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Abstract

Non-convex sparse regularizations with group
structures are useful tools for selecting impor-
tant feature groups. For optimization with these
regularizations, block coordinate descent (BCD)
is a standard solver that iteratively updates each
parameter group. However, it suffers from high
computation costs for a large number of param-
eter groups. The state-of-the-art method prunes
unnecessary updates in BCD by utilizing bounds
on the norms of the parameter groups. Unfortu-
nately, since it computes the bound for each iter-
ation, the computation cost still tends to be high
when the updates are not sufficiently pruned.
This paper proposes a fast BCD for non-convex
group regularizations. Specifically, it selects a
small subset of the parameter groups from all the
parameter groups on the basis of the bounds and
performs BCD on the subset. The subset grows
step by step in accordance with the bounds dur-
ing optimization. Since it computes the bounds
only when selecting and growing the subsets, the
total cost for computing the bounds is smaller
than in the previous method. In addition, we
theoretically guarantee the convergence of our
method. Experiments show that our method is
up to four times faster than the state-of-the-art
method and 68 times faster than the original BCD
without any loss of accuracy.

1 INTRODUCTION

Sparse optimization problems with group regularizations
are useful for selecting important feature groups. Among
the various methods, such as Group Lasso (Yuan and Lin,
2006), Group SCAD (smoothly clipped absolute devia-
tion) (Wang et al., 2007) and Group MCP (minimax con-
cave penalty) (Breheny and Huang, 2009; Huang et al.,
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2012) have received attention due to their theoretical foun-
dations and desirable properties. Specifically, they utilize
non-convex group regularizations and overcome the the-
oretical drawbacks of the statistical properties of convex
ones, such as bias and inconsistency of the estimated pa-
rameters (Zhang, 2010; Mazumder et al., 2010; Loh and
Wainwright, 2017). Owing to these advantageous prop-
erties, they have been successfully used in various do-
mains, including bioinformatics to analyze gene expres-
sion data/genetic markers (Wang et al., 2007; Breheny and
Huang, 2009; Ayers and Cordell, 2010; Ogutu and Piepho,
2014) and for causal inference (Greenewald et al., 2021).

Although we can use several methods to solve the opti-
mization problems of Group SCAD/MCP (Wang et al.,
2007; Bühlmann and Meier, 2008), block coordinate de-
scent (BCD) is currently considered to be the standard it-
erative method for its high efficiency (Breheny and Huang,
2015). It utilizes a thresholding function derived from the
regularization terms, and the thresholding function shrinks
the parameter groups. As a result, a lot of parameter groups
are expected to be zeros and a sparse solution can be ob-
tained. In the thresholding function, the magnitude of
shrinkage for each parameter group is determined in accor-
dance with the norm of the parameter group. Intuitively,
since parameter groups with small norms do not contribute
much to predictions, the thresholding function imposes a
large shrinkage on such groups. Unfortunately, BCD tends
to become slower as the number of parameter groups in-
creases because it iteratively updates each parameter group
on the basis of the thresholding function.

To overcome the above problem, bounding techniques (Ida
et al., 2019, 2020) skip unnecessary updates in BCD
on the basis of bounds on the norms of the parameter
groups. Since the thresholding function shrinks the pa-
rameter groups to zeros in accordance with the norms, the
bounds of these norms can identify parameter groups that
become zeros. If the sizes of a parameter group is pg , the
computation cost of the bound is O(pg) time (Ida et al.,
2019). On the other hand, the update requiresO(ppg + p2g)
time, where p is the total number of parameters. Therefore,
these bounds efficiently skip the updates for the parame-
ter groups that turn out to be zeros. However, since these
bounding techniques compute a bound for each iteration of
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BCD until convergence, the computation cost still tends to
be high when the updates are not sufficiently skipped, e.g.
when many parameter groups turn out to be nonzero during
optimization.

This paper proposes a fast BCD for non-convex group reg-
ularizations. To prune unnecessary parameter groups, it
first selects a small subset of parameter groups from all the
parameter groups and performs BCD on the subset. The
parameters in the subset have a small amount of shrink-
age since such parameters largely contribute to predic-
tions (Fujiwara et al., 2016a). To find such a subset, we
utilize a novel bounding technique that effectively deals
with thresholding functions of non-convex group regular-
izations. The subset grows step by step during optimization
on the basis of the bounds. This strategy avoids the limita-
tion of the existing bounding techniques: our method com-
putes bounds only when selecting and growing the subset
whereas the existing techniques compute a bound for each
iteration. As a result, our method can reduce the cost for
computing the bound. In addition, we theoretically guaran-
tee the convergence of our method. Experiments show that
our method reduces the number of the computations for the
bounds by a factor of 104 to 105 compared with the existing
method. We also demonstrate that our method is up to four
times faster than the state-of-the-art method and 68 times
faster than the original BCD without any loss of accuracy.

2 PRELIMINARY

This section reviews Group SCAD, the thresholding func-
tion, and the bounding technique. We will mainly handle
Group SCAD for simplicity; the extension to Group MCP
is described in Section 4.

2.1 Group SCAD

Let X ∈ Rn×p be a matrix of features, where n is the
number of data points and each data point is represented
as a p-dimensional feature. y ∈ Rn is a set of con-
tinuous responses. Group SCAD (Wang et al., 2007)
finds a set of parameter groups that are related to the re-
sponse from the dataset where n is much smaller than
p. If G is the total number of feature groups, X is rep-
resented as X = [X

(1)
, ...,X

(G)
], where X

(g) ∈ Rn×pg
is the submatrix of X corresponding to the g-th feature
group with pg features. Here, in accordance with the
previous work (Breheny and Huang, 2015), each group
is orthonormalized as X(g) = X

(g)
Q(g)(Λ(g))−1/2 where

Q(g) and Λ(g) are obtained by singular value decomposi-
tion: n−1(X

(g)
)>X

(g)
= Q(g)Λ(g)(Q(g))>. In the same

way, a parameter vector β ∈ Rp is represented as β =
[β(1)>, ..., β(G)>]>, where β(g) ∈ Rpg is the parameter
vector of group g. The solution of Group SCAD is obtained

by solving the following problem:

min
β∈Rp

1
2n

∣∣∣∣y−∑G
g=1X(g)β(g)

∣∣∣∣2
2
+
∑G
g=1pλ,γ(||β(g)||2), (1)

where || · ||2 represents the l2 norm and the regulariza-
tion term pλ,γ(||β(g)||2) is defined as follows (Wang et al.,
2007):

pλ,γ(||β(g)||2) =
λ||β(g)||2 if ||β(g)||2 ≤ λ
γλ||β(g)||2−0.5(||β(g)||22+λ

2)
γ−1 if λ < ||β(g)||2 ≤ γλ

λ2(γ2−1)
2(γ−1) if ||β(g)||2 > γλ.

