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Abstract

Multi-graph matching is a prominent structured
prediction task, in which the predicted label is
constrained to the space of cycle-consistent match-
ings. While direct loss minimization is an effec-
tive method for learning predictors over structured
label spaces, it cannot be applied efficiently to the
problem at hand, since executing a specialized
solver across sets of matching predictions is com-
putationally prohibitive. Moreover, there’s no
supervision on the ground-truth matchings over
cycle-consistent prediction sets. Our key insight
is to strictly enforce the matching constraints in
pairwise matching predictions and softly enforce
the cycle-consistency constraints by casting them
as weighted loss terms, such that the severity of in-
consistency with global predictions is tuned by a
penalty parameter. Inspired by the classic penalty
method, we prove that our method theoretically
recovers the optimal multi-graph matching con-
strained solution. Our method’s advantages are
brought to light in experimental results on the pop-
ular keypoint matching task on the Pascal VOC
and the Willow ObjectClass datasets.

1 INTRODUCTION

Deep graph matching is a prominent structured prediction
task at the intersection between computer vision, combi-
natorial optimization, and machine learning. It involves
predicting node correspondences between two graphs based
on a parameterized node-to-node and edge-to-edge affinity.

Unfortunately, gradient methods are inefficient for learning
such discrete predictions. The highest scoring structure is
a piece-wise constant function of the parameters w, and
its gradient w.r.t. w is zero almost everywhere. Previous
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research facilitated end-to-end graph matching learning by
a continuous relaxation of node-to-node matching. Indeed,
when graphs consist of the same set of nodes, the permuta-
tion may be continuously relaxed to a soft matching with
the Sinkhorn operator (Sinkhorn, 1964). However, the set
of nodes in graphs differs in practical scenarios. Unfortu-
nately, continuously relaxing a partial permutation to a soft
unbalanced matching is puzzling. This difficulty is typically
addressed by generating a balanced graph matching with
inlier nodes only, which is a degenerate setting. An alterna-
tive is to perform Sinkhorn normalization on a heuristically
augmented rectangular scoring matrix. Yet, this practice
may not result in a biproportional soft unbalanced matching,
i.e., does not proportionally project onto the transportation
polytope. A toy example in Figure 1 illustrates the adverse
effect of this practice.

Multi-Graph Matching. Matching multiple graphs allows
predicting matchings in a global fashion, as opposed to
locally matching two graphs. Cycle-consistency denotes
a condition in which the matching between two graphs is
consistent when passed through any other graph. Prior
research focused on two mechanisms for learning multi-
graph matching: learning pairwise graph matching locally
and enforcing cycle-consistency as a post-processing step,
and learning pairwise graph matching while accounting for
cycle-consistency globally. The latter is challenging since
the structured label space is complexly constrained, i.e., it’s
the set of matchings that are cycle-consistent globally.

While the direct loss minimization technique allows learn-
ing predictors over structured label spaces, it requires an
efficient prediction solver to estimate the gradient of a given
loss. We extend the applicability of the direct loss minimiza-
tion technique to complexly constrained structured spaces.
To that end, we decompose matching constraints from cycle-
consistency constraints, such that cycle-consistency con-
straints are softly enforced as loss functions and pairwise
matchings are strictly enforced in predictions. We prove that
this extension theoretically recovers the optimal multi-graph
matching solution. Two-graph and hypergraph matching
fit naturally in our method by limiting the structured label
space to the set of matchings. Further, our method applies
to balanced and unbalanced matching naturally and does
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Figure 1: A toy example illustrating the potential effect of Sinkhorn normalization with dummy elements. Consider matching
2 nodes to 4 nodes by normalizing a 2× 4 node-to-node affinity matrix. (a) Add dummy rows and initialize their elements
to a small ϵ. (b) Normalize rows and columns repeatedly until convergence. (c) Remove dummy elements and produce a
soft unbalanced matching. However, this soft unbalanced matching is not biproprtional w.r.t. the input matrix.

not require continuous relaxation of the scoring function.

In summary, our contributions are the following:

1. Our method for end-to-end learning of multi-graph
matching accounts for pairwise missing correspon-
dences and allows for minimizing the structured loss
without relaxing the matching prediction.

2. We extend the direct loss minimization to settings in
which the prediction solvers are computationally ineffi-
cient, as in the setting of multi-graph matchings. Thus,
our method allows learning cycle-consistent matchings,
while not using a cycle-consistent matching solver.

3. This extension is proved to theoretically recover the
constrained multi-graph matching optimal solution.

4. We demonstrate the effectiveness of our method in
various balanced and unbalanced matching tasks (two-
graph, hypergraph, and multi-graph matching).

2 RELATED WORK

Two-Graph Matching. Most graph matching meth-
ods aim at finding correspondences between two graphs
(Leordeanu et al., 2012; Gold and Rangarajan, 1996; Cae-
tano et al., 2007; Egozi et al., 2013). A line of research sug-
gested graph matching models based on the quadratic assign-
ment problem (QAP) formulation (Zhou and la Torre, 2016;
Nowak et al., 2018). A similar formulation in Cho et al.
(2010) expressed graph matching as an integer quadratic
program and proposed a solver based on a random walk.
Formulating graph matching as vertex classification on the
association graph was suggested in Leordeanu and Hebert
(2005); Lee et al. (2011). Solvers based on Lagrangian de-
composition (Swoboda et al., 2017; Torresani et al., 2013;
Zhang et al., 2016) were also suggested.

