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Abstract

Bayesian optimization (BO) improves the effi-
ciency of black-box optimization; however, the
associated computational cost and power con-
sumption remain dominant in the application of
machine learning methods. This paper proposes
a method of determining the stopping time in
BO. The proposed criterion is based on the dif-
ference between the expectation of the minimum
of a variant of the simple regrets before and after
evaluating the objective function with a new pa-
rameter setting. Unlike existing stopping criteria,
the proposed criterion is guaranteed to converge
to the theoretically optimal stopping criterion for
any choices of arbitrary acquisition functions and
threshold values. Moreover, the threshold for the
stopping criterion can be determined automati-
cally and adaptively. We experimentally demon-
strate that the proposed stopping criterion finds
reasonable timing to stop a BO with a small num-
ber of evaluations of the objective function.

1 INTRODUCTION

This paper focuses on deriving a criterion to determine a
reasonable stopping time for Bayesian optimization (BO).
The aim of BO is to find the global optimal parameters of
an unknown and costly-to-evaluate objective function ef-
ficiently while balancing the search for a surrogate model
to approximate the objective function and using the current
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surrogate model to minimize it1. It has a wide range of
applications, from hyperparameter searching in deep learn-
ing (Snoek et al., 2012) to the development of materials
with desirable properties (Frazier and Wang, 2015).

In a BO procedures, the black box objective function is
evaluated at the point (or parameter setting) selected based
on the acquisition function. Evaluation of the black box
function sometimes requires an iterative procedure; hence
we consider BO to be composed of two loops in principle.
For example, suppose the aim of BO is to determine the
hyperparameter of a predictive model that minimizes the
generalization error. In this case, BO selects a hyperpa-
rameter of the predictive model (e.g., network architecture,
regularization parameter) in the outer-loop, and the train-
ing procedure of a model with the fixed hyperparameter
that corresponds to the inner-loop. Many studies have fo-
cused on accelerating BO via sophisticated inner-loop opti-
mization, most of which are considered as an early stopping
methods (Prechelt, 2012).

A complementary approach to the early stopping of the
inner-loop is to accelerate the BO by stopping the outer-
loop (i.e., the BO itself) at an appropriate timing. BO is a
method of efficiently searching for optimal points (parame-
ter settings) while avoiding an exhaustive search; it is desir-
able to stop the search after finding the parameter that suffi-
ciently minimizes the objective function. If we stop the op-
timization before establishing a sufficiently good surrogate
model, we will lose the opportunity to find a better parame-
ter. Terminating BO at an appropriate time is important not
only to reduce the computational time, but, possibly more
importantly, also to reduce the electric power consumption.

When BO is used for the hyperparameter optimization
(HPO) of a predictive model, Makarova et al. (2022) pro-
poses a stopping criterion based on the simple regret. They
estimated a stochastic upper bound of the simple regret and

1Without loss of generality, we consider minimization prob-
lem in this paper.
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compared it with the estimated standard deviation (SD) of
the generalization error by cross-validation (CV). Although
their criterion gives us a theoretical guarantee that the sim-
ple regret of BO is lower than the estimated SD of the gen-
eralization error with high probability, there is no guaran-
tee that the upper bound will converge to zero, and there
remains a possibility that the criterion will fail to terminate
the BO. In addition, it remains difficult to adaptively deter-
mine the threshold in general BO settings other than HPO.

We propose a stopping criterion for BO. This method is
based on the gap between the expectation of the minimum
of a variant of simple regret and our main contributions are
summarized as follows:
1: We develop a stopping criterion for BO based on the dif-
ference between the expected minimum simple regret be-
fore and after the evaluation of the objective function at
a new point, which quantifies the amount of decrease in
the expectation of the minimizer of the sampled surrogate
function (similar to the Thompson sampling) from a pos-
terior distribution at each iteration. We guarantee that the
value of the proposed criterion will converge to zero with
high probability under certain assumptions. Therefore, the
proposed method terminates the BO when the search is suf-
ficiently progressed. The proposed criterion is applicable to
BO with any acquisition function as long as the surrogate
function is a Gaussian process.

2: We propose two threshold determination methods that
can be used universally: One determines the threshold
adaptively and the other determines the threshold heuristi-
cally by using a parameter that is robust to changes of task
and dataset.

2 BAYESIAN OPTIMIZATION

Let Θ be the domain of the point θ, and let the bounded un-
known and costly to evaluate objective function to be min-
imized with respect to θ ∈ Θ be f : Θ → R. We do not
assume f has a unique minimum, but we consider one of
its minima for the sake of simplicity. The aim of BO is to
find the point θ∗ that minimizes the objective function:

θ∗ = argmin
θ∈Θ

f(θ).

We denote the minimum value of the objective function as
f∗ = f(θ∗). To find the optimal point θ∗, BO uses a sur-
rogate function—denoted by f̂—and iterates the following
two procedures: (i) Estimate the distribution p(f̂) of the
surrogate function using the points and their values mea-
sured in the past, and (ii) select the point that maximizes
the acquisition function α : Θ → R defined based on the
the estimated distribution p(f̂), and evaluate the objective
function at that selected point.

In theoretical analysis, the goodness of the explored points
is generally evaluated using the simple regret. Let Θt be

the set of points explored in time t. The best point in Θt

is θ∗t = argminθ∈Θt
f(θ), and the corresponding true best

value is f(θ∗t ). Then, the simple regret for θ∗t is defined as
follows:

r(θ∗t ) = f(θ∗t )− f∗.

Herein, we assume that a distribution of the surrogate func-
tion f̂ is represented by a Gaussian process (GP) (Ras-
mussen and Williams, 2006). Note that we distinguish
the function value f̂(θ) from its observed value y. Sup-
pose that a set of N distinct points and corresponding ob-
served values S = {(θn, yn)}Nn=1 are given. Let p(f̂(θ)) =
N (f̂(θ)|m(θ), k(θ, θ)) be a prior of f̂ , where m and k are
the mean function and the kernel function, and p(y|θ, f̂) =
N (y|f̂(θ), λ−1) be the likelihood, where λ is a precision
parameter of noise. Given a new point θ, the joint distribu-
tion of f̂(θ) and y := (y1, y2, . . . , yN ) is written as:[

y

f̂(θ)

]
∼ N

([
m

m(θ)

]
,

[
K̃ k(θ)

kT(θ) k(θ, θ)

])
,

where K̃ = K + λ−1I, [K]i,j = k(θi, θj), k(θ) =
(k(θn, θ))

N
n=1 ∈ RN , and m = (m(θn))

N
n=1 ∈ RN .

Then, the posterior distribution p(f̂(θ) | y) = N (f̂(θ) |
µ(θ), σ2(θ, θ)) is written in closed form with

µ(θ) = m(θ) + kT(θ)
(
K+ λ−1I

)−1
(y −m),

σ2(θ, θ) = k(θ, θ)− kT(θ)
(
K+ λ−1I

)−1
k(θ).

In the following, σ2(θ, θ) is abbreviated as σ2(θ). In BO
based on GPs, at each iteration, the point that maximizes
the acquisition function α : Θ → R is chosen where the
acquisition function is defined using the posterior distribu-
tion p(f̂ | y) as

θt = argmax
θ∈Θ

α(θ; p(f̂ | y)).

Commonly used acquisition functions include the prob-
ability of improvement (PI) (Kushner, 1964), ex-
pected improvement (EI) (Mockus et al., 1978; Jones
et al., 1998) and Gaussian process upper confidence
bound (GP-UCB) (Srinivas et al., 2010). There are
also the information-based approach called the entropy
search (Hennig and Schuler, 2012; Hernández-Lobato
et al., 2014), the randomized strategy known as Thompson
sampling (Thompson, 1933), and the “one-step” analysis-
based method known as the knowledge gradient (Frazier
et al., 2009). Novel acquisition functions are continually
being proposed, e.g., Siemenn et al. (2022).

3 EXISTING STOPPING CRITERIA FOR
BAYESIAN OPTIMIZATION

To realize an efficient parameter search, the timing of ter-
minating the BO is important. The most common method is
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to search a predetermined number of times, but the appro-
priate number of searches varies depending on the objec-
tive function, its surrogate function, the given dataset, and
the acquisition function. Another possible way is to stop
searching when the value of the objective function becomes
lower than a predetermined threshold. However, applying
this method is difficult when the desired or acceptable value
of the objective function is unknown. Even when the de-
sired value is known; when the efficiency of the searching
is low, the desired value becomes unobtainable and so the
search may be continued endlessly.

Lorenz et al. (2015) proposed a stopping criterion that
stops the search when the probability of improvement (PI)
of the input point selected by the EI acquisition function
falls below a threshold. They claim that this can be re-
garded as a hypothesis test where the null hypothesis is
H0 : µ(θ) < f(θt), and the threshold is regarded as the
acceptable type-I error for the test. It is advantageous that
the threshold is interpreted as the acceptable type-I error.
However, since this method assumes that the posterior dis-
tribution is correct, there is a possibility of erroneous stop-
ping, when the mean function of the posterior distribution
does not sufficiently represent the true function.

Nguyen et al. (2017) assumed that the acquisition function
is EI and proposed stopping BO when the EI of the newly
selected point falls below a threshold. No objective method
for setting the threshold has been provided.

