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Abstract

We consider the problem of model estimation in
episodic Block MDPs. In these MDPs, the de-
cision maker has access to rich observations or
contexts generated from a small number of latent
states. We are interested in estimating the latent
state decoding function (the mapping from the
observations to latent states) based on data gener-
ated under a fixed behavior policy. We derive an
information-theoretical lower bound on the error
rate for estimating this function and present an
algorithm approaching this fundamental limit. In
turn, our algorithm also provides estimates of all
the components of the MDP. We apply our results
to the problem of learning near-optimal policies
in the reward-free setting. Based on our efficient
model estimation algorithm, we show that we can
infer a policy converging (as the number of col-
lected samples grows large) to the optimal policy
at the best possible asymptotic rate. Our analysis
provides necessary and sufficient conditions un-
der which exploiting the block structure yields im-
provements in the sample complexity for identify-
ing near-optimal policies. When these conditions
are met, the sample complexity in the minimax
reward-free setting is improved by a multiplica-
tive factor n, where n is the number of contexts.

1 Introduction

In Reinforcement Learning, leveraging succinct represen-
tations of the system state is empirically known to consid-
erably accelerate the search for near-optimal policies, see,
e.g., Laskin et al. (2020); Guo et al. (2020); Stooke et al.
(2021) and references therein. The design of RL algorithms
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with provable performance guarantees that learn and exploit
such representations remains largely open.

In this paper, we address this challenge for a specific class of
models, namely episodic Block MDPs (BMDPs). In these
MDPs, introduced in Krishnamurthy et al. (2016) and since
then widely studied and motivated (see Du et al. (2019);
Zhang et al. (2022b) and references therein), the decision
maker has, in each round, access to rich observations, re-
ferred to as contexts, generated from a small number of
latent states. More precisely, to each context x corresponds
a unique latent state s = f(x) where f is referred to as
the latent state decoding function. If the decision maker
selects control action a, the system moves from context x to
context y with probability q(y|s′)p(s′|s, a) where s = f(x)
and s′ = f(y). The emission distributions q, the latent state
transition rates p and the decoding function f are initially
unknown. Intuitively, if we could learn the latent state decod-
ing function, we would be able to efficiently summarize the
environment with a low-dimensional state space, and hence
devise RL algorithms that can quickly learn near-optimal
policies. In this work, our objective is to substantiate this
intuition. Specifically, we aim at answering the following
questions: (i) How fast can we learn the latent state decod-
ing function, as well as p and q? (ii) What optimal gains in
terms of sample complexity can we expect when exploiting
the existing yet initially unknown structure?

Most existing studies on representation learning in
BMDPs (Jiang et al., 2017; Dann et al., 2018; Du et al.,
2019; Misra et al., 2020; Foster et al., 2021; Zhang et al.,
2022b) address these questions using the function approx-
imation framework. Specifically, the latent state decoding
function or some of its functionals is assumed to belong to a
parametrized class of functions. This assumption somehow
introduces an additional structure in the BMDP. Now, the
performance guarantees obtained for algorithms learning
within this class of functions depend on the cardinality or
complexity of this class. For classes with moderate complex-
ity, these algorithms are able to learn near-optimal policies
quickly. However, as it turns out, in absence of any prior
knowledge of the class of functions that could contain the
true latent state decoding function, these algorithms cannot
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exploit the block structure (the class becomes too complex
and the guarantees are not better than those achieved in plain
tabular MDPs – refer to §6 for details). Moreover, to ex-
ploit the function approximation framework, the algorithms
proposed in the aforementioned work rely on strong compu-
tational oracles (e.g., ERM, MLE). In this paper, we depart
from the function approximation framework and analyze
scenarios where no additional structure is imposed on the
BMDP. For these scenarios, we wish to understand how to
optimally exploit the block structure alone to speed up the
convergence of learning algorithms.

Contributions. Our main results concern the estimation
of the latent state decoding function in BMDPs using data
generated from a fixed behavior policy. We apply our re-
sults to the problem of learning near-optimal policies in the
reward-free learning setting, where the reward function is
revealed after the data has been collected. More precisely,
our contributions are as follows.

