
a factor of O(ϵ−1). Moreover, we prove that our
VR-AdaGDA method can reach the best known
gradient complexity of Õ(κ3ϵ−3) with the mini-
batch size O(κ3). The experiments on policy
evaluation and fair classifier learning tasks are
conducted to verify the efficiency of our new al-
gorithms.
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1 Introduction

In the paper, we consider the following stochastic
nonconvex-strongly-concave minimax problem:

min
x∈X

max
y∈Y

Eξ∼D[f(x, y; ξ)], (1)

where function f(x, y) = Eξ[f(x, y; ξ)] : Rd1 ×Rd2 → R
is µ-strongly concave over y but possibly nonconvex over
x, and ξ is a random variable following an unknown dis-
tribution D. Here X ⊆ Rd1 and Y ⊆ Rd2 are nonempty
compact convex sets. In fact, Problem (1) is widely used
to many machine learning applications, such as adversar-
ial training (Goodfellow et al., 2014; Tramèr et al., 2018;
Nouiehed et al., 2019), reinforcement learning (Wai et al.,
2019) and robust federated learning (Deng et al., 2021). In
the following, we specifically provide two popular applica-
tions that can be formulated as the above Problem (1).

1) Policy Evaluation. Policy evaluation aims at estimat-
ing the value function corresponding to a certain policy,
which is a stepping stone of policy optimization and serves
as an essential component of many reinforcement learning
algorithms such as actor-critic algorithm (Konda and Tsit-
siklis, 2000). Specifically, we consider a Markov decision
process (MDP) (S,A,P, R, τ), where S denotes the state
space, and A denotes the action space, and P(s′|s, a) de-
notes the transition kernel to the next state s′ given the cur-
rent state s and action a, and τ ∈ [0, 1) is the discount
factor. R(s, a, s′) ∈ [−r, r] (r > 0) is an immediate re-
ward once an agent takes action a at state s and transits
to state s′, and R(s, a) is the reward at (s, a), defined as
R(s, a) = Es′∼P(·|s,a)[R(s, a, s

′)]. π(s, a) : S × A → R
denotes a stationary policy that is the probability of tak-
ing action a ∈ A given the current state s ∈ S. We let
V π(s) = E

[∑+∞
t=0 τ

tR(st, at)|s0 = s, π
]

denote state
value function. Further let V (s; θ) be the parameterized
approximate function of V π(s), and V (s; θ) generally is a
smooth nonlinear function. Following Wai et al. (2019), we
can solve the following minimax problem to find an opti-
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Table 1: Gradient complexity comparison of the representative gradient descent ascent methods for finding an ϵ-stationary
point of the nonconvex-strongly-concave problem (1), i.e., E∥∇F (x)∥ ≤ ϵ or its equivalent variants, where F (x) =
maxy∈Y f(x, y). ALR is adaptive learning rate. Cons(x, y) denotes constraint sets on variables x and y, respectively.
Here Y denotes the fact that there exists a convex constraint set on variable, otherwise is N. 1 denotes Lipschitz continuous
of ∇xf(x, y), ∇yf(x, y) for all x, y; 2 means Lipschitz continuous of ∇xf(x, y; ξ), ∇yf(x, y; ξ) for all ξ, x, y; 3 denotes
the bounded set Y with a diameter D ≥ 0. Since some algorithms do not provide the explicit dependence on κ, we use
p(κ).

Algorithm Reference Cons(x, y) Loop(s) Batch Size Complexity ALR Conditions
SGDA Lin et al. (2020a) N, Y Single O(κϵ−2) O(κ3ϵ−4) 1, 3

SREDA Luo et al. (2020) N, Y Double O(κ2ϵ−2) O(κ3ϵ−3) 2
Acc-MDA Huang et al. (2022) Y, Y Single O(1) Õ(κ4.5ϵ−3) 2
Acc-MDA Huang et al. (2022) Y, Y Single O(κ3) Õ(κ3ϵ−3) 2

PDAda Guo et al. (2021) N, Y Single O(1) O(κ4.5ϵ−4)
√

1
NeAda-AdaGrad Yang et al. (2022) N, Y Double O(ϵ−2) Õ(p(κ)ϵ−4)

√
1

AdaGDA Ours Y, Y Single O(1) Õ(κ4ϵ−4)
√

1
VR-AdaGDA Ours Y, Y Single O(1) Õ(κ4.5ϵ−3)

√
2

VR-AdaGDA Ours Y, Y Single O(κ3) Õ(κ3ϵ−3)
√

2

mal approximated value function, defined as

min
θ∈Θ

max
ω∈Rd

Es,a,s′

[
⟨δ∇θV (s; θ), ω⟩

− 1

2
ωT

(
∇θV (s; θ)∇θV (s; θ)T

)
ω

]
, (2)

where δ = R(s, a, s′) + τVθ(s
′) − Vθ(s), and Es,a,s′ is

taking expectation for s ∼ dπ(·) that is stationary distribu-
tion of states, a ∈ π(·, s) and s′ ∼ P(·|s, a). Here matrix
Hθ = E

[
∇θV (s; θ)∇θV (s; θ)T

]
is generally positive def-

inite. The above problem (2) is generally nonconvex on
variable θ when using the neural networks to approximate
value function V π(s).

2) Robust Federated Averaging. Federated Learning
(FL) (McMahan et al., 2017) is a popular learning paradigm
for training a centralized model based on decentralized data
over a network of clients. Specifically, we have n clients in
FL framework, and Di is the data distribution on i-th de-
vice, and the data distributions {Di}ni=1 generally are dif-
ferent. The goal of FL is to learn a global variable w based
on these heterogeneous data from different data distribu-
tions. To well solve the data heterogeneity issue in FL,
some robust FL methods (Deng et al., 2021; Reisizadeh
et al., 2020) have been proposed, which solve the following
distributionally robust empirical loss problem:

min
w∈Ω

max
p∈Π

{ n∑
i=1

piEξ∼Di
[fi(w; ξ)]− λψ(p)

}
, (3)

where pi ∈ (0, 1) denotes the proportion of i-th device in
the entire model, and fi(w; ξ) is the loss function on i-th
device, and λ > 0 is a tuning parameter, and ψ(p) is a
(strongly) convex regularization. Here Π = {p ∈ Rn :∑n

i=1 pi = 1, pi ≥ 0} is a n-dimensional simplex, and
Ω ⊆ Rd is a nonempty convex set.

Since the above minimax problem (1) frequently appeared
in many machine learning applications, multiple methods
have been proposed to solve it. For example, Lin et al.
(2020a,b) proposed a stochastic gradient descent ascent
(SGDA) method to solve the problem (1). Subsequently,
a class of accelerated SGDA methods (Luo et al., 2020;
Huang et al., 2022) have been presented based on the vari-
ance reduced techniques of SPIDER (Fang et al., 2018;
Wang et al., 2019) and STORM (Cutkosky and Orabona,
2019), respectively. More recently, Guo et al. (2021); Yang
et al. (2022) introduced the adaptive versions of SGDA by
using the adaptive learning rates. However, these adaptive
SGDA methods still suffer from the high sample (gradient)
complexities (please see Table 1). Meanwhile, the adaptive
PDAda algorithm in Guo et al. (2021) only considers us-
ing adaptive learning rate in updating minimized variable
x. Thus, there exists a natural question:

Can we develop faster adaptive gradient de-
scent ascent methods to solve the Problem (1),
which use adaptive learning rates in updating
both variables x and y ?

In the paper, we give an affirmative answer to the above
question and propose a class of faster adaptive gradient de-
scent ascent methods to solve the Problem (1). Our meth-
ods can use many types of adaptive learning rates to update
both variables x and y. Moreover, our methods can flexibly
incorporate momentum and variance-reduced techniques.
Our main contributions are in three-fold:

(1) We propose a class of faster adaptive gradient descent
ascent methods for the nonconvex-strongly-concave
minimax Problem (1) using the universal adaptive ma-
trices for both variables x and y, which include most
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existing adaptive learning rates.

(2) We propose a fast adaptive gradient descent ascent
(AdaGDA) method based on the basic momentum
technique used in Adam algorithm (Kingma and Ba,
2014). Meanwhile, we present an accelerated ver-
sion of AdaGDA (VR-AdaGDA) method based on the
momentum-based variance reduced technique used in
STORM algorithm (Cutkosky and Orabona, 2019).

(3) We provide an effective convergence analysis frame-
work for our adaptive methods under mild assump-
tions. Specifically, we prove that our AdaGDA
method has a gradient complexity of Õ(κ4ϵ−4) with-
out large batches, which improves the existing result
of adaptive method for solving the problem (1) by
a factor of O(κ1/2). Our VR-AdaGDA method has
a lower gradient complexity of Õ(κ4.5ϵ−3) without
large batches, which improves the existing best known
result by a factor of O(ϵ−1) (please see Table 1 for
comparison summary).

From Table 1, despite achieving a better rate when
compared to PDAda (Guo et al., 2021) and NeAda-
AdaGrad (Yang et al., 2022), our VR-AdaGDA algo-
rithm still have the same complexity rate as the existing
non-adaptive Acc-MDA algorithm. In fact, only under
some specific cases such as sparse gradient condition, the
adaptive gradient methods have a faster convergence rate
than the non-adaptive counterparts. For example, Ada-
grad (Duchi et al., 2011) shows a better convergence rate
than SGD under the sparse gradient condition. In fact, we
propose an adaptive gradient-based algorithm framework
for minimax optimization based on the general adaptive
matrices without some specific conditions such as sparse
gradients. It is well known that adaptive gradient meth-
ods generally perform well in practice although with same
convergence rate as non-adaptive gradient methods. In
fact, our VR-AdaGDA algorithm obtains a near-optimal
complexity O(ϵ−3) in finding an ϵ-stationary point (i.e.,
E||∇F (x)|| ≤ ϵ, where F (x) = maxy E[f(x, y; ξ)]).
Thus, we can not obtain a lower complexity than this near-
optimal complexity Õ(ϵ−3). NOTE THAT: the single-
level problem

min
x∈Rd

f(x) ≡ Eξ[f(x; ξ)] (4)

can be seen as a specific case of the minimax Problem (1).
For example, f(x, y; ξ) = af(x; ξ) + b, where a > 0
and b ≥ 0 are constants, i.e., given any x, the function
f(x, ·; ξ) = c is independent on x and ξ, where c is a
constant. Arjevani et al. (2019) proves the stochastic al-
gorithms in solving the single-level nonconvex stochastic
problem (4) has a lower bound complexityO(ϵ−3) for find-
ing an ϵ-stationary point (i.e., E||∇f(x)|| ≤ ϵ). Since the
above Problem (4) can be seen as a specific case of the

minimax Problem (1), the stochastic algorithms in solving
the minimax stochastic Problem (1) also has a lower bound
complexity O(ϵ−3) for finding an ϵ-stationary point (i.e.,
E||∇F (x)|| ≤ ϵ).

2 Related Works

In this section, we overview the existing first-order methods
for minimax optimization and adaptive gradient methods.

2.1 Minimax Optimization Methods

Minimax optimization has recently been shown great suc-
cesses in many machine learning applications such as ad-
versarial training, robust federated learning, and policy
optimization. Thus, many first-order methods (Nouiehed
et al., 2019; Lin et al., 2020a,b; Lu et al., 2020; Yan et al.,
2020; Yang et al., 2020b,a; Rafique et al., 2021; Liu et al.,
2021) were recently proposed to solve the minimax prob-
lems. For example, some (stochastic) gradient-based de-
scent ascent methods (Lin et al., 2020a; Nouiehed et al.,
2019; Lu et al., 2020; Yan et al., 2020; Lin et al., 2020b)
have been proposed for solving the minimax problems.
Subsequently, several accelerated gradient descent ascent
algorithms (Rafique et al., 2021; Luo et al., 2020; Huang
et al., 2022) were proposed to solve the stochastic mini-
max problems based on the variance-reduced techniques.
Meanwhile, Huang et al. (2021b); Chen et al. (2021) stud-
ied the nonsmooth nonconvex-strongly-concave minimax
optimization. In addition, Huang et al. (2022); Wang et al.
(2022) studied the zeroth-order methods for solving the
nonconvex-strongly-concave minimax problems. Huang
and Gao (2023) have proposed a class of Riemanian gra-
dient descent ascent algorithms to solve the geodesically-
nonconvex strongly-concave minimax problems on Riema-
nian manifolds. Zhang et al. (2021); Li et al. (2021) stud-
ied the lower bound complexities of nonconvex-strongly-
concave minimax optimization. More recently, Guo et al.
(2021); Yang et al. (2022) proposed an adaptive gradient
descent ascent method for solving Problem (1).

