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Abstract

In transportation networks, road tolling schemes
are a method to cope with the efficiency losses
due to selfish user routing, wherein users choose
routes to minimize individual travel costs. How-
ever, the efficacy of tolling schemes often relies
on access to complete information on users’ trip
attributes, such as their origin-destination (O-D)
travel information and their values of time, which
may not be available in practice. Motivated by
this practical consideration, we propose an online
learning approach to set tolls in a traffic network
to drive heterogeneous users with different val-
ues of time toward a system-efficient traffic pat-
tern. In particular, we develop a simple yet ef-
fective algorithm that adjusts tolls at each time
period solely based on the observed aggregate
flows on the roads of the network without relying
on any additional trip attributes of users, thereby
preserving user privacy. In the setting where the
O-D pairs and values of time of users are drawn
i.i.d. at each period, we show that our approach
obtains an expected regret and road capacity vi-
olation of O(

√
T ), where T is the number of

periods over which tolls are updated. Our re-
gret guarantee is relative to an offline oracle with
complete information on users’ trip attributes.
We further establish a Ω(

√
T ) lower bound on

the regret of any algorithm, which establishes
that our algorithm is optimal up to constants. Fi-
nally, we demonstrate the superior performance
of our approach relative to several benchmarks
on a real-world traffic network, which highlights
its practical applicability.
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1 INTRODUCTION

Many real-world systems are composed of self-interested
users that interact non-cooperatively in a shared environ-
ment. However, in such systems, the lack of coordination
between self-interested users often results in inefficient out-
comes that are at odds with the goals of the system de-
signer. For instance, in transportation networks, the self-
ish routing by users who choose routes to minimize their
travel times (Roughgarden and Éva Tardos, 2004) typically
results in a traffic pattern that is far from an efficient traf-
fic assignment (Sheffi, 1985). As a result, there has been
a growing interest in designing intervention and control
schemes to cope with the selfishness of users (Roughgarden
and Tardos, 2002) across a wide range of resource alloca-
tion applications, including energy management in smart
grids (Palensky et al., 2011; Azizan et al., 2020) and traf-
fic routing on road networks (Pigou, 1912; Sharon et al.,
2018). One promising method that has emerged to mitigate
the resulting efficiency losses is to set prices on the shared
resources to influence and steer user behavior to align with
system-efficient outcomes (Cole et al., 2003).

In the context of traffic routing, road tolls are commonly
used to cope with the inefficiency loss due to the selfish-
ness of users and enforce the system-optimum solution as
a user equilibrium (Karakostas and Kolliopoulos, 2004).
However, the computation of these tolls typically relies on
solving a centralized optimization problem, which assumes
complete information on users’ trip attributes (Fleischer
et al., 2004), such as their origin-destination (O-D) travel
information and their values of time (Walters, 1961). In
practice, this information is typically not available since
this would violate user privacy and can thus confound the
successful deployment of a tolling scheme to regulate road
traffic. Further, users’ trip attributes often vary with time,
e.g., when users’ values of time and O-D pairs are drawn
i.i.d. from some unknown distribution. As a result, the
central planner may need to periodically collect users’ trip
attributes and re-solve a large-scale optimization problem
that may be computationally expensive.
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As a result, in this work, we propose an online learning
approach to set tolls in a traffic network to steer heteroge-
neous users with different values of time to a system op-
timum traffic pattern that minimizes the sum of the travel
times of all users weighted by their values of time. In this
setting, we assume that the value of time and O-D pair of
each user are private information and cannot be used to de-
sign optimal tolling policies. Our method to set road tolls
is different from prior centralized optimization approaches
that require complete information on the values of time and
O-D pairs of users. In this incomplete information set-
ting, our algorithmic approach relies on adjusting road tolls
based on the observed aggregate flows on the edges of the
network. We mention that such aggregate flow data is read-
ily available through modern sensing technologies, such as
loop detectors, and helps maintain user privacy.

1.1 Our Contributions

In this work, we study the problem of setting optimal tolls
that minimize the total system cost, i.e., the sum of the
travel times of all users weighted by their values of time,
in a capacity-constrained traffic network. We study this
problem in the incomplete information setting when the O-
D pairs and values of time of heterogeneous users are not
known. As centralized optimization approaches are typi-
cally not conducive in this setting, we consider learning the
tolls over time to minimize (i) regret, i.e., the optimality
gap between the resulting allocation and that of an offline
oracle with complete information on users’ trip attributes,
and (ii) constraint violation, i.e., the extent to which the
road capacity constraints are violated.

To this end, we develop a simple yet effective approach
to set tolls that preserves user privacy while achieving sub-
linear regret and constraint violation guarantees in the num-
ber of periods T over which the tolls are updated. Further,
we establish a regret lower bound to show that our algo-
rithm is asymptotically optimal, up to constants.

We then evaluate the performance of our approach on a
real-world traffic network. The results of our experiments
not only validate the theoretical regret and constraint viola-
tion guarantees but also highlight the superior performance
of our algorithm relative to several benchmarks. Moreover,
our approach achieves a total travel time close to the mini-
mum achievable total travel time in the network.

Organization: Our paper is organized as follows. Sec-
tion 2 reviews related literature. We then present a model
of traffic flow and the regret and constraint violation per-
formance measures to evaluate the efficacy of a tolling pol-
icy in Section 3. Then, in Section 4, we introduce our on-
line learning algorithm and its associated regret and con-
straint violation guarantees. Next, we evaluate the perfor-
mance of our approach on a real-world transportation net-

work through numerical experiments in Section 5. Finally,
we provide directions for future work in Section 6.

2 LITERATURE REVIEW

Traditional approaches to achieving an efficient allocation
of resources have typically relied on complete informa-
tion of users’ preferences (Dafermos, 1973; Karakostas and
Kolliopoulos, 2004). However, such approaches are, in
general, practically infeasible since having complete infor-
mation on users’ preferences would violate user privacy.

As a result, there has been a growing interest in designing
mechanisms that do not require complete information of
users’ preferences to achieve an efficient resource alloca-
tion. To this end, mechanism design has enabled the truth-
ful elicitation of users’ private information (Parkes et al.,
2004). Furthermore, inverse game theory (Kuleshov and
Schrijvers, 2015) has enabled the learning of users’ pref-
erences, e.g., O-D travel demands (Bertsimas et al., 2015).
In contrast to these works, we do not directly learn or elicit
user preferences to set optimal tolls. Instead, our approach
bypasses the need to have information on users’ prefer-
ences by using the total observed flow on each road as feed-
back to update tolls while retaining good performance.

Our toll update procedure is, in principle, similar to price
update mechanisms that utilize past observations of user
consumption, i.e., users’ revealed preferences, to inform
future pricing decisions. Such pricing mechanisms that use
information from interactions with earlier buyers to inform
pricing decisions for subsequent buyers have been widely
studied in revenue management (Kleinberg and Leighton,
2003), online linear programming (Li et al., 2020), and
Stackelberg games (Roth et al., 2016; Ji et al., 2018). In
particular, as in (Li et al., 2020; Roth et al., 2016; Ji et al.,
2018), our toll update procedure follows from performing
gradient descent on the dual of the system optimization
problem of the central planner. However, compared to prior
works that typically consider the setting where users arrive
sequentially and each user observes a different price, we
study a multi-period setting wherein tolls are the same for
all users but can vary across periods.

Dynamic pricing mechanisms have also been studied in
the incomplete information setting for traffic routing ap-
plications. For instance, Yang et al. (2004, 2010) study
trial-and-error approaches to set marginal cost tolls in the
absence of users’ demand functions. Furthermore, Melo
(2011) develops dynamic variants of Pigou’s solution to
mitigate negative externalities by nudging users toward the
system-optimum solution. In line with these approaches,
we also learn and iteratively update road tolls through re-
peated interactions of users in the traffic network. However,
in contrast to these approaches, we consider the setting of
heterogeneous users with different values of time.
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Our work focuses on jointly optimizing both regret and
constraint violation as in the literature on constrained con-
vex optimization with long-term constraints (Yu et al.,
2017; Jenatton et al., 2016; Liakopoulos et al., 2019; Yi
et al., 2021; Mahdavi et al., 2012). However, as opposed
to the regret notion in these works defined based on the
sub-optimality of an optimal static action in hindsight, we
adopt a dynamic regret notion wherein the oracle can vary
its actions across time steps. Our dynamic regret notion is
similar to those considered in (Li et al., 2020; Chen et al.,
2017; Cao and Liu, 2019); however, we consider a revealed
preference setting wherein users’ trip attributes are private
information while, in these works, the central planner ob-
serves the cost functions after the arrival of each user.