Makarova et al. (2022) focused on the problem of HPO of
predictive models, and they proposed a stopping criterion
for BO based on the simple regret, r(θ∗t ), of the chosen
point. Specifically, for any δ ∈ (0, 1), they showed that the
following inequality holds with probability 1− δ:

r(θ∗t ) ≤ min
θ∈Θt

UCBδ(θ)−min
θ∈Θ

LCBδ(θ), (1)

where UCBδ(θ) = µ(θ) + β
1/2
t σ(θ), LCBδ(θ) = µ(θ) −

β
1/2
t σ(θ) and β

1/2
t is a trade-off parameter between ex-

ploration and exploitation depending on δ. They propose
to stop the search when this upper bound falls below a
threshold, st. The notable advantage of this method is that
the threshold st can be automatically and adaptively deter-
mined when the BO is used in the HPO as is explained in
Section 4.3. However, there is no guarantee that the upper
bound will converge to zero with certainty, and it remains
difficult to determine the threshold adaptively in a general
BO setting other than HPO. The stopping criteria for other
optimization methods are explained in Section E in the ap-
pendix.

BOs have been extensively used for HPO. Therefore, sev-
eral BO stopping criteria particularly designed for HPO
tasks were proposed. Swersky et al. (2014) explored a
diverse collection of hyperparameter settings at the initial
stage by training their predictive models with a small num-
ber of epochs, and then gradually focusing on a small num-

ber of promising settings by managing learning processes
with different hyperparameters. Dai et al. (2019) combined
BO with Bayesian optimal stopping (Ferguson, 2006). In
the context of multi-fidelity BO, several methods have been
proposed to reduce the resource consumption of BO by uti-
lizing low-fidelity functions that can be obtained by using a
subset of the training data or by training the machine learn-
ing model for just a few epochs (Kandasamy et al., 2016,
2017; Li et al., 2021). It is also proposed to dynamically al-
locate a smaller budget to the less-promising hyperparame-
ter setting while giving a larger budget to the promising hy-
perparameter (Li et al., 2017; Falkner et al., 2018). Other
approaches for the early stopping of the inner-loop include
the extrapolation of the generalization error curve (Domhan
et al., 2015; Klein et al., 2017).

4 PROPOSED STOPPING CRITERION

To address problems with existing stopping criteria, we
propose a criterion based on the difference between the ex-
pectation of the minimum of a variant of the simple regret.
The proposed criterion terminates the BO in a finite number
of iterations with high probability since the proposed crite-
rion converges to zero under certain assumptions. In ad-
dition, we propose two threshold determination methods;
one determines the threshold automatically, and the other
determines the threshold heuristically by using a parameter
that is robust to the changes in the task and dataset.

Instead of considering the standard simple regret, we con-
sider the following quantity:

Rt = Ep(f̂ |yt)
[min
θ∈Θ
{f̂(θ)}]− f∗.

Herein, Rt is called the expected minimum simple regret
since Rt indicates the expectation of a variant of the sim-
ple regret when the optimal point is selected by the “ora-
cle” for each f̂ generated from p(f̂ |yt). The quantity Rt

can also be regarded as the expectation of the minimum
obtained by sampling from the posterior (i.e., Thompson
sampling) minus f∗, as shown in Figure 1. When BO has
not yet explored around the optimal solutions yet, Rt does
not converge to zero because there is a low probability of
generating functions that attains the optimal function value
f∗ from p(f̂ |yt). Therefore, when this quantity converges
to zero sufficiently, it indicates that BO has found the op-
timal solution. In addition, this quantity only evaluates the
minimum value of functions sampled from p(f̂ |yt); hence
it can deal with an objective function with multiple minima.

4.1 Upper Bound of the Gap between the Expected
Minimum Simple Regrets

We propose a stopping criterion for BO by evaluating the
convergence of Rt. To this end, we consider the difference
between the expected minimum simple regrets ∆Rt :=
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Expected minimum 
simple regret

Sample 
f ∼ p( f |yt)

Figure 1: The concept of the proposed stopping criterion. The expected minimum simple regret is independent of the
acquisition function, as it does not depend on how the next point is selected.

|Rt−1 −Rt| before and after adding (θt, yt) to the training
data. By evaluating the difference between the expected
minimum simple regrets, we can stop BO without know-
ing f∗ because it indicates that the search efficiency is low
and there is almost no improvement in the objective value.
However, it is generally difficult to calculate ∆Rt analyti-
cally. Therefore, this study derives an inequality shown in
the following theorem to evaluate the upper bound of ∆Rt.

Let DKL[p||q] be the Kullback–Leibler (KL) diver-
gence (Kullback and Leibler, 1951) between the proba-
bility distributions p and q. Then, the following theorem
holds.

Theorem 1. Let pt(f̂) := p(f̂ |yt) be the posterior distri-
bution for f̂ when St = {(Θt,yt)} is observed, and let
µt and σt be the mean and covariance functions of pt(f̂).
Pick δ ∈ (0, 1), and let κt−1 := minθ∈Θt−1 UCBδ(θ) −
minθ∈Θ LCBδ(θ). We denote the probability distribution
function and cumulative distribution function of standard
normal distribution by ϕ(x) and Φ(x), respectively. Then,
the following inequality holds with probability ≥ 1− δ:

∆Rt ≤v(ϕ(g) + gΦ(g))

+ |∆µ∗
t |+ κt−1

√
1

2
DKL[pt(f̂)||pt−1(f̂)]

=:∆R̃t, (2)

where ∆µ∗
t := µt−1(θ

∗
t−1) − µt(θ

∗
t ), v :=√

σ2
t (θ

∗
t )− 2σ2

t (θ
∗
t , θ

∗
t−1) + σ2

t (θ
∗
t−1) and g :=

(µt(θ
∗
t )− µt−1(θ

∗
t−1))/v.

Proof. We transform Ept(f̂)
[minθ∈Θ{f̂(θ)}] to

Ept(f̂)
[minθ∈Θ{min{f̂(θ), f̂(θ∗t )}} and use the rela-

tions max{a, 0} = −min{−a, 0} and max{a + b, 0} ≤
max{a, 0}+max{b, 0}. Then, we have

∆Rt

≤|∆µ∗
t |+ Ept(f̂)

[max{f̂(θ∗t )− f̂(θ∗t−1), 0}]

+ |Ept(f̂)
[max
θ∈Θ
{max{f̂(θ∗t−1)− f̂(θ), 0}}]

− Ept−1(f̂)
[max
θ∈Θ
{max{f̂(θ∗t−1)− f̂(θ), 0}}]|. (3)

For any two-variate Gaussian distribution, the following
equation holds.

Ep(x,y)[max{x− y, 0}]

=
√

σ2
xx − 2σ2

xy + σ2
yyϕ

 (µx − µy)√
σ2
xx − 2σ2

xy + σ2
yy


+ (µx − µy)Φ

 (µx − µy)√
σ2
xx − 2σ2

xy + σ2
yy

 ,

where µx and µy are mean of x and y, and σ2
xx, σ2

yy , σ2
xy

are the variance of x, variance of y and covariance of x and
y, respectively. Therefore, the second term of R.H.S. of the
Eq. (3) is v(ϕ(g) + gΦ(g)).

For any measurable function L(f̂) ∈ [a, b], |Ep(f̂)[L(f̂)]−
Eq(f̂)[L(f̂)]| ≤ (b − a)

√
1/2DKL[p||q] holds. Let

L(f̂) = maxθ∈Θ{max{f̂(θ∗t−1)− f̂(θ), 0}} = f̂(θ∗t−1)−
minθ∈Θ f̂(θ). By using |f̂(θt) − µt−1(θt)| ≤
β
1/2
t σt−1(θt), L(f̂) can be bound by κt−1 with high

probability. Meanwhile, the minimum value of L(f̂)
is zero. From this, the sum of the third term
and fourth terms of R.H.S. in Eq. (3) is bound by

κt−1

√
1/2DKL[pt(f̂)||pt−1(f̂)], which proofs the claim.

Detailed proof is shown in Section A in the appendix.

Algorithm 1 is the concrete algorithm for computing the
proposed stopping criterion. We propose stopping BO
when ∆R̃t becomes less than or equal to a threshold, st. To
calculate the upper bound, we have to calculate θ∗t , which
cannot be strictly calculated when there is noise in the ob-
jective function. In this study, θ∗t is approximated by using
the explored point whose objective function is the mini-
mum overall observed points.

We can guarantee that the derived upper bound becomes
tighter and converges to zero as the BO process becomes
sufficiently advanced by the following theorem.

Theorem 2. Assume θ∗t = θ∗t−1 when t → ∞, the acqui-
sition function of the BO is GP-LCB, a hyperparameter of
the GP is the same before and after adding data, the kernel
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function for GP is any of finite dimensional linear, squared
exponential, and Matérn kernels satisfying k(θ, θ) ≤ 1 for
any θ ∈ Θ, and κt−1 < C holds for some constant value,
C. For a sample f̂ of GP with the kernel function k(θ, θ′),
assume f̂ : ∃a, b > 0, P r{supθ∈Θ |∂f/∂θj | > L} ≤
a exp−(L/b)2 holds. Then, the Eq. (2) converges to zero
with probability with high probability.

Proof. Since we assume θ∗t = θ∗t−1, ν(ϕ(g) + gΦ(g)) = 0

holds. Regarding p(f̂t|yt) as the posterior whose prior
is p(f̂t|yt−1) observing (θt, yt), the mean function corre-
sponding to θ are derived as

µt(θ) = µt−1(θ) +
σ2
t−1(θ, θt)

σ2
t−1(θt, θt) + λ−1

(yt − µt−1(θt)).