(2)

λ > 0 is a hyperparameter that controls the degree of spar-
sity of the solution. γ > 2 is another one that determines
the magnitude of the regularization. The recommended set-
ting is γ = 3.7 (Fan and Li, 2001).

2.2 Thresholding Function

To obtain a solution to problem (1), the solver usually uti-
lizes a thresholding function (Fan and Li, 2001; Breheny
and Huang, 2015; Gong et al., 2013), which is derived from
the regularization of Equation (2). Since it shrinks param-
eter groups to zeros, a sparse solution can be obtained by
using solvers with the thresholding function. For the g-
th group, the thresholding function F (z(g), λ, γ) of Group
SCAD is computed as

F (z(g), λ, γ) =
S(||z(g)||2, λ) z(g)

||z(g)||2
if ||z(g)||2≤2λ

γ−1
γ−2S(||z(g)||2, γλ

γ−1 ) z(g)

||z(g)||2
if 2λ< ||z(g)||2≤γλ

z(g) if γλ< ||z(g)||2.
(3)

z(g) ∈ Rpg in the function is computed as follows:

z(g) =X(g)T(y −
∑G
i 6=g X(i)β(i)). (4)

S(·, ·) is computed as S(||z(g)||2, λ) = max(0, ||z(g)||2−λ).
By using Equation (3), the g-th updated parameter vec-
tor is represented as β(g) = F (z(g), λ, γ). Equation (3)
suggests that the magnitude of shrinkage of β(g) depends
on the magnitude of the norm of z(g); e.g., β(g) has no
shrinkage for the case of γλ< ||z(g)||2, small shrinkage for
2λ < ||z(g)||2 ≤ γλ, and large shrinkage for ||z(g)||2 ≤ 2λ.
Specifically, the parameter groups with smaller shrinkage
contribute more to predictions.

2.3 BCD and Bounding Technique

Algorithm 1 is a BCD solver that uses the thresholding
function of Equation (3) (Breheny and Huang, 2015). It is
implemented in the grpreg package of R1, and it has been

1https://cran.r-project.org/web/packages/
grpreg/index.html
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Algorithm 1 BCD of Group SCAD
1: A = {1, ..., G}, β0 ← 0, t← 0
2: repeat
3: for each g ∈ A do
4: compute z(g)t by Equation (4);
5: β

(g)
t ← F (z

(g)
t , λ, γ) by Equation (3);

6: end for
7: t← t+ 1
8: until βt converges

used as a standard solver for Group SCAD/MCP because
of its high efficiency. If A := {1, ..., G} and t is the num-
ber of the outer loops (lines 2–8), the inner loop (lines 3–6)
updates β(g)

t for each group by using Equations (3) and (4).
The outer loop (lines 2–8) performs the inner loop until βt
converges. Unfortunately, BCD tends to slow down when
the number of groups |A| is large because the total number
of iterations becomes large.

To accelerate BCD, the bounding technique (Ida et al.,
2019) skips unnecessary computations of lines 4 and 5 in
Algorithm 1 by utilizing the upper bound z(g)t of ||z(g)t ||2
such that z(g)t ≥ ||z(g)t ||2. In particular, we can skip lines 4
and 5 when z(g)t ≤ λ holds because S(·, ·) in Equation (3)
clearly shrinks such parameter groups to zeros. The point
is that the computation cost of z(g)t is O(pg) time, whereas
that of ||z(g)t ||2 requires O(npg) or O(ppg + p2g) time. As

a result, it efficiently skips lines 4 and 5 when z(g)t ≤ λ

holds. However, the method computes z(g)t for each itera-
tion and must compute both z(g)t and ||z(g)t ||2 when z(g)t ≤ λ
does not hold. Therefore, its cost for computing z(g)t may
be dominant when z(g)t ≤ λ does not hold for many pa-
rameter groups. If T is the total number of the outer loops
for lines 2–8 in Algorithm 1, it requires O(Tp) time in ad-
dition to the computation cost of the original BCD when
z
(g)
t ≤ λ does not hold for all the groups. Specifically,

if the parameters are not very sparse, it is slower than the
original BCD since it cannot skip the computations of the
nonzero parameter groups.

3 PROPOSED APPROACH

This section presents our approach. First, we overview our
ideas in Section 3.1. Next, we introduce our key techniques
of our method in Sections 3.2, 3.3, and 3.4. Finally, we
describe our algorithm in Section 3.5. The omitted proofs
can be found in Appendix.

3.1 Idea

Although the bounding technique can accelerate BCD, it
tends to be slow in some cases, as described in Section 2.3.
This is because it computes an upper bound z(g)t of ||z(g)t ||2

Bound computation
…………… ……………

1 2 3 … … G

Parameter group

Non-shrink subset

Small-shrink subset

Large-shrink subset

(a) Our method

(b) Previous method

Bound computation

(1)

(2)

(3)

(4)

BCD

BCD

BCD

BCD

BCD

Figure 1: Procedures of our method and previous method.

for each iteration to skip parameter groups that become ze-
ros, as shown in Figure 1 (b). As a result, the cost for com-
puting z(g)t is dominant when the parameter groups are not
very sparse, as it cannot skip the nonzero parameter groups.