Zanfir and Sminchisescu (2018) introduced a novel neural
graph matching solver based on spectral methods and deep
hierarchical features learning with a quadratic objective.
Many end-to-end differentiable models (Wang et al., 2019b;
Zhang and Lee, 2019; Fey et al., 2020; Wang et al., 2020b;

Yu et al., 2020; Chen et al., 2021; Jiang et al., 2022) rely on
relaxing the node-to-node affinity with Sinkhorn normaliza-
tion. In unbalanced matching, Sinkhorn normalization is of-
ten performed on dummy elements-padded affinity matrices.
Our method differs as it allows minimizing the structured
loss without relaxing the sought-after discrete prediction.
Generalizing second-order affinity to higher-order affinity
allowed hypergraph matching (Zass and Shashua, 2008; Lee
et al., 2011; Feng et al., 2019). The method of blackbox
differentiation (Pogančić et al., 2020) was recently applied
to neural graph matching (Rol’inek et al., 2020), based on
graph matching solvers (Swoboda et al., 2019). Interest-
ingly, while the blackbox differentiation method’s gradients
are of a surrogate linearized loss, direct loss minimization
estimates the gradients of the expected structured prediction
loss itself.

Multi-Graph Matching. Cycle-consistency is often en-
forced as a post-synchronization step given pairwise match-
ings (Chen et al., 2014; Pachauri et al., 2013; Maset et al.,
2017; Zhou et al., 2015; Rol’inek et al., 2020). Wang
et al. (2021) allow multi-graph end-to-end matching account-
ing for cycle-consistency by a method of spectral fusion.
However, the proposed spectral fusion method assumes all
graphs are of equal size and is inapplicable to multi-graph
unbalanced matching. An end-to-end multi-graph match-
ing scheme based on soft pairwise matching is proposed
by Wang et al. (2020a). Geometrical and unsupervised
cycle-consistency-based loss was introduced by Phillips and
Daniilidis (2019) to solve a balanced multi-graph match-
ing problem. Our method differs from peer methods as
cycle-consistency is enforced during learning of pairwise
matchings, while accounting for discrete matching between
multiple sets of nodes of potentially different sizes.

3 BACKGROUND

Discriminative learning from labeled data amounts to learn-
ing parameters w of a predictor yw : X → Y from a data
point x to its label y. The predictor yw(x) relies on a param-
eterized scoring function sw(x, y) and its parameters are
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learned to minimize a loss function ℓ(·, ·) over the training
data. In these settings, the predictor is the label with the
highest score value y∗w(x) = argmaxŷ∈Y sw(x, ŷ), where
Y is the set of admissible structures. In the rest of the paper
we use s(x, y) instead of sw(x, y) and y∗ instead of y∗w(x)
to simplify the notation.

3.1 Graph Matching

Let Gi = (V i, Ei) and Gj = (V j , Ej) be two graphs and
denote by ni the number of nodes in Gi, i.e., ni = |V i|,
and similarly for nj . The pair of graphs Gi and Gj form a
data instance xij . Its corresponding label is a permutation
matrix y(xij) ∈ {0, 1}ni×nj representing the node match-
ing between graphs Gi, Gj . As such, y(xij)lm = 1 if node
l ∈ V i is matched to node m ∈ V j , and y(xij)lm = 0
otherwise.

Unbalanced Matching is formed when the set of nodes
differs such that some nodes from V i and V j may not be
matched. In this case, y is a partial permutation matrix. It
is often a more realistic setting for matching problems, e.g.,
in machine vision the number of keypoints in each image is
rarely equal, due to occlusions or different points of view.
The set of pairwise unbalanced matchings is defined as:

Mij = {y(xij) ∈ {0, 1}ni×nj : y(xij)1nj ≤ 1ni , (1)

y(xij)
T
1ni ≤ 1nj}.

Balanced Matching is formed when the set of nodes V i

is equal to the set V j . Balanced matchings correspond to
full permutations, in which case Equation (1) holds with
equality. Balanced matching carries important information
in its label space since there is a one-to-one correspondence
between V i and V j . This implicit bias typically allows deep
nets to excel at this task.

Multi-Graph Matching imposes cycle-consistency con-
straints over three pairwise graph matchings or more. In
multi-graph unbalanced matching, graphs may contain out-
lier nodes, hence cycle-consistency among a set of graphs
Gi, Gj , Gk pairwise matchings suggests:

Cij =
{
y(xij) : y(xij) ≥ y(xik)y(xkj) ,∀k

}
. (2)

y(xik)y(xkj) ∈ {0, 1}ni×nj is the matrix multiplication
between y(xik) and y(xkj), representing matching between
graphs Gi and Gj through graph Gk. We note that Equa-
tion (2) holds with equality in balanced matching, in which
case the correspondence predictions are full permutations.
However, we make no assumptions on the dimensions of
the pairwise matchings.

In the following, we omit the superscript ij when it is ob-
vious from context. The optimization function for learn-
ing multi-graph matching considers the predictor y∗w(x)

over the space of cycle consistent matchings M ∩ C for
each training sample (x, y) ∈ S. The optimization pro-
gram takes the form minw

∑
(x,y)∈S ℓ(y∗w(x), y) subject to

y∗w(x) ∈ M ∩ C for every x ∈ S. Unfortunately, since
y∗w(x) is not continuous everywhere and its derivative is
zero almost everywhere, this function cannot be minimized
by gradient descent without further assumptions.

3.2 Direct Loss Minimization

The direct loss minimization technique (Hazan et al., 2010;
Keshet et al., 2011; Song et al., 2016; Cohen Indelman and
Hazan, 2021) allows minimizing the loss of a predicted
label, which corresponds to the structure that maximizes
a score function. Although the maximal argument is not
differentiable with respect to the parameters of the scoring
function, the direct loss minimization framework ensures
differentiability by adding a random perturbation to the
scoring function s(x, y) in the label space. In this setting,
a random perturbation γ(y) is added to each possible label.
With this we generate random predictions:

y∗ = argmax
ŷ∈Y

{s(x, ŷ) + γ(ŷ)} . (3)

y∗(ϵ) = argmax
ŷ∈Y

{s(x, ŷ) + γ(ŷ)− ϵℓ(ŷ, y)} . (4)

The gradient of the direct loss minimization technique is
composed of gradients of the scoring function at these ran-
dom predictions: ∇wEγ [ℓ(y

∗, y)] =

lim
ϵ→0

1

ϵ
(Eγ [∇sw(x, y

∗)−∇sw(x, y
∗(ϵ))]) . (5)

The gradient ∇sw(x, y
∗) reduces the scoring function at the

prediction y∗, while the gradient −∇sw(x, y
∗(ϵ)) increases

the scoring function at the minimal loss prediction y∗(ϵ)
as described in Equation (4). This notation appears implic-
itly in previous works, and is considered as “toward-better”
gradient step in Hazan et al. (2010).