3 MODEL AND PROBLEM
FORMULATION

In this section, we introduce the basic definitions and user
behavior model we consider in this work (Section 3.1), the
system optimization objective of the central planner (Sec-
tion 3.2), and the performance measures to evaluate the ef-
ficacy of a tolling policy (Section 3.3).

3.1 Preliminaries and User Optimization

We study the problem of routing heterogeneous users be-
tween their respective O-D pairs in a capacity-constrained
road network. The road network is modeled as a directed
graph G = (V,E), with vertex and edge sets denoted by
V and E, respectively. Each edge e ∈ E has a fixed ca-
pacity ce and a fixed latency (travel time) le, and we denote
c = {ce}e∈E as the vector of edge capacities.

The set of all users is denoted by U and each user u ∈
U makes trips in the road network between an origin-
destination (O-D) pair wu = (su, tu), where su repre-
sents the origin and tu represents the destination of the
trip. Each O-D pair is connected by paths, which are finite
sequences of directed edges between the origin and des-
tination, and each user u selects one such path from the
set of all paths Pu that connect the O-D pair wu. An as-
signment of users to paths is denoted by the vector f =
{fP,u : P ∈ Pu, u ∈ U}, where fP,u ∈ {0, 1} denotes
whether user u is assigned to path P . Each path flow f cor-
responds to a unique edge flow vector x = {xe : e ∈ E},
where xe =

∑
u∈U

∑
P∈Pu:e∈P fP,u. Each user u also

has an outside option for which the user incurs a cost λu,
which can be interpreted as the cost for not completing the
trip, e.g., staying at home. The outside option is a com-
monly used modelling assumption in the transportation lit-
erature (Nikzad, 2017; Ostrovsky and Schwarz, 2019), and,
in this traffic routing context, captures a decision making
framework where each user u may not wish to incur a
cost, including travel time and tolls, of more than λu for

their trip. We denote whether users choose the outside
option through the vector fo = {fo,u : u ∈ U}, where
fo,u ∈ {0, 1} is a binary variable that takes the value one
when user u chooses the outside option.

Users are assumed to be selfish and thus choose a path (or
the outside option) that minimizes their travel cost, which
we assume is a linear function of tolls and travel time. For
each user u with a value-of-time vu > 0 and a vector of
edge prices (or tolls) τ = {τe}e∈E , the travel cost on a
path P is given by CP (τ ) =

∑
e∈P (vule + τe). For ease

of notation, we denote the total travel time on path P as
lP =

∑
e∈P le and its toll as τP =

∑
e∈P τe. Then, given

a vector of tolls τ , we define a path flow f and outside
option flow fo to be an equilibrium if each user chooses a
path (or the outside option) that minimizes their travel cost.

Definition 1 (Equilibrium). For a given vector of tolls
τ , a path flow f and outside option flow fo is an equi-
librium if for each user u,

∑
P∈Pu

fP,u + fo,u = 1,
where fP∗u ,u = 1 for some path P ∗u if CP∗u (τ ) ≤
min

{
minQ∈Pu{CQ(τ )}, λu

}
, or fo,u = 1 for the outside

option if λu ≤ CP (τ ), for all P ∈ Pu.

A few comments about our modeling assumptions are in
order. First, the travel time on any edge is independent of
the number of users on that edge as long as the flow on
that edge does not exceed its capacity. This approxima-
tion is largely consistent with observed travel times in real-
world road networks, where the travel times on roads tend
to stay relatively constant up until the road capacity, be-
yond which the travel time increases steeply (Li and Zhang,
2011). For a more detailed discussion on the validity of this
assumption in modeling real-world traffic networks, we re-
fer to Ostrovsky and Schwarz (2019). We do mention, how-
ever, that we also demonstrate how our proposed online
learning approach can generalize to the context of conges-
tion games, when the travel time on each edge is a func-
tion of its flow, in the extended version of our paper (Jalota
et al., 2022) through numerical experiments. Furthermore,
under our modeling assumptions, for an equilibrium flow,
all users take the shortest “cost” path (or the outside option)
given the set tolls τ irrespective of whether this violates
the road capacity constraints. Note that, in practice, setting
the tolls too low will likely result in road capacity viola-
tions and thus congestion delays. However, as with general
equilibrium models that do not model users’ responses to
shortages in the supplies of goods, for our purposes, we
do not model traffic congestion since we seek to set tolls
that keep capacity violations small. We note that in road
networks small levels of capacity violation are acceptable
since road capacities serve as a ball-park for the number
of vehicles on the road such that congestion delays do not
increase significantly.
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3.2 System Optimization and Efficient Tolls

In this section, we present the system optimization prob-
lem of the central planner and the notion of market-clearing
tolls that induce the optimal solution to the system opti-
mization problem as an equilibrium flow.

System Optimization We now present the problem faced
by the central planner, who seeks to minimize the total sys-
tem cost while ensuring that the resulting traffic assignment
is feasible.

U∗= min
f ,fo

∑
u∈U

(
vu
∑
P∈Pu

lP fP,u + λufo,u

)
, (1a)

s.t.
∑
P∈Pu

fP,u + fo,u = 1, ∀u ∈ U , (1b)

fo∈{0, 1}|U |,fP,u∈{0, 1},∀P ∈Pu, u∈U ,
(1c)∑

u∈U

∑
P∈Pu:e∈P

fP,u ≤ ce, ∀e ∈ E, (1d)

Here, (1a) is the total system cost objective, i.e., the sum of
the travel times of all users using the network weighted by
their values of time and the cost of the outside option for
all users who do not use the network. Furthermore, (1b) are
user allocation constraints as users will either use a feasible
path or the outside option, (1c) are binary allocation con-
straints, and (1d) are the edge capacity constraints. Note
that a feasible solution to Problem (1a)-(1d) exists since it
is feasible for all users to choose the outside option o.

Efficient Tolls The central planner is tasked with setting
tolls τ that induce the system optimum solution, i.e., the
solution to Problem (1a)-(1d), as an equilibrium flow. One
such set of tolls that achieve this goal are market-clearing
tolls that induce equilibrium flows f ,fo satisfying the road
capacity constraints, i.e.,

∑
u∈U

∑
P∈Pu:e∈P fP,u = xe ≤

ce for all edges e ∈ E. Additionally, market-clearing tolls
satisfy the property that τe = 0 for all edges e such that the
edge flow xe < ce, and τe ≥ 0 for all edges e such that
xe = ce. Theorem 1 establishes that if the tolls are market
clearing then the resulting equilibrium flows minimize the
total system cost, i.e., the corresponding equilibrium flow
is an optimal solution to Problem (1a)-(1d).

Theorem 1 (Efficiency of Market-Clearing Tolls). If the
tolls τ ∗ are market-clearing, then the corresponding equi-
librium flows, given by f∗, f∗o , are optimal solutions to
Problem (1a)-(1d).

Theorem 1 is akin to that in Ostrovsky and Schwarz (2019);
however, we present its proof in Appendix 7 for complete-
ness, as we additionally consider the setting when users
have an outside option. While market-clearing tolls pro-
vide a method to induce equilibrium flows minimizing the
total system cost, such tolls cannot typically be computed,

e.g., through linear programming (see Section 4.1), since
the values of time and O-D pairs of users are, in general,
unknown to the central planner. Further, these user spe-
cific attributes tend to be time-varying, e.g., when users’
values of time and O-D pairs are drawn i.i.d. from some
distribution. Thus, a central planner would need to periodi-
cally collect these parameters and re-solve a large optimiza-
tion problem to update the tolls, which may not be practi-
cally viable. Finally, we note that market-clearing tolls may
not exist in general (Ostrovsky and Schwarz, 2019) though
such tolls are guaranteed to exist if fractional flows are al-
lowed (see Section 4.1).

As a result, in this work, we consider an online learning
approach that only relies on past observations of aggregate
flows on each road to set tolls and steer heterogeneous users
toward a system-optimum traffic pattern over time. Our
motivation for pursuing an online learning method is three-
fold. First, as opposed to centralized approaches, an online
learning approach can bypass the need to have complete in-
formation on users’ preferences. Next, mechanism design
approaches that rely on truthfully eliciting users’ prefer-
ences may not be practically viable and often be insufficient
in inducing the system-optimum solution as an equilibrium
flow (see the extended version of our paper (Jalota et al.,
2022)). Finally, modern sensing technologies, e.g., loop
detectors, are well equipped to collect aggregate road flow
data and thus do not rely on periodically collecting infor-
mation on user-specific attributes that may vary over time.
Thus, an online learning approach that uses solely aggre-
gate road flow data is practically viable.