We decompose an observed value of an objective func-
tion for θt into a value of a true function corresponding
to θt and noise term, that is yt = f(θt) + ϵt. Then,
|f(θt) − µt−1(θt)| ≤ β

1/2
t σt−1(θt) and ϵt ≤ c/λ1/2

hold with probability ≥ 1 − δ, respectively, where c =√
−2 log δ. From the assumption of θ∗t = θ∗t−1, we have
|µt−1(θ

∗
t ) − µt−1(θ

∗
t−1)| = 0. From these results, the fol-

lowing inequality holds.

|∆µ∗
t | ≤

β
1/2
t σt−1(θ

∗
t )σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ

∗
t )σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

.

Under assumption that a prior of pt(f̂) is the same as that
of pt(f̂), the KL divergence between the GP posterior dis-
tribution pt(f̂) given St and the GP posterior distribution
pt−1(f̂) given St−1 can be bound as follows:

DKL[pt(f̂)||pt−1(f̂)]

=
1

2
log (1 + λσ2

t−1(θt))−
1

2

σ2
t−1(θt)

σ2
t−1(θt) + λ−1

+
1

2

σ2
t−1(θt)(yt − µt−1(θt))

2

(σ2
t−1(θt) + λ−1)2

.

≤1

2
log (1 + λσ2

t−1(θt))−
1

2

σ2
t−1(θt)

σ2
t−1(θt) + λ−1

+
1

2

σ2
t−1(θt)

(
λ1/2β

1/2
t σt−1(θt) + c

)2

λ(σ2
t−1(θt) + λ−1)2

,

where we used |f(θt) − µt(θt)| ≤ β
1/2
t σt−1(θt) and ϵt ≤

c/λ1/2 in the equation transformation between line 2 and 3.
If we use GP-LCB as an acquisition function, β1/2

t σt(θt)
converges to zero when t → ∞ under some assumptions.
Hence, ∆R̃t converges to zero with high probability. Sec-
tion C in the appendix provides a more detailed proof.

We discuss the intuitive interpretation of the proposed up-
per bound. The first term means the expected improvement

when θ∗t changes, which is zero when θ∗t = θ∗t−1. The
second term on the right-hand side of Eq. (2) can be in-
terpreted as a change in the simple regret when we regard
the mean function as a true function, which tends to be-
come a small value as shown in Section F in the appendix.
In the last term, DKL[pt(f̂)||pt−1(f̂)] becomes small when
there is no change in the posterior distribution, even when
new points are added to the search. Meanwhile, κt−1 is
an upper bound of the simple regret, which also becomes
small when the BO process advances. Therefore, there are
two possible situations in which the proposed stopping cri-
terion stops the BO procedure. 1) When a suboptimal pa-
rameter is found and the simple regret becomes sufficiently
small to stop the search, even if the posterior distribution
has not converged, because r(θ∗t ) becomes small; 2) When
the posterior distribution has converged. This means that
the parameter search stops even when the search efficiency
is low and the simple regret remains large. For exam-
ple, when the hyperparameter for exploration is too small
in UCB, only limited regions with high objective values
are explored before sufficiently exploring the entire search
space; therefore, the posterior distribution does not change
and DKL[pt(f̂)||pt−1(f̂)] becomes small and the search
is terminated. On the other hand, when the simple regret
does not decrease while searching a region that is not well-
explored, neither κt−1 nor DKL[pt(f̂)||pt−1(f̂)] decrease
and the problem of terminating the search too early does
not occur. Note that although the proposed method can
stop a search procedure effectively, there would be situa-
tions in which we want to obtain a better solution even if it
takes more time. In such cases, the proposed method can be
used as a trigger to restart the search from a different initial
point. We experimentally show behaviors of the proposed
upper bound in Section F in the appendix.

Roughly speaking, the proposed criterion evaluates the BO
by using a product of the upper bound of the simple regret
and KL divergence between GPs. Since the KL divergence
becomes large when the gap between the true function and
the mean function of the posterior is large, the proposed
criterion does not stop the BO. Therefore, the risk that the
proposed criterion stops the BO by mistake is lower than
the conventional methods. However, the possibility still
remains that the proposed criterion could stop the BO by
mistake because the upper bound of the simple regret may
not hold when the gap between the true function and mean
function of the posterior is large.

4.2 Formula for Computing The Upper Bound

Calculating the upper bound (2) requires calculating the
KL divergence between GPs. Generally, the KL divergence
does not necessarily have a finite value, because GPs have
infinite-dimensional parameters. However, when the prior
is common between two posteriors of GP, it can be shown
that the KL divergence is equivalent to that between multi-
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Algorithm 1 stopping criterion for Bayesian optimization
Input: thresholds st > 0, initial dataset S0 = {Θ0,y0}
µ0(θ)← m(θ) + kT(θ)

(
K+ λ−1I

)−1
(y0 −m)

σ2
0(θ, θ)← k(θ, θ)− kT(θ)

(
K+ λ−1I

)−1
k(θ)

for t = 1, 2, . . . do
θt ← argmaxθ∈Θ α(θ; p(f̂ |yt))
St ← St−1 ∪ {(θt, yt)}
µt(θ)← m(θ) + kT(θ)

(
K+ λ−1I

)−1
(yt −m)

σ2
t (θ, θ)← k(θ, θ)− kT(θ)

(
K+ λ−1I

)−1
k(θ)

∆R̃t ← ∆µ∗
t + vϕ (g) + vgΦ(g) +

κt−1

√
1
2DKL[pt(f̂)||pt−1(f̂)]

if ∆R̃t ≤ st then
Terminate BO loop

end if
end for

variate Gaussian distributions of finite dimension (Ishibashi
and Hino, 2020). Specifically, by denoting the data set at
time t as St = {(Θt,yt)}, the KL divergence between the
GP posterior distribution pt(f̂) given St and the GP poste-
rior distribution pt−1(f̂) given St−1 is as follows:2

DKL[pt(f̂)||pt−1(f̂)]

=
1

2
log (1 + λσ2

t−1(θt))−
1

2

σ2
t−1(θt)

σ2
t−1(θt) + λ−1

+
1

2

σ2
t−1(θt)(yt − µt−1(θt))

2

(σ2
t−1(θt) + λ−1)2

. (4)

We note that µt−1 and σ2
t−1 denote the posterior mean and

variance functions of GP, respectively, which are already
computed when calculating the GP posterior.

4.3 Threshold Determination

To the best of our knowledge, all BO stopping criteria
are based on the comparisons of certain quantities with
a threshold to determine the appropriate stop time. Re-
garding the method based on the probability of improve-
ment (Lorenz et al., 2015), although it has an interpretation
for the type-I error of the statistical test, still the user must
still determine the threshold. Nguyen et al. (2017) treated
the threshold purely as a hyperparameter and left determin-
ing the threshold.

By restricting the problem to HPO of predictive models,
Makarova et al. (2022) used an estimate of the SD of the
generalization error of the model obtained by K-fold CV
as the threshold (Nadeau and Bengio, 2000):

st =

√
Var[f̂(θ)] =

√
1

K
+
|Dval|
|Dtr|

scv(θ), (5)

2See Section B in the appendix for derivation.

where Dval and Dtr are the validation and training datasets,
respectively, and |D| denotes the size of the set D. s2cv is
the empirical variance of the generalization error for the
predictive model with hyperparameter θ estimated by K-
fold CV. This enables determining the threshold to be deter-
mined adaptively at each iteration of BO. It is also advan-
tageous that the threshold has the interpretation that once
the maximum plausible improvement becomes less than the
SD of the generalization error, further evaluations will not
reliably improve the generalization error.

This work proposes another adaptive way of determining
the threshold utilizing the particular form of our problem
formulation. For ∆R̃t, we have the following upper bound
under the assumptions of Theorem 2:

∆R̃t ≤
β
1/2
t σt−1(θ

∗
t )σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ

∗
t )σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

+
κt−1

2λ1/2(σ2
t−1(θt) + λ−1)

(
λ2σ6

t−1(θt) + λσ4
t−1(θt)

+λβtσ
4
t−1(θt) + 2λ1/2cβ

1/2
t σ3

t−1(θt) + c2σ2
t−1(θt)

)1/2

,

=: ∆R̂t (6)

where c =
√
−2 log δ. Section D in the appendix shows a

detailed derivation. Then, we have

st =
(σt−1(θ

∗
t ) + κt−1/2)σt−1(θt)c√
λ(σ2

t−1(θt) + λ−1)
(7)

by evaluating each term’s convergence speed. Although
each term of Eq. (6) converges to zero, Eq. (7) converges to
zero slower than the other terms of the inequality. It is no-
table that this value st is only determined only by the fluc-
tuation of observations and estimated by using the observed
data points. We adopt Eq. (7) as the threshold and termi-
nate the search when ∆R̃t is less than this value. Since
determining the threshold does not require additional in-
formation, we can use this in the general BO setting. Note
that both ∆R̃t and st are less than ∆R̂t.

It is of a great practical benefit to be able to determine
the threshold automatically and adaptively. However, we
may sometimes want to find a point that is as close to
the optimal point as possible, even if it increases the cost
slightly. In such cases, it is desirable to be able to set the
threshold such that it is as independent of the task as pos-
sible. For such a purpose, we also propose a heuristic to
determine the threshold. It is unlikely that the parame-
ter search by BO will end after the initial few iterations;
therefore, we record the value of ∆R̃t, t = 1, . . . , Tini

for the initial Tini searches and terminate the search when
we expect only an improvement of about several percent
over the initial search. Concretely, we consider the me-
dian Med({∆R̃t}Tini

t=1) of the recorded upper bounds ∆R̃t

in the initial Tini trials, and set the threshold as s = η ×
Med({∆R̃t}Tini

t=1), where η ∈ (0, 1) is a threshold deter-
mined by a user depending on their purpose. The Tini
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should be large enough to see a trend of the initial upper
bound values, and we found Tini ≃ 20 is a good rule-of-
thumb. The coefficient of η only means “about 100 × η%
compared with the gain in the initial search” and is only a
guideline for how much patience is needed to continue the
search.