2.2 Adaptive Gradient Methods

Adaptive gradient methods are a class of popular optimiza-
tion tools to solve large-scale machine learning problems,
e.g., Adam (Kingma and Ba, 2014) is one of the most pop-
ular optimization tools for training deep neural networks
(DNNs), which is a version of the first adaptive gradient
method, AdaGrad (Duchi et al., 2011). The adaptive gradi-
ent methods have been widely studied in machine learning
community. Among them, Adam (Kingma and Ba, 2014)
is the most popular one and uses a coordinate-wise adap-
tive learning rate and momentum technique to accelerate
algorithm. Multiple variants of Adam algorithm (Reddi
et al., 2019; Chen et al., 2018; Guo et al., 2021) have
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been presented to obtain a convergence guarantee under
the nonconvex setting. Due to the coordinate-wise adap-
tive learning rate, Adam often shows a bad generalization
performance in training DNNs. To improve the generaliza-
tion performance of Adam, recently several adaptive gra-
dient methods such as AdamW (Loshchilov and Hutter,
2017) and AdaBelief (Zhuang et al., 2020) were developed.
More recently, the accelerated adaptive gradient methods
(Cutkosky and Orabona, 2019; Huang et al., 2021a) were
designed based on the variance-reduced techniques. In par-
ticular, Huang et al. (2021a) proposed a faster and universal
adaptive gradient SUPER-ADAM framework using a uni-
versal adaptive matrix.

2.3 Notations

For vectors x and y, xr (r > 0) denotes the element-wise
power operation, x/y denotes the element-wise division
and max(x, y) denotes the element-wise maximum. Id de-
notes a d-dimensional identity matrix. For two vectors x
and y, ⟨x, y⟩ is their inner product. ∥ · ∥ denotes the ℓ2
norm for vectors and spectral norm for matrices, respec-
tively. ∇xf(x, y) and ∇yf(x, y) are the partial deriva-
tives w.r.t. variables x and y respectively. Id denotes d-
dimension identity matrix. a = O(b) means that a ≤ Cb
for some constant C > 0, and the notation Õ(·) hides loga-
rithmic terms. Given the mini-batch samples B = {ξi}qi=1,
we let ∇f(x;B) = 1

q

∑q
i=1 ∇f(x; ξi).

3 Faster Adaptive Gradient Descent Ascent
Methods

In this section, we propose a class of faster adaptive gradi-
ent descent ascent methods for solving the minimax prob-
lem (1). Specifically, we propose a fast adaptive gradient
descent ascent (AdaGDA) based on the basic momentum
technique of Adam (Kingma and Ba, 2014). Meanwhile,
we further propose an accelerated version of AdaGDA
(VR-AdaGDA) based on the momentum-based variance
reduced technique of STORM (Cutkosky and Orabona,
2019).

3.1 AdaGDA Algorithm

We first propose a new fast adaptive gradient descent ascent
(AdaGDA) algorithm for solving the Problem (1) based on
the basic momentum technique. Algorithm 1 summarizes
the algorithmic framework of our AdaGDA.

At the line 4 of Algorithm 1, we generate the adaptive ma-
tricesAt andBt for variables x and y, respectively. Specif-
ically, we use the general adaptive matrix At ⪰ ρId1 for
variable x as in the SUPER-ADAM (Huang et al., 2021a),
and the global adaptive matrix Bt = btId2

(bt > 0). For
example, we can generate the matrix At as in the Adam

Algorithm 1 AdaGDA Algorithm
1: Input: T , tuning parameters {γ, λ, ηt, αt, βt}Tt=1 and

mini-batch size q;
2: initialize: Initial input x1 ∈ X , y1 ∈ Y ,

and draw a mini-batch i.i.d. samples
B1 = {ξ1i }

q
i=1, and then compute v1 =

∇xf(x1, y1;B1) = 1
q

∑q
i=1 ∇xf(x1, y1; ξ

1
i ) and

w1 = ∇yf(x1, y1;B1) =
1
q

∑q
i=1 ∇yf(x1, y1; ξ

1
i );

3: for t = 1, 2, . . . , T − 1 do
4: Generate the adaptive matrices At ∈ Rd1×d1 and

Bt ∈ Rd2×d2 ;
One example: At and Bt are generated from (5) and
(6), respectively.

5: xt+1 = xt + ηt(x̃t+1 − xt) with x̃t+1 =
argminx∈X

{
⟨vt, x⟩+ 1

2γ (x− xt)
TAt(x− xt)

}
;

6: yt+1 = yt + ηt(ỹt+1 − yt) with ỹt+1 =
argmaxy∈Y

{
⟨wt, y⟩ − 1

2λ (y − yt)
TBt(y − yt)

}
;

7: Draw a mini-batch i.i.d. samples Bt+1 =
{ξt+1

i }qi=1, and then compute
8: vt+1 = αt+1∇xf(xt+1, yt+1;Bt+1)+(1−αt+1)vt;
9: wt+1 = βt+1∇yf(xt+1, yt+1;Bt+1) + (1 −

βt+1)wt;
10: end for
11: Output: xζ and yζ chosen uniformly random from

{xt, yt}Tt=1.

(Kingma and Ba, 2014), defined as:

ṽ0 = 0, ṽt = ϱṽt−1 + (1− ϱ)∇xf(xt, yt; ξt)
2,

At = diag(
√
ṽt + ρ), t ≥ 1, (5)

where ϱ ∈ (0, 1) and ρ > 0. Matrix Bt is defined as: given
β ∈ (0, 1) and ϱ > 0,

b0 > 0, bt = ϱbt−1 + (1− ϱ)∥∇yf(xt, yt; ξt)∥,
Bt = (bt + ρ)Id2

, t ≥ 1, (6)

which can be seen as a new global adaptive learning rate.
Meanwhile, we also generate the matrix At as in the Ad-
aBelief (Zhuang et al., 2020), defined as:

ṽ0 = 0, ṽt = ϱṽt−1 + (1− ϱ)
(
∇xf(xt, yt; ξt)− vt

)2
,

At = diag(
√
ṽt + ρ), t ≥ 1, (7)

where ϱ ∈ (0, 1) and ρ > 0. Matrix Bt is defined as:

b0 > 0, bt = ϱbt−1 + (1− ϱ)∥∇yf(xt, yt; ξt)− wt∥,
Bt = (bt + ρ)Id2 , t ≥ 1, (8)

where ϱ ∈ (0, 1) and ρ > 0.

At the lines 5 and 6 of Algorithm 1, we apply the general-
ized projection gradient iteration to update variables x and
y based on the adaptive matrices At and Bt, respectively.
Meanwhile, we use the momentum iteration to update the
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Algorithm 2 VR-AdaGDA Algorithm
1: Input: T , tuning parameters {γ, λ, ηt, αt, βt}Tt=1 and

mini-batch size q;
2: initialize: Initial input x1 ∈ X , y1 ∈ Y , and

draw a mini-batch i.i.d. samples B1 = {ξ1i }
q
i=1,

and then compute v1 = ∇xf(x1, y1;B1) and w1 =
∇yf(x1, y1;B1);

3: for t = 1, 2, . . . , T − 1 do
4: Generate the adaptive matrices At ∈ Rd1×d1 and

Bt ∈ Rd2×d2 ;
One example: At and Bt are generated from (5) and
(6), respectively.

5: xt+1 = xt + ηt(x̃t+1 − xt) with x̃t+1 =
argminx∈X

{
⟨vt, x⟩+ 1

2γ (x− xt)
TAt(x− xt)

}
;

6: yt+1 = yt + ηt(ỹt+1 − yt) with ỹt+1 =
argmaxy∈Y

{
⟨wt, y⟩ − 1

2λ (y − yt)
TBt(y − yt)

}
;

7: Draw a mini-batch i.i.d. samples Bt+1 =
{ξt+1

i }qi=1, and then compute
8: vt+1 = ∇xf(xt+1, yt+1;Bt+1) + (1 − αt+1)

(
vt −

∇xf(xt, yt;Bt+1)
)
;

9: wt+1 = ∇yf(xt+1, yt+1;Bt+1) + (1− βt+1)
(
wt −

∇yf(xt, yt;Bt+1)
)
;

10: end for
11: Output: xζ and yζ chosen uniformly random from

{xt, yt}Tt=1.

variables x and y. At the lines 8 and 9 of Algorithm 1,
we adopt the basic momentum technique to estimate the
stochastic gradients vt and wt.

3.2 VR-AdaGDA Algorithm

Next, we propose an accelerated version of AdaGDA (VR-
AdaGDA) algorithm based on the momentum-based vari-
ance reduced technique. Algorithm 2 shows the algorith-
mic framework of the VR-AdaGDA.

At the lines 5 and 6 of Algorithm 2, we simultaneously
use the momentum iteration and the generalized projection
gradient iteration to update variables x and y. At the lines
8 and 9 of Algorithm 2, we apply the momentum-based
variance reduced technique to estimate the stochastic gra-
dients vt and wt. For example, the estimator of gradient
∇f(xt+1, yt+1) is defined as:

vt+1 = αt+1∇xf(xt+1, yt+1;Bt+1) + (1− αt+1)
[
vt

+∇xf(xt+1, yt+1;Bt+1)−∇xf(xt, yt;Bt+1)
]
.

Compared with the estimator vt+1 in Algo-
rithm 1, vt+1 in Algorithm 2 adds the term
(1− αt+1)

(
∇f(xt+1, yt+1;Bt+1)−∇f(xt, yt;Bt+1)

)
to

reduce variance of gradient estimator, where αt+1 ∈ (0, 1).

4 Convergence Analysis

In this section, we study the convergence properties of our
new algorithms (i.e., AdaGDA and VR-AdaGDA) under
mild assumptions. All related proofs are provided in the
following Appendix.

4.1 Mild Assumptions

We have the following mild assumptions for Problem (1).

Assumption 1. Each component function f(x, y; ξ) has
an unbiased stochastic gradient with bounded variance σ2,
i.e., for all ξ, x ∈ X , y ∈ Y , E[∇xf(x, y; ξ)] = ∇xf(x, y),
E∥∇xf(x, y) − ∇xf(x, y; ξ)∥2 ≤ σ2, E[∇yf(x, y; ξ)] =
∇yf(x, y) and E∥∇yf(x, y)−∇yf(x, y; ξ)∥2 ≤ σ2.

Assumption 2. Function f(x, y) is µ-strongly concave in
y ∈ Y , i.e., for all x ∈ X and y1, y2 ∈ Y , we have
∥∇yf(x, y1) −∇yf(x, y2)∥ ≥ µ∥y1 − y2∥. Then the fol-
lowing inequality holds

f(x, y1) ≤ f(x, y2)+⟨∇yf(x, y2), y1 − y2⟩−
µ

2
∥y1 − y2∥2.

Since the function f(x, y) is strongly concave in y ∈
Y , there exists a unique solution to the problem
maxy∈Y f(x, y) for any x. Here we let y∗(x) =
argmaxy∈Y f(x, y) and F (x) = f(x, y∗(x)) =
maxy∈Y f(x, y).

Assumption 3. The function F (x) is bounded below in X ,
i.e., F ∗ = infx∈X F (x) > −∞.

Assumption 4. In our algorithms, the adaptive matrices
At for all t ≥ 1 for updating the variables x satisfiesAT

t =
At and λmin(At) ≥ ρ > 0, where ρ is an appropriate
positive number.

Assumption 4 ensures that the adaptive matrices At for
all t ≥ 1 are positive definite as in Huang et al. (2021a).
Since the function f(x, y) is µ-strongly concave in y, we
can easily obtain the global solution of the subproblem
maxy∈Y f(x, y). Without loss of generalization, in the fol-
lowing convergence analysis, we consider the adaptive ma-
trices Bt = btId2

for all t ≥ 1 for updating the variables
y satisfies b̂ ≥ bt ≥ b > 0, as the global adapitve learn-
ing rates (Li and Orabona, 2019; Ward et al., 2019; Huang
et al., 2021a).

Assumption 5. The objective function f(x, y) has a
Lf -Lipschitz gradient, i.e., for all x, x1, x2 ∈ X and
y, y1, y2 ∈ Y , we have

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ Lf∥x1 − x2∥,
∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ Lf∥y1 − y2∥,
∥∇yf(x1, y)−∇yf(x2, y)∥ ≤ Lf∥x1 − x2∥,
∥∇yf(x, y1)−∇yf(x, y2)∥ ≤ Lf∥y1 − y2∥.
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4.2 Convergence Metrics

We introduce useful convergence metrics to measure con-
vergence of our algorithms. Let ϕt(x) = 1

2x
TAtx, accord-

ing to Assumption 4, ϕt(x) is ρ-strongly convex. We define
a prox-function (i.e., Bregman distance) associated with
ϕt(x) as in Censor and Lent (1981); Censor and Zenios
(1992); Ghadimi et al. (2016):

Dt(x, xt) = ϕt(x)−
[
ϕt(xt) + ⟨∇ϕt(xt), x− xt⟩

]
=

1

2
(x− xt)

TAt(x− xt). (9)

The line 5 of Algorithms 1 or 2 is equivalent to the follow-
ing generalized projection problem:

x̃t+1 = argmin
x∈X

{
⟨vt, x⟩+

1

γ
Dt(x, xt)

}
. (10)

As in Ghadimi et al. (2016), we define a generalized pro-
jected gradient GX (xt, vt, γ) =

1
γ (xt− x̃t+1). At the same

time, we define a gradient mapping GX (xt,∇F (xt), γ) =
1
γ (xt − x∗t+1), where

x∗t+1 = argmin
x∈X

{
⟨∇F (xt), x⟩+

1

γ
Dt(x, xt)

}
. (11)

For Problem (1), when X ⊂ Rd1 , we use the standard gra-
dient mapping metric E∥GX (xt,∇F (xt), γ)∥ to measure
the convergence of our algorithms, as in Ghadimi et al.
(2016). When X = Rd1 , we use the standard gradient met-
ric E∥∇F (xt)∥ to measure convergence of our algorithms,
as in Lin et al. (2020a).