1. Learning the latent state decoding function

(a) We first derive information-theoretical lower bounds on
the latent state decoding error rates. When the BMDP Φ =
(p, q, f) satisfies some regularity assumptions, we establish
that the expected number EΦ[|E|] of contexts for which we
do not infer the corresponding latent state correctly must
be (roughly) greater than n exp

(
−TH

n I(Φ)
)

where T is the
number of episodes in the collected data, H the duration
of an episode, n the size of the context space and I(Φ) a
well-defined and non-negative rate function. This lower
bound provides conditions on T , H , n, and Φ under which
one can hope to estimate the block structure accurately.

(b) We present a structure estimation algorithm whose per-
formance approaches our lower bound. Its design is in-
spired by spectral methods typically used for inference
tasks in the Stochastic Block Model (Abbe, 2018), Degree-
Corrected Block Model (Gao et al., 2018) and Block Markov
Chain (Sanders et al., 2020). To analyze its performance,
we develop new concentration inequalities for functionals
of Markov chains with restarts (restarts are needed to model
the episodic nature of the MDP).

2. Learning near-optimal policies in the reward-free setting

In the reward-free setting, the performance of an RL algo-
rithm is quantified through ∆(R) = supr∈R

1
H (V ⋆(r) −

V π̂r (r)) where V ⋆(r) and V π̂r (r) are the values of the op-
timal policy and of that of the policy π̂r returned by the
algorithm for the (possibly context-dependent) rewards r,
and whereR is a given class of reward functions.

(a) We present lower bounds on the number of observed
episodes required to infer ϵ-optimal policies or more pre-
cisely to ensure that ∆(R) ≤ ϵ. These lower bounds hold
even if the data can be collected in an adaptive manner. In
the minimax setting whereR contains all possible bounded
reward functions, this sample complexity lower bound is

TH = Ω( n
ϵ2 ). In the reward-specific setting where R

reduces to a single function r, the lower bound becomes
TH = Ω(n log

(
1
ϵ

)
+ 1

ϵ2 ) (the first term corresponds to the
data required to learn the block structure accurately, and the
second term to the data required to learn an ϵ-optimal policy
given the block structure). These lower bounds quantify the
gains achieved when exploiting the block structure: in the
minimax and reward-specific settings, without any structure,
these bounds would be Ω(n

2

ϵ2 ) and Ω( n
ϵ2 ), respectively.

(b) We study the performance of RL algorithms built upon
our structure estimation algorithm using data generated with
a fixed behavior policy. We show that these algorithms
learn ϵ-optimal policies at the fastest rate possible. More
precisely, when ϵ = o(1) (as n grows large), their sample
complexities match (up to logarithmic factors) our lower
bounds in the minimax and reward-specific settings.

2 Models and Objectives

2.1 Episodic block MDPs

A Block MDP (BMDP) Φ is defined by
(S,X ,A, µ, p, q, f,H) where S, X , A denote the
sets of hidden latent states, observed contexts, and actions,
respectively. Let S, n,A be their cardinalities. H ≥ 2 is
the length of each episode and µ denotes the distribution
of the initial context x1 ∈ X . p represents the latent state
time-homogenous dynamics: p(s′|s, a) is the probability of
moving from latent state s to s′ given that the learner selects
action a. The decoding function f maps each context x
to a unique latent state f(x) ∈ S. When the system is in
the latent state s, the learner observes a context x drawn
according to the emission distribution q(·|s) with support
f−1(s) ⊂ X . Naturally, the decoding function f induces
a partition of X into clusters indexed by s, and is initially
unknown to the learner. To simplify the notation, we write
Φ = (p, q, f) to specify the dynamics and the structure of
the BMDP. We further denote PΦ and EΦ as the probability
measure and the expectation for observations generated
under the model Φ, respectively.

2.2 Latent state decoding and model estimation

In this paper, our main objective is an offline model estima-
tion: given some dataset, the learner wishes to estimate the
latent state decoding function f and the transition dynamics
p and q of the BMDP.