4.4 Possible Limitation and Extension

As explained in §4.2, DKL[pt(f̂)||pt−1(f̂)] is the KL di-
vergence between GPs and there is no guarantee that the
values are bounded, so it is generally difficult to calcu-
late DKL[pt(f̂)||pt−1(f̂)]. Hence, it was necessary to
guarantee that DKL[pt(f̂)||pt−1(f̂)] is computable by as-
suming that the prior distribution of GP is always the
same in the BO process. However, the hyperparame-
ters of GPs are generally updated in BO. A practical
approximation that relaxes the assumption that the prior
distribution of GP remains unchanged in the BO pro-
cess is calculating DKL[pt(f̂ |νt)||pt−1(f̂ |νt)] instead of
DKL[pt(f̂ |νt)||pt−1(f̂ |νt−1)], where the hyperparameter
of GP at time t is denoted as νt. We adopt this approxima-
tion when implementing our proposed method. It is natural
to assume that the change in the posterior of GP decreases
along with the progress of BO in general, which leads to a
decrease in the change of νt. Therefore, the error of the ap-
proximation is expected to decrease as the BO progresses.
We demonstrate that the assumption tends to hold in Sec-
tion G in the appendix.

Our proposed method is currently restricted to the case
where a GP is used as the surrogate of the objective func-
tion while usable with any acquisition function. GP is
widely adopted in many BO implementations, but it is not
suitable for discrete variables. Future work will explore the
use of other surrogate models (Bergstra et al., 2011; Jenat-
ton et al., 2017; Garrido-Merchán and Hernández-Lobato,
2020; Tiao et al., 2021) suitable for discrete variables (or
combinations of continuous and discrete variables).

The proposed criterion approximates θ∗t using the mini-
mum value for all observed values of the objective func-
tion. It could result in an inaccurate evaluation for the upper
bound and stop the BO by mistakenly where the variance
of the noise remains large.

5 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed criterion
through two experiments: test function minimization and
HPO of machine learning methods. In these experiments,
the BO is implemented by using GPyOpt (The GPyOpt au-
thors, 2016).

5.1 Test Function Minimization

In this experiment, we evaluate stopping criteria using a
set of two-dimensional test functions3 as benchmark data
when it is minimized by BO. The test functions used
are holder table, cross in tray, six-hump
camel, easom, rosenbrock, and booth. The experi-
mental results are evaluated by plotting the mean and SD of
the stop timing and the simple regret calculated by varying
the random number seeds of the initial sampling 10 times,
where the simple regret is normalized such that its range
is [0, 1]. Thus, we evaluate whether the proposed crite-
rion could stop BO sufficiently early while also evaluating
whether the optimal parameters found by the stopped time
are global minima.

We compare the stopping time determined by our pro-
posed method with those determined by the stopping crite-
ria based on probability of improvement (PI) (Lorenz et al.,
2015), expected improvement (EI) (Nguyen et al., 2017),
and simple regret (SR) (Makarova et al., 2022). The thresh-
olds of EI and SR are set to η = 0.01 times the median
of the values of initial Tini = 20 searches in each crite-
rion, and the threshold of PI is set to 0.01. In this exper-
iment, these criteria are denoted by EI-med, SR-med, and
PI, respectively. For the proposed method, we consider two
threshold determinations: i) the threshold is automatically
determined by using Eq. (7) and ii) it is set to η = 0.01
times the median of the values of initial Tini = 20. These
are denoted by Ours-auto and Ours-med, respectively.

The simple regret (SR)-based method and the proposed
method requires setting βt, a trade-off parameter between
exploration and exploitation, appropriately to calculate the
UCB and LCB. According to the previous work (Makarova
et al., 2022), we can use the theoretical value βt =
2 log(|Θ|t2π2/6δ), where 1 − δ is the probability that the
upper bound in Eq. (1) holds, and δ = 0.1 is used. The
mean function of GP is zero, and the covariance func-
tion is the Matérn kernel, and the hyperparameters are up-
dated each time the search is performed by maximizing the
marginal likelihood. We use GP-LCB as the acquisition
function.

Figure 2 shows the normalized simple regret of BO and the
stopped timing for each criterion in each test function min-
imization. From these results, PI and EI-med tend to stop
the BO procedure earlier than the other criteria; they may
stop before finding the optimal point, as shown in Fig. 2(a).
SR-med, Ours-auto, and Ours-med tend to terminate the
BO after discovering the optimal point. In the results of
the rosenbrock and booth functions, the stopped tim-
ing of Ours-auto tends to be slower than the other stopping
criteria. It is difficult to explore the optimal solution effi-
ciently for GP-based BO because the shape of the easom

3https://www.sfu.ca/˜ssurjano/
optimization.html
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Figure 2: Stopped timing for each test function. “med” of the label name in the figure means that the threshold is determined
based on the median of initial 20 searches, and “auto” means that the threshold is determined automatically by Eq. (7).

function is flat over most of the region and is a sharp func-
tion near the optimal solution as shown in Fig. 8(d). There-
fore, the exploring by BO becomes less efficient, which
leads to the proposed criterion stopping BO early. How-
ever, the SR-based criterion does not stop BO because the
simple regret is insufficiently small. Section H.1 in the ap-
pendix shows the results in more detail.

5.2 Hyperparameter Optimization

We consider the hyperparameter tuning problem of predic-
tive models. The heuristic threshold is applied in the EI-
and SR-based methods, which are denoted by EI-med and
SR-med, respectively. We set st to η = 0.01 times the
median of the values of initial Tini = 10 trials in each
criterion. For the PI-based method, the threshold is set to
0.01. In addition, we consider the stopping criterion based
on SR whose threshold is determined by the SD of the CV
error, which is denoted by SR-cv. To see the quality of the
obtained stopping timing, the 10th smallest simple regret
value among the candidate hyperparameters is plotted as a
reference.

We consider logistic regression (LR) with an additive RBF
basis, support vector classification (SVC) (Cortes and Vap-
nik, 1995) with sigmoid kernel and random forest clas-
sification (RFC) (Breiman, 2001) for classification prob-
lems, and ridge regression (RR) (Hoerl and Kennard,

1970) with additive RBF basis, support vector regression
(SVR) (Drucker et al., 1996) with RBF kernel and random
forest regression (RFR) for regression problems. These
methods are implemented by using scikit learn (Pedregosa
et al., 2011). Table 1 shows the hyperparameters and their
value ranges for each predictive model. We used the gas

Table 1: Description of predictors’ hyperparameters.
Hyperparameter Variable type Range

LR # of basis functions discrete [2,30]
scale of RBF continuous [0.01,100]

Regularization coeff. continuous [0.01,100]
SVC Kernel coefficient continuous [1e-3, 1e+3]

coef0 continuous [1e-3,1e+3]
Regularization coeff. continuous [1e-3, 1e+3]

RFC # of trees discrete [1, 20]
Max depth discrete [1, 20]

Min samples split continuous [0.01,0.5]
RR # of basis functions discrete [2, 30]

scale of RBF continuous [0.01, 100]
Regularization coeff. continuous [1e-3,1e+3]

SVR Kernel coefficient continuous [1e-3, 1e+3]
Regularization coeff. continuous [1e-3, 1e+3]

epsilon continuous [1e-3, 1e+3]
RFR # of trees discrete [1,20]

Max depth discrete [1,20]
Min samples split continuous [0.01,0.5]
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Figure 3: The number of evaluations and regret at the time of termination. Average and SD are calculated with 20 trials
with different random initializations. “Top10” is the 10th smallest normalized simple regret. (a)–(c): skin data for
classification, (d)–(f): gas turbine data for regression. The mean and SD for each stopping criterion are shown as
rectangles and error bars, respectively, with the corresponding colors. “med” in the label name in the legend indicates
that the threshold was determined based on median of initial 10 searches, while “auto” indicates that the threshold was
determined automatically, and “cv” means that the threshold was determined by the SD of the CV error.

turbine dataset for the regression problem and skin
dataset for the classification problem from the UCI reposi-
tory (Dua and Graff, 2017) to train each predictive model.
Section H.2 in the appendix shows experimental results on
other datasets.

The hyperparameters contain discrete values, which are
simply treated as continuous values. The hyperparameters
of GP were updated after each search using the marginal
likelihood maximization. GP-LCB was used as the acquisi-
tion function. To calculate the simple regret, we discretized
the space of hyperparameters and optimized the hyperpa-
rameter on the space by using BO.

Figure 3 shows the normalized simple regret and the num-
ber of evaluated points at the stopped timings. The stopping
criteria based on EI and PI terminate the BO earlier than
the other criteria, and they sometimes terminate BO before
finding a hyperparameter with the 10th smallest simple re-
gret, as shown in Fig. 3(d) and (e). Meanwhile, SR-cv ter-
minates the BO when the optimal hyperparameter is found
in SVC, as shown in Fig. 3(e); however, the criterion cannot
terminate the BO with other models, as shown in Fig. 3(a)–
(d) and (f). SR-med also terminates the BO when the op-
timal hyperparameter is found for RR, SVR, and RFR—
as shown in Fig. 3(a)–(c)—but it cannot terminate the BO

with the other models. Ours-auto and Ours-med tend to ter-
minate the BO after finding a hyperparameter with the 10th
smallest simple regret, and their stopping timings tend to
be earlier than the SR-based criterion.