Efficiently using the direct loss minimization technique re-
quires a black-box structured predictor to estimate the gradi-
ent of a given loss, i.e., to solve the optimization programs
y∗ and y∗(ϵ).

4 LEARNING CONSTRAINED DISCRETE
LABEL SPACE

The direct loss minimization allows learning a model that
best fits a predicted label y∗ from any discrete space Y .
Thus, it holds promise for learning multi-graph matchings,
for which the label space is the set of all cycle-consistent
matchings Y = M ∩ C. While direct loss minimization
can be applied to two-graph matching efficiently, it cannot
be applied efficiently to multi-graph matching since execut-
ing such a specialized solver across sets of cycle-consistent
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matching predictions during training is computationally pro-
hibitive. Moreover, the ground-truth labels only hold for
pairwise matchings Y = M, and not for cycle-consistent
sets of matchings. In the following, we present our method
for efficiently extending the direct loss minimization to set-
tings in which the black-box solvers are computationally
inefficient, as in the setting of multi-graph matchings. As
such, our method allows learning cycle-consistent matching,
while not using a cycle-consistent matching solver.

The predicted label y∗, described in Equation (3), is the par-
tial permutation that maximizes the randomly perturbed
node-to-node correspondence scoring function sw(x, y).
The scoring function assigns a real-valued number to each
match, i.e., s(x, y) = (s11(x, y11), ..., sninj

(x, yninj
)).

In this setting, a low-dimensional random perturbation
is added to the scoring of each possible match, i.e.,∑ni

l=1

∑nj

m=1 (slm(x, ŷlm) + γlm(ŷlm)). Each γlm(ylm) is
an independent random variable that follows the zero-mean
Gumbel distribution, denoted G. The scoring function need
not be normalized, in contrast to the continuous relaxation-
based approaches. Oftentimes (Wang et al., 2019a, 2021,
2020c,b), learning graph matchings uses the binary cross
entropy loss (BCE) to measure the goodness of fit of a
training-pair (x, y) and the predicted matching y∗. The
BCE loss easily applies to matchings, where y ∈ {0, 1}.
However, due to the discreteness of the prediction y∗, false
negatives and false positives would be penalized equally.
To generate a ”towards-better” gradient step we adopt a
weighted BCE loss (α > 1). Please refer to Appendix A.1
for further details. As such, in our setting, the BCE loss
function is

ℓbce(y∗(x), y) = −αy log(y∗(x))−(1−y) log(1−y∗(x)).
(6)

In multi-graph matching, the predicted label y∗(x) is con-
strained to the space of cycle-consistent matchings Y =
M∩ C. The optimization problem at hand is

w∗ ∈ argmin
w

∑
(x,y)∈S

Eγ [ℓ
bce(y∗(x), y)] (7)

s.t. ∀x ∈ S y∗(x) = arg max
ŷ∈M

{s(x, ŷ) + γ(ŷ))}

∀x ∈ S y∗(x) ∈ C.

The sets M and C involve the random variables γ and these
conditions hold for every γ, except for a set of measure zero
of γ. Formally, these conditions hold for almost every γ.
We note that this condition is not affecting the objective,
that assigns a value of zero to subsets of measure zero with
respect to γ due to its expectation.

Optimizing this problem may not be practical without fur-
ther assumptions, as predicting the label y∗(x) over the
space of cycle-consistent matchings M ∩ C requires call-
ing a multi-graph matching solver for each training sample
(x, y) ∈ S in every iteration.

To solve the optimization program in Equation (7) we recall
that the cycle-consistency condition, defined in Equation (2),
involves inequalities of the form y(xik)y(xkj) ≤ y(xij).
An inequality condition naturally translates to the penalty
function max{0, y(xik)y(xkj) − y(xij)}. This penalty
function is in fact a loss function: whenever the condition
holds the loss function is zero, otherwise it has the value of
one. The cycle-consistency loss of the predicted matching
y∗(xij) between Gi and Gj takes the form:

ℓcycleij,k (y∗(xij), y∗(xik), y∗(xkj)) = (8)

max{0, y∗(xik)y∗(xkj) − y∗(xij)}.

We use the soft penalty function ℓcycleij,k instead of a hard
constraint during optimization, and note that it decomposes
to the scoring function dimension of xij . An example is
illustrated in Figure 2.

Thus, the loss of a predicted matching between graphs Gi

and Gj is a weighted sum between its BCE loss and cycle-
inconsistency loss functions, controlled by a penalty param-
eter n:

ℓmgm(y∗(xij)) = ℓbce(y(xij), y∗(xij)) (9)

+ n
∑
i,j,k

ℓcycij,k(y
∗(xij), y∗(xik), y∗(xkj).

We summarize our method in Algorithm 1.

To guarantee that the final solution satisfies the constraints
in C, we gradually increase the penalty, till convergence.
This is summarized in the following theorem:

Theorem 1. Consider the following optimization program:

wn ∈ argmin
w

∑
(x,y)∈S

Eγ [ℓ
bce(y∗(x), y)] + (10)

n
∑
i,j,k

Eγ

[
ℓcycleij,k

(
y∗(xij), y∗(xik), y∗(xkj)

)]
s.t. ∀x ∈ S y∗(x) = arg max

ŷ∈M
{s(x, ŷ) + γ(ŷ)}

Assume s(x, y) is differentiable and w belong to a bounded
set. If n = 1, 2, ... is an increasing sequence of natural
numbers then a subsequence of wn has a limit point w∗

which is the optimal argument of the optimization program
in Equation (7), while w∗ satisfies its constraints for almost
every γ.