4.3 Convergence Analysis of the AdaGDA Algorithm

We analyze the convergence properties of our AdaGDA al-
gorithm under Assumptions 1, 2, 3, 4 and 5. The follow-
ing theorems show our main theoretical results. The detail
proofs are provided in the Appendix A.1. For notational
simplicity, let L = Lf (1 + κ) and κ =

Lf

µ .

Theorem 1. Suppose the sequence {xt, yt}Tt=1 be gen-
erated from Algorithm 1. When X ⊂ Rd1 , and given
Bt = btId2 (b̂ ≥ bt ≥ b > 0) for all t ≥ 1,
ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt, βt+1 =

c2ηt, m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0, 9µ2

4 ≤
c1 ≤ m1/2

k ,
75L2

f

2 ≤ c2 ≤ m1/2

k , 0 < γ ≤
min

(
15

√
2λµ2ρ

2
√

400L2
fλ

2+24µ2λ2+16875b̂2κ2L2
fµ

2
, m

1/2ρ
4Lk

)
and 0 <

λ ≤ min
( 405bL2

fµ
3/2

8
√

50L2
f+9µ2

, b
6Lf

)
, we have

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥

≤ 2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
, (12)

whereG = F (x1)−F∗

kγρ +
9b1L

2
f∆

2
1

kλµρ2 + 2σ2

qkµ2ρ2 +
2mσ2

qkµ2ρ2 ln(m+

T ) and ∆2
1 = ∥y1 − y∗(x1)∥2.

Theorem 2. Assume that the sequence {xt, yt}Tt=1 be
generated from the Algorithm 1. When X = Rd1 ,
and given Bt = btId2 (b̂ ≥ bt ≥ b > 0) for all
t ≥ 1, ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 = c1ηt,

βt+1 = c2ηt, m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0,

9µ2

4 ≤ c1 ≤ m1/2

k ,
75L2

f

2 ≤ c2 ≤ m1/2

k , 0 < γ ≤
min

(
15

√
2λµ2ρ

2
√

400L2
fλ

2+24µ2λ2+16875b̂2κ2L2
fµ

2
, m

1/2ρ
4Lk

)
and 0 <

λ ≤ min
( 405bL2

fµ
3/2

8
√

50L2
f+9µ2

, b
6Lf

)
, we have

1

T

T∑
t=1

E∥∇F (xt)∥

≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3G′m1/4

T 1/2
+

2
√
3G′

T 1/4

)
, (13)

whereG′ = ρ(F (x1)−F∗)
kγ +

9b1L
2
f∆

2
1

kλµ + 2σ2

qkµ2 +
2mσ2

qkµ2 ln(m+

T ).

Remark 1. Without loss of generality, let
k = O(1), b = O(1), b̂ = O(1) and

15
√
2λµ2ρ

2
√

400L2
fλ

2+24µ2λ2+9375b̂2κ2L2
fµ

2
≤ m1/2ρ

4Lk , we have m ≥

max
(
k2, (c1k)

2, (c2k)
2, 225L2k2λ2µ4

800L2
fλ

2+48µ2λ2+18750b̂2κ2L2
fµ

2

)
.

At the same time, let b
6Lf

≤ 405bL2
fµ

3/2

8
√

50L2
f+9µ2

, we have 0 <

λ ≤ b
6Lf

. Given γ = 15
√
2λµ2ρ

2
√

400L2
fλ

2+24µ2λ2+9375b̂2κ2L2
fµ

2
,

λ = b
6Lf

, c1 = 9µ2

4 and c2 =
75L2

f

2 . Without loss of

generality, let µ ≤ 1
Lf

, it is easily verified that γ = O( 1
κ2 ),

λ = O( 1
Lf

), c1 = O(µ2), c2 = O(L2
f ). Then we have

m = O(L4
f ). When mini-batch size q = O(1), we

have G = O(κ2 + κ2 ln(m + T )) = Õ(κ2). Thus, our
AdaGDA algorithm has a convergence rate of Õ( κ

T 1/4 ).
Let Õ( κ

T 1/4 ) ≤ ϵ, i.e., E∥GX (xζ ,∇F (xζ), γ)∥ ≤ ϵ or
E∥∇F (xζ)∥ ≤ ϵ, we have T ≤ κ4ϵ−4. In Algorithm 1, we
need to compute 2q stochastic gradients to estimate partial
derivative estimators vt and wt at each iteration, and
need T iterations. Therefore, our AdaGDA algorithm has
a gradient (i.e., stochastic first-order oracle) complexity
of 2q · T = Õ(κ4ϵ−4) for finding an ϵ-stationary point.

Note that the term
√

1
T

∑T
t=1 E∥At∥2 is bounded to

the existing adaptive learning rates in Adam algorithm
(Kingma and Ba, 2014) and so on. For example, given
the above adaptive learning rate (5) and the standard
bounded gradient ∥∇xf(x, y)∥ ≤ δ as in Adam, we have√

1
T

∑T
t=1 E∥At∥2 ≤ δ + σ + ρ0.
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4.4 Convergence Analysis of the VR-AdaGDA
Algorithm

We further study the convergence properties of our VR-
AdaGDA algorithm under Assumptions 1, 2, 3, 4 and 6.
The detail proofs are provided in the Appendix A.2. Here
we first use the following assumption instead of the above
Assumption 5.

Assumption 6. Each component function f(x, y; ξ) has
a Lf -Lipschitz gradient, i.e., for all x, x1, x2 ∈ X and
y, y1, y2 ∈ Y , we have

∥∇xf(x1, y; ξ)−∇xf(x2, y; ξ)∥ ≤ Lf∥x1 − x2∥,
∥∇xf(x, y1; ξ)−∇xf(x, y2; ξ)∥ ≤ Lf∥y1 − y2∥,
∥∇yf(x1, y; ξ)−∇yf(x2, y; ξ)∥ ≤ Lf∥x1 − x2∥,
∥∇yf(x, y1; ξ)−∇yf(x, y2; ξ)∥ ≤ Lf∥y1 − y2∥.

By using convexity of ∥ · ∥ and Assumption
6, we have ∥∇xf(x1, y) − ∇xf(x2, y)∥ =
∥E

[
∇xf(x1, y; ξ)−∇xf(x2, y; ξ)

]
∥ ≤ E∥∇xf(x1, y; ξ)−

∇xf(x2, y; ξ)∥ ≤ Lf∥x1 − x2∥. Similarly, we also
have ∥∇xf(x, y1) − ∇yf(x, y1)∥ ≤ Lf∥y1 − y2∥,
∥∇yf(x, y1) − ∇yf(x, y1)∥ ≤ Lf∥y1 − y2∥ and
∥∇yf(x1, y) − ∇yf(x2, y)∥ ≤ Lf∥x1 − x2∥. In the
other words, Assumption 6 includes Assumption 5, i.e.,
Assumption 6 is stricter than Assumption 5.

Theorem 3. Suppose the sequence {xt, yt}Tt=1 be gen-
erated from Algorithm 2. When X ⊂ Rd1 , and given
Bt = btId2 (b̂ ≥ bt ≥ b > 0) for all t ≥ 1,
ηt = k

(m+t)1/3
for all t ≥ 0, αt+1 = c1η

2
t , βt+1 =

c2η
2
t , c1 ≥ 2

3k3 + 9µ2

4 and c2 ≥ 2
3k3 +

75L2
f

2 , m ≥
max

(
k3, (c1k)

3, (c2k)
3
)
, 0 < λ ≤ min

(
27µbq
32 , b

6Lf

)
and

0 < γ ≤ min
( ρλµ

√
q

Lf

√
32λ2+150qκ2b̂2

, m
1/3ρ
2Lk

)
, we have

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥

≤ 2
√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
, (14)

where M = F (x1)−F∗

Tγkρ +
9L2

f b1
kλµρ2∆

2
1 + 2σ2m1/3

k2qµ2ρ2 +
2k2(c21+c22)σ

2

qµ2ρ2 ln(m+ T ).

Theorem 4. Suppose the sequence {xt, yt}Tt=1 be gener-
ated from Algorithm 2. When X = Rd1 , and given Bt =
btId2

(b̂ ≥ bt ≥ b > 0) ηt = k
(m+t)1/3

, αt+1 = c1η
2
t ,

βt+1 = c2η
2
t , c1 ≥ 2

3k3 + 9µ2

4 and c2 ≥ 2
3k3 +

75L2
f

2 , m ≥
max

(
k3, (c1k)

3, (c2k)
3
)
, 0 < λ ≤ min

(
27µbq
32 , b

6Lf

)
and

0 < γ ≤ min
( ρλµ

√
q

Lf

√
32λ2+150qκ2b̂2

, m
1/3ρ
2Lk

)
, we have

1

T

T∑
t=1

E∥∇F (xt)∥

≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3M ′m1/6

T 1/2
+

2
√
3M ′

T 1/3

)
,

(15)

where M ′ = ρ(F (x1)−F∗)
Tγk +

9L2
f b1

kλµ ∆2
1 + 2σ2m1/3

k2qµ2 +
2k2(c21+c22)σ

2

qµ2 ln(m+ T ).

Remark 2. Without loss of generality, let k = O(1),
b = O(1), b̂ = O(1) and ρλµ

√
q

Lf

√
32λ2+150qκ2b̂2

≤ m1/3ρ
2Lk ,

we have m ≥
(
k3, (c1k)

3, (c2k)
3, 8(Lkλµ)3q3/2

Lf (32λ2+150qκ2b̂2)3/2

)
.

Given γ =
ρλµ

√
q

Lf

√
32λ2+150qκ2b̂2

=
ρλ

√
q

κ
√

32λ2+150qκ2b̂2
and

λ = min
(
27µbq
32 , b

6Lf

)
. Without loss of generality, let

µ ≤ 1
Lf

, we have λ = O(bµ). When mini-batch size
q = O(1), it is easy to verify that γ = O(κ−3), λ = O(µ),
c1 = O(µ2), c2 = O(L2

f ) and m = O(L6
f ). Then we have

M = O
(
κ3+κ+κ2+κ2 ln(m+T )

)
= O(κ3). Thus, our

VR-AdaGDA algorithm has a convergence rate ofO( κ3/2

T 1/3 ).

Let O( κ3/2

T 1/3 ) ≤ ϵ, i.e., E∥GX (xζ ,∇F (xζ), γ)∥ ≤ ϵ or
E∥∇F (xζ)∥ ≤ ϵ, we have T ≤ κ4.5ϵ−3. In Algorithm 2,
we need to compute 4q stochastic gradients to estimate the
partial derivative estimators vt and wt at each iteration,
and need T iterations. Therefore, our VR-AdaGDA algo-
rithm has a gradient complexity of 4q ·T = O(κ4.5ϵ−3) for
finding an ϵ-stationary point.

Corollary 1. Under the same conditions of Theorem 2,
given mini-batch size q = O(κν) for ν > 0 and 27µbq

32 ≤
b

6Lf
, i.e., q = κν ≤ 16

81Lfµ
, our VR-AdaGDA algorithm has

a lower gradient complexity of Õ
(
κ(4.5−

ν
2 )ϵ−3

)
for finding

an ϵ-stationary point.

Remark 3. Without loss of generality, let ν = 1, we have
q = κ =

Lf

µ ≤ 16
81Lfµ

. Thus, we have Lf ≤ 4
9 . Al-

though the objective function f(x, y) in the minimax prob-
lem (1) maybe not satisfy this condition Lf ≤ 4

9 , we
can easily change the original objective function f(x, y)
to a new function f̃(x, y) = βf(x, y), β > 0. Since
∇f̃(x, y) = β∇f(x, y), the gradient of function f̃(x, y) is
L̂-Lipschitz continuous (L̂ = βLf ). Thus, we can choose a
suitable parameter β to ensure this new objective function
f̃(x, y) satisfies the condition L̂ = βLf ≤ 4

9 .

5 Experimental Results

In this section, we show the empirical results to vali-
date the efficiency of our algorithms on two tasks: 1)
Policy Evaluation, and 2) Fair Classifier. We compare
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Table 2: Model Architecture for the Policy Evaluation
Layer Type Shape
Fully Connected + tanh 16
Fully Connected 1

Table 3: Model Architecture for the Fair Classifier
Layer Type Shape
Convolution + ReLU 3× 3× 5
Max Pooling 2× 2
Convolution + ReLU 3× 3× 10
Max Pooling 2× 2
Fully Connected + ReLU 100
Fully Connected + ReLU 3

our algorithms (AdaGDA and VR-AdaGDA) with the ex-
isting state-of-the-art algorithms in Table 1 for solving
nonconvex-strongly-concave minimax problems.

The experiments are run on CPU machines with 2.3 GHz
Intel Core i9 as well as NVIDIA Tesla P40 GPU.