The learner is given a dataset of transitions: D ={
(x

(t)
1 , a

(t)
2 , . . . , x

(t)
H−1, a

(t)
H−1, x

(t)
H )t∈[T ]

}
. The dataset has

been generated using the uniform behavior policy ρ ∼
U(A)1.The use of passive (also referred to as memoryless)

1This assumption can be relaxed. For further details, we refer
the reader to Appendix K.
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behavior policy is common to derive theoretical guaran-
tees (Azizzadenesheli et al., 2016a,b), and more importantly,
to accommodate practical offline RL applications (such as
healthcare) where active data collection strategies are im-
practical or dangerous (Levine et al., 2020). Also note that
recently, Xiao et al. (2022) showed for passive data collec-
tion in offline RL, the uniform policy is the best behavior
policy. An additional important remark is that we consider
policy-induced data collection (Xiao et al., 2022), i.e., we
do not assume access to any generative model.

The objective of the learner is to build f̂ , an estimate of the
latent decoding function. Since the latent states are not ob-
served, f̂ is only defined up to a permutation of these states,
as in any clustering task (Abbe, 2018; Yun and Proutière,
2019; Sanders et al., 2020). The accuracy of f̂ is measured
through the cardinality of the set E of misclassified contexts
defined as E = Eν , where

Eσ =
⋃
s∈S

f̂−1(σ(s)) \ f−1(s), σ ∈ Υ(S), (1)

ν ∈ argminσ∈Υ(S) |Eσ|, and Υ(S) denotes the set of per-
mutations over S. We say that the clusters are recovered
asymptotically accurately if E[|E|] = o(n) and asymptoti-
cally exactly if E[|E|] = o(1). The lower and upper bounds
of the error rates have been derived for various block models.
Such clustering guarantees for BMDPs have not been stud-
ied, and they are highly nontrivial for the following reasons.
First, because we deal with Markovian data, standard con-
centration techniques used in clustering Stochastic Block
Models (SBMs) and their extensions (Abbe, 2018; Yun and
Proutière, 2019; Gao et al., 2018) do not apply. Then, we
have controllable actions that can change the transition prob-
ability, even between the same pair of states, which prohibits
us from using the clustering algorithms of Block Markov
Chains (BMCs; Sanders et al. (2020)) directly.

Using f̂ , the latent state transition probabilities and emis-
sion distribution are estimated using the plug-in estimators,
which are very effective despite their simplicity (Duan et al.,
2020; Ren et al., 2021; Xiao et al., 2021). Their precise
forms are provided in Section 4.2. The accuracies of these
estimates, p̂ and q̂, are assessed through the ℓ1-distances:
for all (s, s′, a) ∈ S2 × A, ∥p̂(ν(·)|ν(s), a) − p(·|s, a)∥1,
and ∥q̂(·|ν(s)) − q(·|s)∥1. Without loss of generality, for
simplicity, we assume that ν = Id, i.e., ν(s) = s for all s.

2.3 Assumptions

We impose the following assumptions, which allow us to
invoke and translate theoretical tools and ideas from various
literature on clustering in block models (Abbe, 2018; Gao
et al., 2018; Yun and Proutière, 2019; Sanders et al., 2020):

Assumption 1 (Asymptotics). S,A, p are independent of n

Assumption 2 (Linear context cluster sizes). The sizes of
the clusters grow linearly with n. Specifically, there exists

α = (αs)s∈S independent of n such that (i) αs > 0 for all
s ∈ S, and (ii)

∑
s αs = 1 and |f−1(s)| = αsn.

Assumption 3 (η-regularity). There exists η > 1, indepen-
dent of n, such that:

(i) max
s1,s2∈S

αs1

αs2

≤ η,

(ii) max
a∈A

max
s1,s2,s3∈S

{
p(s2|s1, a)
p(s3|s1, a)

,
p(s1|s2, a)
p(s1|s3, a)

}
≤ η,

(iii) max
s∈S

max
x,y∈f−1(s)

q(x|s)
q(y|s)

≤ η.

Assumption 4 (Uniform initial context). µ ∼ U(X ).