To overcome these problems, we propose a method that re-
duces the number of the computations for z(g)t . It performs
BCD on a growing sequence of subproblems that are re-
stricted to small subsets of parameter groups as a way to
prune unnecessary parameter groups. To find these subsets,
we utilize a novel bounding technique based on threshold-
ing functions of non-convex group regularizations. Our
method computes bounds only when selecting and growing
the subsets, whereas the existing method computes them
at every iteration. As a result, our method only requires
O(G2 + p) time for computing bounds where G � p for
many use cases, while the previous bounding technique re-
quires O(Tp) time.

Figure 1 (a) is an overview of our method. It selects three
types of subset: (i) a non-shrink subset, (ii) a small-shrink
subset, and (iii) a large-shrink subset. These subsets are de-
rived from the thresholding function of Equation (3). We
start the optimization with the non-shrink subset. Then we
add the small-shrink and large-shrink subsets to the prob-
lem step by step. Finally, we optimize all the parameter
groups until convergence.

3.2 Subsets of Parameter Groups

This section describes the three types of subset shown in
Figure 1 (a). Let z(g)t and z(g)t be upper and lower bounds
of ||z(g)t ||2 such that z(g)t ≥ ||z

(g)
t ||2 and z(g)t ≤ ||z

(g)
t ||2 hold,

respectively. These bounds are given in Section 3.3. We
define the three types of subset by utilizing these bounds.
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Definition 1. The subsets N, S and L are given as follows:

N = {g ∈ A|z(g)t > γλ}, (5)

S = {g ∈ A|(γλ ≥ z(g)t ) ∧ (z
(g)
t > 2λ)}, (6)

L = {g ∈ A|(2λ ≥ z(g)t ) ∧ (z
(g)
t > λ)}. (7)

The subsets N, S, and L have the following properties:

Lemma 1 (Non-Shrink Subset N). Each β(g)
t such that g ∈

N must be z(g)t .

Lemma 2 (Small-Shrink Subset S). Each β(g)
t such that

g ∈ S must be γ−1
γ−2S(||z(g)t ||2,

γλ
γ−1 )

z
(g)
t

||z(g)t ||2
.

Lemma 3 (Large-Shrink Subset L). Each β(g)
t such that

g ∈ L must be (||z(g)t ||2 − λ)
z
(g)
t

||z(g)t ||2
.

Lemma 1 suggests that subset N contains parameter
groups that do not shrink. On the other hand, Lem-
mas 2 and 3 show that subsets S and L contain param-

eter groups that shrink to γ−1
γ−2S(||z(g)t ||2,

γλ
γ−1 )

z
(g)
t

||z(g)t ||2
and

(||z(g)t ||2 − λ)
z
(g)
t

||z(g)t ||2
, respectively. Specifically, the param-

eter groups in subset S shrink more than the parameter
groups in N. In the same way, the parameter groups in L
shrink more than those in N and S. We should note that our
method also deals with subsets not included in N, S and L
in Section 3.5.

3.3 Upper and Lower Bounds

This section describes a way of computing upper and lower
bounds of ||z(g)t ||2 that appear in Equations (5), (6), and (7)
for selecting N, S, and L. First, we introduce z(g)t and z(g)t ,
as follows:

Definition 2. Let t′ be 0 ≤ t′ < t. Then, z(g)t and z(g)t are
computed as

z
(g)
t = ||z(g)t′ ||2 +

∑
l∈A\{g} Λ(g, l), (8)

and

z
(g)
t = ||z(g)t′ ||2 −

∑
l∈A\{g} Λ(g, l), (9)

where Λ(g, l)= ||K̂(g)[l]||2||β(l)
t − β

(l)
t′ ||2. The i-th element

of K̂(g)[l] ∈ Rpg is given as ||K(g,l)[i, :]||2, that is, the l2
norm of the i-th row vector in the block matrix K(g,l) ∈
Rpg×pl of K := XTX ∈ Rp×p.

We call z(g)t′ and β(g)
t′ snapshots. Note that we can precom-

pute ||K̂(g)[·]||2 before beginning optimization. The follow-
ing lemma shows that z(g)t and z(g)t are, respectively, upper
and lower bounds of ||z(g)t ||2:

Lemma 4 (Upper and Lower Bounds). When z(g)t and z(g)t
are respectively computed using Equations (8) and (9) in
Definition 2, z(g)t ≥ ||z

(g)
t ||2 and ||z(g)t ||2 ≥ z

(g)
t hold.

On the basis of Lemma 4, we can estimate to which subset
of N, S, and L the g-th parameter group belongs in accor-
dance with Equations (5), (6), and (7). The computation
cost of selecting these subsets is as follows:

Lemma 5 (Computation Cost for Subset Selection). The
computation of selecting any subset of N, S, and L requires
O(G2 + p) time given snapshots z(g)t′ , β(g)

t′ , and precom-
puted ||K̂(g)[·]||2 for g ∈ {1, ..., G}.

Our method requires O(G2 + p) time while the existing
bounding technique (Ida et al., 2019) requiresO(Tp) time,
where T is the number of the outer loops. Since T is of-
ten large in BCD and G � p usually holds for many use
cases, our method is expected to be more efficient than the
existing method.

Regarding the accuracy of the subset selection, since these
upper and lower bounds are approximations for ||z(g)t ||2, the
error bounds of the approximations are important. If | · |
represents the absolute value, they are given as follows:

Lemma 6 (Error Bound). Let ε be computed as
2
∑
l∈A\{g} Λ(g, l) for the g-th group. Then, it satisfies

|z(g)t − ||z
(g)
t ||2| ≤ ε and |z(g)t − ||z

(g)
t ||2| ≤ ε.

If the error bounds become large, the subset selection be-
comes inefficient because the inequalities in Equations (5),
(6), and (7) are difficult to satisfy. The next section shows
that the gradual parameter addition strategy can reduce the
error bound and further decreases the computation cost.

3.4 Gradual Parameter Addition

Our method starts by optimizing parameters in subset N
because it largely contributes to predictions. Then, subsets
S and L are added to the optimization problem step by step.
That is, we first extract subset N from A := {1, ..., G} and
optimize the parameters in N. After convergence, subset
S is selected from A \ N and added to the optimization
problem. Then, we again optimize the problem and extract
subset L from A \ (N ∪ S) to be added to the problem.