5.1 Policy Evaluation

The first task is to apply a neural network to estimate the
value function in Markov Decision Process (MDP). The
value function Vθ(·) is parameterized as a 2-layer neu-
ral network, whose minimax loss function is defined in
(2) given in the Introduction. In the experiment, we gen-
erate 10,000 state-reward pairs for three classic environ-
ments from GYM (Brockman et al., 2016): CartPole-v1,
Acrobat-v1, and MountainCarContinuous-v0. Specifically,
in CartPole-v1, a pole is connected with a cart by a joint.
The goal of CartPole-v1 is to keep the pole upright by
adding force to the cart. The system in Acrobot-v1 has
two joints and two links. To get the reward, we need
to swing the end of the lower link and make it reach a
given height. In MountainCarContinuous-v0, the car is on
a one-dimensional track between two ”mountains”. The car
needs to drive up to the mountain on the right but the car’s
engine is not strong enough to complete this task without
momentum.

In the MDP, we let the discount factor τ = 0.95. In our
algorithms, we set γ = λ = 0.005, and the adaptive matri-
ces At and Bt are generated from (5) and (6) respectively,
where ϱ = 0.1 and ρ = 0.001. In other algorithms, we
set the step-size for updating parameter θ be 0.005 and the
step-size for ω be 0.005. At the same time, in the SREDA
algorithm, we set S1 = 10, 000 and S2 = q = 500. The
batch-sizes for all other methods are 500. In AccMDA
and VR-AdaGDA, αt+1 = η2t , βt+1 = η2t . In AdaGDA,
αt+1 = ηt, βt+1 = ηt. In PDAda, βx = βt = ηx = ηy =
0.9. In NeAda-AdaGrad (Yang et al., 2022), we utilized
the AdaGrad (Duchi et al., 2011) optimizer in both dual

and prime variables. The step-size is chosen from the set
0.015. To avoid the explosion of adaptive learning rates, we
clip it between (0, 3). The architecture of neural network
for policy evaluation is given in Table 2.

Figure 1 shows the loss vs. epoch of different stochas-
tic methods. From these results, we can observe that our
algorithms outperform the other algorithms, and the VR-
AdaGDA consistently outperforms the AdaGDA.

5.2 Fair Classifier

In the second task, we train a fair classifier by minimizing
the maximum loss over different categories, where we use a
Convolutional Neural Network (CNN) model as classifier.
In the experiment, we use the MNIST, Fashion-MNIST,
and CIFAR-10 datasets as in Nouiehed et al. (2019). Fol-
lowing Nouiehed et al. (2019), we mainly focus on three
categories in each dataset: digital numbers {0, 2, 3} in the
MNIST dataset, and T-shirt/top, Coat and Shirt categories
in the Fashion-MNIST dataset, and airplane, automobile
and bird in the CIFAR10 dataset. Then we train this fair
classifier by solving the following minimax problem:

min
w

max
u∈U

{ 3∑
i=1

uiLi(w)− ϱ∥u− 1
3
∥2
}
, (16)

where U =
{
u | ui ≥ 0,

∑3
i=1 ui = 1

}
, L1, L2, and

L3 are the cross-entropy loss functions corresponding to
the samples in three different categories. Here ϱ ≥ 0 is
tuning parameter, and u is a weight vector for different loss
functions, and w denotes the parameters of CNN.

In the experiment, we use xavier normal initialization to
CNN layer. In our algorithms, we set γ = 0.001 and
λ = 0.0001, and the adaptive matrices At and Bt are gen-
erated from (5) and (6) respectively, where ϱ = 0.1 and
ρ = 0.001. In the other algorithms, we set the step-size
for updating parameter w be 0.001 and step-size for u be
0.0001. At the same time, we set ηt = 0.9 in our algo-
rithms. We run all algorithms for 100 epochs, and then
record the loss value. For SREDA, we set S1 = 18, 000
and S2 = q = 900. The batch-sizes for all other meth-
ods are 900. For AccMDA and VR-AdaGDA, αt+1 = η2t ,
βt+1 = η2t . For AdaGDA, αt+1 = ηt, βt+1 = ηt. For
PDAda, βx = βt = ηx = ηy = 0.9. In NeAda-AdaGrad,
we utilized the AdaGrad optimizer in both dual and prime
variables. The step-size is set as 0.015. Note that for fair
comparison, we do not use the small stepsizes relying on
small ϵ following the original SREDA algorithm, but use
the relatively large stepsizes in the experiments. The archi-
tecture of CNN for policy evaluation is given in Table 3.

Figure 2 plots the loss vs. epoch of different stochastic
methods. From these results, we can see that our algorithms
consistently outperform other related methods.
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(a) CartPole-v1 (b) Acrobat-v1 (c) MountainCarContinuous-v0

Figure 1: Results of different methods on the policy evaluation task.

(a) Fashion-MNIST (b) MNIST (c) CIFAR-10

Figure 2: Results of different methods on the fair classifier task.

6 Conclusions

In the paper, we proposed a class of faster adaptive gradient
descent ascent methods for solving the minimax Problem
(1) using unified adaptive matrices for both variables x and
y. In particular, our methods can easily incorporate both the
momentum and variance-reduced techniques. Moreover,
we provided an effective convergence analysis framework
for our proposed methods, and proved that our methods
obtain the best known gradient complexity for finding the
first-order stationary points. The empirical studies on pol-
icy evaluation and fair classifier learning tasks were con-
ducted to validate the efficiency of our new algorithms.
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A Appendix

In this section, we provide the detailed convergence analysis of our algorithms. We first give some useful lemmas.

Given a ρ-strongly convex function ψ(x) : X → R, we define a Bregman distance (Censor and Lent, 1981; Censor and Zenios, 1992;
Ghadimi et al., 2016) associated with ψ(x) as follows:

D(z, x) = ψ(z)−
[
ψ(x) + ⟨∇ψ(x), z − x⟩

]
, ∀x, z ∈ X , (17)

where X ⊆ Rd is a closed convex set. Assume h(x) : X → R is a convex and possibly nonsmooth function, we define a generalized
projection problem:

x+ = argmin
z∈X

{
⟨z, v⟩+ h(z) +

1

γ
D(z, x)

}
, x ∈ X , (18)

where v ∈ Rd and γ > 0. Following Ghadimi et al. (2016), we define a generalized gradient as follows:

GX (x, v, γ) =
1

γ
(x− x+). (19)

Lemma 1. (Lemma 1 in Ghadimi et al. (2016)) Let x+ be given in (18). Then we have, for any x ∈ X , v ∈ Rd and γ > 0,

⟨v,GX (x, v, γ)⟩ ≥ ρ∥GX (x, v, γ)∥2 + 1

γ

[
h(x+)− h(x)

]
, (20)

where ρ > 0 depends on ρ-strongly convex function ψ(x).

Based on Lemma 1, let h(x) = 0, we have

⟨v,GX (x, v, γ)⟩ ≥ ρ∥GX (x, v, γ)∥2. (21)

Lemma 2. (Nesterov, 2018) Assume function f(x) is convex and X is a convex set. x∗ ∈ X is the solution of the constrained problem
minx∈X f(x), if

⟨∇f(x∗), x− x∗⟩ ≥ 0, ∀x ∈ X . (22)

where ∇f(x∗) denote the (sub-)gradient of function f(x) at x∗.

Lemma 3. (Lin et al., 2020a) Under the above Assumptions 2 and 5, the function F (x) = miny∈Y f(x, y) = f(x, y∗(x)) and the
mapping y∗(x) = argmaxy∈Y f(x, y) have L-Lipschitz continuous gradient and κ-Lipschitz continuous respectively, such as for all
x1, x2 ∈ X

∥∇F (x1)−∇F (x2)∥ ≤ L∥x1 − x2∥, ∥y∗(x1)− y∗(x2)∥ ≤ κ∥x1 − x2∥, (23)

where L = Lf (1 + κ) and κ = Lf/µ.

Lemma 4. For independent random variables {ξi}ni=1 with zero mean, we have E∥ 1
n

∑n
i=1 ξi∥

2 = 1
n
E∥ξi∥2 for any i ∈ [n].

Lemma 5. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithms 1 or 2. Let 0 < ηt ≤ 1 and 0 < γ ≤ ρ
2Lηt

, we have

F (xt+1)− F (xt) ≤
2γL2

fηt

ρ
∥y∗(xt)− yt∥2 +

2γηt
ρ

∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

∥x̃t+1 − xt∥2, (24)

where L = Lf (1 + κ).

Proof. According to the above Lemma 3, the function F (x) has L-Lipschitz continuous gradient. Then we have

F (xt+1) ≤ F (xt) + ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= F (xt) + ηt⟨∇F (xt), x̃t+1 − xt⟩+
Lη2t
2

∥x̃t+1 − xt∥2

= F (xt) + ηt ⟨vt, x̃t+1 − xt⟩︸ ︷︷ ︸
=T1

+ηt ⟨∇F (xt)− vt, x̃t+1 − xt⟩︸ ︷︷ ︸
=T2

+
Lη2t
2

∥x̃t+1 − xt∥2, (25)

where the first equality holds by xt+1 = xt + ηt(x̃t+1 − xt).
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According to Assumption 4, i.e., At ≻ ρId1 for any t ≥ 1, the function ϕt(x) = xTAtx is ρ-strongly convex. By using the above
Lemma 1 to the line 5 of Algorithm 1 or 2 , we have

⟨vt,
1

γ
(xt − x̃t+1)⟩ ≥ ρ∥ 1

γ
(xt − x̃t+1)∥2 ⇒ ⟨vt, x̃t+1 − xt⟩ ≤ − ρ

γ
∥x̃t+1 − xt∥2. (26)

Then we obtain

T1 = ⟨vt, x̃t+1 − xt⟩ ≤ − ρ
γ
∥x̃t+1 − xt∥2. (27)

Next, we decompose the term T2 = ⟨∇F (xt)− vt, x̃t+1 − xt⟩ as follows:

T2 = ⟨∇F (xt)− vt, x̃t+1 − xt⟩
= ⟨∇F (xt)−∇xf(xt, yt), x̃t+1 − xt⟩︸ ︷︷ ︸

=T3

+ ⟨∇xf(xt, yt)− vt, x̃t+1 − xt⟩︸ ︷︷ ︸
=T4

. (28)

For the term T3, by the Cauchy-Schwarz inequality and Young’s inequality, we have

T3 = ⟨∇F (xt)−∇xf(xt, yt), x̃t+1 − xt⟩
≤ ∥∇F (xt)−∇xf(xt, yt)∥ · ∥x̃t+1 − xt∥

≤ 2γ

ρ
∥∇F (xt)−∇xf(xt, yt)∥2 +

ρ

8γ
∥x̃t+1 − xt∥2

=
2γ

ρ
∥∇xf(xt, y

∗(xt))−∇xf(xt, yt)∥2 +
ρ

8γ
∥x̃t+1 − xt∥2

≤
2γL2

f

ρ
∥y∗(xt)− yt∥2 +

ρ

8γ
∥x̃t+1 − xt∥2, (29)

where the second inequality is due to the inequality ⟨a, b⟩ ≤ ν
2
∥a∥2+ 1

2ν
∥b∥2 with ν = 4γ

ρ
, and the last inequality holds by Assumption

5. For the term T2, similarly, we have

T4 = ⟨∇xf(xt, yt)− vt, x̃t+1 − xt⟩
≤ ∥∇xf(xt, yt)− vt∥ · ∥x̃t+1 − xt∥

≤ 2γ

ρ
∥∇xf(xt, yt)− vt∥2 +

ρ

8γ
∥x̃t+1 − xt∥2. (30)

Thus, we have

T2 =
2γL2

f

ρ
∥y∗(xt)− yt∥2 +

2γ

ρ
∥∇xf(xt, yt)− vt∥2 +

ρ

4γ
∥x̃t+1 − xt∥2. (31)

Finally, combining the inequalities (25), (27) with (31), we have

F (xt+1) ≤ F (xt)−
ρηt
γ

∥x̃t+1 − xt∥2 +
2γL2

fηt

ρ
∥y∗(xt)− yt∥2 +

2γηt
ρ

∥∇xf(xt, yt)− vt∥2

+
ρηt
4γ

∥x̃t+1 − xt∥2 +
Lη2t
2

∥x̃t+1 − xt∥2

≤ F (xt) +
2γL2

fηt

ρ
∥y∗(xt)− yt∥2 +

2γηt
ρ

∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

∥x̃t+1 − xt∥2, (32)

where the last inequality is due to 0 < γ ≤ ρ
2Lηt

.