3.3 Performance Measures for Online Learning

We now introduce the online learning setting and the per-
formance measures used to gauge the efficacy of a tolling
policy. We consider a setting wherein users make trips
over multiple time periods t = 1, . . . , T , e.g., over mul-
tiple days, and users’ O-D pairs and values of time at each
period are drawn i.i.d. from some unknown probability
distribution D that is fixed across the T periods. That
is, the O-D pair and value of time vectors (wt,vt) =
((wtu)u∈U , (v

t
u)u∈U ) are drawn i.i.d. from a distribution

D with non-negative support for the value of time vector
of users1. Note that a special case of this involves the
setting where the O-D pair and value-of-time (wtu, v

t
u) of

user u at each period t is drawn i.i.d. from some distri-
bution Du, and the distribution D = ⊗u∈UDu. Under
this i.i.d. assumption on users’ trip attributes, we focus
on privacy-preserving tolling policies, wherein the central
planner makes a tolling decision using only past observa-

1For the ease of exposition, we focus on the setting when the
O-D pair and value of time vectors are drawn i.i.d. from a prob-
ability distribution. However, our proposed approach can also be
extended to the setting when the cost of the outside option varies
over time.
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tions of the aggregate flows on the different roads of the
traffic network. In other words, the tolling policy π =
(π1, . . . , πT ) that sets a sequence of tolls τ (1), . . . , τ (T )

is such that τ (t) = πt({xt
′}t−1t′=1), where xt are the aggre-

gate edge flows corresponding to an equilibrium solution
f t under a toll τ (t−1).

We evaluate the efficacy of an algorithm π = (π1, . . . , πT )
using two metrics: (i) expected cumulative regret and (ii)
expected cumulative constraint violation, where the expec-
tation is with respect to the O-D pair and value-of-time dis-
tribution D of the users.

The regret of an algorithm π with a corresponding se-
quence of tolls τ (1), . . . , τ (T ) is evaluated through the ex-
pected difference between the optimal Objective (1a), given
complete information on the values of time and O-D pairs
of all users at each time period, and the cumulative objec-
tive of the algorithm π over the T periods. Let f t,f to de-
note the equilibrium flow at time t given the toll τ (t), and
f t∗,f t∗o denote the system optimum flows at time t. Fur-
ther, let Ptu be the set of feasible paths corresponding to the
O-D pair wtu. Then, the regret RT (π) of an algorithm π is

RT (π) = ED
[ T∑
t=1

(∑
u∈U

(
vtu
∑
P∈Pt

u

lP f
t
Pu + λuf

t
o,u

)
−
∑
u∈U

(
vtu
∑
P∈Pt

u

lP f
t∗
Pu + λuf

t∗
o,u

))]
,

where the expectation is taken with respect to the distribu-
tion D. In the remainder of this work, with slight abuse of
notation, we will assume that all expectations are with re-
spect toD and thus we drop the subscriptD in the expecta-
tion. We mention here that regret measures in online learn-
ing often define regret based on the sub-optimality with re-
spect to an optimal static action in hindsight. In contrast,
we adopt a more powerful offline oracle model, wherein
the oracle can vary its actions across time steps as users’
attributes are random.

We evaluate the constraint violation of an algorithm π
through the norm of the expected cumulative excess flow
beyond each edge’s capacity. That is, given the edge flows
xt corresponding to the equilibrium flows induced by the
tolls τ (t) for each period t, the cumulative constraint vio-
lation vector v of an algorithm π is v(π) =

(∑T
t=1(xt −

c)
)
+
, and its expected norm is VT (π) = E [‖v(π)‖2].

We focus on jointly optimizing regret and capacity viola-
tion as in several prior works (Yu et al., 2017; Jenatton
et al., 2016; Liakopoulos et al., 2019; Yi et al., 2021; Mah-
davi et al., 2012). Note that minimizing either one of these
metrics is typically easy. For instance, the absence of tolls
is likely to result in good regret guarantees since each user
will solve a shortest path problem that disregards road ca-
pacity constraints. In contrast, setting large road tolls will

likely reduce capacity violations but achieve a higher re-
gret. Since there is a trade-off between regret and capacity
violation, achieving good performance on both these mea-
sures under minimal assumptions is often challenging (Li
et al., 2020). Thus, we focus on jointly optimizing perfor-
mance across both metrics.

Furthermore, we focus on the stochastic setting as in prior
literature on traffic routing problems (Bertsimas and Ryzin,
1993) since in the adversarial setting past observations of
user consumption, i.e., aggregate road flows, may not be
informative of users’ future consumption behavior, as their
values of time and O-D pairs can change dramatically be-
tween subsequent periods in an adversarial instance. Thus,
obtaining sub-linear regret guarantees may not be possible
in the adversarial setting, especially with our chosen strong
regret benchmark.

4 ONLINE TRAFFIC ROUTING
ALGORITHM

In this section, we develop an online learning algorithm
that relies on only the aggregate road flows in the traf-
fic network and achieves sub-linear regret and constraint
violation guarantees. To perform the regret analysis, we
first consider the linear programming relaxation of Prob-
lem (1a)-(1d) and its corresponding dual in Section 4.1. We
then present our online learning algorithm in Section 4.2.
Finally, in Section 4.3, we show that our algorithm achieves
the optimal regret guarantee, up to constants, by establish-
ing an upper bound on its regret and constraint violation
and a lower bound on the regret of any online algorithm.

4.1 Linear Programming Relaxation and Dual

We first present the linear programming relaxation of Prob-
lem (1a)-(1d)

U∗ = min
f ,fo

∑
u∈U

(
vu
∑
P∈Pu

lP fP,u + λufo,u

)
, (2a)

s.t.
∑
P∈Pu

fP,u + fo,u = 1, ∀u ∈ U , (2b)

fo ≥ 0, fP,u ≥ 0,∀P ∈ Pu, u ∈ U (2c)∑
u∈U

∑
P∈Pu:e∈P

fP,u ≤ ce, ∀e ∈ E, (2d)

where the binary allocation Constraints (1c) are relaxed
with non-negativity Constraints (2c). Denote µu as the dual
variable for Constraint (2b) for each user u and the toll τe
as the dual variable of the capacity Constraint (2d) for each
edge e. Then, the vector of road tolls τ can be computed
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through the following dual of the linear Program (2a)-(2d)

max
τe, µu

∑
u∈U

µu −
∑
e∈E

τece, (3a)

s.t. τe ≥ 0, ∀e ∈ E, (3b)

µu ≤ vulP +
∑
e∈P

τe,∀P ∈ Pu, u ∈ U , (3c)

µu ≤ λu, ∀u ∈ U . (3d)

A few comments about the dual Problem (3a)-(3d) are in
order. First, dual linear programs analogous to that in Prob-
lem (3a)-(3d) have been used to set tolls in the complete in-
formation setting when a central planner has knowledge of
users’ values of time and O-D pairs (Fleischer et al., 2004).
Next, the optimal tolls τ ∗ of Problem (3a)-(3d) satisfy a
market-clearing property that τe = 0 on a given edge if the
aggregate flow on edge e is strictly below its capacity and
τe ≥ 0 otherwise. Furthermore, Constraint (3c) (and Con-
straint (3d)), together with the complementary slackness
optimality conditions, imply that the flow of user u on path
P (or the outside option) is strictly greater than zero, i.e.,
fP,u > 0 (or fo,u > 0), if the dual variable µu of the allo-
cation Constraint (2b) is equal to the travel cost on that path
(or the cost of the outside option). That is, Constraints (3c)
and (3d) imply that the travel cost µu incurred by each user
u is the minimum across all paths and the outside option
under the tolls τ ∗. As a result, the optimal solution f∗,f∗o
to Problem (2a)-(2d) is a (non-atomic) equilibrium under
the optimal tolls τ ∗ of the dual Problem (3a)-(3d). Finally,
since µu is the minimum travel cost across all feasible paths
and the outside option for each user, the dual Problem (3a)-
(3d) can be reformulated solely in terms of the tolls τ as

max
τ≥0

∑
u∈U

min
{

min
P∈Pu

{
vulP +

∑
e∈P

τe

}
,λu

}
−
∑
e∈E

τece. (4)

4.2 Online Learning Algorithm

In this section, we leverage the dual Problem (4) to derive
an algorithm to dynamically set tolls for the setting when
the O-D pair and values of time of users are drawn i.i.d.
from some unknown distribution. In this setting, we de-
velop an algorithm wherein the toll on each edge is adjusted
at each time step based on the observed aggregate flows at
the previous time step. In particular, we increase the toll on
an edge if its flow is higher than its capacity and decrease
the edge’s toll if its flow is strictly lower than its capacity.
To update the tolls, we use a step-size γ and ensure that the
tolls are non-negative at each period t ∈ [T ]. We reiterate
that given the toll τ (t) at each period t, users choose paths
(or the outside option) to minimize their travel costs. This
process is presented formally in Algorithm 1, and the toll
update procedure is depicted in Figure 3 in Appendix 10.