The advantage of the strategy is that we can expect to obtain
a small error bound ε in Lemma 6 for extracting S and L.
The error bounds are given as follows:

Lemma 7 (Error Bounds for Subsets S and L). Let
εS and εL be computed as 2

∑
l∈N\{g} Λ(g, l) and

2
∑
l∈(N∪S)\{g} Λ(g, l), respectively. Then, if we utilize

the gradual parameter addition strategy, we have |z(g)t −
||z(g)t ||2| ≤ εS and |z(g)t − ||z(g)t ||2| ≤ εS for the g-th
group in subset A \N, and |z(g)t − ||z(g)t ||2| ≤ εL and
|z(g)t −||z

(g)
t ||2| ≤ εL for the g-th group in subset A\(N∪S).



Yasutoshi Ida†, Sekitoshi Kanai†, Atsutoshi Kumagai†

We can expect εS and εL to be smaller than ε in Lemma 6
because Λ(·, ·) ≥ 0, |A| ≥ |N|, and |A| ≥ |N ∪ S|. That is,
the upper and lower bounds can approximate ||z(g)t ||2 with
small error bounds for extracting S and L.

The another advantage of the strategy is that it can further
reduce the computation cost of extracting S and L. The
computation costs are as follows:
Lemma 8 (Costs for Extracting S and L). If we utilize the
gradual parameter addition strategy, the selections of sub-
sets S and L respectively require O(|N||A\N| + p) and
O(|N ∪ S||A\ (N ∪ S)| + p) times given snapshots z(g)t′ ,
β
(g)
t′ , and precomputed ||K̂(g)[·]||2 for g ∈ {1, ..., G}.

From Lemma 8, the selections of S and L require fewer
computations than that of Lemma 5, because |N|, |A \ N|,
|N ∪ S|, and |A \ (N ∪ S)| are less than or equal to G.

3.5 Algorithm

This section describes our fast BCD, which is called Ac-
celGSCAD (Accelerated Group SCAD). Algorithm 2 is
the pseudo-code. C is a subset that contains indices of
groups optimized by BCD. Algorithm 2 first precomputes
||K̂(g)[l]||2, which is used for computing bounds (lines 2–
6). Next, it extracts N from A by using Equation (5) (lines
9–17). To select N, we need βt′ and zt′ . Therefore, BCD
of Algorithm 3 is executed for m iterations to obtain them
(line 10). N is added to C (line 17), and Algorithm 3 opti-
mizes the parameters corresponding to C until convergence
(line 38). βt′ and zt′ are also updated by Algorithm 3 in or-
der to select other subsets. Then, S is extracted from A \N
by using Equation (6) (lines 18–25) and it is added to C
(line 25). Algorithm 3 with C is executed until convergence
(line 38). In the same way, L is extracted from A \ (N∪ S)
by using Equation (7) (lines 26–33) and the parameters are
optimized (line 38). Then, A \ C is added to C (line 35)
and the parameters are optimized (line 38).

As a result, the computation cost of selecting the subsets in
the case of Algorithm 2 is as follows:
Theorem 1 (Computation Cost). The total computation
cost of selecting the subsets in the case of Algorithm 2
is O(G2 + |N||A \N| + |N ∪ S||A \ (N ∪ S)| + p) time
given snapshots z(g)t′ , β(g)

t′ and precomputed ||K̂(g)[·]||2 for
g ∈ {1, ..., G}.

Obviously, we obtain the following worst time complexity:
Corollary 1 (Worst-case Computation Cost). The worst
time complexity of selecting the subsets in the case of Algo-
rithm 2 is O(G2 + p) time given snapshots z(g)t′ , β(g)

t′ and
precomputed ||K̂(g)[·]||2 for g ∈ {1, ..., G}.

The existing BCD with the bounding technique requires
O(Tp) time for computing bounds (Ida et al., 2019). This
cost may be dominant when the parameter groups are not

Algorithm 2 AccelGSCAD
1: A = {1, ..., G}, N = ∅, S = ∅, L = ∅, C = ∅, β ← 0;
2: for each g ∈ A do
3: for each l ∈ A do
4: compute ||K̂(g)[l]||2;
5: end for
6: end for
7: step← 0;
8: while step < 4 do
9: if step == 0 then

10: execute Algorithm 3 on A for m iterations;
11: for each g ∈ A do
12: compute z(g)t by Equation (9);
13: if z(g)t > γλ then
14: add g to N;
15: end if
16: end for
17: add N to C;
18: else if step == 1 then
19: for each g ∈ A \ C do
20: compute z(g)t and z(g)t by Equations (8) and (9);
21: if γλ ≥ z(g)t and z(g)t > 2λ then
22: add g to S;
23: end if
24: end for
25: add S to C;
26: else if step == 2 then
27: for each g ∈ A \ C do
28: compute z(g)t and z(g)t by Equations (8) and (9);
29: if 2λ ≥ z(g)t and z(g)t > λ then
30: add g to L;
31: end if
32: end for
33: add L to C;
34: else if step == 3 then
35: add A \ C to C;
36: end if
37: step++;
38: execute Algorithm 3 on C;
39: end while

Algorithm 3 BCD with snapshots
1: Given: C
2: t← 0; t′ ← 0;
3: repeat
4: βt′ ← βt; zt′ ← zt; t′ ← t;
5: for each g ∈ C do
6: compute z(g)t by Equation (4);
7: β

(g)
t ← F (z

(g)
t , λ, γ) by Equation (3);

8: end for
9: t← t+ 1;

10: until β converges

very sparse and T is large, as it cannot skip the nonzero pa-
rameter groups. On the other hand, the cost of our method
for computing the bounds does not depend on T and is
O(G2 + p) time even in the worst case. Since G � p
holds for many use cases, our method accelerates Group
SCAD even when the parameters are not very sparse.