Lemma 6. Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 1 or 2 . Under the above Assumptions, given Bt =
btId2 (bt ≥ b > 0) for all t ≥ 1, 0 < ηt ≤ 1 and 0 < λ ≤ b

6Lf
≤ bt

6Lf
, we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1− ηtµλ

4bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yf(xt, yt)− wt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2, (33)

where κ = Lf/µ.
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Proof. According to Assumption 2, i.e., the function f(x, y) is µ-strongly concave w.r.t y, we have

f(xt, y) ≤ f(xt, yt) + ⟨∇yf(xt, yt), y − yt⟩ −
µ

2
∥y − yt∥2

= f(xt, yt) + ⟨wt, y − ỹt+1⟩+ ⟨∇yf(xt, yt)− wt, y − ỹt+1⟩

+ ⟨∇yf(xt, yt), ỹt+1 − yt⟩ −
µ

2
∥y − yt∥2. (34)

According to Assumption 5, i.e., the function f(x, y) is Lf -smooth, we have

−Lf

2
∥ỹt+1 − yt∥2 ≤ f(xt, ỹt+1)− f(xt, yt)− ⟨∇yf(xt, yt), ỹt+1 − yt⟩. (35)

Summing up the about inequalities (34) with (35), we have

f(xt, y) ≤ f(xt, ỹt+1) + ⟨wt, y − ỹt+1⟩+ ⟨∇yf(xt, yt)− wt, y − ỹt+1⟩

− µ

2
∥y − yt∥2 +

Lf

2
∥ỹt+1 − yt∥2. (36)

By the optimality of the line 6 of Algorithm 1 or 2 and Bt = btId2 , we have

⟨−wt +
bt
λ
(ỹt+1 − yt), y − ỹt+1⟩ ≥ 0, ∀y ∈ Y (37)

where the above inequality holds by Lemma 2. Then we obtain

⟨wt, y − ỹt+1⟩ ≤
1

λ
⟨bt(ỹt+1 − yt), y − ỹt+1⟩

=
1

λ
⟨bt(ỹt+1 − yt), yt − ỹt+1⟩+

1

λ
⟨bt(ỹt+1 − yt), y − yt⟩

= − bt
λ
∥ỹt+1 − yt∥2 +

bt
λ
⟨ỹt+1 − yt, y − yt⟩. (38)

By plugging the inequalities (38) into (36), we have

f(xt, y) ≤ f(xt, ỹt+1) +
bt
λ
⟨ỹt+1 − yt, y − yt⟩+ ⟨∇yf(xt, yt)− wt, y − ỹt+1⟩

− bt
λ
∥ỹt+1 − yt∥2 −

µ

2
∥y − yt∥2 +

Lf

2
∥ỹt+1 − yt∥2. (39)

Let y = y∗(xt) and we obtain

f(xt, y
∗(xt)) ≤ f(xt, ỹt+1) +

bt
λ
⟨ỹt+1 − yt, y

∗(xt)− yt⟩+ ⟨∇yf(xt, yt)− wt, y
∗(xt)− ỹt+1⟩

− bt
λ
∥ỹt+1 − yt∥2 −

µ

2
∥y∗(xt)− yt∥2 +

Lf

2
∥ỹt+1 − yt∥2. (40)

Due to the concavity of f(·, y) and y∗(xt) = argmaxy∈Y f(xt, y), we have f(xt, y∗(xt)) ≥ f(xt, ỹt+1). Thus, we obtain

0 ≤ bt
λ
⟨ỹt+1 − yt, y

∗(xt)− yt⟩+ ⟨∇yf(xt, yt)− wt, y
∗(xt)− ỹt+1⟩

− bt
λ
∥ỹt+1 − yt∥2 −

µ

2
∥y∗(xt)− yt∥2 +

Lf

2
∥ỹt+1 − yt∥2. (41)

By yt+1 = yt + ηt(ỹt+1 − yt), we have

∥yt+1 − y∗(xt)∥2 = ∥yt + ηt(ỹt+1 − yt)− y∗(xt)∥2

= ∥yt − y∗(xt)∥2 + 2ηt⟨ỹt+1 − yt, yt − y∗(xt)⟩+ η2t ∥ỹt+1 − yt∥2. (42)

Then we obtain

⟨ỹt+1 − yt, y
∗(xt)− yt⟩ ≤

1

2ηt
∥yt − y∗(xt)∥2 +

ηt
2
∥ỹt+1 − yt∥2 −

1

2ηt
∥yt+1 − y∗(xt)∥2. (43)



AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax Optimization

Considering the upper bound of the term ⟨∇yf(xt, yt)− wt, y
∗(xt)− ỹt+1⟩, we have

⟨∇yf(xt, yt)− wt, y
∗(xt)− ỹt+1⟩

= ⟨∇yf(xt, yt)− wt, y
∗(xt)− yt⟩+ ⟨∇yf(xt, yt)− wt, yt − ỹt+1⟩

≤ 1

µ
∥∇yf(xt, yt)− wt∥2 +

µ

4
∥y∗(xt)− yt∥2 +

1

µ
∥∇yf(xt, yt)− wt∥2 +

µ

4
∥yt − ỹt+1∥2

=
2

µ
∥∇yf(xt, yt)− wt∥2 +

µ

4
∥y∗(xt)− yt∥2 +

µ

4
∥yt − ỹt+1∥2. (44)

By plugging the inequalities (43) and (44) into (41), we obtain

bt
2ηtλ

∥yt+1 − y∗(xt)∥2 ≤ (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 +

(ηtbt
2λ

− bt
λ

+
µ

4
+
Lf

2

)
∥ỹt+1 − yt∥2 (45)

+
2

µ
∥∇yf(xt, yt)− wt∥2

≤ (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 + (

3Lf

4
− bt

2λ
)∥ỹt+1 − yt∥2 +

2

µ
∥∇yf(xt, yt)− wt∥2

= (
bt

2ηtλ
− µ

4
)∥yt − y∗(xt)∥2 −

(3bt
8λ

+
bt
8λ

− 3Lf

4

)
∥ỹt+1 − yt∥2

+
2

µ
∥∇yf(xt, yt)− wt∥2

≤
( bt
2ηtλ

− µ

4

)
∥yt − y∗(xt)∥2 −

3bt
8λ

∥ỹt+1 − yt∥2 +
2

µ
∥∇yf(xt, yt)− wt∥2,

where the second inequality holds by Lf ≥ µ and 0 < ηt ≤ 1, and the last inequality is due to 0 < λ ≤ b
6Lf

≤ bt
6Lf

for all t ≥ 1. It
implies that

∥yt+1 − y∗(xt)∥2 ≤ (1− ηtµλ

2bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2 +
4ηtλ

µbt
∥∇yf(xt, yt)− wt∥2. (46)

Next, we decompose the term ∥yt+1 − y∗(xt+1)∥2 as follows:

∥yt+1 − y∗(xt+1)∥2 = ∥yt+1 − y∗(xt) + y∗(xt)− y∗(xt+1)∥2

= ∥yt+1 − y∗(xt)∥2 + 2⟨yt+1 − y∗(xt), y
∗(xt)− y∗(xt+1)⟩+ ∥y∗(xt)− y∗(xt+1)∥2

≤ (1 +
ηtµλ

4bt
)∥yt+1 − y∗(xt)∥2 + (1 +

4bt
ηtµλ

)∥y∗(xt)− y∗(xt+1)∥2

≤ (1 +
ηtµλ

4bt
)∥yt+1 − y∗(xt)∥2 + (1 +

4bt
ηtµλ

)κ2∥xt − xt+1∥2, (47)

where the first inequality holds by Cauchy-Schwarz inequality and Young’s inequality, and the second inequality is due to Lemma 3, and
the last equality holds by xt+1 = xt + ηt(x̃t+1 − xt).

By combining the above inequalities (46) and (47), we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1 +
ηtµλ

4bt
)(1− ηtµλ

2bt
)∥yt − y∗(xt)∥2 − (1 +

ηtµλ

4bt
)
3ηt
4

∥ỹt+1 − yt∥2

+ (1 +
ηtµλ

4bt
)
4ηtλ

µbt
∥∇yf(xt, yt)− wt∥2 + (1 +

4bt
ηtµλ

)κ2∥xt − xt+1∥2. (48)

Since 0 < ηt ≤ 1, 0 < λ ≤ bt
6Lf

and Lf ≥ µ, we have λ ≤ bt
6Lf

≤ bt
6µ

and ηt ≤ 1 ≤ bt
6µλ

. Then we obtain

(1 +
ηtµλ

4bt
)(1− ηtµλ

2bt
) = 1− ηtµλ

2bt
+
ηtµλ

4bt
− η2tµ

2λ2

8b2t
≤ 1− ηtµλ

4bt
, (49)

−(1 +
ηtµλ

4bt
)
3ηt
4

≤ −3ηt
4
, (50)

(1 +
ηtµλ

4bt
)
4ηtλ

µbt
≤ (1 +

1

24
)
4ηtλ

µ
=

25ηtλ

6µbt
, (51)

(1 +
4bt
ηtµλ

)κ2 ≤ κ2bt
6ηtµλ

+
4κ2bt
ηtµλ

=
25κ2bt
6ηtµλ

, (52)
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where the second last inequality is due to ηtµλ
bt

≤ 1
6

and the last inequality holds by bt
6µληt

≥ 1. Thus, we have

∥yt+1 − y∗(xt+1)∥2 ≤ (1− ηtµλ

4bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yf(xt, yt)− wt∥2 +

25κ2bt
6µληt

∥xt+1 − xt∥2

= (1− ηtµλ

4bt
)∥yt − y∗(xt)∥2 −

3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yf(xt, yt)− wt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2, (53)

where the equality holds by xt+1 = xt + ηt(x̃t+1 − xt).

A.1 Convergence Analysis of the AdaGDA Algorithm

In this subsection, we study the convergence properties of our AdaGDA algorithm for solving the minimax problem (1). We first give a
useful Lemma for the gradient estimators.
Lemma 7. Assume that the stochastic partial derivatives vt+1 and wt+1 be generated from Algorithm 1, we have

E∥∇xf(xt+1, yt+1)− vt+1∥2 ≤ (1− αt+1)E∥∇xf(xt, yt)− vt∥2 +
α2
t+1σ

2

q

+
2L2

fη
2
t

αt+1

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
,

E∥∇yf(xt+1, yt+1)− wt+1∥2 ≤ (1− βt+1)E∥∇yf(xt, yt)− wt∥2 +
β2
t+1σ

2

q

+
2L2

fη
2
t

βt+1

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
.

Proof. We first consider the term E∥∇xf(xt+1, yt+1)− vt+1∥2. Since vt+1 = αt+1∇xf(xt+1, yt+1;Bt+1)+ (1−αt+1)vt, we have

E∥∇xf(xt+1, yt+1)− vt+1∥2 (54)

= E∥∇xf(xt+1, yt+1)− αt+1∇xf(xt+1, yt+1;Bt+1)− (1− αt+1)vt∥2

= E∥αt+1(∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)) + (1− αt+1)(∇xf(xt, yt)− vt)

+ (1− αt+1)
(
∇xf(xt+1, yt+1)−∇xf(xt, yt)

)
∥2

= E∥(1− αt+1)(∇xf(xt, yt)− vt) + (1− αt+1)
(
∇xf(xt+1, yt+1)−∇xf(xt, yt)

)
∥2

+ α2
t+1E∥∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)∥2

≤ (1− αt+1)
2(1 +

1

αt+1
)E∥∇xf(xt+1, yt+1)−∇xf(xt, yt)∥2

+ (1− αt+1)
2(1 + αt+1)E∥∇xf(xt, yt)− vt∥2 + α2

t+1E∥∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)∥2

≤ (1− αt+1)E∥∇xf(xt, yt)− vt∥2 +
1

αt+1
E∥∇xf(xt+1, yt+1)−∇xf(xt, yt)∥2 +

α2
t+1σ

2

q

≤ (1− αt+1)E∥∇xf(xt, yt)− vt∥2 +
2L2

fη
2
t

αt+1

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
+
α2
t+1σ

2

q
,

where the third equality is due to EBt+1 [∇f(xt+1, yt+1;Bt+1)] = ∇f(xt+1, yt+1); the second last inequality holds by 0 ≤ αt+1 ≤ 1

such that (1− αt+1)
2(1 + αt+1) = 1− αt+1 − α2

t+1 + α3
t+1 ≤ 1− αt+1 and (1− αt+1)

2(1 + 1
αt+1

) ≤ (1− αt+1)(1 +
1

αt+1
) =

−αt+1 +
1

αt+1
≤ 1

αt+1
, and the last inequality holds by Assumption 5 and xt+1 = xt − ηt(x̃t+1 − xt), yt+1 = yt − ηt(ỹt+1 − yt).

Similarly, we have

E∥∇yf(xt+1, yt+1)− wt+1∥2 ≤ (1− βt+1)E∥∇yf(xt, yt)− wt∥2 +
β2
t+1σ

2

q

+
2L2

fη
2
t

βt+1

(
E∥x̃t+1 − xt∥2 + E∥ỹt+1 − yt∥2

)
. (55)
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Theorem 5. (Restatement of Theorem 1) Assume that the sequence {xt, yt}Tt=1 be generated from the Algorithm 1. When
X ⊂ Rd1 , and given Bt = btId2 (b̂ ≥ bt ≥ b > 0) for all t ≥ 1, ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 =

c1ηt, βt+1 = c2ηt, m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0, 9µ2

4
≤ c1 ≤ m1/2

k
,

75L2
f

2
≤ c2 ≤ m1/2

k
, 0 < γ ≤

min
(

15
√
2λµ2ρ

2
√

400L2
f
λ2+24µ2λ2+16875b̂2κ2L2

f
µ2
, m1/2ρ

4Lk

)
and 0 < λ ≤ min

( 405bL2
fµ3/2

8
√

50L2
f
+9µ2

, b
6Lf

)
, we have

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥ ≤ 2
√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
, (56)

where G = F (x1)−F∗

kγρ
+

9b1L
2
f∆2

1

kλµρ2
+ 2σ2

qkµ2ρ2
+ 2mσ2

qkµ2ρ2
ln(m+ T ) and ∆2

1 = ∥y1 − y∗(x1)∥2.