Assumptions 1, 2, and 3(i), which express some kind of
homogeneity in the number and sizes of the clusters, are
imposed in the majority of the clustering literature, see
Abbe (2018); Gao et al. (2018); Yun and Proutière (2019);
Sanders et al. (2020). Such homogeneity is required to
establish theoretical guarantees for clustering tasks.

Assumption 3(ii) has been used for the clustering task in
BMCs (Sanders et al., 2020) to ensure a minimum level of
separability between clusters. A similar assumption is made
in SBMs (Yun and Proutière, 2016, 2019; Gao et al., 2018).
In Appendix L, we discuss how to relax Assumption 3(ii)
and only assume that the transition kernel p is aperiodic and
communicating.

Assumption 3 (iii) has been considered in the Degree Cor-
rected Block Model (DCBM; Gao et al. (2018)), where
the heterogeneity via degree-correction of each cluster was
allowed, but limited.

Assumption 4 is not crucial but simplifies many statements
in the proofs. It ensures that all contexts can be reached with
positive probability. We can replace it with µ(x) = Θ

(
1
n

)
,

and given Assumption 3, even remove it, as long as H ≥ 3.

3 Fundamental Lower Bound of Latent State
Decoding

To derive instance-specific lower bounds on the clustering
error rates, we leverage change-of-measure arguments (Lai
and Robbins, 1985) where we pretend that the observations
are generated by a BMDP model Ψ that is slightly different
than the true model Φ. To obtain instance-specific lower
bounds, we always need to restrict the attention to a class of
adaptive algorithms. Indeed, an algorithm always returning
f̂ = f would have no error for the BMDP Φ = (p, q, f) but
would fail for any other BMDP with Φ̃ = (p, q, f̃) with f̃
different than f . Here, we restrict our attention to the wide
class of so-called β-locally better-than-random clustering
algorithms.
Definition 1 (β-locally better-than-random clustering al-
gorithms). A clustering algorithm is β-locally better-than-
random for the BMDP Φ = (p, q, f) if for any BMDP Φ̃ =
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(p, q̃, f̃) with maxy:f(y)=f̃(y) maxs |q(y|s) − q̃(y|s)| ≤ β

and |{y ∈ X : f(y) ̸= f̃(y)}|} ≤ 1, for all x ∈ X , x is
misclassified with probability at most 1− 1

S .

Considering locally better-than-random algorithms is not re-
strictive, as algorithms with reasonable performance should
indeed adapt to the BMDP they are facing, or in other
words, such algorithms behave similarly when the consid-
ered BMDP model changes very slightly.

We derive a lower bound for the clustering error rate of
each context x ∈ X characterized by a rate function
I(x; Φ) defined as follows. Consider an alternate BMDP
Ψ(x,j) = (p, q̃, f̃) obtained from the true model Φ by
changing the latent state of context x from f(x) to j, for
j ̸= f(x). The alternate latent decoding function f̃ is de-
fined as f̃(y) = f(y)1y ̸=x + j1y=x for all y ∈ X . The
alternate emission function q̃ remains unchanged for la-
tent states different than f(x) and j: for any s ̸= f(x), j,
q̃(·|s) = q(·|s). Under Ψ(x,j), x has an emission probabil-
ity q̃(x|j) = cq(x|i) for c > 0 to be chosen later, and we
define for all y ∈ f−1(i), q̃(y|i) = q(y|i)/(1− q(x|i)) and
for all y ∈ f−1(j), q̃(y|j) = q(y|j)(1 − cq(x|i)). Note
that with this definition, q̃(·|s) is a well-defined probability
distribution over f̃−1(s), for all s ∈ S.

We now define the rate function I(x; Φ):

I(x; Φ) = min
j ̸=f(x)

inf
c>0

Ij(x; c,Φ), (2)

where Ij(x; c,Φ) is (almost)2 equal to H
n times the expected

log-likelihood ratio of the observations over one episode
made under Ψ(x,j) and Φ, and is∞ when c is such that Ψj

is not well-defined. Importantly, the rate function I(x; Φ)
does not scale with n, and we can identify necessary and
sufficient conditions for the clusterability of x, i.e., for
I(x; Φ) > 0. In Appendix D.3.4, we provide illustrative
examples of I(x; Φ) for clusterable and non-clusterable
BMDPs.