As for convergence, our method has the following property:
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Theorem 2 (Convergence Property). Suppose that λ > 0,
γ > 2 and each group is orthonormalized in problem (1).
Then, Algorithm 2 converges to a stationary point of the
objective function in problem (1).

The orthonormalization assumption in the theorem is the
same as in the previous work, which proves convergence of
BCD for Group SCAD (Breheny and Huang, 2015).

4 EXTENSION

This section describes the extension of our method to
Group MCP (Breheny and Huang, 2009). Since it uti-
lizes a thresholding function similarly to Group SCAD, our
method is relatively easy to extend to Group MCP. The
thresholding function is as follows:

FMCP(z(g), λ, γ) ={
γ
γ−1S(||z(g)||2, λ) z(g)

||z(g)||2
if ||z(g)||2≤γλ

z(g) if γλ< ||z(g)||2.
(10)

Note that γ > 1 for the above thresholding function. For
Equation (10) of Group MCP, we define the non-shrink and
large-shrink subsets in the same way as in Group SCAD.

Definition 3. For the thresholding function of Equa-
tion (10), the subset N is as follows:

N = {g ∈ A|z(g)t > γλ}. (11)

Definition 4. For the thresholding function of Equa-
tion (10), the subset L is as follows:

L = {g ∈ A|(γλ ≥ z(g)t ) ∧ (z
(g)
t > λ)}. (12)

Subsets N and L have the following properties:

Lemma 9 (Non-Shrink Subset N for Group MCP). Each
β
(g)
t such that g ∈ N must be z(g)t .

Lemma 10 (Large-Shrink Subset L for Group MCP). Each

β
(g)
t such that g ∈ L must be (||z(g)t ||2−λ)

γz
(g)
t

(γ−1)||z(g)t ||2
.

The proofs are similar to those of Lemma 1 and 3 of Group
SCAD. For the algorithm, we start by optimizing the pa-
rameters corresponding to N; then we sequentially add the
parameters in L and the other parameters to the optimiza-
tion problem similarly to Algorithm 2.

5 RELATED WORK

Screening Method. Screening methods are commonly
used to speed up solvers for sparsity-inducing regulariza-
tions (Ghaoui et al., 2012; Tibshirani et al., 2012; Wang
et al., 2013; Bonnefoy et al., 2015; Rakotomamonjy et al.,
2019). They eliminate several parameters before solving

the problem, and they have been extended to group regu-
larizations. For non-convex group regularizations, Lee and
Breheny (2015) proposed a screening method for Group
SCAD/MCP. The performance of the screening method
deteriorates when the initial parameters are far from the
optimal parameters (Johnson and Guestrin, 2016, 2017).
Therefore, it usually requires a sequential rule (Ndiaye
et al., 2017), which must investigate a sequence of hyper-
parameters and cannot be parallelized.

Working Set Algorithm. In the context of convex regular-
izations, working set algorithms can overcome the above
drawback of screening methods and have achieved state-
of-the-art performance (Johnson and Guestrin, 2015; Ndi-
aye et al., 2017; Massias et al., 2018). They solve a grow-
ing sequence of subproblems that are restricted to small
subsets of parameters during optimization to accelerate the
solvers (Yuan et al., 2011). A recent paper showed that a
working set method based on gap safe rules (Ndiaye et al.,
2017) achieves state-of-the-art performance in accelerating
solvers of Lasso (Massias et al., 2018). However, since it
utilizes the duality gap in the convex optimization litera-
ture to select the subsets, it is difficult to be used for non-
convex regularizations. Although Boisbunon et al. (2014)
and Rakotomamonjy et al. (2022) proposed working set
methods for non-convex regularizations, they do not han-
dle group structures.

Bounding Technique. Apart from the above approaches,
bounding techniques have been proposed to accelerate co-
ordinate descent methods (Fujiwara et al., 2016a,b; Ida
et al., 2019, 2020). They safely skip unnecessary updates
in coordinate descent by utilizing a similar upper bound
to that described in Section 2.3. They have speeded up
many methods, such as Lasso (Fujiwara et al., 2016b), l1-
graph construction (Fujiwara et al., 2016a), Sparse Group
Lasso (Ida et al., 2019), and CUR matrix decomposi-
tion (Ida et al., 2020). However, the cost of computing
bounds for our baseline method (Ida et al., 2019) may be
large, as we described in Section 2.3.

6 EXPERIMENT

We evaluated the processing times and values of the objec-
tives to assess the efficiency and accuracy of our method.
In Sections 6.1 and 6.2, we evaluate the performance for
the settings of λ = λ′/103 and λ = λ′/104, where λ′ is
the smallest λ for which the optimal parameters are all ze-
ros (Tibshirani et al., 2012). Namely, we evaluated algo-
rithms in both sparse and dense settings, as large and small
λ induce sparse and dense parameters, respectively. In Sec-
tion 6.3, we compare our method with the existing method
in terms of the number of computations for bounds. In
Section 6.4, we evaluate the number of updates in BCD
to confirm that our method does not slow down conver-
gence. In Section 6.5, we evaluate the performance of com-
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Figure 2: Percentages of times relative to the wall clock times of origin for (a) sparse and (b) dense settings. Our method
could accelerate BCD even in the dense setting while the existing bounding technique (FastGSCAD) could not.

puting the regularization path, where a sequence of solu-
tions is computed while changing the hyperparameter λ.
We evaluated the processing times with a warm start strat-
egy for a non-increasing sequence of (λq)

99
q=0 defined as

λq=λmax10−γq/99, where λmax =λ′/102 and γ=4.

We compared our method with the original BCD with
Group SCAD (origin) (Breheny and Huang, 2015)
and BCD with the existing bounding technique (Fast-
GSCAD) (Ida et al., 2019). All the parameters were initial-
ized to zero. We stopped the algorithms when the relative
tolerance of the parameter vector dropped below 10−5 for
all the methods (Johnson and Guestrin, 2016, 2017). We
tried m = 500, 1000, 2000 as the hyperparameter of our
method. Note that our algorithm runs until all the parame-
ters are optimized (see lines 35 and 38 in Algorithm 2).