Proof. Since ηt = k

(m+t)1/2
on t is decreasing and m ≥ k2, we have ηt ≤ η0 = k

m1/2 ≤ 1 and γ ≤ m1/2ρ
4Lk

≤ ρ
2Lη0

≤ ρ
2Lηt

for any

t ≥ 0. Due to 0 < ηt ≤ 1 and m ≥ (c1k)
2, we have αt+1 = c1ηt ≤ c1k

m1/2 ≤ 1. Similarly, due to m ≥ (c2k)
2, we have βt+1 ≤ 1. At

the same time, we have c1, c2 ≤ m1/2

k
. According to Lemma 7, we have

E∥∇xf(xt+1, yt+1)− vt+1∥2 − E∥∇xf(xt, yt)− vt∥2 (57)

≤ −αt+1E∥∇xf(xt, yt)− vt∥2 + 2L2
fη

2
t /αt+1E

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
α2
t+1σ

2

q

= −c1ηtE∥∇xf(xt, yt)− vt∥2 + 2L2
fηt/c1E

(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
c21η

2
t σ

2

q

≤ −9µ2ηt
4

E∥∇xf(xt, yt)− ut∥2 +
8L2

fηt

9µ2
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
mη2t σ

2

k2q
,

where the above equality holds by αt+1 = c1ηt, and the last inequality is due to 9µ2

4
≤ c1 ≤ m1/2

k
. Similarly, given

75L2
f

2
≤ c2 ≤

m1/2

k
, we have

E∥∇yf(xt+1, yt+1)− wt+1∥2 − E∥∇yf(xt, yt)− wt∥2 (58)

≤ −
75L2

fηt

2
E∥∇yf(xt, yt)− wt∥2 +

4ηt
75

E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
mη2t σ

2

k2q
.

According to Lemma 5, we have

F (xt+1)− F (xt) ≤
2γL2

fηt

ρ
∥y∗(xt)− yt∥2 +

2γηt
ρ

∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

∥x̃t+1 − xt∥2. (59)

According to Lemma 6, we have

∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2 ≤ −ηtµλ
4bt

∥yt − y∗(xt)∥2 −
3ηt
4

∥ỹt+1 − yt∥2 (60)

+
25ηtλ

6µbt
∥∇yf(xt, yt)− wt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2.

Next, we define a Lyapunov function, for any t ≥ 1

Ωt = E
[
F (xt) +

9btL
2
fγ

λµρ
∥yt − y∗(xt)∥2 +

γ

ρµ2

(
∥∇xf(xt, yt)− vt∥2 + ∥∇yf(xt, yt)− wt∥2

)]
.
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Then we have

Ωt+1 − Ωt

= E
[
F (xt+1)− F (xt)

]
+

9btL
2
fγ

λµρ

(
E∥yt+1 − y∗(xt+1)∥2 − E∥yt − y∗(xt)∥2

)
+

γ

ρµ2

(
E∥∇xf(xt+1, yt+1)− vt+1∥2

− E∥∇xf(xt, yt)− vt∥2 + E∥∇yf(xt+1, yt+1)− wt+1∥2 − E∥∇yf(xt, yt)− wt∥2
)

≤
2γL2

fηt

ρ
E∥y∗(xt)− yt∥2 +

2γηt
ρ

E∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

E∥x̃t+1 − xt∥2

+
9btL

2
fγ

λµρ

(
− ηtµλ

4bt
E∥yt − y∗(xt)∥2 −

3ηt
4

E∥ỹt+1 − yt∥2 +
25ηtλ

6µbt
E∥∇yf(xt, yt)− wt∥2

+
25κ2ηtbt

6µλ
E∥x̃t+1 − xt∥2

)
+

γ

ρµ2

(
− 9µ2ηt

4
E∥∇xf(xt, yt)− vt∥2 +

8L2
fηt

9µ2
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
mη2t σ

2

k2q
−

75L2
fηt

2
E∥∇yf(xt, yt)− wt∥2 +

4ηt
75

E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+
mη2t σ

2

k2q

)
= −γηt

4ρ

(
L2

fE∥yt − y∗(xt)∥2 + E∥∇xf(xt, yt)− vt∥2
)
−

( ρ
2γ

−
8L2

fγ

9ρµ4
− 4γ

75ρµ2
−

225b2tκ
2L2

fγ

6µ2λ2ρ

)
ηtE∥x̃t+1 − xt∥2

−
(27btL2

fγ

4λµρ
−

8L2
fγ

9ρµ4
− 4γ

75ρµ2

)
ηtE∥ỹt+1 − yt∥2 +

2mγσ2

k2ρµ2q
η2t

≤ −γηt
4ρ

(
L2

fE∥yt − y∗(xt)∥2 + E∥∇xf(xt, yt)− vt∥2
)
− ρηt

4γ
E∥x̃t+1 − xt∥2 +

2mγσ2

k2ρµ2q
η2t , (61)

where the first inequality holds by the above inequalities (57), (58), (59) and (60); the last inequality is due to 0 < γ ≤
15

√
2λµ2ρ

2
√

400L2
f
λ2+24µ2λ2+16875b̂2κ2L2

f
µ2

≤ 15
√
2λµ2ρ

2
√

400L2
f
λ2+24µ2λ2+16875b2tκ

2L2
f
µ2

and 0 < λ ≤ 405bL2
fµ3/2

8
√

50L2
f
+9µ2

≤ 405btL
2
fµ3/2

8
√

50L2
f
+9µ2

for all t ≥ 1.

Then we have

L2
fηt

4
E∥yt − y∗(xt)∥2 +

ηt
4
E∥∇xf(xt, yt)− vt∥2 +

ρ2ηt
4γ2

E∥x̃t+1 − xt∥2 ≤ ρ(Ωt − Ωt+1)

γ
+

2mσ2

k2µ2q
η2t . (62)

Taking average over t = 1, 2, · · · , T on both sides of (62), we have

1

T

T∑
t=1

E
[L2

fηt

4
∥yt − y∗(xt)∥2 +

ηt
4
∥∇xf(xt, yt)− vt∥2 +

ρ2ηt
4γ2

∥x̃t+1 − xt∥2
]

≤
T∑

t=1

ρ(Ωt − Ωt+1)

Tγ
+

1

T

T∑
t=1

2mσ2

k2µ2q
η2t . (63)

Given x1 ∈ X , y1 ∈ Y and ∆2
1 = ∥y1 − y∗(x1)∥2, we have

Ω1 = F (x1) +
9b1L

2
fγ

λµρ
∥y1 − y∗(x1)∥2 +

γ

ρµ2

(
E∥∇xf(x1, y1)− v1∥2 + E∥∇yf(x1, y1)− w1∥2

)
≤ F (x1) +

9b1L
2
fγ∆

2
1

λµρ
+

2γσ2

qρµ2
, (64)

where the above inequality holds by Assumption 1.
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Since ηt is decreasing on t, i.e., η−1
T ≥ η−1

t for any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
[L2

f

4
∥yt − y∗(xt)∥2 +

1

4
∥∇xf(xt, yt)− vt∥2 +

ρ2

4γ2
∥x̃t+1 − xt∥2

]
≤ ρ

TγηT

T∑
t=1

(
Ωt − Ωt+1

)
+

1

TηT

T∑
t=1

2mσ2

k2µ2q
η2t

≤ ρ

TγηT

(
F (x1) +

9b1L
2
fγ∆

2
1

λµρ
+

2γσ2

qρµ2
− F ∗)+ 1

TηT

T∑
t=1

2mσ2

k2µ2q
η2t

≤ ρ(F (x1)− F ∗)

TγηT
+

9b1L
2
f∆

2
1

λµηTT
+

2σ2

qµ2ηTT
+

2mσ2

ηTTk2µ2q

∫ T

1

k2

m+ t
dt

≤ ρ(F (x1)− F ∗)

TγηT
+

9b1L
2
f∆

2
1

λµηTT
+

2σ2

qµ2ηTT
+

2mσ2

ηTTµ2q
ln(m+ T )

=

(
ρ(F (x1)− F ∗)

kγ
+

9b1L
2
f∆

2
1

kλµ
+

2σ2

qkµ2
+

2mσ2

kµ2q
ln(m+ T )

)
(m+ T )1/2

T
, (65)

where the second inequality holds by the above inequality (64). Let G = F (x1)−F∗

kγρ
+

9b1L
2
f∆2

1

kλµρ2
+ 2σ2

qkµ2ρ2
+ 2mσ2

qkµ2ρ2
ln(m + T ), we

have

1

T

T∑
t=1

E
[ L2

f

4ρ2
∥y∗(xt)− yt∥2 +

1

4ρ2
∥∇xf(xt, yt)− vt∥2 +

1

4γ2
∥x̃t+1 − xt∥2

]
≤ G

T
(m+ T )1/2. (66)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[Lf

2ρ
∥y∗(xt)− yt∥+

1

2ρ
∥∇xf(xt, yt)− vt∥+

1

2γ
∥x̃t+1 − xt∥

]
≤

(
3

T

T∑
t=1

E
[ L2

f

4ρ2
∥y∗(xt)− yt∥2 +

1

4ρ2
∥∇xf(xt, yt)− vt∥2 +

1

4γ2
∥x̃t+1 − xt∥2

])1/2

≤
√
3G

T 1/2
(m+ T )1/4 ≤

√
3Gm1/4

T 1/2
+

√
3G

T 1/4
, (67)

where the last inequality is due to (a+ b)1/4 ≤ a1/4 + b1/4 for all a, b > 0. Thus, we have

1

T

T∑
t=1

E
[Lf

ρ
∥y∗(xt)− yt∥+

1

ρ
∥∇xf(xt, yt)− vt∥+

1

γ
∥x̃t+1 − xt∥

]
≤ 2

√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
. (68)

Let ϕt(x) =
1
2
xTAtx, according to Assumption 4, ϕt(x) is ρ-strongly convex. Then we define a prox-function (i.e., Bregman distance)

associated with ϕt(x) as in Censor and Lent (1981); Censor and Zenios (1992); Ghadimi et al. (2016), defined as

Dt(x, xt) = ϕt(x)−
[
ϕt(xt) + ⟨∇ϕt(xt), x− xt⟩

]
=

1

2
(x− xt)

TAt(x− xt). (69)

The line 5 of Algorithms 1 is equivalent to the following generalized projection problem

x̃t+1 = argmin
x∈X

{
⟨vt, x⟩+

1

γ
Dt(x, xt)

}
. (70)

As in Ghadimi et al. (2016), we define a generalized projected gradient GX (xt, vt, γ) =
1
γ
(xt − x̃t+1). At the same time, we define a

gradient mapping GX (xt,∇F (xt), γ) =
1
γ
(xt − x∗t+1), where

x∗t+1 = argmin
x∈X

{
⟨∇F (xt), x⟩+

1

γ
Dt(x, xt)

}
. (71)

Since F (xt) = f(xt, y
∗(xt)) = miny∈Y f(xt, y), by Assumption 5, we have

∥∇F (xt)− vt∥ = ∥∇xf(xt, y
∗(xt))− vt∥

= ∥∇xf(xt, y
∗(xt))−∇xf(xt, yt) +∇xf(xt, yt)− vt∥

≤ ∥∇xf(xt, y
∗(xt))−∇xf(xt, yt)∥+ ∥∇xf(xt, yt)− vt∥

≤ Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥. (72)
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According to Proposition 1 in Ghadimi et al. (2016), we have ∥GX (xt,∇F (xt), γ) − GX (xt, vt, γ)∥ ≤ 1
ρ
∥vt − ∇F (xt)∥. Let

Mt =
1
γ
∥xt − x̃t+1∥+ 1

ρ

(
Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥

)
, we have

∥GX (xt,∇F (xt), γ)∥ ≤ ∥GX (xt, vt, γ)∥+ ∥GX (xt,∇F (xt), γ)− GX (xt, vt, γ)∥ (73)

≤ ∥GX (xt, vt, γ)∥+
1

ρ
∥∇F (xt)− vt∥

≤ 1

γ
∥xt − x̃t+1∥+

1

ρ

(
Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥

)
= Mt,

where the second inequality holds by the above inequality ∥∇F (xt)− vt∥ ≤ Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥.

According to the above inequalities (73) and (68), we have

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥ ≤ 1

T

T∑
t=1

E
[
Mt

]
≤ 2

√
3Gm1/4

T 1/2
+

2
√
3G

T 1/4
. (74)

Theorem 6. (Restatement of Theorem 2) Assume that the sequence {xt, yt}Tt=1 be generated from the Algorithm 1. When
X = Rd1 , and given Bt = btId2 (b̂ ≥ bt ≥ b > 0) for all t ≥ 1, ηt = k

(m+t)1/2
for all t ≥ 0, αt+1 =

c1ηt, βt+1 = c2ηt, m ≥ max
(
k2, (c1k)

2, (c2k)
2
)
, k > 0, 9µ2

4
≤ c1 ≤ m1/2

k
,

75L2
f

2
≤ c2 ≤ m1/2

k
, 0 < γ ≤

min
(

15
√
2λµ2ρ

2
√

400L2
f
λ2+24µ2λ2+16875b̂2κ2L2

f
µ2
, m1/2ρ

4Lk

)
and 0 < λ ≤ min

( 405bL2
fµ3/2

8
√

50L2
f
+9µ2

, b
6Lf

)
, we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3G′m1/4

T 1/2
+

2
√
3G′

T 1/4

)
, (75)

where G′ = ρ(F (x1)−F∗)
kγ

+
9b1L

2
f∆2

1

kλµ
+ 2σ2

qkµ2 + 2mσ2

qkµ2 ln(m+ T ).