A few comments about Algorithm 1 are in order. First,
Algorithm 1 is privacy-preserving since the toll updates

Algorithm 1: Efficient Routing via Privacy-Preserving
Tolls
Input : Time Period T , Road Capacities c
Set the Toll τ (1) ← 0
for t = 1, . . . , T do

Phase I: User Equilibrium for Toll τ (t)

Initialize f t,f to ← 0
/* Minimum cost Route */

Q∗u ← arg minQ∈Pt
u∪{o}

{
minP∈Pt

u
{vtulP +∑

e∈P τ
(t)
e }, λu

}
;

/* Users choose Paths */
For each user u ∈ U , set f tQ∗u,u = 1 if Q∗u ∈ Ptu,

else f to,u = 1 ;
/* Observed Edge Flows */
xte ←

∑
u∈U

∑
P :e∈P f

t
P,u ;

Phase II: Toll Update
τ (t+1) ← (τ (t) − γ(c− xt))+

end

do not require any information on the O-D pair, values
of time of users, or their traversed paths and only rely
on the observed aggregate flows on each edge of the net-
work. Observe that Phase I is a completely distributed
step as users choose paths (or the outside option) to min-
imize their travel costs in response to the set tolls while the
central planner adjusts tolls only in Phase II in response
to the observed aggregate equilibrium edge flows. Next,
the computational complexity of the toll updates (Phase II
of Algorithm 1) at each period t is only O(|E|), which
makes Algorithm 1 practically viable. Furthermore, the
computational complexity of Phase I of Algorithm 1 is
O(|U|(|E|+|V | log(|V |))), since at each period t each user
solves a shortest path problem on the graph, which has a
complexity of O(|E|+ |V | log(|V |)), in response to the set
tolls. Furthermore, we note that the toll update procedure
in Algorithm 1 follows as a direct consequence of apply-
ing gradient descent to the dual Problem (4). Despite the
strong connection between Algorithm 1 and the dual Prob-
lem (4), we reiterate that Algorithm 1 results in binary al-
locations and thus corresponds to a solution to the original
traffic routing problem presented in Section 3 rather than
solely its relaxed linear programming variant presented in
Section 4.1. Finally, we note that Algorithm 1 can also be
generalized in the context of congestion games, when the
travel time on each edge is a function of its flow (see the
extended version of our paper (Jalota et al., 2022)).

4.3 Regret and Constraint Violation Guarantees

We now show that Algorithm 1 achieves the optimal regret
guarantee, up to constants, by establishing matching upper
and lower bounds on its regret.

We first present the main result of this work, which estab-
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lishes that both the regret and constraint violation of Algo-
rithm 1 are upper bounded by O(

√
T ).

Theorem 2 (Square Root Regret and Constraint Violation).
Suppose that the O-D pairs and values of time of users
are drawn i.i.d. at each period t ∈ [T ] from some dis-
tribution D with non-negative support for users’ values of
time. Further, let xt be the sequence of observed traffic
flows under the equilibrium flows f t,f to given the tolls τ (t)

for each period t. Then, under Algorithm 1 with step size
γ = 1√

T
, the regret RT (π) ≤ |E|(|U|+maxe∈E ce)

2

2

√
T ,

and constraint violation2 VT (π) ≤ |E|(maxu∈U λu +
maxe∈E ce + |U|)

√
T .

Proof (Sketch) To prove this claim, we first derive a generic
upper bound on the regret of any algorithm using linear
programming duality, and then use the toll update steps to
establish an upper bound on the regret of Algorithm 1. For
the constraint violation bound, we first use the toll update
steps to obtain a O( 1

γE[
∥∥τ (T+1)

∥∥
2
]) upper bound. Then,

we show that the tolls remain bounded by a constant at each
time step, since users will never travel on a path with a cost
greater than that of their outside option, which establishes
an O( 1

γ ) = O(
√
T ) bound on the constraint violation.

We refer to Appendix 8 for a complete proof of Theo-
rem 2. We note that the proof of Theorem 2 is akin to
that in Li et al. (2020); however, our work differs from Li
et al. (2020) in several ways. First, Li et al. (2020) observes
users’ attributes at each iteration. In contrast, Algorithm 1
only relies on users’ revealed preferences, i.e., past obser-
vations of user consumption, to perform the toll updates
(Phase II of Algorithm 1), as we assume that each user’s
values of time and O-D pairs are private information. Thus,
our algorithm requires less information to perform the toll
updates than that in Li et al. (2020), as the optimization in
Phase I of Algorithm 1 is done distributedly by the users.
Next, the setting considered by Li et al. (2020) corresponds
to one where no more than one decision variable is non-
zero at each iteration of the algorithm. In contrast, our
setting involves a more complex decision space with mul-
tiple non-zero decision variables at each iteration since all
users are assigned to either one of the paths or the outside
option at each step. Finally, our work considers equality
constraints in user allocations compared to the inequality
constraints in Li et al. (2020), as users in our setting must
be allocated to either some path or the outside option at
each step. This structural difference in the constraints be-
tween our formulation and that of Li et al. (2020) influences
the analysis of bounding the tolls and hence the constraint
violation of Algorithm 1.

We also reiterate that the step-size of the price updates of
γ = 1/

√
T is required to establish the bound in Theorem 2

2The constant derived for the constraint violation bound is for
the L2 norm, and by norm equivalence this upper bound on the
constraint violation holds for any p-norm, e.g., the L∞ norm.

since we adopt a more powerful oracle model, wherein the
oracle can vary its actions across time steps. As a result,
classical gradient descent approaches using the step-size of
γt = 1/

√
t for t ∈ [T ] (rather than γ = 1/

√
T as our work)

in the setting with an optimal static action in hindsight
may not result in the desired regret and constraint violation
guarantees due to the stronger regret notion adopted in this
work. In particular, we note that numerical results of our
problem setting with a time-varying step-size of γt = 1/

√
t

for t ∈ [T ] demonstrated a non-vanishing regret.

Having established an upper bound on the regret of Al-
gorithm 1, we now show that no algorithm can achieve a
regret lower than Ω(

√
T ) to establish that Algorithm 1 is

optimal up to constants.

Theorem 3 (Regret Lower Bound). There exists a distribu-
tion D such that the regret of any algorithm is Ω(

√
T ) for

the traffic routing problem where the O-D pair and values
of time of users are drawn i.i.d. from D at each period.

For a proof of Theorem 3, we refer to Appendix 9.

5 NUMERICAL EXPERIMENTS

We now evaluate the performance of Algorithm 1 on a real-
world traffic network. Our numerical results not only val-
idate the theoretical guarantees obtained in Theorem 2 but
also show that our algorithm achieves better performance
on regret, constraint violation, and total travel time met-
rics as compared to several benchmarks. In this section,
we introduce three benchmarks to which we compare Al-
gorithm 1 (Section 5.1) and present the results that demon-
strate the theoretical and practical efficacy of Algorithm 1
(Section 5.2). The implementation details and the Sioux
Falls data set that we use to test Algorithm 1 and the bench-
marks are presented in Appendix 11.1, and our code is pub-
licly available at https://github.com/StanfordASL/online-
tolls. We also present additional numerical results in the ex-
tended version of our paper (Jalota et al., 2022) to demon-
strate how our online learning approach can generalize to
the context of congestion games, when the traffic on each
edge is a function of its flow.

5.1 Benchmarks

While we presented a lower bound (Theorem 3) to establish
the asymptotic optimality of Algorithm 1, in our experi-
ments, we compare Algorithm 1 to several benchmarks. In
particular, the first two benchmarks assume some knowl-
edge about the user attributes, i.e., the mean value of time
of the entire population or that of each user, and set static
tolls that do not vary over time as with many existing road
tolling schemes. In contrast, the third benchmark is analo-
gous to Algorithm 1 in that it does not require any informa-
tion on users’ values of time; however, in this benchmark,
the tolls are updated by a fixed constant at each step.
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Population Value-of-Time (Population Mean VoT) We
assume the central planner has access to the mean value-
of-time of users in the entire population. In this setting, we
compute the tolls through the optimal dual variables of the
capacity constraints of Problem (2a)-(2d) when the values-
of-time vu of each user u are set equal to the mean value
of time of the entire population. Note that this benchmark
does not account for the variability in users’ values of time,
as is the case for many congestion pricing policies that ne-
glect users’ values of time in their tolling decisions.