Proof. Let f(w) =
∑

(x,y)∈S Eγ [ℓ
bce(y∗(x), y)] be

the perturbed training loss over S and g(w) =∑
i,j,k Eγ

[
ℓcycleij,k

(
y∗(xij), y∗(xik), y∗(xkj)

)]
be the cy-

cle inconsistency penalty. Then the theorem asserts that
wn = argminw f(w) + ng(w) converge to a solution w∗

of Equation (7).

The proof follows three steps: (i) the values of f(wn) +
ng(wn) are bounded and hence the values of g(wn) are
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Figure 2: A toy illustration of our cycle-consistency loss for 3-graph matching. Pairwise matchings y∗(xij), y∗(xik), y∗(xjk)
are predicted (Equation 3). In this setting, each pairwise matching will have one cycle-consistency loss term based on
three pairwise matchings. Depicted is the cycle-inconsistency loss (Equation 8) of the predicted pairwise matching y∗(xik)
between Gi and Gk w.r.t. passing the matching through image Gj . Multi-graph matching with larger sets allows robustness
to such local pairwise matching noise.

converging to zero while n → ∞; (ii) wn converge to a
limit point w̃ that satisfies g(w̃) = 0; (iii) w̃ is a solution to
the optimization program of Equation (7).

We assume that f(wn), g(wn) ≥ 0, which is a reasonable
assumption for loss functions, and note that minw f(w) +
ng(w) = f(wn) + ng(wn) ≤ f(w∗) + ng(w∗). Since
w∗ satisfies the conditions in Equation (7) then g(w∗) = 0
and consequently 0 ≤ f(wn) + ng(wn) ≤ f(w∗). We
prove that limn→∞ g(wn) = 0 by contradiction: as-
sume g(wn) has a subsequence that converges to α > 0
then ∞ > f(w∗) ≥ lim supn→∞ f(wn) + ng(wn) ≥
lim supn→∞ ng(wn) since f(wn) ≥ 0 for every n. Since
we assume by contradiction that lim supn→∞ g(wn) ≥ α
then lim supn→∞ ng(wn) = ∞ which reaches a contradic-
tion.

Next, we show that wn has a limit point w̃ that satisfy
g(w̃) = 0. The function g(w) is a continuous function (cf.
Cohen Indelman and Hazan (2021), Corollary 1) therefore
wn belong to the closed set {w : g(w) ≤ f(w∗)}. Since
the set of all w is bounded by assumption then {w : g(w) ≤
f(w∗)} is a compact set and wn has a limit point w̃. Since
g(w) is continuous then g(w̃) = limn→∞ g(wn) = 0. Fi-
nally, we concluded f(wn) + ng(wn) ≤ f(w∗) for every
n, hence f(w̃) ≤ f(w∗). However, since g(w̃) = 0 then w̃
satisfies the conditions of C for almost every γ and since w∗

is the minimizer of this program, there holds f(w∗) ≤ f(w̃)
and consequently f(w∗) = f(w̃).

Algorithm 1 Multi-graph matching
For each set of graphs:

1. For each pair of graphs Gi, Gj :

(a) Perturb the associated (unnormalized) scor-
ing function with low-dimensional Gum-
bel i.i.d. random variables γ(y(xij))) =∑ni

l=1

∑nj

m=1 γlm(ylm).
(b) Predict a matching y∗(xij) (Equation 3).
(c) Compute the per-element BCE loss (Equation 6).

2. Compute the cycle-inconsistency loss of each pairwise
prediction y∗(xij) (Equation 8).

3. Construct the multi-graph matching loss of y∗(xij)
(Equation 9).

4. Predict a loss-augmented matching y∗(xij)(ϵ) (Equa-
tion 4).

The expected loss gradient (Equation 5) is

lim
ϵ→0

1

ϵ

(
Eγ∼G [∇wsw(x, y

∗(ϵ))−∇wsw(x, y
∗)]

)
.

We further note that as n increases, the cycle-consistency
tends to dominate the loss-augmented prediction y∗(ϵ) , pro-
vided that a cycle exists. Consequentially, for negative ϵ, the
gradient step (Equation 5) increases the score of structures
corresponding to the most cycle-consistent prediction. Thus,
for a high enough penalty parameter, predictions are match-
ings that satisfy the global cycle-consistency constraints.
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Convergence Properties. For each cycle-consistency
constraint weighting factor n, gradient descent methods can
be assumed to converge to a corresponding stationary point
w̄n, under mild assumptions. Indeed, proving the theoretical
convergence of gradient descent methods to a global mini-
mum requires much stronger assumptions. In practice, we
experienced that the optimization scheme converged well to
almost zero loss and 100% accuracy (Figure 5).

Two-Graph Matching fits naturally in our method by
limiting the structured label space to the set of matchings
and hence setting the cycle-inconsistency penalty parameter
n to zero. Similarly, generalizing the second-order affinity
to higher-order affinity allows hypergraph matching.

5 EXPERIMENTS

We evaluate our method on the widely adopted datasets for
keypoint matching Pascal VOC with Berkeley annotations
and Willow ObjectClass. While the latter translates to bal-
anced graph matching, the former is a natural unbalanced
matching challenge as images have a varying number of
keypoints.

Our architecture is based on our strongest competitor NGM-
v2 (Wang et al., 2021), with key differences. Sinkhorn’s
normalization is not performed on the node-to-node affin-
ity matrix prior to the matching prediction in all unbal-
anced matching settings. To accomplish this we change the
vertex classification of the NGM-v2 architecture such that
matching is predicted (y∗w) on the unnormalized randomly
perturbed scoring function sw(x, y). Our method allows es-
timating the gradient of the expected structured loss (Figure
3). In all experiments, a simple channel-wise normalization
layer was added.