Proof. Since F (xt) = f(xt, y
∗(xt)) = miny∈Y f(xt, y), we have

∥∇F (xt)− vt∥ = ∥∇xf(xt, y
∗(xt))− vt∥ = ∥∇xf(xt, y

∗(xt))−∇xf(xt, yt) +∇xf(xt, yt)− vt∥
≤ ∥∇xf(xt, y

∗(xt))−∇xf(xt, yt)∥+ ∥∇xf(xt, yt)− vt∥
≤ Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥. (76)

Then we have

Mt =
1

γ
∥xt − x̃t+1∥+

1

ρ

(
Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥

)
≥ 1

γ
∥xt − x̃t+1∥+

1

ρ
∥∇F (xt)− vt∥

(i)
= ∥A−1

t vt∥+
1

ρ
∥∇F (xt)− vt∥

=
1

∥At∥
∥At∥∥A−1

t vt∥+
1

ρ
∥∇F (xt)− vt∥

≥ 1

∥At∥
∥vt∥+

1

ρ
∥∇F (xt)− vt∥

(ii)

≥ 1

∥At∥
∥vt∥+

1

∥At∥
∥∇F (xt)− vt∥

≥ 1

∥At∥
∥∇F (xt)∥ (77)

where the equality (i) holds by x̃t+1 = xt − γA−1
t vt that can be easily obtained from the line 5 of Algorithm 1 when X = Rd1 , and

the inequality (ii) holds by ∥At∥ ≥ ρ for all t ≥ 1 due to Assumption 4. Then we have

∥∇F (xt)∥ ≤ Mt∥At∥. (78)
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By using Cauchy-Schwarz inequality, we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤ 1

T

T∑
t=1

E
[
Mt∥At∥

]
≤

√√√√ 1

T

T∑
t=1

E[M2
t ]

√√√√ 1

T

T∑
t=1

E∥At∥2. (79)

According to the above inequality (66) and Mt =
1
γ
∥xt − x̃t+1∥+ 1

ρ

(
Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥

)
, we have

1

T

T∑
t=1

E
[
M2

t

]
≤ 1

T

T∑
t=1

[3L2
f

ρ2
∥y∗(xt)− yt∥2 +

3

ρ2
∥∇xf(xt, yt)− vt∥2 +

3

γ2
∥x̃t+1 − xt∥2

]
≤ 12G

T
(m+ T )1/2. (80)

By combining the above inequalities (79) and (80), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√√√√ 1

T

T∑
t=1

E∥At∥2
2
√
3G

T 1/2
(m+ T )1/4. (81)

Let G′ = ρ2G = ρ(F (x1)−F∗)
kγ

+
9b1L

2
f∆2

1

kλµ
+ 2σ2

qkµ2 + 2mσ2

qkµ2 ln(m+ T ), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3G′m1/4

T 1/2
+

2
√
3G′

T 1/4

)
. (82)

A.2 Convergence Analysis of the VR-AdaGDA Algorithm

In the subsection, we study the convergence properties of the VR-AdaGDA algorithm for solving the minimax problem (1). We first
provide a useful lemma.

Lemma 8. Suppose the stochastic gradients vt and wt be generated from Algorithm 2, we have

E∥∇xf(xt+1, yt+1)− vt+1∥2 ≤ (1− αt+1)E∥∇xf(xt, yt)− vt∥2 +
2α2

t+1σ
2

q

+
4L2

fη
2
t

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
, (83)

E∥∇yf(xt+1, yt+1)− wt+1∥2 ≤ (1− βt+1)E∥∇yf(xt, yt)− wt∥2 +
2β2

t+1σ
2

q

+
4L2

fη
2
t

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
. (84)

Proof. We first prove the inequality (83). According to the definition of vt in Algorithm 2, we have

vt+1 − vt = −αt+1vt + (1− αt+1)
(
∇xf(xt+1, yt+1;Bt+1)−∇xf(xt, yt;Bt+1)

)
+ αt+1∇xf(xt+1, yt+1;Bt+1). (85)
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Then we have

E∥∇xf(xt+1, yt+1)− vt+1∥2

= E∥∇xf(xt+1, yt+1)− vt − (vt+1 − vt)∥2 (86)

= E∥∇xf(xt+1, yt+1)− vt + αt+1vt − αt+1∇xf(xt+1, yt+1;Bt+1)− (1− αt+1)
(
∇xf(xt+1, yt+1;Bt+1)

−∇xf(xt, yt;Bt+1)
)
∥2

= E∥(1− αt+1)(∇xf(xt, yt)− vt) + (1− αt+1)
(
∇xf(xt+1, yt+1)−∇xf(xt, yt)−∇xf(xt+1, yt+1;Bt+1)

+∇xf(xt, yt;Bt+1)
)
+ αt+1

(
∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)

)
∥2

= (1− αt+1)
2E∥∇xf(xt, yt)− vt∥2 + α2

t+1E∥∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)∥2

+ (1− αt+1)
2E∥∇xf(xt+1, yt+1)−∇xf(xt, yt)−∇xf(xt+1, yt+1;Bt+1) +∇xf(xt, yt;Bt+1)∥2

+ 2αt+1(1− αt+1)
〈
∇xf(xt+1, yt+1)−∇xf(xt, yt)−∇xf(xt+1, yt+1;Bt+1) +∇xf(xt, yt;Bt+1),

∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)
〉

≤ (1− αt+1)
2E∥∇xf(xt, yt)− vt∥2 + 2α2

t+1E∥∇xf(xt+1, yt+1)−∇xf(xt+1, yt+1;Bt+1)∥2

+ 2(1− αt+1)
2E∥∇xf(xt+1, yt+1)−∇xf(xt, yt)−∇xf(xt+1, yt+1;Bt+1) +∇xf(xt, yt;Bt+1)∥2

≤ (1− αt+1)
2E∥∇xf(xt, yt)− vt∥2 +

2α2
t+1σ

2

q

+
2(1− αt+1)

2

q
E∥∇xf(xt+1, yt+1; ξt+1)−∇xf(xt, yt; ξt+1)∥2︸ ︷︷ ︸

=T1

,

where the fourth equality follows by EBt+1 [∇xf(xt+1, yt+1;Bt+1)] = ∇xf(xt+1, yt+1) and EBt+1 [∇xf(xt+1, yt+1;Bt+1) −
∇xf(xt, yt;Bt+1)] = ∇xf(xt+1, yt+1) − ∇xf(xt, yt); the first inequality holds by Young’s inequality; the last inequality is due
to Lemma 4 and Assumption 1.

According to Assumption 6, we have

T1 = E
∥∥∇xf(xt+1, yt+1; ξt+1)−∇xf(xt, yt; ξt+1)

∥∥2

= E
∥∥∇xf(xt+1, yt+1; ξt+1)−∇xf(xt, yt+1; ξt+1) +∇xf(xt, yt+1; ξt+1)−∇xf(xt, yt; ξt+1)

∥∥2

≤ 2L2
fE∥xt+1 − xt∥2 + 2L2

fE∥yt+1 − yt∥2

= 2L2
fη

2
tE∥x̃t+1 − xt∥2 + 2L2

fη
2
tE∥ỹt+1 − yt∥2. (87)

Plugging the above inequality (87) into (86), we obtain

E∥∇xf(xt+1, yt+1)− vt+1∥2 ≤ (1− αt+1)
2E∥∇xf(xt, yt)− vt∥2 +

2α2
t+1σ

2

q

+
4(1− αt+1)

2L2
fη

2
t

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
≤ (1− αt+1)E∥∇xf(xt, yt)− vt∥2 +

2α2
t+1σ

2

q

+
4L2

fη
2
t

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
, (88)

where the last inequality holds by 0 < αt+1 ≤ 1.

Similarly, we have

E∥∇yf(xt+1, yt+1)− wt+1∥2 ≤ (1− βt+1)E∥∇yf(xt, yt)− wt∥2 +
2β2

t+1σ
2

q

+
4L2

fη
2
t

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
. (89)

Theorem 7. (Restatement of Theorem 3) Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. When X ⊂ Rd1 , and

given Bt = btId2 (b̂ ≥ bt ≥ b > 0), ηt = k

(m+t)1/3
, αt+1 = c1η

2
t , βt+1 = c2η

2
t , c1 ≥ 2

3k3 + 9µ2

4
and c2 ≥ 2

3k3 +
75L2

f

2
,
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m ≥ max
(
k3, (c1k)

3, (c2k)
3
)
, 0 < λ ≤ min

(
27µbq
32

, b
6Lf

)
and 0 < γ ≤ min

( ρλµ
√

q

Lf

√
32λ2+150qκ2 b̂2

, m1/3ρ
2Lk

)
, we have

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥ ≤ 2
√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
, (90)

where M = F (x1)−F∗

Tγkρ
+

9L2
f b1

kλµρ2
∆2

1 +
2σ2m1/3

k2qµ2ρ2
+

2k2(c21+c22)σ
2

qµ2ρ2
ln(m+ T ) and ∆2

1 = ∥y1 − y∗(x1)∥2.

Proof. Since ηt is decreasing and m ≥ k3, we have ηt ≤ η0 = k

m1/3 ≤ 1 and γ ≤ ρ
2Lη0

= m1/3ρ
2Lk

≤ 1
2Lηt

for any t ≥ 0. Due to
0 < ηt ≤ 1 and m ≥ max

(
(c1k)

3, (c2k)
3
)
, we have αt = c1η

2
t ≤ c1ηt ≤ c1k

m1/3 ≤ 1 and βt = c2η
2
t ≤ c2ηt ≤ c2k

m1/3 ≤ 1. Then we
consider the upper bound of the following term:

1

ηt
E∥∇xf(xt+1, yt+1)− vt+1∥2 −

1

ηt−1
E∥∇xf(xt, yt)− vt∥2 (91)

≤
(1− αt+1

ηt
− 1

ηt−1

)
E∥∇xf(xt, yt)− vt∥2 +

4L2
fηt

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2α2
t+1σ

2

qηt

=
( 1

ηt
− 1

ηt−1
− c1ηt

)
E∥∇xf(xt, yt)− vt∥2 +

4L2
fηt

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2c21η
3
t σ

2

q
,

where the second inequality is due to 0 < αt+1 ≤ 1. Similarly, we have

1

ηt
E∥∇yf(xt+1, yt+1)− wt+1∥2 −

1

ηt−1
E∥∇yf(xt, yt)− wt∥2 (92)

≤
( 1

ηt
− 1

ηt−1
− c2ηt

)
E∥∇yf(xt, yt)− wt∥2 +

4L2
fηt

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2c22η
3
t σ

2

q
.

By ηt = k

(m+t)1/3
, we have

1

ηt
− 1

ηt−1
=

1

k

(
(m+ t)

1
3 − (m+ t− 1)

1
3
)

≤ 1

3k(m+ t− 1)2/3
=

22/3

3k
(
2(m+ t− 1)

)2/3
≤ 22/3

3k(m+ t)2/3
=

22/3

3k3
k2

(m+ t)2/3
=

22/3

3k3
η2t ≤ 2

3k3
ηt, (93)

where the first inequality holds by the concavity of function f(x) = x1/3, i.e., (x + y)1/3 ≤ x1/3 + y

3x2/3 , and the last inequality is
due to 0 < ηt ≤ 1.

Let c1 ≥ 2
3k3 + 9µ2

4
, we have

1

ηt
E∥∇xf(xt+1, yt+1)− vt+1∥2 −

1

ηt−1
E∥∇xf(xt, yt)− vt∥2 (94)

≤ −9µ2ηt
4

E∥∇xf(xt, yt)− vt∥2 +
4L2

fηt

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2c21η
3
t σ

2

q
.

Let c2 ≥ 2
3k3 +

75L2
f

2
, we have

1

ηt
E∥∇yf(xt+1, yt+1)− wt+1∥2 −

1

ηt−1
E∥∇yf(xt, yt)− wt∥2 (95)

≤ −
75L2

fηt

2
E∥∇yf(xt, yt)− wt∥2 +

4L2
fηt

q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2c22η
3
t σ

2

q
.