Mean User Value-of-time (User Mean VoT) We as-
sume that the central planner has more fine-grained infor-
mation through access to the mean value of time of each
user. In this context, we compute the tolls through the
optimal dual variables of the capacity constraints of Prob-
lem (2a)-(2d) when the values-of-time vu of each user u are
set equal to their mean value of time.

Reactive Toll Updates We consider a variant of Algo-
rithm 1, wherein the toll on each edge is updated at each
period by a constant (set to $0.1 in our experiments) solely
based on the observed aggregate flows on that edge. In par-
ticular, if the flow exceeds the edge’s capacity, the toll is
increased by a specified constant irrespective of the mag-
nitude of the capacity violation. On the other hand, if the
flow is below the edge’s capacity, the toll is decreased by a
constant (or set to zero). This toll update procedure could
be a natural strategy in large-scale traffic networks, where
tolls can only be adjusted in constant increments.

We note that our chosen benchmarks reflect natural tolling
strategies in large-scale traffic networks and thus provide a
reasonable point of comparison for our algorithm. In par-
ticular, the static tolling benchmarks are akin to existing
congestion pricing schemes that tend to remain fixed over
time and entail solving a stochastic program, which serves
as a universal benchmark for algorithm design under i.i.d.
data (Li and Ye, 2021). The Population Mean VoT bench-
mark is likely easy to implement as data on the mean value
of time of all users can typically be easily obtained through
surveys or income statistics. On the other hand, the User
Mean VoT benchmark is harder to implement but corre-
sponds to a stronger benchmark with access to the mean
values of time of all users. Beyond the static tolling ap-
proaches, the reactive toll update benchmark is reflective
of practical toll update mechanisms, as tolls can often only
be adjusted in small increments between periods.

5.2 Results

Assessment of Theoretical Bounds Figure 1 depicts the
regret (right) and a log-log plot of the capacity violation
(left), wherein the O-D pairs and values of time of users are
drawn i.i.d. from a distribution, specified in Appendix 11.1.
As expected from our theoretical results, for the capacity

violation, the black dots representing the empirically ob-
served capacity violations of Algorithm 1 in Figure 1 all lie
very close to the theoretical O(

√
T ) bound represented by

a line with a slope of 0.5 on a logarithmic scale. Further-
more, the regret also satisfies the O(

√
T ) bound since it is

negative for this data set due to capacity violations.

Figure 1: Validation of the theoretical upper bounds on re-
gret and constraint violation obtained in Theorem 2 on the
Sioux Falls data set. The infinity norm of the capacity vi-
olation is plotted on a log-log plot, and its empirical perfor-
mance is very close, with a root mean square error of 0.037,
to the theoretical O(

√
T ) bound, represented by a line with

a slope of 0.5. The regret is negative for this data set due to
capacity violations and thus satisfies the O(

√
T ) bound.

Regret and Capacity Violation Comparisons We now
compare the normalized regret and capacity violation of
Algorithm 1 to that of the benchmarks in Figure 2. Here,
the normalized regret is the ratio between the regret and the
optimal offline total system cost over the T time periods,
and the normalized capacity violation is the ratio between
the capacity violation and the cumulative capacity over the
T periods. In Figure 2 (left and center), we observe that Al-
gorithm 1 (i) outperforms all the benchmarks on both met-
rics for large values of T , (ii) obtains better performance
in terms of regret as compared to the two static toll bench-
marks for all values of T , and (iii) obtains a superior per-
formance in terms of constraint violation as compared to
the Reactive Toll Update benchmark for all values of T .

Between the two static tolling benchmarks, we observe
from Figure 2 that the User Mean VoT benchmark performs
better than the Population Mean VoT benchmark on both
regret and constraint violation metrics. This result follows
since the User Mean VoT benchmark has access to fine-
grained information on the mean values of time of each
user while the Population Mean VoT benchmark only has
access to the mean value of time of the entire population.
The performance of these two benchmarks, thus, points to
the importance of considering the variability in users’ val-
ues of time in designing congestion pricing schemes.

Compared to the static tolling benchmarks that assume
knowledge of the mean values of time of each user (or
the population), both dynamic tolling policies do not have
access to any information on users’ trip attributes. De-
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Figure 2: Comparison of the normalized regret, capacity violation, and the total travel time of Algorithm 1 and the bench-
marks presented in Section 5.1. The normalized regret (left) represents the ratio between the regret and the optimal offline
total system cost over the T periods. The normalized capacity violation (center) is the ratio between the L∞ norm of the
capacity violation and the cumulative road capacity over the T periods. The normalized total travel time (right) represents
the ratio between the average total travel time of each algorithm over T periods and the optimal total travel time, i.e., the
minimum total travel time of a traffic routing solution that satisfies the road capacity constraints.

spite this, Figure 2 shows that the dynamic tolling poli-
cies achieve better regret as compared to the static tolling
benchmarks. The reason for the low regret of the Reac-
tive Toll Update benchmark is that it has a higher capac-
ity violation that enables users to take lower-cost routes.
For larger values of T , Figure 2 indicates that Algorithm 1
eventually outperforms the static toll benchmarks on both
regret and capacity violation. This observation suggests
that setting fixed tolls, even using the mean values of time
of each user, might be fraught with error since users’ values
of time may vary over time, even though the distribution
from which values of time are drawn is stationary.

Between the two dynamic tolling policies, we observe that
the Reactive Toll Update benchmark achieves a lower re-
gret for small values of T because of a higher capacity vi-
olation. However, for larger T , Algorithm 1 outperforms
this benchmark on both regret and capacity violation met-
rics. This result follows since Algorithm 1 updates tolls
based on the exact discrepancy between the capacity and
the edge flows. On the other hand, the Reactive Toll Update
benchmark updates the tolls on each edge by a pre-specified
increment depending solely on whether the capacity is vio-
lated. As a result, Algorithm 1, which can make infinites-
imally small toll updates, achieves a vanishing normalized
regret and capacity violation with large T . However, we do
note that the Reactive Toll Update benchmark does come
close to the performance of Algorithm 1 as it achieves only
a slightly higher regret and only an 8% capacity violation
for large values of T . Such a performance indicates that the
Reactive Toll Update, in addition to Algorithm 1, can also
be practically deployed in real-world traffic networks.

Total Travel Time We now demonstrate the practical ef-
ficacy of Algorithm 1 by comparing its total travel time,

which may also be an important practical consideration for
a central planner, to that of the benchmarks. Figure 2 (right)
depicts the ratio of the average total travel time of each
of the algorithms to the minimum achievable total travel
time in the network, which corresponds to a solution sat-
isfying the capacity constraints of all roads. In particu-
lar, both the dynamic tolling policies achieve lower total
travel times than the static tolling benchmarks. Further-
more, while incurring small levels of capacity violation,
Algorithm 1 achieves close to the minimum possible total
travel time. Thus, even though Theorem 2 only provides
guarantees for Algorithm 1 on regret and constraint vio-
lation metrics, it achieves good practical performance on
even the total travel time metric, which may be of direct
importance to central planners.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed an online learning approach to
set tolls in a traffic network to induce users with different
values of time toward a system-optimum traffic pattern.

There are various directions for future research. First, it
would be interesting to investigate whether the regret and
capacity violation guarantees extend when the users’ trip
attributes are not drawn i.i.d., e.g., when they are drawn ac-
cording to a random permutation model. Next, it would be
worthwhile to generalize the obtained theoretical results to
the context of congestion games, where the travel time on
each edge is a function of its flow (see the extended version
of our paper (Jalota et al., 2022)). Finally, it would also
be valuable to explore the extension of the ideas and algo-
rithm developed in this paper to objectives beyond system
efficiency.
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Supplementary Material

7 Proof of Theorem 1

To prove this claim, we show that the equilibrium flows f∗,f∗o corresponding to the toll τ ∗ minimizes the total system
cost, i.e.,

∑
u∈U

(
vu
∑
P∈Pu

lP f
∗
P,u + λuf

∗
o,u

)
≤
∑
u∈U

(
vu
∑
P∈Pu

lP fP,u + λufo,u
)

for any other feasible flows f ,fo
that satisfy Constraints (1b)-(1d). To this end, suppose, without loss of generality, that under the equilibrium flows corre-
sponding to the toll τ ∗, users u ∈ U1 choose paths P ∗1 , . . . , P

∗
k , i.e., f∗P∗u ,u = 1 for some path P ∗u ∈ Pu for all users u ∈ U1,

while users u ∈ U2 choose the outside option, i.e., f∗o,u = 1 for all users u ∈ U2, where U1 ∪ U2 = U and U1 ∩ U2 = ∅.
Then, for any other feasible flows f ,fo that satisfy the Constraints (1b)-(1d), it holds by the definition of an equilibrium
for all users u ∈ U1 that

vulP∗u +
∑
e∈P∗u

τ∗e ≤
∑
P∈Pu

(
vulP +

∑
e∈P

τ∗e

)
fP,u + λufo,u,

and for users u ∈ U2 that

λu ≤
∑
P∈Pu

(
vulP +

∑
e∈P

τ∗e

)
fP,u + λufo,u.