𝑠𝑤 (𝑥,𝑦) 𝛾(𝑦)

𝑛1×𝑛2

weighted
cross-entropy

𝑛1×𝑛2

𝑦𝐺𝑇

𝑤𝑦
∗

𝑛1×𝑛2𝑛1×𝑛2

+

∇𝑤E[ℓ(𝑦
∗, 𝑦∗ 𝜖 )]

Figure 3: Illustration of our vertex classification prediction,
performed on the unnormalized randomly perturbed scor-
ing function sw(x, y), the associated loss and its derivative
(Equation 5).

Multi-graph matching is based on our loss (Equation 9)
and gradient step (Equation 5). The cycle-inconsistency
parameter n increases with every epoch, such that when
a cycle exists, it dominates the loss-augmented prediction.
Our multi-graph matching shares the architecture of our
two-graph matching pipeline. By that, we depart from the

spectral fusion technique of Wang et al. (2021).

We compare prominent neural graph matching methods
based on continuous matching relaxation and the blackbox
differentiation method whenever applicable. We report the
test set’s average matching prediction accuracy (recall) and
a per-class average matching accuracy. In the unbalanced
matching experiment, we also report F1 score, the harmonic
mean between precision and recall.

Please refer to Appendix A.2 for considerations of setting
the loss-augmentation parameter ϵ and to Appendix A.3 for
further experiments details. Our code is publicly 1 available.

5.1 Unbalanced Matching

The Pascal VOC dataset with Berkeley annotations (Ever-
ingham et al., 2010; Bourdev and Malik, 2009) offers an
unbalanced matching challenge. This natural image dataset
comprises 20 instance classes with keypoint annotations.
Objects vary in scale, pose and illumination, and the num-
ber of keypoints in each image varies from 6 to 23.

Keypoint Filtering. Following Wang et al. (2021);
Rol’inek et al. (2020); Wang et al. (2019a), poorly annotated
images and keypoints annotated as ’truncated’, ’occluded’,
and ’difficult’ are filtered. We neither filter keypoints to
reach an intersection nor an inclusion between pairs of sam-
pled images. The average imbalance between the number
of effective keypoints is measured by sampling 6, 385 pairs
of images. The average imbalance is 1.4, and the highest
imbalance is 1.96 of class ’sheep’. Further details are in
Appendix A.3.

Methods based on continuous matching relaxation were
evaluated by performing Sinkhorn’s normalization on a
square node-to-node affinity matrix produced by adding
dummy elements, as suggested in the baseline papers Wang
et al. (2020a); Yu et al. (2020); Wang et al. (2021). We use
ThinkMatch project’s unified experiment setting and peer
graph matching implementations.

Multi-Graph Unbalanced Matching. Instead of sam-
pling pairs of images, we sample sets of five images. In such
a setting, the loss for each pair of images comprises the BCE
as well as three cycle-consistency loss terms. The model is
trained with our gradient step (Equation 5) accounting for
the corresponding multi-graph matching loss (Equation 9).
For a set of Gn ≥ 3 graphs, each pairwise matching forms
Gn − 2 cycle-consistency loss functions.

Our scheme of tuning the penalty parameter n reflects the
ratio of the BCE loss to set-wise multi-graph matching
constraints (Figure 4). As n grows, fewer cycle-consistency
losses in consensus are needed to dominate the multi-graph

1github.com/HeddaCohenIndelman/Learning-Constrained-
Structured-Spaces-with-Application-to-Multi-Graph-Matching

https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/HeddaCohenIndelman/Learning-Constrained-Structured-Spaces-with-Application-to-Multi-Graph-Matching
https://github.com/HeddaCohenIndelman/Learning-Constrained-Structured-Spaces-with-Application-to-Multi-Graph-Matching
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Table 1: Training and inference time of multi-graph match-
ing methods on the Pascal VOC dataset.

Method Training average
samples /s ↑

Inference total time
(mins) ↓

GA-MGM 0.4 145
BB-GM-Multi 3.43 204
Ours 3.91 55

matching loss.
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Figure 4: The cycle-inconsistency penalty parameter n tun-
ing in the multi-graph unbalanced matching experiment. As
n grows, fewer cycle-consistency losses in consensus are
needed to dominate the multi-graph matching loss. Conse-
quentially, the gradient step increases the scores of structures
corresponding to the most cycle-consistent prediction.

We compare to peer methods whenever possible. Thus,
we compare to BB-GM-Multi (Rol’inek et al., 2020) by
using the authors’ published code. We also compare to
GA-MGM (Wang et al., 2020a). The method of Wang
et al. (2021) is inapplicable to the unbalanced multi-graph
matching setting. Our method’s average test set accuracy
is only slightly lower than BB-GM-Multi (Table 3a). A
per-class comparison of average accuracy shows that our
method (Ours) outperformed BB-GM-Multi in nine classes
(Table 2a). Note that our method is learning-based while BB-
GM-Multi makes use of a designated multi-graph matching
solver during inference, which is also reflected in its long
inference time (Table 1).

Two-Graph Unbalanced Matching. We compare to
NGM-v2 (Wang et al., 2021), CIE-H (Yu et al., 2020) and
qc-DGM (Gao et al., 2021), as well as to BB-GM (Rol’inek
et al., 2020). As mentioned in Wang et al. (2021), BB-GM
has a slightly favorable setting by filtering keypoints out-
side of the bounding box. For a fair comparison, we use

the method’s implementation in the ThinkMatch project
(referred to as BB-GM*).
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Figure 5: A comparison of average training set accuracy
over learning iterations of the graph unbalanced matching
experiment on Pascal VOC.

Results in Table 2 validate our method’s notable advantage
in predicting unbalanced node matching. The average test
set accuracy and F1 score results show that our method out-
performs peer methods in both metrics by a considerable
margin (Table 3b). A per-class average accuracy comparison
in Table 2b further reveals that our method outperformed
reference methods in 14 classes. In 6 classes the accuracy
gain is more than 5% over the second performing method.
Figure 5 compares the average training set accuracy over
learning iterations. Note that our method is the most sta-
ble and reaches the highest average training set accuracy,
compared to peer methods.