We conducted the experiments on five datasets from the
LIBSVM (Chang and Lin, 2011) and OpenML (Van-
schoren et al., 2013) websites: their names are eunite2001,
qsbralks, qsfrdhla, qsbr rw1, and triazines. These datasets
are real-world datasets: eunite2001 is for electricity load
forecasting, and the other datasets are for drug design. We
created polynomial features for these datasets to obtain
group structures in the features by using a polynomial ker-
nel of second-degree (Pavlidis et al., 2001; Roth and Fis-
cher, 2008). As a result, the numbers of groups for each
dataset were 120, 210, 528, 1225, and 1770, respectively.
To standardize the group size, we replaced λ with √pgλ
for each group (Huang et al., 2012). The total numbers
of features were 720, 1260, 3168, 7350 and 10,620, re-
spectively. The numbers of data points were 336, 13, 16,
14, and 186, respectively. Each experiment was conducted
with one CPU core and 264 GB of main memory on a 2.20
GHz Intel Xeon server running Linux.

6.1 Processing Time

We evaluated the processing times of origin, FastGSCAD,
and our method on the five datasets. Figure 2 (a) and (b)

Table 1: Ratio of sparsity in parameters. A large value
corresponds to high sparsity.

Dataset Sparsity [%]

λ′/103 λ′/104

eunite2001 89.72 44.44
qsbralks 89.52 80.00
qsfrdhla 95.27 85.98
qsbr rw1 98.78 96.57
triazines 94.58 67.06

show the percentages of times relative to the wall clock
times of origin for the settings λ=λ′/103 and λ=λ′/104,
respectively. In the figure, ours(500), ours(1000), and
ours(2000) correspond to hyperparametersm = 500, 1000,
and 2000. We obtained the same ratio of sparsity in param-
eters among all the methods for the settings of λ=λ′/103

and λ=λ′/104, as shown in Table 1.

For Figure 2 (a), the setting of λ induces sparse parameters.
Our method was up to four times faster than FastGSCAD
and 68 times faster than the original method. Although
FastGSCAD skips unnecessary updates of BCD for groups
during optimization, it sometimes incurs a large additional
cost in determining whether each parameter group can be
skipped or not for every iteration, as shown in the dataset
of triazines. On the other hand, our method has a small
additional cost since our method computes the bound only
when the subsets are selected.

The setting in Figure 2 (b) induces dense parameters as
shown in Table 1. In such a setting, the additional cost of
FastGSCAD is dominant because it cannot skip unneces-
sary parameter groups. FastGSCAD was actually slower
than the original method on most datasets. In contrast,
our method was faster than the original method on all the
datasets. These results suggest that our method can speed
up optimization of Group SCAD even if the hyperparame-
ter setting incurs dense parameters.
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Table 2: Comparison of objective values. Lower is better.

Dataset λ origin FastGSCAD ours(500) ours(1000) ours(2000)

eunite2001 λ′/103 1.644× 102 1.644× 102 1.644× 102 1.644× 102 1.644× 102

λ′/104 1.180× 102 1.180× 102 1.180× 102 1.180× 102 1.180× 102

qsbralks λ′/103 2.491× 10−5 2.491× 10−5 2.491× 10−5 2.491× 10−5 2.491× 10−5

λ′/104 4.781× 10−7 4.781× 10−7 4.781× 10−7 4.781× 10−7 4.781× 10−7

qsfrdhla λ′/103 1.094× 10−5 1.094× 10−5 1.094× 10−5 1.052 × 10−5 1.094× 10−5

λ′/104 3.115× 10−7 3.115× 10−7 3.115× 10−7 3.115× 10−7 3.115× 10−7

qsbr rw1 λ′/103 1.664× 10−5 1.664× 10−5 1.664× 10−5 1.664× 10−5 1.664× 10−5

λ′/104 4.658× 10−7 4.658× 10−7 4.658× 10−7 4.658× 10−7 4.658× 10−7

triazines λ′/103 8.224× 10−4 8.224× 10−4 8.219 × 10−4 8.205 × 10−4 8.208 × 10−4

λ′/104 5.090× 10−4 5.090× 10−4 5.090× 10−4 5.090× 10−4 5.087 × 10−4
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Figure 3: Numbers of computations for bounds on a logarithmic scale. (a) and (b) are sparse and dense cases, respectively.

6.2 Accuracy

We examined the value of the objective function, which
appears in problem (1), to assess the effectiveness of our
approach. Since the convergence property of Theorem 2 is
based on the objective function on the training dataset, we
focused on the evaluation of the converged objective value.
The results for the settings of λ = λ′/103 and λ = λ′/104

are shown in Table 2. Our approach achieved the same or
better objective values compared with those of the original
method and FastGSCAD. This is probably because it in-
tensively updates parameter groups in the non-shrink sub-
set that largely contributes to predictions while it is theo-
retically guaranteed to converge, as shown by Theorem 2.
The result shows that our method is faster than the existing
methods without degrading accuracy.

6.3 Number of Computations for Bounds

We also compared our method with FastGSCAD in terms
of the number of computations for bounds. Figure 3 shows
the results on a logarithmic scale. Our method reduces the
number of the computations by a factor of 104 to 105 com-
pared with FastGSCAD. As we described in Sections 1,
2.3, Figure 1, and Algorithm 1, since FastGSCAD com-

putes a bound for each inner iteration of BCD, its overhead
for computing bounds tends to be high. On the other hand,
our method reduces the overhead by computing bounds
only when selecting the subsets. Figure 3 supports the ef-
fectiveness of the above strategy and it contributes to the
reduction of the processing time as shown in Figure 2.

6.4 Number of Updates

Although our method focuses on the reducing the cost of
computing bounds, the speed of convergence would also
change since the order of updates is different from that of
the previous method. Therefore, to confirm that our method
does not slow down convergence, we evaluated the number
of updates until convergence in BCD for FastGSCAD and
our method. Note that the number of updates is the num-
ber of un-skipped inner loops in BCD. Figure 4 shows the
result for the setting of λ = λ′/103 and m = 1000. In our
method, the total number of updates in BCD is the sum of
the numbers of updates in each stage of (1), (2), (3), and (4)
in Figure 1 (a). It reduced the number of updates to about
10% compared with FastGSCAD. The result suggests that
our method also accelerates the convergence of BCD.
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Figure 5: Percentages of times relative to the wall clock
times of origin for computing regularization path.