6 CONCLUSION

This work considered the important question of when to
stop a parameter search by BO, which is very impor-
tant to ensure the efficiency of parameter search in black-
box functions and of great significance for Green-AI re-
search (Strubell et al., 2020; Schwartz et al., 2019). Exper-
imentally, it was confirmed that the search could stop at a
sufficiently early stage with reasonable performance for the
resultant model.

One downside of the application of stopping criteria includ-
ing our proposed one, is the possibility of missing better
solutions or important findings. There is always a trade-off
between cost and solution quality, and care must be taken
when using the stopping criteria of BO.
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and Matthias Seeger. Bayesian optimization with
tree-structured dependencies. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
pages 1655–1664. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/
jenatton17a.html.

Eduardo C. Garrido-Merchán and Daniel Hernández-
Lobato. Dealing with categorical and integer-valued
variables in Bayesian optimization with Gaussian pro-
cesses. Neurocomputing, 380:20–35, 2020. ISSN 0925-
2312. doi: https://doi.org/10.1016/j.neucom.2019.11.
004. URL https://www.sciencedirect.com/
science/article/pii/S0925231219315619.

Louis C Tiao, Aaron Klein, Matthias W Seeger, Ed-
win V. Bonilla, Cedric Archambeau, and Fabio Ramos.
Bore: Bayesian optimization by density-ratio estima-
tion. In Marina Meila and Tong Zhang, editors, Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 10289–10300. PMLR, 18–
24 Jul 2021. URL https://proceedings.mlr.
press/v139/tiao21a.html.

The GPyOpt authors. GPyOpt: A Bayesian optimiza-
tion framework in python. http://github.com/
SheffieldML/GPyOpt, 2016.

Corinna Cortes and Vladimir Vapnik. Support-vector net-
works. Machine Learning, 20(3):273–297, 1995. doi:
10.1007/BF00994018. URL https://doi.org/
10.1007/BF00994018.



Stopping Criterion of Bayesian Optimization

Leo Breiman. Random forests. Machine Learning, 45
(1):5–32, 2001. ISSN 0885-6125. doi: 10.1023/A:
1010933404324. URL http://dx.doi.org/10.
1023/A%3A1010933404324.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics,
12:55–67, 1970.

Harris Drucker, Christopher J. C. Burges, Linda Kauf-
man, Alex Smola, and Vladimir Vapnik. Support
vector regression machines. In M.C. Mozer, M. Jor-
dan, and T. Petsche, editors, Advances in Neural
Information Processing Systems, volume 9. MIT
Press, 1996. URL https://proceedings.
neurips.cc/paper/1996/file/
d38901788c533e8286cb6400b40b386d-Paper.
pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Dheeru Dua and Casey Graff. UCI machine learning repos-
itory, 2017. URL http://archive.ics.uci.
edu/ml.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. Energy and policy considerations for mod-
ern deep learning research. Proceedings of the
AAAI Conference on Artificial Intelligence, 34(09):
13693–13696, Apr. 2020. doi: 10.1609/aaai.v34i09.
7123. URL https://ojs.aaai.org/index.
php/AAAI/article/view/7123.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Et-
zioni. Green AI, 2019. URL http://arxiv.org/
abs/1907.10597.

D. Russo and B. V. Roy. An information-theoretic analysis
of thompson sampling. Journal of Machine Learning
Research, 17(68):1–30, 2016. URL http://jmlr.
org/papers/v17/14-087.html.

D. B. Owen. A table of normal integrals. Com-
munications in Statistics - Simulation and Com-
putation, 9(4):389–419, 1980. doi: 10.1080/
03610918008812164. URL https://doi.org/
10.1080/03610918008812164.

Huong Ha, Santu Rana, Sunil Gupta, Thanh Nguyen,
Hung Tran-The, and Svetha Venkatesh. Bayesian
optimization with unknown search space. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
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A Proof of the Theorem 1

To prove the Theorem 1, we use the following lemmas.

Lemma 1. Let P and Q be any probability distributions such that P is absolutely continuous with respect to Q. Then, for
any random variable X and any measurable function L(X) ∈ [a, b], we have

|EP [L(X)]− EQ[L(X)]| ≤ (b− a)

√
1

2
DKL[P ||Q].

Proof. Let Ω be a countable set. Let h(ω) = L(X(ω)) − (b + a)/2 so that h : Ω → [−(b − a)/2, (b − a)/2]. Choose
a base measure µ so that P and Q are absolutely continuous with respect to µ. Then, the following Pinsker’s inequality
holds. √

1

2
DKL[P ||Q] ≥

∫
1

2

∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ.
By using this inequality, we have

(b− a)

√
1

2
DKL[P ||Q] ≥b− a

2

∫ ∣∣∣∣dPdµ − dQ

dµ

∣∣∣∣ dµ
≥b− a

2

∫ ∣∣∣∣ 2

b− a

(
dP

dµ
− dQ

dµ

)
h

∣∣∣∣ dµ
≥
∣∣∣∣∫ hdP −

∫
hdQ

∣∣∣∣
= |EP [L(X)]− EQ[L(X)]| .

This proof is the same as the proof of fact 9 in Russo and Roy (2016) except for the assumption that supX L − infX L =
(b− a) and the transformation from line 2 to line 3, which is used |

∫
hdµ| ≤

∫
|h|dµ.

Lemma 2. (Srinivas et al., 2010) For any function f generated by a Gaussian process with mean function µ and covariance
function σ2,

|f(θ)− µ(θ)| ≤ β
1/2
t σ(θ)

holds with probability ≥ 1− δ.

Lemma 3. Let p(x, y) be a two-dimensional Gaussian distribution, that is,

p(x, y) = N
([

x
y

]
|
[
µx

µy

]
,

[
σ2
xx σ2

yx

σ2
xy σ2

yy

])
.

We denote the probability distribution function and cumulative distribution function of standard normal distribution by
ϕ(x) and Φ(x), respectively. Then, for any measurable function L(f) ∈ [a, b], we have

Ep(x,y)[max{x− y, 0}] = vϕ (g) + vgΦ(g) ,

where v =
√

σ2
xx − 2σ2

xy + σ2
yy , and g =

µx−µy

v .

Proof. From

p(x, y) = N
([

x
y

]
|
[
µx

µy

]
,

[
σ2
xx σ2

yx

σ2
xy σ2

yy

])
,
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letting µy|x = µy+
σ2
yx

σ2
xx
(x−µx) and σ2

y|x = σ2
yy−

σ4
yx

σ2
xx

, we can write p(y|x) = N (y | µy|x, σ
2
y|x). Let ỹ = (y−µy|x)/σy|x

and u = (x− µy|x)/σy|x, then the following equation holds.

Ep(x,y)[max{x− y, 0}] =Ep(x)[Ep(y|x)[max{x− y, 0}]]

=Ep(x)

[∫ u

−∞
(x− σy|xỹ − µy|x)ϕ(ỹ)dỹ

]
=Ep(x)

[
(x− µy|x)

∫ u

−∞
ϕ(ỹ)dỹ − σy|x

∫ u

−∞
ỹϕ(ỹ)dỹ

]
=Ep(x)

[
(x− µy|x)Φ(u)− σy|x [−ϕ(ỹ)]

u
−∞

]
=Ep(x)

[
σy|xuΦ(u) + σy|xϕ(u)

]
.

Let x̃ = x−µx

σxx
. By applying x = σxxx̃+ µx, we have

u =
x− µy|x

σy|x

=
x− µy

σy|x
−

σ2
yx

σy|xσ2
xx

(x− µx)

=
σ2
xx − σ2

yx

σy|xσ2
xx

x− µy

σy|x
+

σ2
yx

σy|xσ2
xx

µx

=
σ2
xx − σ2

yx

σy|xσxx
x̃+

σ2
xx − σ2

yx

σy|xσ2
xx

µx −
µy

σy|x
+

σ2
yx

σy|xσ2
xx

µx

=
σ2
xx − σ2

yx

σy|xσxx
x̃+

µx − µy

σy|x
=: bx̃+ a.

Therefore, the following equation holds.

Ep(x,y)[max{x− y, 0}] =Ep(x̃)

[
σy|x(bx̃+ a)Φ(bx̃+ a) + σy|xϕ(bx̃+ a)

]
=σy|xb

∫ ∞

−∞
x̃Φ(bx̃+ a)ϕ(x̃)dx̃+ σy|xa

∫ ∞

−∞
Φ(bx̃+ a)ϕ(x̃)dx̃

+ σy|x

∫ ∞

−∞
ϕ(bx̃+ a)ϕ(x̃)dx̃. (8)

The following equalities hold for Gaussian distributions (Owen, 1980).∫ ∞

−∞
x̃Φ(bx̃+ a)ϕ(x̃)dx̃ =

b√
b2 + 1

ϕ(
a√

b2 + 1
),∫ ∞

−∞
Φ(bx̃+ a)ϕ(x̃)dx̃ =Φ(

a√
b2 + 1

),∫ ∞

−∞
ϕ(bx̃+ a)ϕ(x̃)dx̃ =

1√
b2 + 1

ϕ(
a√

b2 + 1
).