Hypergraph Unbalanced Matching. We compare to
NHGM-v2 (Wang et al., 2021). Both models are pre-trained
on the corresponding two-graph matching problem. Our
method achieves 6.8% increase in average accuracy and
almost 6% increase in F1 score (Table 3c). A per-class
average accuracy comparison reveals that our method out-
performs the baseline in all but two classes (Table 2c).

5.2 Balanced Matching

The Willow ObjectClass dataset (Cho et al., 2013) offers a
natural balanced matching challenge. This natural image
dataset comprises five classes with keypoint annotations.
Each class contains at least 40 images, and all class instances
share the same 10 keypoints with no outliers.

We compare to GMN (Zanfir and Sminchisescu, 2018),
PCA-GM Wang et al. (2019a), IPCA-GM (Wang et al.,
2020b), BB-GM (Rol’inek et al., 2020), NGM (Wang et al.,
2019b) and NGM-v2 (Wang et al., 2021). Our method’s
results are comparable to or slightly better than recent peer
methods. This set of experiments shows that our balanced
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Table 2: Graph unbalanced matching average accuracy per class on the Pascal VOC dataset. For fair comparison, we use the
same keypoint filtering across all methods (preserving outlier keypoints in both images). Best results are in bold.

(a) Multi-graph unbalanced matching accua racy (%) per class.

Class
GA-MGM 23.1 34.6 26.6 33.1 68.5 46.8 30.5 37.3 29.2 28.4 41.3 29.6 28.2 30.0 22.3 65.2 28.4 29.4 64.2 85.6
BB-GM-Multi 44.7 74.8 62.4 49.9 85.2 68.9 58.9 68.1 42.3 66.2 48.2 67.8 66.1 73.1 47.5 97.2 59.9 42.8 83.3 83.5
Ours 52.1 66.5 64.4 50.9 87.0 70.5 70.3 62.1 44.5 63.5 55.8 63.9 60.5 64.2 47.3 94.9 58.2 42.9 81.8 83.5

(b) Two-graph unbalanced matching accuracy (%) per class.

Class
CIE 34.0 59.1 47.0 33.7 81.5 54.1 31.9 47.1 28.3 46.2 52.7 45.0 45.4 50.0 29.3 82.9 39.2 35.4 56.1 76.5
qc-DGN 30.9 59.8 48.8 40.5 79.6 51.7 32.5 55.8 27.5 52.1 48.0 50.7 57.3 60.3 28.1 90.8 51.0 35.5 71.5 79.9
BB-GM* 42.9 64.3 54.9 48.0 84.7 65.9 45.9 59.9 40.1 63.6 49.1 60.2 58.7 62.3 39.0 92.7 56.0 40.6 75.9 86.4
NGM-v2 45.4 68.4 54.3 48.8 86.8 64.6 55.1 57.0 40.8 57.7 44.8 55.9 54.7 55.9 43.4 89.7 47.7 30.8 70.2 77.1
Ours 50.9 64.4 62.6 51.6 85.0 71.9 73.3 64.7 44.9 62.9 48.8 63.0 60.8 64.3 50.6 93.9 59.8 39.5 84.7 84.7

(c) Two-hypergraph unbalanced matching average accuracy (%) per class.

Class
NGM-v2 44.7 67.1 54.7 47.9 86.6 67.5 59.4 57.1 42.3 57.4 39.7 55.7 53.9 57.0 44.7 91.7 48.9 35.5 72.4 76.6
Ours 50.8 65.8 60.4 54.8 86.8 72.2 67.7 63.8 41.2 64.0 60.3 62.9 62.6 64.6 51.3 93.9 59.1 44.4 82.7 82.5

Table 3: Graph unbalanced matching average accuracy and
F1 score on the Pascal VOC dataset. Best results in bold.

(a) Multi-graph unbalanced matching.

Method Accuracy F1 score
GA-MGM 39.13% 0.384
BB-GM-Multi 64.54% 0.624
Ours 64.25% 0.575

(b) Two-graph unbalanced matching.

Method Accuracy F1 score
CIE 48.77% 0.459
qc-DGM - 0.526
BB-GM* 59.55% 0.573
NGM-v2 57.46% 0.537
Ours 64.11% 0.597

(c) Two-hypergraph unbalanced matching.

Method Accuracy F1 score
NHGM-v2 58.04% 0.541
Ours 64.58% 0.601

matching approach is effective and that our multi-graph
matching improved average matching accuracy compared
to the two-graph matching method.

Multi-Graph Balanced Matching. In this experiment,
we sample sets of five images from the same class. Thus,
the loss of each pair of images comprises its BCE loss and
three cycle-consistency loss terms. Results are summarized
in Table 4a.

Two-Graph Balanced Matching. This widely adopted
setting allows a comparison to many peer methods. Results
show that our method achieved the highest average test set
accuracy and the highest per-class average accuracy in four
out of five classes (Table 4b).

Two-Hypergraph Balanced Matching. Models are pre-
trained on the corresponding two-graph matching problem.
Our method’s result is comparable to NHGM-v2 (Table 4c).

Table 4: Graph balanced matching average accuracy on the
Willow ObjectClass dataset. Best results are in bold.

(a) Multi-graph balanced matching.

mean
NMGM 78.5% 92.1% 100% 78.7% 94.8% 88.8%
NMGM-v2 97.6% 94.5% 100% 100% 99.0% 98.2%
Ours 98.3% 98.2% 100% 96.9% 99.9% 98.7%

(b) Two-graph balanced matching.

mean
GMN 67.9% 76.7% 99.8% 69.2% 83.1% 79.3%
PCA-GM 87.6% 83.6% 100% 77.6% 88.4% 87.4%
IPCA-GM 90.4% 88.6% 100% 83.0% 88.3% 90.1%
BB-GM 96.8% 89.9% 100% 99.8% 99.4% 97.2%
qc-DGM 98.0% 92.8% 100% 98.8% 99.0% 97.7%
NGM 84.2% 77.6% 99.4% 76.8% 88.3% 85.3%
NGM-v2 97.4% 93.4% 100% 98.6% 98.3% 97.5%
Ours 98.2% 94.3% 100% 96.2% 99.2% 97.6%

(c) Two-hypergraph balanced matching.

mean
NHGM 86.5% 72.2% 99.9% 79.3% 89.4% 85.5%
NHGM-v2 97.4% 93.9% 100% 98.6% 98.9% 97.8%
Ours 97.1% 95.4% 100% 98.4% 99.6% 98.1%
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6 ABLATION STUDY

We set out to demonstrate the advantage of our approach.
An alternative would be to strictly enforce the discreteness
of predictions, and softly enforce adherence to matching
constraints (Equation 1) as a loss function.