Summing up the above inequalities for all users u ∈ U and rearranging the equation we get that

∑
u∈U1

vulP∗u +
∑
u∈U2

λu ≤
∑
P∈Pu

(
vulP +

∑
e∈P

τ∗e

)
fP,u + λufo,u −

∑
u∈U1

∑
e∈P∗u

τ∗e .

Finally, since the tolls τ ∗ are market-clearing, it holds that
∑
u∈U1

∑
e∈P∗u

τ∗e =
∑
e∈E τ

∗
e ce ≥

∑
e∈E τ

∗
e xe for any

feasible edge flow x ≤ c. Thus, it follows that

∑
u∈U

(
vu
∑
P∈Pu

lP f
∗
P,u + λuf

∗
o,u

)
=
∑
u∈U1

vulP∗u +
∑
u∈U2

λu ≤
∑
u∈U

(∑
P∈Pu

(
vulP +

∑
e∈P

τ∗e

)
fP,u+λufo,u

)
−
∑
e∈E

τ∗e ce,

≤
∑
u∈U

(
vu
∑
P∈Pu

lP fP,u + λufo,u

)
,

which proves our claim.

8 Proof of Theorem 2

In this section, we present the proof of Theorem 2. To this end, we first present a generic bound on the regret of any
algorithm and then use this bound to derive an upper bound on the regret of Algorithm 1 in terms of the step size γ. We
then derive an upper bound on the constraint violation of Algorithm 1 in terms of the step size γ as well. Finally, choosing
γ = O( 1√

T
), we obtain that both these regret and constraint violation bounds are O(

√
T ).

We reiterate that our regret measure differs from the classical regret notion used in online learning, wherein the regret is
defined based on the sub-optimality with respect to an optimal static action in hindsight (Hazan et al., 2016). In contrast,
our regret measure adopts a more powerful oracle model, wherein the oracle can vary its actions across time steps since
the demand itself is random. As a result, we mention that methods to analyse regret in the classical setting with respect to
an optimal static action in hindsight do not naturally transfer over to the setting considered in this work.
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8.1 Generic Bound on Regret

We first present an upper bound on the expected regret of any algorithm that we will use to derive upper bounds on the
regret of Algorithm 1. The key technique used in our analysis is linear programming duality, as in (Li et al., 2020), and,
in this proof, we also use the equilibrium property, specified in Definition 1, to establish a relationship between the primal
and dual objectives, i.e., Objectives (2a) and (3a), respectively, for sub-optimal tolls τ (t) at each time step t ∈ [T ].

Lemma 1 (Generic Regret Bound). Consider an algorithm π that sets a sequence of tolls τ (t) and let f t,f to be the
resulting equilibrium flows for each time period t ∈ [T ]. Then, denoting xt as the sequence of observed traffic flows
corresponding to the equilibrium flows f t for each time period t ∈ [T ], the regret

RT (π) ≤ E

[
T∑
t=1

τ (t) · (c− xt)

]
.

Proof. To prove this claim, we first present a lower bound on the expected optimal objective E [U∗t ] at each time t ∈ [T ].
Then, we present an upper bound on the expected regret accrued at each time t ∈ [T ] to obtain the desired regret upper
bound.

To this end, first note that the optimal objective of the linear Program (2a)-(2d) is a lower bound on the optimal objective
of Problem (1a)-(1d). Next, for each t ∈ [T ], let f t∗,f t∗o be the optimal solution of Problem (2a)-(2d) and τ (t)∗ be the
optimal tolls. Then, observe for each t ∈ [T ] that

E [U∗t ] = E

∑
u∈U

vtu ∑
P∈Pt

u

lP f
t∗
Pu + λuf

t∗
o,u

 ,
(a)
= E

[∑
u∈U

min

{
min
P∈Pt

u

{
vtulP +

∑
e∈P

τ (t)∗e

}
, λu

}
−
∑
e∈E

τ (t)∗e ce

]
,

(b)

≥ E

[∑
u∈U

min

{
min
P∈Pt

u

{
vtulP +

∑
e∈P

τ (t)e

}
, λu

}
−
∑
e∈E

τ (t)e ce

]
,

where (a) follows by strong duality and (b) follows by the optimality of τ (t)∗ for the dual Problem (4a).

Next, we let f t,f to denote the vectors that encode the equilibrium flows under the tolls τ (t), i.e., the flow f tPu
(f to,u) denotes whether user u was routed on P (the outside option) at time period t. Then, letting the objective

Ut =
∑
u∈U

(
vtu
∑
P∈Pt

u
lP f

t
Pu + λuf

t
o,u

)
be the total system cost incurred under the toll τ (t), we have from the above

lower bound on the expected optimal objective E [U∗t ] that

E [Ut − U∗t ] ≤ E

∑
u∈U

vtu ∑
P∈Pt

u

lP f
t
Pu + λuf

t
o,u

−∑
u∈U

min

{
min
P∈Pt

u

{
vtulP +

∑
e∈P

τ (t)e

}
, λu

}
+
∑
e∈E

τ (t)e ce

 ,
(a)
= E

∑
u∈U

vtu ∑
P∈Pt

u

lP f
t
Pu+λuf

t
o,u

+
∑
e∈E

τ tex
t
e

 (5)

+ E

[
−
∑
u∈U

min

{
min
P∈Pt

u

{
vtulP +

∑
e∈P

τ (t)e

}
,λu

}
+
∑
e∈E

τ (t)e (ce−xte)

]
,

(b)
= E

[∑
e∈E

τ (t)e (ce − xte)

]
, (6)

where (a) follows by adding and subtracting the term
∑
e∈E τ

(t)
e xte, and (b) follows as

∑
u∈U

vtu ∑
P∈Pt

u

lP f
t
Pu + λuf

t
o,u

+
∑
e∈E

τ (t)e xte =
∑
u∈U

min{ min
P∈Pt

u

{vtulP +
∑
e∈P

τ (t)e }, λu}, (7)
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which we prove below. In particular, to see that the above equality is true, we begin by recalling that f t,f to are the
equilibrium flows under the toll τ (t), i.e., f to,u > 0 if and only if min{minP∈Pt

u
{vtulP +

∑
e∈P τ

(t)
e }, λu} = λu and

f tP ′u > 0 for some path P ′ if and only if min{minP∈Pt
u
{vtulP +

∑
e∈P τ

(t)
e }, λu} = vtulP ′ +

∑
e∈P ′ τ

(t)
e . Then, noting

that
∑
P∈Pt

u
f tPu + f to,u = 1, it follows that

min{ min
P∈Pt

u

{vtulP +
∑
e∈P

τ (t)e }, λu} =
∑
P∈Pt

u

(
vtulP +

∑
e∈P

τ (t)e

)
f tPu + λuf

t
o,u

for all users u ∈ U . Next, summing the above relation over all users it follows that

∑
u∈U

min{ min
P∈Pt

u

{vtulP +
∑
e∈P

τ (t)e }, λu} =
∑
u∈U

 ∑
P∈Pt

u

(
vtulP +

∑
e∈P

τ (t)e

)
f tPu + λuf

t
o,u

 ,

=
∑
u∈U

vtu ∑
P∈Pt

u

lP f
t
Pu + λuf

t
o,u

+
∑
u∈U

∑
P∈Pt

u

∑
e∈P

τ (t)e f tP,u,

=
∑
u∈U

vtu ∑
P∈Pt

u

lP f
t
Pu + λuf

t
o,u

+
∑
e∈E

τ (t)e xte,

where the last equality follows by noting that
∑
u∈U

∑
P∈Pt

u:e∈P
f tPu = xte by the edge decomposition of path flows. This

proves the equality in Equation (7).