In the next theorem, whose proof is presented in Appendix
D, we present our lower bounds for the clustering error rates.

Theorem 1. Let Φ be a BMDP satisfying Assumptions
1,2,3,4. Consider a clustering algorithm that is β-locally
better-than-random for Φ with β ≥ 2Sη2

n , when applied to
the data gathered over T episodes, each of length H , using
ρ. Then, for all x ∈ X ,

PΦ[x ∈ E ] ≥
1

2ηS
exp

(
−TH

n
I(x; Φ)(1 + o(1))

)
.

As a consequence, we have that

EΦ[|E|] ≥ n exp
(
−TH

n
I(Φ)(1 + o(1))

)
,

2Refer to Appendix D for the exact expression of Ij(x; c,Φ).

with I(Φ) := − n
TH log

(
1

2ηSn

∑
x∈X exp

(
−TH

n I(x; Φ)
))

.

The above theorem provides necessary conditions for the
existence of algorithms classifying a given context x asymp-
totically accurately, i.e., PΦ[x ∈ E ] → 0 as n → ∞.
These conditions are I(x; Φ) > 0 and TH = ω(n). In
Appendix D.3, we show that I(x; Φ) = 0 if and only if
there exists j ̸= f(x) and c > 0 such that for all (s, a),
p(s|f(x), a) = p(s|j, a) and p(f(x)|s, a) = cp(j|s, a).
Equivalently, these conditions state that the transition rates
to and out of the latent states f(x) and j are identical, in
which case, of course, we cannot determine whether x be-
longs to f(x) or j. We note that, thanks to Assumption
3, if I(x; Φ) > 0, then I(y; Φ) > 0 for all y satisfying
f(y) = f(x). In words, the condition for accurate classifi-
cation of a context only depends on its corresponding latent
state.

We further deduce, from Theorem 1, necessary condi-
tions for the existence of algorithms recovering the clusters
asymptotically accurately, i.e., EΦ[|E|] = o(n). These con-
ditions are I(Φ) > 0 and TH = ω(n). Note that I(Φ) > 0
if and only if for all x such that I(x; Φ) > 0 (we need to
classify each context asymptotically accurately if we wish
to do the same over all the latent states). Similarly, neces-
sary conditions for the existence of an asymptotically exact
clustering algorithm, i.e., EΦ[E|] = o(1), are I(Φ) > 0 and
TH − n log(n)

I(Φ) = ω(1). In particular, TH must be larger
than n log(n). In the critical regime where TH = n log(n),
the necessary condition for exact recovery is I(Φ) > 1.
These regimes are reminiscences of the clustering guar-
antees for SBMs (Abbe, 2018; Yun and Proutière, 2019),
DCBMs (Gao et al., 2018), and BMCs (Sanders et al., 2020).

Remark 1. We can extend Theorem 1 to scenarios where
the behavior policy ρ is adaptive, in which we just obtain a
different rate function I ′(Φ) > I(Φ); see Appendix K.

4 Latent State Decoding and Model
Estimation Algorithms

In this section, we present our algorithms to recover the
latent state decoding function f as well as the parameters
(p, q) defining the BMDP dynamics. We also analyze their
performance and sketch the elements of the analyses.

4.1 Algorithms

The latent decoding function f of the given BMDP is esti-
mated using a two-step procedure. The first step consists in
leveraging spectral methods to obtain rough estimates of the
latent state decoding function or clusters and is described in
Algorithm 1. The second step iteratively improves the clus-
ters using log-likelihoods of each cluster and is presented
in Algorithm 2. At the end of the second step, we get accu-
rate estimates of the latent state decoding function f , from
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Algorithm 1: Initial Spectral Clustering

Input: D = {(x(t)1 , a
(t)
2 , . . . , x

(t)
H−1, a

(t)
H−1, x

(t)
H )t∈[T ]}

1 for a ∈ A do
2 for all (x, y) ∈ X 2,

N̂a(x, y)←
∑
t,h

1[(x
(t)
h , a

(t)
h , x

(t)
h+1) = (x, a, y)]