Thus, discreteness is enforced by row-wise argmax predic-
tions. A loss term is added, which distributes any target
node excessive matching across the associated target col-
umn elements. In unbalanced matching, this loss translates
to

ℓlm(y∗(xij)) =
max(0,

∑ni

t=1 y
∗
tm(xij)− 1)∑ni

t=1 y
∗
tm(xij)

∀l = 1, .., ni.

(11)
This loss decomposes to the score function dimension,
which allows computing the direct loss minimization gradi-
ent (Equation 5) easily. We compare between two methods
of unbalanced keypoint matching on the Pascal VOC dataset:
’regular’- our approach which strictly enforces matching
predictions (Equation 3) with a linear assignment solver,
and ’soft matching’- strictly enforces discrete predictions
and softly enforces matching constraints (Equation 11). It
comes with no surprise that by softly enforcing matching
constraints lower average accuracy is achieved (Figure 6)
since matching constraints carry a combinatorial semantic
which is hard to optimize. Please refer to Appendix A.3.6
for further details.
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Figure 6: Average training accuracy on the Pascal VOC
dataset for unbalanced matching. We compare between
two methods of enforcing matching constraints: ’regular’
strictly enforces matching predictions, and ’soft matching’
strictly enforces discreteness and softly enforces matching
constraints.

7 CONCLUSIONS

Our focus in this research has been addressing the chal-
lenges of learning multi-graph matching. In summary, our
contribution is extending the applicability of the direct loss

minimization technique to complexly constrained structured
spaces. To that end, we use a penalty function to decompose
matching constraints from cycle-consistency constraints,
such that cycle-consistency constraints are softly enforced
as loss functions and pairwise matchings are strictly en-
forced in predictions. We prove that this extension is not
limiting the direct loss minimization as it theoretically can
recover the optimal multi-graph matching solution (The-
orem 1). Our method easily extends to two-hypergraph
matching and two-graph matching and allows unbalanced
and balanced matchings in a principled way.

Experimental validation demonstrates our method’s notable
advantage in predicting unbalanced two-graph and hyper-
graph matching. Further, our multi-graph unbalanced match-
ing improves significantly compared to other learning-based
methods (GA-MGM) and achieves similar accuracy to the
multi-graph matching solver-based method (BB-GM-Multi)
at roughly one-quarter of the inference time. Also, our
method is effective for balanced graph matching, achieving
comparable or slightly better than peer methods.
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A APPENDIX

A.1 BINARY CROSS-ENTROPY LOSS WITH DISCRETE PREDICTIONS

Recall that our predictions y∗ are discrete. Then, BCE loss would penalize false negatives and false positives equally. We
further highlight that pytorch clamps its BCE loss to −100 to achieve stability in backpropogation. As a consequence, the
loss-augmented prediction y∗(ϵ) would likely be identical to y∗ (Figure 7a). To generate a ”moving-towards” low-loss
gradient step we adopt a weighted BCE loss (α > 1) which penalizes false negatives more heavily.

We list the hyperparameters setting of α in the experiments section.
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(a) The loss-augmented prediction (y∗
w(ϵ)) with binary cross entropy loss is likely equivalent to the prediction itself (y∗

w). The gradient for
this data point is zero for any ϵ.
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(b) A weighted binary cross entropy loss penalizes false negatives more heavily than false positives. The corresponding loss-augmented
prediction (y∗

w(ϵ)) is likely to choose a lower loss structure than the prediction (y∗
w). Such a dynamics generates a "towards-better"

gradient step.

Figure 7: A toy example illustrating the gradient step dynamics of direct loss minimization with binary cross entropy loss
versus weighted binary cross entropy loss.

A.2 CONSIDERATIONS OF SETTING THE LOSS-AUGMENTATION PARAMETER

The loss-augmented prediction y∗(ϵ) (Equation 4) chooses a structure with a lower loss than the prediction’s y∗ (Equation
3). The direct loss minimization gradient (Equation 5) encourages moves toward better predictions as it increases the score
function for the low-loss structure sw(x, y

∗(ϵ)). This gradient holds for ϵ → 0. However, in practice, such a small loss
augmentation would likely result in zero gradients since the prediction would equal the loss-augmented prediction. To
escape zero gradients, we set an initial small ϵ and increase it by a certain amount whenever the loss is positive and the
gradients are zero.

A.3 EXPERIMENTS

We use unchanged peer methods implementations in the unified ThinkMatch project as much as possible. Our code was
written in adherence with the setting of the ThinkMatch project to allow fair comparison.

Datasets should be downloaded and organized as instructed in the ThinkMatch project.

Unbalanced matching is formed by setting both problem configurations TGT_OUTLIER and SRC_OUTLIER to
TRUE. In both experiments, each image is cropped to its bounding box and scaled to 256× 256 px.

https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/Thinklab-SJTU/ThinkMatch
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UNBALANCED MATCHING

Average imbalance in sampled pairs of images from the Pascal VOC dataset. We measure the imbalance (max/min) of
the number of keypoints in 6385 pairs of images sampled from the Pascal VOC dataset. Results in Table 5 show that the
average imbalance over all sampled pairs is 1.14. The class with the lowest imbalance is ’bottle’ (1.14) and the class with
the highest imbalance is ’sheep’ (1.96).