Using the above equalities, we have

Ep(x,y)[max{x− y, 0}] =
σy|xb

2

√
b2 + 1

ϕ

(
a√

b2 + 1

)
+ σy|xaΦ

(
a√

b2 + 1

)
+

σy|x√
b2 + 1

ϕ

(
a√

b2 + 1

)
=σy|x

√
b2 + 1ϕ

(
a√

b2 + 1

)
+ σy|xaΦ

(
a√

b2 + 1

)
.
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Then, the following equation holds.

σy|x
√
b2 + 1 =σy|x

√√√√ (σ2
xx − σ2

yx)
2 + σ2

y|xσ
2
xx

σ2
y|xσ

2
xx

=

√
(σ2

xx − σ2
yx)

2 + σ2
y|xσ

2
xx

σ2
xx

,

=

√
σ4
xx − 2σ2

xxσ
2
yx + σ4

yx + σ2
yyσ

2
xx − σ4

yx

σ2
xx

=
√
σ2
xx − 2σ2

yx + σ2
yy

a√
b2 + 1

=
(µx − µy)

σy|x

√
σ2
y|xσ

2
xx

(σ2
xx − σ2

yx)
2 + σ2

yyσ
2
xx − σ4

yx

=
(µx − µy)σyx√

σ4
xx − 2σ2

xxσ
2
yx + σ4

yx + σ2
yyσ

2
xx − σ4

yx

=
µx − µy√

σ2
xx − 2σ2

yx + σ2
yy

.

Substituting Eq. (8) into the above equation, we have

Ep(x,y)[max{x− y, 0}] =
√
σ2
xx − 2σ2

yx + σ2
yyϕ

 µx − µy√
σ2
xx − 2σ2

yx + σ2
yy

+ (µx − µy)Φ

 µx − µy√
σ2
xx − 2σ2

yx + σ2
yy

 ,

which proves Lemma 3.

The difference in the simple regret ∆Rt can be expanded as follows:

|Ept−1(f̂)
[min
θ∈Θ
{f̂(θ)}]− f∗ − Ept(f̂)

[min
θ∈Θ
{f̂(θ)}] + f∗|

=|Ept−1(f̂)
[min
θ∈Θ
{min{f̂(θ), f̂(θ∗t−1)}}]− Ept(f̂)

[min
θ∈Θ
{min{f̂(θ), f̂(θ∗t )}}]|

≤|∆µ∗
t |+ |Ept−1(f̂)

[min
θ∈Θ
{min{f̂(θ)− f̂(θ∗t−1), 0}}]− Ept(f̂)

[min
θ∈Θ
{min{f̂(θ)− f̂(θ∗t ), 0}}]|

=|∆µ∗
t |+ |Ept(f̂)

[max
θ∈Θ
{max{f̂(θ∗t )− f̂(θ), 0}}]− Ept−1(f̂)

[max
θ∈Θ
{max{f̂(θ∗t−1)− f̂(θ), 0}}]|

≤|∆µ∗
t |+ Ept(f̂)

[max{f̂(θ∗t )− f̂(θ∗t−1), 0}] + |Ept(f̂)
[max
θ∈Θ
{max{f̂(θ∗t−1)− f̂(θ), 0}}]

− Ept−1(f̂)
[max
θ∈Θ
{max{f̂(θ∗t−1)− f̂(θ), 0}}]|.

Let L(f̂) := maxθ∈Θ{max{f̂(θ∗t−1)− f̂(θ), 0}} = f̂(θ∗t−1)−minθ∈Θ f̂(θ). By using Lemma 2, we can bound L(f̂) as
follows with probability 1− δ:

L(f̂) ≤ min
θ∈Θt−1

UCBδ(θ)−min
θ∈Θ

LCBδ(θ) =: κt−1.

From the above inequality and Lemmas 1, and 3, we have

∆Rt ≤ |∆µ∗
t |+ vϕ (g) + vgΦ(g) + κt−1

√
1

2
DKL[pt(f̂)||pt−1(f̂)]

hence the Theorem holds.
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B KL divergence between GP posteriors

We derive formula (4) in the main text used for computing the KL divergence between GP posteriors. For any GP posterior,
the following property holds.

Lemma 4 (Ishibashi and Hino (2020)). Let p(f̂ |y) and p(f̂ |y′) be the posteriors with respect to f̂ given S = {Θ,y} and
S′ = {Θ′,y′}, respectively. Assume that the prior of p(f̂ |y) and that of p(f̂ |y′) are the same. Then, the following equality
holds:

DKL[p(f̂ |y)||p(f̂ |y′)] = DKL[p(f̂+|y))||p(f̂+|y′))],

where Θ+ := Θ ∪Θ′ and f̂+ := f(Θ+).

Let p(f̂ |yt) and p(f̂ |yt−1) be GP posteriors given St−1 = {Θt−1,yt−1} and St = St−1 ∪ {(θt, yt)}, respectively. From
the above Lemma 4, DKL[p(f̂ |yt)||p(f̂ |yt−1)] is derived as

DKL[p(f̂ |yt)||p(f̂ |yt−1)] =DKL[p(f̂t|yt)||p(f̂t|yt−1)]

= E
p(f̂t|yt)

[
log

p(yt|f̂t)p(f̂t|yt−1)

p(f̂t|yt−1)p(yt|yt−1)

]

=

∫
p(f̂t|yt) log p(yt|f̂t)df̂t − log

∫
p(f̂t|yt−1)p(yt|f̂t)df̂t, (9)

where f̂t := f̂(Θt), f̂t := f̂(θt) and p(yt|yt−1) =
∫
p(yt|f̂t)p(f̂t|yt−1)df̂t. The first term of Eq. (9) can be rewritten as∫

p(f̂t|yt) log p(yt|f̂t)df̂t =− E
p(f̂t|yt)

[
λ

2
(yt − f̂t)

2

]
− 1

2
log 2πλ−1

=− λ

2

(
y2t − 2ytE[f̂t] + E[f̂2

t ]
)
− 1

2
log 2πλ−1

=− λ

2
(yt − µt(θt))

2 − λ

2
σ2
t (θt, θt)−

1

2
log 2πλ−1.

The second term of Eq. (9) becomes the logarithm of a normal distribution since p(yt|f̂t) and p(f̂t|yt) are normal distri-
butions. Therefore, the following equation holds:

log

∫
p(yt|f̂t)p(f̂t|yt−1)df̂t = logN (yt|µt−1(θt), σ

2
t−1(θt, θt) + λ−1)

=− (yt − µt−1(θt))
2

2(σ2
t−1(θt, θt) + λ−1)

− 1

2
log 2π(σ2

t−1(θt, θt) + λ−1).

Regarding p(f̂t|yt) as the posterior whose prior is p(f̂t|yt−1) observing (θt, yt), the mean and covariance functions corre-
sponding to θt are derived as

µt(θt) =µt−1(θt) +
σ2
t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

(yt − µt−1(θt))

=
λ−1µt−1(θt) + σ2

t−1(θt, θt)yt

σ2
t−1(θt, θt) + λ−1

,

σ2
t (θt, θt) =σ2

t−1(θt, θt)−
σ4
t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

=
λ−1σ2

t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

.

From the result, the second term of Eq. (9) is described as∫
p(f̂t|yt) log p(yt|f̂t)df̂t =−

1

2

λ−1(yt − µt−1(θt))
2

(σ2
t−1(θt, θt) + λ−1)2

− 1

2

σ2
t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

− 1

2
log 2πλ−1.
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Therefore, the following equation holds as claimed:

DKL[p(f̂ |yt)||p(f̂ |yt−1)] =

∫
p(f̂t|yt) log p(yt|f̂t, θt)df̂t − log

∫
p(f̂t|yt−1)p(yt|f̂t, θt)df̂t

=− 1

2

λ−1(yt − µt−1(θt))
2

(σ2
t−1(θt, θt) + λ−1)2

− 1

2

σ2
t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

− 1

2
log 2πλ−1

+
1

2

(yt − µt−1(θt))
2

σ2
t−1(θt, θt) + λ−1

+
1

2
log 2π(σ2

t−1(θt, θt) + λ−1)

=
1

2
log (1 + λσ2

t−1(θt, θt))−
1

2

σ2
t−1(θt, θt)

σ2
t−1(θt, θt) + λ−1

+
1

2

σ2
t−1(θt, θt)(yt − µt−1(θt))

2

(σ2
t−1(θt, θt) + λ−1)2

.

C Proof of Theorem 2

We prove Theorem 2 using the following lemmas.

Lemma 5. (Ha et al., 2019) Suppose the Bayesian optimization is performed with the GP-LCB as the acquisition function.
Let the parameter space Θ be the d dimensional cube with side l, and the class of kernel functions for GP as a surrogate
function be those composed of finite dimensional linear, squared exponential, and Matérn kernels. For a sample f of GP
with the kernel function k(θ, θ′), assume f : ∃a, b > 0, P r{supθ∈Θ |∂f/∂θj | > L} ≤ a exp−(L/b)2 holds. Let δ ∈ (0, 1)

and, βt = 2 log(t22π2/3δ) + 2d log(t2dbl
√
log(4da/δ)). Then, for any ϵ > 0, with probability at least 1 − δ, for any

t > T , there exists T satisfying

2β
1/2
t σt−1(θt, θt) ≤ ϵ.

Lemma 6. Let ϵ ∼ N (0, λ) and δ ∈ (0, 1). Then,

Pr
(
|ϵ| ≤ c

λ1/2

)
≥ 1− δ.

holds with probability ≥ 1− δ, where c =
√
−2 log δ.