6.5 Regularization Path

Finally, we evaluated the processing time of computing the
regularization path. Figure 5 shows the results. Our method
was faster than the original method and FastGSCAD on all
the datasets. Figure 2 (a) for the sparse setting suggests
that our method performs competitively with FastGSCAD
on some datasets, while Figure 2 (b) shows that it is faster
than the other methods in the dense setting. As a result, our
method is faster than the other methods in terms of the total
processing time of the regularization path, as shown in Fig-
ure 5. We should also note that we eventually obtained the
same values of the objective function for all the methods.

7 DISCUSSION

Bounding Technique as a Working Set Algorithm. Al-
though our method centers on the bounding technique that
skips unnecessary updates in BCD, it can be regarded as
a working set algorithm. In this regard, while the recent
working set algorithms use the duality gap as the crite-
rion for selecting subsets, the bounding technique uses the
changes in parameters during optimization. Owing to its
simplicity, the bounding technique can be extended to var-
ious non-convex group regularizers. Although this paper
mainly deals with Group SCAD/MCP, our method is appli-
cable to other non-convex regularizers if they have thresh-
olding functions divided into multiple cases like Equa-
tion (3). Examples include hard thresholding (Donoho and
Johnstone, 1994), `q-norm (Marjanovic and Solo, 2012),
q-shrinkage (Woodworth and Chartrand, 2016), and firm
thresholding (Gao and Bruce, 1997). Since our method se-
lects subsets based on parameter changes and the threshold-
ing function, the extension to these regularizers is straight-
forward, as we show in Section 4 that applies our method
to Group MCP.

Application to Convex Group Regularizers. Although
our bounding technique focuses on non-convex group regu-
larizers, it can also be applied to convex ones such as Group
Lasso (Yuan and Lin, 2006). If our method is adapted to

Group Lasso, its procedure is similar to what a screening
method does (Ghaoui et al., 2012). This is because our
method divides all the parameter groups into a shrink sub-
set, a subset whose parameters turn out to be zero, and one
other subset. In this case, we can relatively easily to prove
convergence of our method as in the proof of Theorem 2 by
utilizing the existing convergence proof of BCD for Group
Lasso (Tseng., 2001). It should be noted that the procedure
of our method is different from the usual screening method
if it is used with non-convex group regularizers: the screen-
ing method usually focuses on eliminating parameters that
turn out to be zero while our method prioritizes the order
of parameter updates by selecting various subsets such as
non-, small-, and large-shrink subsets.

Overlapping Groups. The treatment of our method in this
paper focused on non-overlapping groups. On the other
hand, our method can be extended for overlapping groups
by using the latent group lasso scheme (Jacob et al., 2009),
which decomposes observed groups into latent groups.
Since the plain BCD can be used with the scheme, our
method is also available for overlapping groups.

8 CONCLUSION

We proposed a fast BCD for non-convex group regulariza-
tions. It solves a growing sequence of subproblems that
are restricted to small subsets of parameter groups as a way
to prune unnecessary parameter groups. To select the sub-
sets, we developed a novel bounding technique with a small
computation cost, which can deal with non-convex group
regularizations. In theory, our method is guaranteed to con-
verge to a stationary point. Experiments showed that our
method was up to four times faster than the state-of-the-art
method and 68 times faster than the original method with-
out any loss of accuracy.
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A PROOFS

A.1 Proof of Lemma 1

Proof. From Equation (5), we have z(g)t > γλ for each g ∈ N. If z(g)t > γλ holds, we obtain ||z(g)t ||2 > γλ because
||z(g)t ||2 ≥ z

(g)
t . Therefore, we obtain Lemma 1 from Equation (3) because β(g)

t = F (z
(g)
t , λ, γ) = z

(g)
t if ||z(g)t ||2 >

γλ.

A.2 Proof of Lemma 2

Proof. From Equation (6), we have γλ ≥ z
(g)
t and z(g)t > 2λ for each g ∈ S. In this case, we have γλ ≥ ||z(g)t ||2 > 2λ

because γλ ≥ z
(g)
t ≥ ||z(g)t ||2 and ||z(g)t ||2 ≥ z

(g)
t > 2λ. Therefore, we obtain Lemma 2 from Equation (3) because

β
(g)
t = F (z

(g)
t , λ, γ) = γ−1

γ−2S(||z(g)t ||2,
γλ
γ−1 )

z
(g)
t

||z(g)t ||2
if γλ ≥ ||z(g)t ||2 > 2λ.

A.3 Proof of Lemma 3

Proof. From Equation (7), we have 2λ ≥ z
(g)
t and z(g)t > λ for each g ∈ L. In this case, we have 2λ ≥ ||z(g)t ||2 > λ

because 2λ ≥ z(g)t ≥ ||z
(g)
t ||2 and ||z(g)t ||2 ≥ z

(g)
t > λ. Since we obtain S(||z(g)t ||2, λ) = (||z(g)t ||2−λ) in Equation (3) when

||z(g)t ||2 > λ, we have β(g)
t = (||z(g)t ||2 − λ)

z
(g)
t

||z(g)t ||2
for each g ∈ L, which completes the proof.

A.4 Proof of Lemma 4

Proof. For the upper bound, let K(g,:) ∈ Rpg×p be a block matrix of K that corresponds to group g. By using z(g)t′ and
β
(g)
t′ , we transform Equation (4) into the following equation:

z
(g)
t = z

(g)
t′ −

∑
l∈A\{g}K

(g,l)∆β
(l)
t ,

where ∆β
(l)
t =β

(l)
t − β

(l)
t′ . From the aforementioned equation, we obtain the following inequality:

||z(g)t ||2 ≤ ||z(g)t′ ||2+
∑
l∈A\{g}||K(g,l)∆β

(l)
t ||2

≤ ||z(g)t′ ||2+
∑
l∈A\{g}||K̂(g)[l]||2||∆β(l)

t ||2.