Finally, summing the inequality obtained in Equation (6) over all time periods t ∈ [T ], we get that

RT (π) = E

[
T∑
t=1

(Ut − U∗t )

]
≤ E

[
T∑
t=1

τ (t) · (c− xt)

]
,

which proves our claim.

We note that the above obtained bound in Lemma 1 presents an upper bound on the regret of any online algorithm and
not the corresponding bound on the constraint violation, which we derive for Algorithm 1 in the next section. As a result,
we reiterate that there are trivial algorithms, e.g., setting zero tolls, that can achieve a non-positive regret, as implied by
the regret bound in Lemma 1; however, such algorithms will typically result in a large amount of constraint violation,
which will scale as O(T ), i.e., linearly in the number of periods T . The key feature of our proposed algorithmic approach
(Algorithm 1) is its ability to balance both regret and constraint violation to be of the order O(

√
T ) in the setting of traffic

routing.

8.2 Upper Bound on Regret of Algorithm 1

We now use the generic upper bound on the expected regret to show that the regret of Algorithm 1 is upper bounded by
O(γT ).
Lemma 2 (Upper Bound on Regret). Let xt be the sequence of observed traffic flows under the equilibrium flows f t,f to
given the tolls τ (t) for each t ∈ [T ] under Algorithm 1. Then for Algorithm 1, the regret

RT (π) ≤ γT |E|(maxe∈E ce + |U|)2

2
.

Proof. To prove this claim, we present an upper bound on E
[∑T

t=1 τ
(t) · (c− xt)

]
and then use Lemma 1 to obtain a

bound on the expected regret of Algorithm 1.

First observe from the toll update process that∥∥∥τ (t+1)
∥∥∥2 ≤ ∥∥∥τ (t) − γ(c− xt)

∥∥∥2 ,
=
∥∥∥τ (t)

∥∥∥2 + γ2
∥∥c− xt∥∥2 − 2γτ (t) · (c− xt).



Devansh Jalota, Karthik Gopalakrishnan, Navid Azizan, Ramesh Johari, Marco Pavone

Rearranging this equation, summing over t ∈ [T ] and taking expectations, we get that

E

[
T∑
t=1

τ (t) · (c− xt)

]
≤ E

[
T∑
t=1

1

2γ
(
∥∥∥τ (t)

∥∥∥2 − ∥∥∥τ (t+1)
∥∥∥2) +

T∑
t=1

γ

2

∥∥c− xt∥∥2] ,
≤ E

[
1

2γ

∥∥∥τ (1)
∥∥∥2 +

T∑
t=1

γ

2

∥∥c− xt∥∥2] ,
(a)
= E

[
T∑
t=1

γ

2

∥∥c− xt∥∥2] ,
(b)

≤ γT
|E|(maxe∈E ce + |U|)2

2
,

where (a) follows since the initial toll τ (1) = 0, and (b) follows as |ce − xte| ≤ maxe∈E ce + |U|. Finally, applying
Lemma 1, we have proved the desired bound on the regret of Algorithm 1.

8.3 Upper Bound on Constraint Violation of Algorithm 1

We now establish an upper bound on the constraint violation of Algorithm 1 in terms of the step size γ. To this end, we
first show that the expected constraint violation of Algorithm 1 is upper bounded by O

(
1
γE
[∥∥τ (T+1)

∥∥
2

])
in Lemma 3.

Then, in Lemma 4, we show that the tolls remain bounded at each time step to establish that the constraint violation of
Algorithm 1 is bounded by O( 1

γ ).

Upper Bound on Expected Constraint Violation in terms of Step Size γ: We first show that the expected constraint
violation of Algorithm 1 is upper bounded by O

(
1
γE
[∥∥τ (T+1)

∥∥
2

])
.

Lemma 3 (Constraint Violation Bound). Let xt be the sequence of observed traffic flows under the equilibrium flows
f t,f to given the tolls τ (t) for each t ∈ [T ] under Algorithm 1. Then for Algorithm 1, the constraint violation

VT (π) ≤ 1

γ
E
[∥∥∥τ (T+1)

∥∥∥
2

]
.

Proof. By the toll update process, we know that

τ (t+1) ≥ τ (t) − γ(c− xt).

Rearranging the above equation and summing over t ∈ [T ], we get that
T∑
t=1

(xt − c) ≤ 1

γ

T∑
t=1

(τ (t+1) − τ (t)) ≤ 1

γ
τ (T+1).

From this, we obtain that the expected constraint violation

VT (π) = E

∥∥∥∥∥
(

T∑
t=1

(
xt − c

))
+

∥∥∥∥∥
2

 ≤ 1

γ
E
[∥∥∥τ (T+1)

∥∥∥
2

]
,

which proves our claim.

Boundedness of Tolls: Since the constraint violation is bounded by 1
γE
[∥∥τ (T+1)

∥∥
2

]
, we seek an upper bound on the

toll at time T + 1 to obtain an upper bound for the constraint violation. In particular, we show that the tolls are bounded
by a constant and thus the toll on any edge does not increase with the number of time periods T .
Lemma 4 (Boundedness of Tolls). Under Algorithm 1, the toll on any given edge at each time step t is upper bounded by
maxu∈U{λu}+ maxe∈E{ce}+ |U| for any step-size γ ≤ 1.

Proof. To prove this claim, first note that the toll τ (1)e = 0 for all edges and suppose that τ (t)e > maxu∈U{λu}. Then,
it is clear that xte = 0 and the toll on this edge must reduce in the next time step as users can use the outside option
and incur a cost of λu instead. Next, if τ (t)e ≤ maxu∈U{λu}, then it must hold that τ (t+1)

e ≤ τ
(t)
e + γ(ce + |U |) ≤

maxu∈U{λu}+ maxe∈E{ce}+ |U|, which proves our claim.



Online Learning for Traffic Routing under Unknown Preferences

8.4 Square Root Bound on Regret and Constraint Violation

From Lemma 2 we observed that the regret is upper bounded by γT |E|(maxe∈E ce+|U|)2
2 , i.e., O(γT ), and from Lemmas 3

and 4 we have that the expected constraint violation is upper bounded by |E|(maxu∈U λu+maxe∈E ce+|U|) 1
γ , i.e., O( 1

γ ),

since
∥∥τ (T+1)

∥∥
2

is bounded by a constant. Setting γT = 1
γ , we have that both the upper bounds on regret and constraint

violation are minimized when γ = 1√
T

as in the statement of Theorem 2. Finally, taking γ = 1√
T

, it is clear that the

expected regret RT (π) ≤ |E|(maxe∈E ce+|U|)2
2

√
T and that the expected constraint violation VT (π) ≤ |E|(maxu∈U λu +

maxe∈E ce + |U|)
√
T , which proves Theorem 2.

9 Proof of Theorem 3

Consider a two edge network, where the edge e1 = (s1, t1) is between the origin s1 and destination t1, respectively, and
the edge e2 is between the origin s2 and destination t2, respectively. Furthermore, both the edges have a capacity of one,
and edge e1 has a travel time of l1 = 1 while edge e2 has a travel time of l2 = 0. Next, consider a population of one user,
i.e., |U| = 2, and a distribution D such that users have a fixed value of time of v1 = 1 (and the cost of outside option of
λ1 = 2) but traverse the O-D pair (s1, t1) with probability 0.5 and the O-D pair (s2, t2) with probability 0.5. We term the
first group of users as type I and the users with parameters v2 = 0 and c2 = 0 as type II users.

Given the above defined instance, first observe that over a time horizon of T days, the expected optimal total system cost
is T

2 , as users will traverse each O-D pair with equal probability in expectation. To derive the Ω(
√
T ) regret lower bound,

we suppose that S1 users of type I arrive over the time horizon T . Then, it holds that the expected regret is given by

Regret = E
[
max

{
S1,

T

2

}
− T

]
= E

[
(S1 −

T

2
)+

]
.

Finally, from the central limit theorem, it is clear that the regret is Ω(
√
T ).

10 Depiction of Toll Update Procedure in Algorithm 1

Figure 3: Toll update step in Algorithm 1. Between subsequent time periods, the toll on each edge is increased (decreased)
if there is more (less) flow than the capacity of that edge.
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11 Numerical Experiments

11.1 Numerical Implementation Details

In this section, we describe the implementation details of Algorithm 1 and the benchmarks introduced in Section 5.1, which
we test on the Sioux Falls network (one of the most commonly used data-sets in the traffic routing literature), depicted in
Figure 4, obtained from (Transportation Networks for Research Core Team). The data set contains both origin-destination
travel information for all users and information on the capacity, length, and maximum speed of every road in the traffic
network. To obtain the travel time of every edge, we assume that vehicles travel at the maximum speed for that edge.
Furthermore, we scale the total user demand by a factor of 0.5 to ensure feasibility of the linear Program (1a)-(1d).