Proof. Setting r ∼ N (0, 1), the following equation holds.

Pr(r ≥ c) =(2π)−
1
2

∫ ∞

c

e−r2/2

=e−
c2

2 (2π)−
1
2

∫ ∞

c

e−(r−c)2/2−c(r−c)dr.

Since e−c(r−c) ≤ 1 holds for any c > 0 and r > c, the following equation is derived:

e−
c2

2 (2π)−
1
2

∫ ∞

c

e−(r−c)2/2−c(r−c)dr ≤e− c2

2 Pr(r > 0)

=
1

2
e−

c2

2 .

Let r = ϵt/σ. Since Pr(|r| ≤ c) ≥ e−
c2

2 ,

Pr
(
|ϵt| ≤

c

λ1/2

)
≥ 1− δ

holds. Therefore, ϵt ≤ c/λ1/2 holds with probability ≥ 1 − δ. The proof is similar to Lemma 5.1 in Srinivas et al.
(2010).
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We assume that a hyperparameter of the GP at time t is the same as that of the GP at time t− 1. Then, for any posterior of
Gaussian process, the following equation holds:

µt(θ) = µt−1(θ) +
σ2
t−1(θ, θt)(yt − µt−1(θt))

σ2
t−1(θt, θt) + λ−1

.

We decompose an observed value of an objective function for θt into a value of a true function corresponding to θt and
noise term, that is yt = f(θt) + ϵt. Then, by using Lemma 2 and 6, for any θ, θ′ ∈ Θ,

|µt(θ)− µt−1(θ
′)| ≤

∣∣∣∣µt−1(θ)− µt−1(θ
′) +

σ2
t−1(θ, θt)(yt − µt−1(θt−1))

σ2
t−1(θt) + λ−1

∣∣∣∣
≤|µt−1(θ)− µt−1(θ

′)|+
|σ2

t−1(θ, θt)||f(θt)− µt−1(θt)|+ |σ2
t−1(θ, θt)||ϵt|

σ2
t−1(θt) + λ−1

≤|µt−1(θ)− µt−1(θ
′)|+

β
1/2
t |σ2

t−1(θ, θt)|σt−1(θt)

σ2
t−1(θt) + λ−1

+
|σ2

t−1(θ, θt)|c
λ1/2(σ2

t−1(θt) + λ−1)

≤|µt−1(θ)− µt−1(θ
′)|+

β
1/2
t σt−1(θ)σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ)σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

holds with probability ≥ 1 − δ. The transformation between the fourth and fifth rows uses the relationship between the
covariance σ2

t−1(θ, θ
′) and correlation coefficient ρ, that is, σ2

t−1(θ, θ
′) = ρσt−1(θ)σt−1(θ

′) ≤ σt−1(θ)σt−1(θ
′).

Recall that

DKL[p(f |yt)||p(f |yt−1)] =
1

2
log (1 + λσ2

t−1(θt))−
1

2

σ2
t−1(θt)

σ2
t−1(θt) + λ−1

+
1

2

σ2
t−1(θt)(yt − µt−1(θt))

2

(σ2
t−1(θt) + λ−1)2

.

Then, the third term can be decomposed as follows:

(yt − µt−1(θt))
2 =(f(θt) + ϵt − µt−1(θt))

2

≤(f(θt)− µt−1(θt))
2 + 2|f(θt)− µt−1(θt)||ϵt|+ ϵ2t

Using Lemmas 2 and 6,

(f(θt)− µt−1(θt))
2 + 2|f(θt)− µt−1(θt)||ϵt|+ ϵ2t ≤βtσ

2
t−1(θt) + 2β

1/2
t σt−1(θt)

c

λ1/2
+

c2

λ

=
1

λ
(λ1/2β

1/2
t σt−1(θt) + c)2

holds with probability ≥ 1− 2δ.

Since θ∗t = θ∗t−1 when t → ∞, |µt−1(θ
∗
t ) − µt−1(θ

∗
t−1)| = 0 and vϕ(g) = vgΦ(g) = 0 holds. Summarizing the above

argument, the following inequality holds with probability ≥ 1− 2δ:

∆R̃t ≤
β
1/2
t σt−1(θ

∗
t )σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ

∗
t )σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

+ κt

√√√√√1

4
log (1 + λσ2

t−1(θt))−
1

4

σ2
t−1(θt)

σ2
t−1(θt) + λ−1

+
1

4

σ2
t−1(θt)

(
λ1/2β

1/2
t σt−1(θt) + c

)2

λ(σ2
t−1(θt) + λ−1)2

. (10)

Using Lemma 5, 2β1/2
t σt−1(θt, θt) goes to zero. In addition, since β

1/2
t is an increasing function, σt−1(θt, θt) goes to

zero. Therefore, by using the assumption that κt ≤ C, we can confirm that the proposed upper bound converges to zero.

D Bottleneck of the convergence of Eq. (10)

In this section, we compare the convergence rate for each term of Eq. (10) and show that Eq. (7) in the main text is a
bottleneck for the convergence rate of Eq. (10).
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By using log(1 + x) ≤ x, we have

∆R̃t ≤
β
1/2
t σt−1(θ

∗
t )σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ

∗
t )σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

+ κt−1

√√√√√1

4

λ2σ2
t−1(θt)(σ

2
t−1(θt) + λ−1)2

λ(σ2
t−1(θt) + λ−1)2

− 1

4

λσ2
t−1(θt)(σ

2
t−1(θt) + λ−1)

λ(σ2
t−1(θt) + λ−1)2

+
1

4

σ2
t−1(θt)

(
λ1/2β

1/2
t σt−1(θt) + c

)2

λ(σ2
t−1(θt) + λ−1)2

=
β
1/2
t σt−1(θ

∗
t )σ

2
t−1(θt)

σ2
t−1(θt) + λ−1

+
σt−1(θ

∗
t )σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

+
κt−1

2

√
σ2
t−1(θt)(λ

2σ4
t−1(θt) + λσ2

t−1(θt) + λβtσ2
t−1(σt) + 2λ1/2cβ

1/2
t σt−1(θt) + c2)

λ1/2(σ2
t−1(θt) + λ−1)

.

Since β
1/2
t σt(θt) and σt(θt) converge to zero and c and λ are constant, the convergence rate of the third term is

κt−1cσt−1(θt)/2λ
1/2(σ2

t−1(θt) + λ−1), and the second term converges to zero slower than the first term. Therefore,
the bottleneck of the convergence of Eq. (10) is

st :=
(σt−1(θ

∗
t ) + κt−1/2)σt−1(θt)c

λ1/2(σ2
t−1(θt) + λ−1)

.

E An overview of the stopping criteria for other optimization methods

There are other approaches other than BO for finding the point that minimizes the objective function besides BO. This
section outlines how to determine when to stop in evolutionary algorithms (EA). In evolutionary algorithms, the various
methods that have been proposed for the stopping criterion, which can be classified into seven approaches (Ghoreishi
et al., 2017): Direct termination criteria, derived termination criteria, cluster-based termination criteria, operator-based
termination criteria, performance indicator termination criteria, progress indicator termination criteria, and termination
criteria in hybrid multi-objective evolutionary algorithms.

The simplest approach is to decide whether to stop searching depending on predetermined termination criteria without
using statistics or models obtained in the search process, which is called direct termination criteria. For example, the
maximal time budget stops EA after running a predetermined CPU time, the maximum number of objective function
evaluations stops EA after evaluating a predetermined number of evaluations, and K-iterations stops EA when the optimal
value does not update a predetermined number of times consecutively (Jain et al., 2001). These stopping criteria can be
used in other optimization methods, but there is no theoretical guarantee of the quality of the search results.

Another approach is to terminate EA when some kind of performance indicators exceed a predefined desirable value,
which is called performance indicator termination criteria. For example, the hyper volume metric and the additive epsilon
indicator have been proposed (Coello et al., 2006; Zitzler et al., 2003). However, there are many cases in which the
desired performance indicators are not predefined. In such cases, the approach that stops EA based on the change in the
performance indicators before and after the search is called the progress indicator termination criteria (Trautmann et al.,
2008; Guerrero et al., 2009). In these classifications, the proposed criteria is one of the progress indicator termination
criteria, because it stops BO based on the upper bound of the changes in the expected minimum simple regret before and
after the search.

F Behavior of the proposed bound

In this section, we discuss the behavior of the following upper bound for test function minimization:

∆Rt ≤ |∆µ∗
t |+ v(ϕ(g) + gΦ(g)) + κt−1

√
1

2
DKL[pt(f̂)||pt−1(f̂)],

where κt−1 := minθ̂∈Θt
UCBδ(θ̂) − minθ̂∈Θ LCBδ(θ), ∆µ∗

t := µt−1(θ
∗
t−1) − µt(θ

∗
t ), v =√

σ2
t (θ

∗
t )− 2σ2

t (θ
∗
t , θ

∗
t−1) + σ2

t (θ
∗
t−1) and g = (µt(θ

∗
t )− µt(θ

∗
t−1)/v.
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Figure 4: Sequences of each term of the proposed bound in LCB acquisition function.