Table 5: The average overall and per-class imbalance (max/min) of the number of keypoints in 6385 pairs of images sampled
from the Pascal VOC dataset.

Class average
imbalance 1.32 1.19 1.464 1.32 1.14 1.22 1.38 1.458 1.4 1.364 1.708 1.4 1.42 1.42 1.45 1.267 1.96 1.52 1.42 1.26 1.40

We run experiments on the Pascal VOC on an Nvidia Tesla K80 24GB GPU.

General hyper-parameters and settings. We experiment with a small range of parameters related to our gradient step.
Specifically, ϵ ∈ {3e− 5, 5e− 5} and noise scaling factor σ ∈ {24, 38}.

Vertex classifier and loss We do not perform Sinkhorn normalization prior to the matching prediction in all unbalanced
matching experiments. To accomplish this we change the vertex classification of the NGM-v2 architecture such a matching
is predicted (y∗w) on the unnormalized randomly perturbed score function (sw(x, y)). A per-element weighted binary cross
entropy is calculated given ground-truth matching. Our method allows for estimating the gradient of the expected loss.

Normalizations We experimented with performing Sinkhorn normalization in gnn embedding layers, and find it gave
slightly better results in the two-graph matching experiment only.

We find it beneficial in the two-graph and multi-matching matching experiments to normalize by channels the output of
the gnn embedding layer. This normalization in a way replaces the Sinkhorn normalization, though it does not generate
doubly-stochastic representations. We also find it beneficial in all experiments to add channel-wise normalization in the
’SiameseSConvOnNodes’ class.

Configurations To recreate this setup, set in the config file: MATCHING_TY PE = ’Unbalanced’ and filter_type =
’NoFilter’.

A.3.1 Multi-Graph Unbalanced Matching

Hyper-parameters. We set ϵ = 7e− 5, sigma noise scaling parameter σ = 38. The sigma noise decays by 1.002 with
every epoch. The cycle-inconsistency penalty parameter n is set initially to 25 and increases by 75 with every epoch. The
batch size is equal to 20. Sets of 5 image pairs are sampled.

Sinkhorn normalization is not performed in the gnn embedding layers (We set SK_ITER_NUM = 0).

A.3.2 Two-Graph Unbalanced Matching

Hyper-parameters. We set ϵ = 3e− 5, sigma noise scaling parameter σ = 38. The sigma noise decays by 1.002 with
every epoch. Sinkhorn normalization is performed in the gnn embedding layers. We set SK_ITER_NUM = 20 such that
20 iterations of Sinkhorn normalization are performed.

The batch size is equal to 26.

A.3.3 Hypergraph Unbalanced Matching

Hyper-parameters. We set ϵ = 3e − 4, sigma noise scaling parameter σ = 24. The sigma noise decays by 1.02 with
every epoch.

We change the NGM-v2 architecture such that Sinkhorn normalization is not performed in the matching-aware gnn
embedding layers (We set SK_ITER_NUM = 0). The batch size is equal to 26.
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BALANCED MATCHING

The two-graph matching and the multi-matching experiment were performed on an Nvidia Tesla K80 12GB GPU. The
hypergraph matching experiment was performed on an Nvidia Tesla K80 24GB GPU.

Peer results. All peer methods were evaluated using the ThinkMatch project or quoted from peer papers.

General Hyper-parameters and settings. We set SK_ITER_NUM = 20 such that 20 iterations of Sinkhorn nor-
malization are performed. We experiment with a small range of parameters related to our gradient step. specifically,
ϵ ∈ {3e− 5, 5e− 5} and noise scaling factor σ ∈ {24, 38}.

We do not perform Sinkhorn normalization prior to the matching prediction neither in the two-graph matching experiment
nor in the multi-matching experiment. Sinkhorn normalization is performed in the gnn embedding layers.

We find it beneficial in the two-graph and multi-matching matching experiments to normalize by channels the output of the
gnn embedding layer. This normalization in a way replaces the Sinkhorn normalization, though it does not generate doubly-
stochastic representations. We do not perform this channel-wise normalization in the hypergraph matching experiment (and
do perform Sinkhorn normalization prior to prediction)

We find it beneficial in all experiments to add channel-wise normalization in the ’SiameseSConvOnNodes’ class.

Configurations To recreate this setup, set in the config file: MATCHING_TY PE =′ Balanced′.

A.3.4 Multi-Graph Matching

Hyper-parameters. We set ϵ = 5e− 5, sigma noise scaling parameter σ = 38. The sigma noise decays by 1.002 with
every epoch. The cycle-inconsistency penalty parameter C is set initially to 0 and increases by 1300 with every epoch. The
batch size is equal to 6. We experimented with sampling sets of 5 and 12 and image pairs. Finally, sets of 5 image pairs gave
the best results.

A.3.5 Two-Graph Matching

Hyper-parameters. We set ϵ = 3e− 5, sigma noise scaling parameter σ = 38. The sigma noise decays by 1.002 with
every epoch. The batch size is equal to 26.

A.3.6 Hypergraph matching

Hyper-parameters. Models are pretrained on the corresponding two-graph matching problem.

We set ϵ = 3e− 5, sigma noise scaling parameter σ = 24. The sigma noise decays by 1.002 with every epoch. We perform
Sinkhorn normalization prior to matching prediction. Results for both ours and NHGM-v2 are obtained with batch size =26.

Ablation Study Details

We keep the two-graph matching architecture and hyper-parameters unchanged, However, the prediction y∗ is performed by
applying argmax function on each row, such that a valid matching is no longer enforced. The weighted binary cross entropy
loss is augmented with an additional loss function ℓlm(y∗(xij)) which softly enforces matching constraints. In balanced
matching, ℓlm(y∗(xij)) translates to

ℓlm(y∗(xij)) =

∑ni

t=1 y
∗
tm(xij)− 1∑ni

t=1 y
∗
tm(xij)

∀l = 1, .., ni. (12)

.
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