3 Γa ←X after removing
⌊n exp (−(TH/nA) log(TH/nA))⌋ contexts
with the highest N̂a(x) =

∑
y N̂a(x, y);

4 N̂a,Γa
← (N̂a(x, y)1{(x,y)∈Γa})x,y∈X ;

5 M̂a ← rank-S approximation of N̂a,Γa
;

6 end
7 M̂ ←

[
(M̂1)

⊤ · · · (M̂A)
⊤ M̂1 · · · M̂A

]
;

8 Normalize the rows of M̂ by the ℓ1-norm;
9 Obtain f̂1 by applying the K-medians algorithm to the

rows of M̂ ;
Output: f̂1 (initial estimate of the decoding function)

which we use the plug-in estimator to estimate the transition
dynamics p and q.

Our two-step procedure is inspired by the clustering al-
gorithm designed for DCBMs (Gao et al., 2018) and
BMCs (Sanders et al., 2020), but there are significant dif-
ferences mainly due to the fact that the data consists of
episodes of a controlled Markov chain (the selected actions
do matter) and to the presence of non-uniform emission
distributions.

Initial spectral clustering step. As most clustering algo-
rithms with optimality guarantees (von Luxburg, 2007), our
procedure starts with a spectral decomposition of matrices
built from the data D, observed from the underlying BMDP
model. We wish to distinguish whether a context belongs to
one cluster or another whenever this is statistically possible,
from the observations corresponding to at least one of the
actions. Hence, for each action a ∈ A, we build from the
data an observation matrix N̂a and inspect its spectral prop-
erties. We compute the rank-S approximation M̂a of each
N̂a after trimming3. We then concatenate4 these matrices
in M̂ , a (n× 2nA) matrix, whose x-th row contains all the
information we have for context x (transitions starting from

3In the sparse regime (TH = o(n logn)), trimming is neces-
sary to remove contexts with too many observations that would
perturb the empirical spectral distribution (Feige and Ofek, 2005;
Keshavan et al., 2010a; Yun and Proutière, 2016; Sanders et al.,
2020). In the dense regime (TH = Ω(n logn)), such a trimming
procedure is not necessary (Sanders and Senen–Cerda, 2023).

4For large BMDPs, concatenation may not be feasible due to
memory or computational limitations. One possible workaround is
to utilize random linear combination, as done in Yun and Proutière
(2016) for clustering labeled SBMs; this is left as future work.

Algorithm 2: Iterative Likelihood Improvement

Input: Initial cluster estimates f̂1 and {N̂a}a∈A
1 for ℓ = 1 to L = ⌊log(nA)⌋ do
2 for all (s, j, a) ∈ S2 ×A,

p̂ℓ(s|j, a)←
N̂a(f̂

−1
ℓ (j), f̂−1

ℓ (s))

N̂a(f̂
−1
ℓ (j),X )

, (3)

p̂bwd
ℓ (s, a|j)←

N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (j))∑
ã∈A N̂ã(X , f̂−1

ℓ (j))
, (4)

3 for all x ∈ X , f̂ℓ+1(x)← argmaxj∈S L(ℓ)(x, j),
4 where

L(ℓ)(x, j) =
∑
a∈A

∑
s∈S

N̂a(x, f̂
−1
ℓ (s)) log p̂ℓ(s|j, a)

+ N̂a(f̂
−1
ℓ (s), x) log p̂bwd

ℓ (s, a|j)5

6 end
Output: f̂ = f̂L+1 (final estimate of the decoding

function)

x and ending in x when selecting action a for any possible
a). Applying the S-median algorithm to the rows of M̂
yields our initial cluster estimate encoded in f̂1.