The transitions of each R.H.S. term in the above inequality during the process of BO applied to minimizing test functions
are shown in Fig. 4. Because the third term is more significant than the first and second terms for each test function, we can
see that the third term strongly affects the determination of the stopping timing. It is important to note that the third term is
an upper bound product of the upper bound of the simple regret and the KL divergence between GPs. Furthermore, the KL
divergence between GPs tends to be small because the change in the posterior of GP becomes smaller with BO progress.
On the other hand, the upper bound of the simple regret is difficult to decrease, even when the BO procedure is progressed.
Therefore, the proposed upper bound tends to decrease faster than that of the simple regret as BO is progressed, and it is an
intuitive reasoning for the consequence of Theorem 2 (i.e., the proposed method can terminate BO with high probability).

G Convergence of the sequence of estimated hyperparameters

The proposed criterion has a limitation in that we cannot calculate a KL divergence between GPs when its hyperparameter
νt changes in each iteration. To avoid the problem, we assume that the change of the GP posterior is decreasing simul-
taneously with the progress of BO in general, which leads to a decrease of the change of νt, and can be approximately
calculated by DKL[pt(f̂ |νt)||pt−1(f̂ |νt)] instead of DKL[pt(f̂ |νt)||pt−1(f̂ |νt−1)]. In this section, we demonstrate that the
assumption tends to hold. Figures 5 and 6 show the sequence of the variance and length scale of the Matérn kernel in
the test function optimization, respectively. From these results, in the holder table, cross in tray, easom and
booth functions, the variance and length scale converge to a value, respectively. In the rosenbrock function, the length
scale converges to a value, while the variance does not. In the six-hump camel function, the sequences of variance
and length scale do not yet converge, but they tend to decrease as the number of searches increases.
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Figure 5: Sequences of the variance of each stopping criterion’s kernel function in LCB acquisition function.

H Additional experiments

H.1 Test function optimization

Figures 8 and 9 show the global optimal solutions and the explored points discovered by each stopping criterion in each
test function, respectively. Every stopping criterion can find the global optima for the cross in tray and six-hump
camel functions, while EI- and PI-based criteria may not find the optimal points for the holder in table function.
In Fig. 7, the values of EI and PI are shown to rapidly decrease at the timings before the optimal points have been found.
In the rosenbrock and booth functions, the discovered points by Ours-auto tend to be closer than those of the other
criteria. As shown in Fig. 10, the BO was not found to be the optimal solution in any of the trials, even with the full budget
in the easom function. In addition, the search by the GP-based BO is clearly inefficient, as it repeatedly searches the edges
of the search area. In such a situation, it is desirable to stop BO early and then seek another search method.

Next, we demonstrate the results of the comparison of the stopping criteria when we using the other acquisition functions,
EI and PI. Figures 11, 12, 13, and 14 show the result from each stopping criterion’s timing and the explored points
discovered by them. These results are almost identical to the results from when the LCB is used. Therefore, the proposed
criterion can be applied to any acquisition function.

H.2 Hyperparameter optimization

We evaluate the stopped timing of BO for the hyperparameter search. The stopping criteria and the settings are the same as
those of the experiment conducted in the main text. The details of the data used in the experiments are shown in Table 2.
In this experiment, to enable the SR-based stopping criterion to automatically determine thresholds, a predictive model
is conducted by the selected hyperparameter, and the SD of the generalization error is estimated by using a 10-fold CV
and the threshold in Eq. (5) of the main text is computed. Errors in test data are evaluated to assess the actual prediction
accuracy of the model. In the regression task, 4,000 points are randomly sampled from the entire dataset: 2,000 samples
are used for 10-fold CV, and the remaining samples are used as the test dataset. Here, the input data were normalized to a
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Figure 6: Sequences of the length scale of each stopping criterion’s kernel function in LCB acquisition function.

mean of 0 and a variance of 1. In the classification task, 6,000 points are randomly sampled from the entire dataset: 3,000
samples are used for 10-fold CV, and the remaining samples are used as the test dataset. Here, the input and output data
were normalized to a mean of 0 and a variance of 1. In this experiment, the BO is executed after sampling the 10 initial
points randomly.

The experimental results for each data are shown in Fig. 15 and Fig. 16, which consistently demonstrate that the EI and PI
criteria tend to terminate quickly, and the SR criterion tends to terminate BO at the slowest timing among the criteria. In
addition, Ours-auto and Ours-med tend to terminate BO after discovering hyperparameters that are within the 10th smallest
simple regret.

Table 2: Description of datasets.
dataset name # of whole samples # of features

classification HTRU2 17898 9
electrical grid stability 10000 14

regression protein 45730 9
power plant 9568 4

In the above experiment, we considered minimizing the CV errors when we search an optimal hyperparameter for predictive
models. However, even though hyperparameters minimize the CV error, BO can overfit the validation dataset and test errors
may be significant. Therefore, it is not always desirable to terminate BO at the timing when simple regret is minimized.
To address this problem, Makarova et al. (2021) proposed using the stopping criterion to terminate BO early. In this
experiment, we evaluate how much overfitting on the dataset for CV can be avoided by stopping BO early using this
method. For this purpose, relative test error change (RYC) and relative time change (RTC) were used to evaluate the
stopping criteria (Makarova et al., 2021). This study also employs RYC and RTC to verify whether the proposed method
can stop BO at a time that reduces the test error.

The test error of the optimal hyperparameter at the stopped timing determined by each stopping criterion (early stopped) is
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Figure 7: The representative result on sequences of each stopping criterion’s value in LCB acquisition function.

yes, and yT is the test error of the optimal hyperparameter when all budgets T are used. Then, RYC is defined as

RYC =
yT − yes

max (yT , yes)
.

The range of RYC is [−1, 1], where RYC > 0 indicates that the test error due to early stopping is smaller than that achieved
when all budgets are consumed, and RYC < 0 vice versa. RYC ≃ 0 indicates that the stopping criterion has successfully
terminated BO. Usually, the greater the number of budgets used, the smaller the regret becomes, so RYC > 0 does not
occur. However, in the hyperparameter tuning of predictive models, the predictive model found by BO may be over-fitted
to the validation data, and the actual test error may be large even when the error in the validation data is small (Makarova
et al., 2021). In this case, there is a possibility that RYC > 0.

tes denotes the total cost of computation at the time of stopping determined by a stopping criterion, and tT is the total cost
when all budgets of T are consumed4. Then, RTC is defined as

RTC =
tT − tes

tT
.

The range of the RTC is [0, 1], where the closer the RTC is to 1, the lower the cost. For simplicity, we assume that the cost
of evaluating a hyperparameter at any time is always constant; hence, RTC = (T − T ∗)/T , where T ∗ is the number of
outer-loop iterations when the BO is terminated by a stopping criterion.

Since RYC and RTC are trade-offs, we evaluate both RYC and RTC for each stopping criterion when BO is performed;
I = 10 times with different random seeds.

As shown in Figs. 18 and 19, we could not obtain consistent results (i.e., the RYC of Ours-med and Ours-auto is below
or above zero in some cases). Therefore, the early stopping in the proposed method does not always lead to avoiding

4Namely, tes is the cumulative sum of time spent in evaluating the objective function and acquisition function when the outer-loop
of BO is terminated by early stopping, and tT is that when the outer-loop of BO is iterated T times and then terminated.
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Figure 8: Optimal points in each test function.

overfitting. This is because the proposed stopping criterion aims to stop when it finds a parameter that minimizes the error
for CV, which is a different objective.
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Figure 9: Discovered points by each stopping criterion in each test function.
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Figure 10: Sample points in the easom function. “Seed” represents the random seed provided when randomly generating
the initial samples.
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Figure 11: Stopped timing for each test function in the EI acquisition function; “med” denotes that the threshold is deter-
mined based on the median of the initial 20 searches, and “auto” indicates that the threshold was determined automatically
by Eq. (7).
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Figure 12: Discovered points by each stopping criterion in the EI acquisition function.
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Figure 13: Stopped timing for each test function in the PI acquisition function. “med” denotes that the threshold is deter-
mined based on the median of the initial 20 searches, and “auto” indicates that the threshold was determined automatically
by Eq. (7).
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Figure 14: Discovered points by each stopping criterion in the PI acquisition function.
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Figure 15: The number of evaluations and regret at each criterion’s stopped timing in the predictive model search during
20 trials with different random initialization. (a)–(c): HTRU2 data for classification, (d)–(f): power plant data for
regression. The mean and SD for each stopping criterion are respectively shown as rectangles and error bars, respectively,
in the corresponding colors.
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Figure 16: The number of evaluations and regret at each stopping criterion’s stopped timing in the predictive model search
during 20 trials with different random initialization. (a)–(c): electrical grid stability data for classification,
(d)–(f): protein data for regression. The mean and SD for each stopping criterion are respectively shown as rectangles
and error bars, respectively, in the corresponding colors.
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Figure 17: The RTC and RYC of the stopped timing determined by each stopping criterion in the predictive model search
during 20 trials with different random initializations. (a)–(c): skin data for classification, (d)–(f): gas turbine data for
regression. The mean and SD for each stopping criterion are respectively shown as rectangles and error bars, respectively,
in the corresponding colors.
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Figure 18: The RTC and RYC of the stopped timing determined by each stopping criterion in the predictive model search
during 20 trials with different random initializations. (a)–(d): HTRU2 data for classification, (e)–(h): power plant
data for regression. The mean and SD for each stopping criterion are respectively shown as rectangles and error bars,
respectively, in the corresponding colors.
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Figure 19: The RTC and RYC of the stopped timing determined by each stopping criterion in the predictive model search
during 20 trials with different random initializations. (a)–(d): electrical grid stability data for classification,
(e)–(h): protein data for regression. The mean and SD for each stopping criterion are respectively shown as rectangles
and error bars, respectively, in the corresponding colors.