The triangle inequality and the Cauchy–Schwarz inequality are used to obtain the first and second inequalities, respectively.
Since ||K̂(g)[l]||2||∆β(l)

t ||2 = Λ(g, l), we obtain the following upper bound in Lemma 4 from the aforementioned inequality:

||z(g)t ||2 ≤ ||z
(g)
t′ ||2+

∑
l∈A\{g} Λ(g, l)=z

(g)
t .

Similarly to the proof of the upper bound, we obtain the following lower bound:

||z(g)t ||2 ≥ ||z
(g)
t′ ||2−

∑
l∈A\{g} Λ(g, l)=z

(g)
t ,

which completes the proof.

A.5 Proof of Lemma 5

Proof. Suppose that we first compute ||β(l)
t − β

(l)
t′ ||2 for all the l ∈ {1, ..., G}. The computation cost is O(p) time. For

the upper bound of Equation (8), we need O(pg) time to compute ||z(g)t′ ||2. The computations of
∑
l∈A\{g} Λ(g, l) require

O(G) because ||β(l)
t − β

(l)
t′ ||2 for all of the l ∈ {1, ..., G} has already been computed. The computation cost of the lower

bound is the same as that of the upper bound. Since we need to compute the upper and lower bounds for G groups in order
to select a subset, the total computation cost is O(G2 + p) time.

A.6 Proof of Lemma 6

Proof. From Lemma 4, we have z(g)t ≤ ||z
(g)
t ||2 ≤ z

(g)
t . Therefore, the error bound of the upper bound is |z(g)t −||z

(g)
t ||2| ≤

|z(g)t − z
(g)
t | = 2

∑
l∈A\{g} Λ(g, l) = ε. For the lower bound, we obtain |z(g)t − ||z

(g)
t ||2| ≤ |z

(g)
t − z

(g)
t | = ε.
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A.7 Proof of Lemma 7

Proof. Since the parameters in A \N have not been updated when we extract S from A \N, we have ||β(l)
t −β

(l)
t′ ||2 = 0 for

l ∈ A \ N. As a result,
∑
l∈A\N Λ(g, l) = 0. Therefore, we obtain |z(g)t − ||z

(g)
t ||2| ≤ 2

∑
l∈N Λ(g, l) = εS for the upper

bound from Lemma 6. Similarly to the upper bound, we obtain |z(g)t − ||z
(g)
t ||2| ≤ εS for the lower bound. The manner of

proof of the error bound εL is the same as that of εS above.

A.8 Proof of Lemma 8

Proof. Let pn and ps be
∑
g∈N pg and

∑
g∈A\N pg , respectively. If we utilize the gradual parameter addition strategy, we

only compute the upper and lower bounds for A \ N when we select the subset S. As the parameters in A \ N have not
been updated yet in this case, ||β(l)

t − β
(l)
t′ ||2 = 0 for l ∈ A \ N. Therefore, we only need to compute ||β(l)

t − β
(l)
t′ ||2

for all the l ∈ N first. The computation cost is O(pn). For the upper bound, it takes O(ps) time to compute ||z(g)t′ ||2 for
g ∈ A \ N. Since Λ(·, l) = 0 for l ∈ N, we only need to compute

∑
l∈N\{g} Λ(g, l) in Equation (8). The computation cost

of
∑
l∈N\{g} Λ(g, l) for g ∈ A \ N is O(|N||A \ N|) time. The computation cost of the lower bound is the same as that of

the upper bounds. Therefore, the total computation cost for selecting S is O(p+ |N||A\N|) time. Similarly to the case of
S, we obtain O(p+ |N ∪ S||A\(N ∪ S)|) time for selecting L.

A.9 Proof of Theorem 1

Proof. The extraction of N (lines 9–17) requires O(G2 + p) time from Lemma 5. The algorithm needs O(|N||A\N|+ p)
time for extracting S (lines 18–25) according to Lemma 8. It extracts L (lines 26–33) at O(|N ∪ S||A\(N ∪ S)|+ p) time
from Lemma 8. Therefore, the total additional computation cost isO(G2 + |N||A\N|+ |N∪S||A\(N∪S)|+p}) time.

A.10 Proof of Theorem 2

First, we consider convergence for BCD of Algorithm 3 on a subset of all the groups. We have the following lemma for
this setting:

Lemma K (Convergence of BCD for Group SCAD on a subset of all the groups). Consider a subset of groups D ∈ A.
Suppose that λ > 0, γ > 2 and each group in D is orthonormalized. Then, BCD of Algorithm 3 on D converges to a
stationary point of the following problem with respect to β(g) where g ∈ D:

min
β(g)|g∈D

1

2n

∣∣∣∣y−∑
g∈D

X(g)β(g)
∣∣∣∣2
2
+
∑
g∈D

pλ,γ(||β(g)||2). (A.1)

Proof. Let Q(t) be the objective function in problem (A.1) for t-th iteration in Algorithm 3. Since BCD of Algorithm 3 is
performed on D, terms in problem (1) with respect to g /∈ D can be seen as constants and ignored. Therefore, Algorithm 3
can be regarded as dealing with problem (A.1) instead of problem (1). From Lemma 1 in (Breheny and Huang, 2015),
Q(t) with respect to β(g) is a strictly convex function when all the parameters except β(g) are fixed under the assumptions
of Lemma K. In this case, Q(t + 1) ≤ Q(t) holds for every iteration in BCD of Algorithm 3 because it optimizes the
objective function for each β(g) in one iteration. Therefore, every limit point of the sequence of parameters for each
iteration in Algorithm 3 is a stationary point of Q(·).

Almost the same result as above is given in the previous work (Breheny and Huang, 2015). Then, we prove Theorem 2 as
follows:

Proof. From Lemma K, line 38 in Algorithm 2 converges with respect to β(g) for g ∈ C. In addition, since we have C = A
after line 35 in Algorithm 2, it finally converges to a stationary point of the objective function in problem (1).