According to Lemma 5, we have

F (xt+1)− F (xt) ≤
2γL2

fηt

ρ
∥y∗(xt)− yt∥2 +

2γηt
ρ

∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

∥x̃t+1 − xt∥2. (96)
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According to Lemma 6, we have

∥yt+1 − y∗(xt+1)∥2 − ∥yt − y∗(xt)∥2 ≤ −ηtµλ
4bt

∥yt − y∗(xt)∥2 −
3ηt
4

∥ỹt+1 − yt∥2

+
25ηtλ

6µbt
∥∇yf(xt, yt)− wt∥2 +

25κ2ηtbt
6µλ

∥x̃t+1 − xt∥2. (97)

Next, we define a Lyapunov function, for any t ≥ 1

Φt = E
[
F (xt) +

9γL2
fbt

ρλµ
∥yt − y∗(xt)∥2 +

γ

ρµ2

( 1

ηt−1
∥∇xf(xt, yt)− vt∥2 +

1

ηt−1
∥∇yf(xt, yt)− wt∥2

)]
. (98)

Then we have

Φt+1 − Φt

= E
[
F (xt+1)− F (xt)

]
+
9γL2

fbt

ρλµ

(
E∥yt+1 − y∗(xt+1)∥2−E∥yt − y∗(xt)∥2

)
+

γ

ρµ2

( 1

ηt
E∥∇xf(xt+1, yt+1)− vt+1∥2

− 1

ηt−1
E∥∇xf(xt, yt)− vt∥2 +

1

ηt
E∥∇yf(xt+1, yt+1)− wt+1∥2 −

1

ηt−1
E∥∇yf(xt, yt)− wt∥2

)
≤

2γL2
fηt

ρ
E∥y∗(xt)− yt∥2 +

2γηt
ρ

E∥∇xf(xt, yt)− vt∥2 −
ρηt
2γ

E∥x̃t+1 − xt∥2

+
9γL2

fbt

ρλµ

(
− ηtµλ

4bt
E∥yt − y∗(xt)∥2−

3ηt
4

E∥ỹt+1 − yt∥2+
25ηtλ

6µbt
E∥∇yf(xt, yt)− wt∥2+

25κ2ηtbt
6µλ

E∥x̃t+1 − xt∥2
)

− 9γηt
4ρ

E∥∇xf(xt, yt)− vt∥2 +
4γL2

fηt

ρµ2q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2γc21η
3
t σ

2

ρµ2q

−
75L2

fγ

2µ2ρ
ηtE∥∇yf(xt, yt)− wt∥2 +

4γL2
fηt

ρµ2q
E
(
∥x̃t+1 − xt∥2 + ∥ỹt+1 − yt∥2

)
+

2γc22η
3
t σ

2

ρµ2q

≤ −
γL2

fηt

4ρ
E∥y∗(xt)− yt∥2 −

γηt
4ρ

E∥∇xf(xt, yt)− vt∥2 +
2γc21η

3
t σ

2

ρµ2q
+

2γc22η
3
t σ

2

ρµ2q

−
(27btγL2

f

4ρλµ
−

8γL2
f

ρµ2q

)
ηtE∥ỹt+1 − yt+1∥2 −

( ρ
2γ

−
8γL2

f

ρµ2q
−

75γL2
fκ

2b2t
2ρλ2µ2

)
ηtE∥x̃t+1 − xt∥2

≤ −
γL2

fηt

4ρ
E∥y∗(xt)− yt∥2 −

γηt
4ρ

E∥∇xf(xt, yt)− vt∥2 −
ρηt
4γ

E∥x̃t+1 − xt∥2 +
2γc21η

3
t σ

2

ρµ2q
+

2γc22η
3
t σ

2

ρµ2q
, (99)

where the first inequality holds by the above inequalities (94), (95), (96) and (97); the last inequality is due to 0 < λ ≤ 27µbq
32

≤ 27µbtq
32

and 0 < γ ≤ ρλµ
√
q

Lf

√
32λ2+150qκ2 b̂2

≤ ρλµ
√
q

Lf

√
32λ2+150qκ2b2t

for all t ≥ 1. Thus, we have

L2
fηt

4
E∥y∗(xt)− yt∥2 +

ηt
4
E∥∇xf(xt, yt)− vt∥2 +

ρ2ηt
4γ2

E∥x̃t+1 − xt∥2

≤ ρ(Φt − Φt+1)

γ
+

2c21η
3
t σ

2

µ2q
+

2c22η
3
t σ

2

µ2q
. (100)

Taking average over t = 1, 2, · · · , T on both sides of (100), we have

1

T

T∑
t=1

(L2
fηt

4
E∥y∗(xt)− yt∥2 +

ηt
4
E∥∇xf(xt, yt)− vt∥2 +

ρ2ηt
4γ2

E∥x̃t+1 − xt∥2
)

≤
T∑

t=1

ρ(Φt − Φt+1)

Tγ
+

1

T

T∑
t=1

(2c21η3t σ2

µ2q
+

2c22η
3
t σ

2

µ2q

)
.

Given x1 ∈ X , y1 ∈ Y and ∆2
1 = ∥y1 − y∗(x1)∥2, we have

Φ1 = F (x1) +
9γL2

fb1

ρλµ
∥y1 − y∗(x1)∥2 +

γ

ρµ2η0
E∥∇xf(x1, y1)− v1∥2 +

γ

ρµ2η0
E∥∇yf(x1, y1)− w1∥2

≤ F (x1) +
9γL2

fb1

ρλµ
∆2

1 +
2γσ2

qρµ2η0
, (101)
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where the last inequality holds by Assumption 1.

Since ηt is decreasing, i.e., η−1
T ≥ η−1

t for any 0 ≤ t ≤ T , we have

1

T

T∑
t=1

E
(L2

f

4
∥y∗(xt)− yt∥2 +

1

4
∥∇xf(xt, yt)− vt∥2 +

ρ2

4γ2
∥x̃t+1 − xt∥2

)
≤

T∑
t=1

ρ(Φt − Φt+1)

ηTTγ
+

1

ηTT

T∑
t=1

(2c21η3t σ2

µ2q
+

2c22η
3
t σ

2

µ2q

)
=
ρ(Φ1 − ΦT+1)

ηTTγ
+

2(c21 + c22)σ
2

ηTTqµ2

T∑
t=1

η3t

≤ ρ(F (x1)− F ∗)

TηT γ
+

9L2
fb1

ηTTλµ
∆2

1 +
2σ2

ηTTqµ2η0
+

2(c21 + c22)σ
2

ηTTqµ2

∫ T

1

k3

m+ t
dt

≤ ρ(F (x1)− F ∗)

TηT γ
+

9L2
fb1

ηTTλµ
∆2

1 +
2σ2

ηTTqµ2η0
+

2k3(c21 + c22)σ
2

ηTTqµ2
ln(m+ T )

=

(
ρ(F (x1)− F ∗)

Tγk
+

9L2
fb1

kλµ
∆2

1 +
2σ2m1/3

k2qµ2
+

2k2(c21 + c22)σ
2

qµ2
ln(m+ T )

)
(m+ T )1/3

T
, (102)

where the second inequality holds by the above inequality (101). LetM = F (x1)−F∗

Tγkρ
+

9L2
f b1

kλµρ2
∆2

1+
2σ2m1/3

k2qµ2ρ2
+

2k2(c21+c22)σ
2

qµ2ρ2
ln(m+T ),

we have

1

T

T∑
t=1

E
[ L2

f

4ρ2
∥y∗(xt)− yt∥2 +

1

4ρ2
∥∇xf(xt, yt)− vt∥2 +

1

4γ2
∥x̃t+1 − xt∥2

]
≤ M

T
(m+ T )1/3. (103)

According to Jensen’s inequality, we have

1

T

T∑
t=1

E
[Lf

2ρ
∥y∗(xt)− yt∥+

1

2ρ
∥∇xf(xt, yt)− vt∥+

1

2γ
∥x̃t+1 − xt∥

]
≤

(
3

T

T∑
t=1

E
[ L2

f

4ρ2
∥y∗(xt)− yt∥2 +

1

4ρ2
∥∇xf(xt, yt)− vt∥2 +

1

4γ2
∥x̃t+1 − xt∥2

])1/2

≤
√
3M

T 1/2
(m+ T )1/6 ≤

√
3Mm1/6

T 1/2
+

√
3M

T 1/3
, (104)

where the last inequality is due to (a+ b)1/6 ≤ a1/6 + b1/6. Thus, we have

1

T

T∑
t=1

E
[Lf

ρ
∥y∗(xt)− yt∥+

1

ρ
∥∇xf(xt, yt)− vt∥+

1

γ
∥x̃t+1 − xt∥

]
≤ 2

√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
. (105)

According to the above inequalities (73) and (105), we can obtain

1

T

T∑
t=1

E∥GX (xt,∇F (xt), γ)∥ ≤ 1

T

T∑
t=1

E
[
Mt

]
≤ 2

√
3Mm1/6

T 1/2
+

2
√
3M

T 1/3
. (106)

Theorem 8. (Restatement of Theorem 4) Suppose the sequence {xt, yt}Tt=1 be generated from Algorithm 2. When X = Rd1 , and

given Bt = btId2 (b̂ ≥ bt ≥ b > 0), ηt = k

(m+t)1/3
, αt+1 = c1η

2
t , βt+1 = c2η

2
t , c1 ≥ 2

3k3 + 9µ2

4
and c2 ≥ 2

3k3 +
75L2

f

2
,

m ≥ max
(
k3, (c1k)

3, (c2k)
3
)
, 0 < λ ≤ min

(
27µbq
32

, b
6Lf

)
and 0 < γ ≤ min

( ρλµ
√

q

Lf

√
32λ2+150qκ2 b̂2

, m1/3ρ
2Lk

)
, we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3M ′m1/6

T 1/2
+

2
√
3M ′

T 1/3

)
, (107)

where M ′ = ρ(F (x1)−F∗)
Tγk

+
9L2

f b1

kλµ
∆2

1 +
2σ2m1/3

k2qµ2 +
2k2(c21+c22)σ

2

qµ2 ln(m+ T ).
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Proof. According to the above inequality (79), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤ 1

T

T∑
t=1

E
[
Mt∥At∥

]
≤

√√√√ 1

T

T∑
t=1

E[M2
t ]

√√√√ 1

T

T∑
t=1

E∥At∥2. (108)

By using the above inequality (103) and Mt =
1
γ
∥xt − x̃t+1∥+ 1

ρ

(
Lf∥y∗(xt)− yt∥+ ∥∇xf(xt, yt)− vt∥

)
, we have

1

T

T∑
t=1

E
[
M2

t

]
≤ 1

T

T∑
t=1

E
[3L2

f

ρ2
∥y∗(xt)− yt∥2 +

3

ρ2
∥∇xf(xt, yt)− vt∥2 +

3

γ2
∥x̃t+1 − xt∥2

]
≤ 12M

T
(m+ T )1/3. (109)

According to the above inequalities (108) and (109), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√√√√ 1

T

T∑
t=1

E∥At∥2
2
√
3M

T 1/2
(m+ T )1/6. (110)

Let M ′ = ρ2M = ρ(F (x1)−F∗)
Tγk

+
9L2

f b1

kλµ
∆2

1 +
2σ2m1/3

k2qµ2 +
2k2(c21+c22)σ

2

qµ2 ln(m+ T ), we have

1

T

T∑
t=1

E∥∇F (xt)∥ ≤

√
1
T

∑T
t=1 E∥At∥2

ρ

(
2
√
3M ′m1/6

T 1/2
+

2
√
3M ′

T 1/3

)
. (111)

Corollary 2. (Restatement of Corollary 1) Under the same conditions of Theorems 3 and 4, given mini-batch size q = O(κν) for ν > 0

and 27µbq
32

≤ b
6Lf

, i.e., q = κν ≤ 16
81Lfµ

, our VR-AdaGDA algorithm has a lower gradient complexity of Õ
(
κ(4.5− ν

2
)ϵ−3

)
for finding

an ϵ-stationary point.

Proof. Under the same conditions of Theorems 3 and 4, without loss of generality, let k = O(1), b = O(1), b̂ = O(1)

and ρλµ
√
q

Lf

√
32λ2+150qκ2 b̂2

≤ m1/3ρ
2Lk

, we have m ≥
(
k3, (c1k)

3, (c2k)
3, 8(Lkλµ)3q3/2

Lf (32λ2+150qκ2 b̂2)3/2

)
. Let γ =

ρλµ
√
q

Lf

√
32λ2+150qκ2 b̂2

=

ρλ
√

q

κ
√

32λ2+150qκ2 b̂2
and λ = min

(
27µbq
32

, b
6Lf

)
.

Given q = O(κν) for ν > 0 and 27µbq
32

≤ b
6Lf

, i.e., κν ≤ 16
81Lfµ

, it is easily verified that λ = O(qµ), γ = O( q
κ3 ), c1 = O(1) and

c2 = O(L2
f ). Due to L = Lf (1 + κ) and q ≤ 16

81Lfµ
, we have m = O(L6

f ). Then we have M = O(κ
3

q
+ κ2

q
+ κ2

q
ln(m + T )) =

O(κ
3

q
) = O(κ(3−ν)). Thus, our VR-AdaGDA algorithm has a convergence rate of O

(
κ
(3/2− ν

2
)

T1/3

)
. Let κ

(3/2− ν
2
)

T1/3 ≤ ϵ, i.e., E
[
Mζ

]
≤ ϵ

or E∥∇F (xζ)∥ ≤ ϵ, we choose T ≥ κ(9/2− 3ν
2

)ϵ−3. Thus, our VR-AdaGDA algorithm reaches a lower gradient complexity of
4q · T = O

(
κ
(4.5− ν

2
)

y ϵ−3
)

for finding an ϵ-stationary point.