Since the computational complexity of solving the linear Program (1a)-(1d) scales with the number of users, we group
users with the same origin-destination pairs to have the same values-of-time to improve the computational tractability of
the resulting optimization problems. For the experiments, we further assume that the value-of-time for users scales propor-
tionally to their incomes. In Sioux Falls, the range of people’s incomes ranges from below $10, 000 to over $200, 000 (SFI,
2022), which amounts to a value-of-time range from about $5/hr to $100/hr, assuming 40 hours of work a week for 50
working weeks. Then, for each user group g, we draw their mean value-of-time, denoted by µg , uniformly at random
between the range $5/hr and $100/hr. We further assume that at each period, all users from a group have a value-of-time
drawn from a uniform distribution over the interval [0.8µg, 1.2µg]. The O-D pair for every user is drawn from a distri-
bution defined as follows: with probability 0.8, the user travels on their default O-D pair, as described in the data set,
and with probability 0.2, the user chooses an O-D pair uniformly at random from the space of all possible O-D pairs. In
Algorithm 1, we set the step-size γ = 5×10−4

√
T

. We reiterate that the square root regret guarantee for Algorithm 1 would

hold by Theorem 2 for any choice of γ = D√
T

for any constant D ∈ (0, 1]. For our particular problem instance, the choice

of γ = 5×10−4
√
T

demonstrated fast convergence and thus we used this for our numerical experiments, though we mention
that choosing any constant D ∈ (0, 1] would have led to similar results. Finally, to break ties among equivalent minimum
cost routes for users, we add a noise to the Population Mean VoT and User Mean VoT tolls every time step drawn from the
uniform distribution in [−5× 10−4, 5× 10−4].

To efficiently implement the outside option we consider a modified network with additional edges between the correspond-
ing O-D pairs for each user group. We set the capacity of these edges to be strictly higher than the total demand between
the corresponding O-D pair. Furthermore, we set the travel time of these edges to be 1.5 times the cost, including travel
times and tolls, of the shortest path under the optimal tolls. We mention that to improve computational tractability, we
club the outside options for all users belonging to the same group (i.e., having the same origin-destination pair) into one
edge. In this modified network, each user must traverse one path, which may be a path in the original graph or on the
added edge representing the outside option for that user. Finally, note that the tolls on the added edges must be zero for
all tested algorithms since the maximum possible flow on any of the added edges will be lower than the edge capacities by
construction.

All our experiments are carried out on a 2019 MacBook Pro, with 32 GB RAM and a 2.4 GHz 8-Core Intel Core i9
processor. The program is written in Python 3.7, and we use Gurobi (free academic license) for solving the optimization
problems. All the basemaps for the Sioux Falls region are obtained from Open Street Maps using the contextily
package. The versions of all packages used in the codes are detailed in the requirements.txt file in the repository and our
code is publicly available at https://github.com/StanfordASL/online-tolls.

We note that all our experiments are designed to evaluate the asymptotic behaviour of our toll update procedure. Hence,
due to the large number of samples at the asymptotic limits, the results are not sensitive to random seeds that determine
the realizations of the user values of time. Nevertheless for technical correctness and reproducibility, we have set a random
seed of five for generating user values of time.

11.2 Properties of Computed Tolls

In this section, we demonstrate the practical efficacy of Algorithm 1 by investigating the properties of the tolls set in the
traffic network using Algorithm 1 and the benchmarks. To this end, Figure 5 depicts the tolls set by Algorithm 1 and the
three benchmarks at T = 1000. From this figure, we observe that the tolls are typically placed either on roads in the dense
urban areas on the center-right of the Sioux Falls network or on roads on the left and bottom of the network that have
smaller road capacities. We further note that the set tolls were about $0.75 on average for the two dynamic algorithms
and the User Mean VoT benchmark, with the maximum toll for the algorithms ranging between $2.4-$2.7, which is in
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Figure 4: Depiction of the Sioux Falls road network. The capacities on each edge of the network are depicted on the left,
while the travel times are depicted on the right.

alignment with the order of magnitude of typical tolls in real-world transportation networks.

In Figure 6, we present a histogram representing the edge tolls corresponding to the Algorithm 1 at T = 1000. This
histogram indicates that most road tolls are zero, which corresponds to traditional congestion pricing schemes that operate
on only certain roads or regions of the traffic network. Furthermore, we observe that most non-zero tolls are in the range
of $0.25-$1.00, while only about five percent of the edges have road tolls that exceed $1.

Finally, in Figure 7, we depict the evolution of the cumulative tolls, i.e., the sum of the tolls on all edges, over the T = 1000
time horizon. This figure illustrates that both the dynamic tolling algorithms, i.e., Algorithm 1 and the Reactive Toll Update
benchmark, approach a set of road tolls in a small number of periods, after which the tolls oscillate to achieve a good balance
between constraint violation and regret. Note that the Reactive Toll Update benchmark stabilizes to a small range of toll
values earlier with its constant toll updates as compared to Algorithm 1 since the step size of the updates of Algorithm 1 is
of the order O( 1√

1000
) for T = 1000. However, due to the constant updates in the tolls at each time step, the Reactive Toll

Update benchmark also has a greater degree of variability in its tolls after arriving at a stable value for the cumulative tolls.

12 Societal Impact

In this work, we proposed an online learning approach to set tolls in a traffic network to induce users with different values
of time toward a system-optimum traffic pattern. We believe that our proposed algorithmic approach is practically viable
for several reasons. First, it only relies on access to the aggregate flows on the roads of the traffic network and does not rely
on any information on the values of time, O-D pairs, or the path taken by users in the system. In particular, our approach
achieves good performance on both regret and constraint violation metrics without compromising user privacy or seeking
potentially sensitive data. Next, our toll update mechanism is very computationally inexpensive as the computational
complexity of Phase II of Algorithm 1 is only O(|E|), which further motivates the practical viability of our online learning
method. Furthermore, Algorithm 1 is very intuitive from the perspective of a central planner seeking to deploy road tolling
mechanisms, as it involves a very intuitive toll update step. In particular, the toll is increased on the roads if the flow on
those roads exceeds capacity and is decreased otherwise. Finally, we note that beyond Algorithm 1, even the reactive toll
updates benchmark achieved good numerical performance. We reiterate that reactive toll updates can be a natural strategy
in large-scale traffic networks, wherein tolls can only be adjusted between periods in constant increments.

Beyond the applicability of our proposed learning algorithm, we note that our theoretical results apply in the setting of
capacity-constrained road networks, which, as mentioned in Section 3.1, are largely consistent with the operation of real-
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(a) Algorithm 1 (b) Reactive update

(c) User mean VoT (d) Population mean VoT

Figure 5: Tolls corresponding to Algorithm 1 and the three benchmark approaches in the Sioux Falls traffic network at
T = 1000.



Online Learning for Traffic Routing under Unknown Preferences

Figure 6: Histogram of edge tolls in the Sioux Falls traf-
fic network for Algorithm 1 at T=1000.

Figure 7: Time evolution of cumulative tolls on all edges
of the Sioux Falls traffic network for Algorithm 1 and the
Reactive Toll Update benchmark for T = 1000.

world road networks. However, we also demonstrate how our proposed online learning approach can generalize to the
context of congestion games, when the travel time on each edge is a function of its flow, in Appendix ?? through numerical
experiments.

While our proposed approach has several benefits in terms of practical viability, several considerations must be taken into
account for the real-world implementation of our mechanism. In particular, our focus in this work is on optimizing for
system efficiency. However, there may be other metrics beyond efficiency, e.g., revenue maximization or fairness, that a
central planner may want to optimize. Furthermore, our theoretical results apply in the setting when the values of time
and O-D pairs of users are drawn i.i.d. from some distribution. While this assumption may reflect real-world traffic
settings during rush hour periods as users commute to and from work, such an assumption may not hold in other contexts,
e.g., during a sporting event with sudden surges in demand to particular locations. In addition, to obtain our theoretical
guarantees, we do not impose any lower or upper bounds on the tolls that can be set on different roads on the traffic network.
Such lower or upper bounds on the tolls may be a practical consideration in the real-world deployment of tolling schemes,
as some roads often cannot be tolled while there is often an upper bound on the tolls that can be placed on other roads. As
a result, a central planner must give detailed thought regarding the extent to which the modeling assumptions used for the
theoretical analysis apply in practice, as this will have a bearing on the efficacy of Algorithm 1.