Iterative likelihood improvement step. This step takes as
input our initial cluster estimates f̂1 as well as the counters
of transitions N̂ = (N̂a(x, y))a,x,y (see Algorithm 1). For
any X,Y ⊆ X , we denote by N̂a(X,Y ) the number of
observed transitions, when action a is chosen, from any con-
text x ∈ X to any context y ∈ Y . In the ℓ-th iteration, we
first use our current cluster estimates f̂ℓ and N̂ to estimate
the empirical latent transition p̂ℓ(s|j, a) and the empirical
backward latent transition p̂bwd

ℓ (s, a|j) (p̂bwd is in a sense
similar to the backward probability vector used in Du et al.
(2019)). Using p̂ℓ, p̂bwd

ℓ , f̂ℓ, and N̂a’s, we compute for each
context x the log-likelihood L(ℓ)(x, j) of the event that x
is assigned to the latent state j. x is then re-assigned to the
cluster with the highest L(ℓ)(x, j), and we update f̂ℓ+1 ac-
cordingly. We perform L = ⌊log(nA)⌋ iterations and then
output the final estimated decoding function f̂ = f̂L+1.

Estimating p and q. For simplicity of the analysis, we
decouple the estimation of f and that of p and q. Precisely,
we first estimate f̂ via Algorithms 1 and 2 using the first
⌊T/2⌋ episodes. We then use the remaining ⌊T/2⌋ episodes
to get the estimates p̂ and q̂ using the plug-in estimators: for
each (s, s′, a) ∈ S2 ×A and x ∈ f̂−1(s), p̂(s′|s, a) = N̂a(f̂

−1(s),f̂−1(s′))

N̂a(f̂−1(s),X )
,

q̂(x|s) =
∑⌊T/2⌋

t=1

∑H
h=1 1[(x

(t)
h ,f̂(x

(t)
h ))=(x,s)]∑⌊T/2⌋

t=1

∑H
h=1 1[f̂(x

(t)
h )=s]

(5)

If the denominator in some of the above fractions is 0, then
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the corresponding estimate is set to be 0. Here, we leverage
f̂ (from the first half of the data) but use the second half of
the data to redefine the number of transitions N̂a(x, y) for
all (x, y, a).

4.2 Performance guarantees

The following theorem, whose proof is deferred to Appendix
F, provides a performance guarantee for Algorithm 1, the
initial spectral clustering algorithm. It states that under
the necessary conditions for asymptotically accurate cluster
recovery, the algorithm indeed misclassifies only a vanishing
proportion of contexts.

Theorem 2. Assume that TH = ω(n) and I(Φ) > 0. Then
after Algorithm 1, the following holds w.h.p.5:

|E|
n

= O

(√
nSA

TH

)
.

The next theorem, whose proof is presented in Appendix G,
provides the clustering error rate guarantee after the iterative
likelihood improvement steps (Algorithm 2), as well as the
estimation error upper bounds for p̂ and q̂:

Theorem 3. Assume that TH = ω(n) and I(Φ) > 0. Then,
after Algorithm 2,
(i) there exists a universal constant C = poly(η) > 0 such
that the following holds w.h.p.:

|E| = O

(∑
x∈X

exp

(
−CTH

n
I(x; Φ)

))
.

(ii) Let us denote Ep = ∥p̂(·|s, a)− p(·|s, a)∥1 and Eq =
∥q̂(·|s) − q(·|s)∥1. For all (s, s′, a) ∈ S2 × A, we have
w.h.p.,

Ep = O

(√
S3A2 log (nSA)

TH
+
SA|E|
n

)
,

Eq = O

(√
Sn

TH
+
S|E|
n

)
.

Theorem 3 (i) refines the result of Theorem 2 and shows
that our two-step procedure approaches the optimal recov-
ery rate identified in Theorem 1 up to the constant C in
the exponential. Moreover, it indicates that our algorithm
exactly recovers the clusters if TH − n log(n)

CI(x;Φ) = ω(1) for
all x and I(Φ) > 0.

4.3 Sketches of the proofs

The proofs of Theorems 2 and 3 rely on two concentration in-
equalities presented in Appendix E and F. The first inequal-
ity is a novel Bernstein-type inequality for functionals of

5w.h.p. means that with probability tending to 1 as n → ∞.

Markov chains with restarts (to account for the episodic na-
ture of the MDP). This contrasts with existing concentration
results for Markov chains that concern a single trajectory of
the chain starting in a stationary regime (Avrachenkov et al.,
2013, 2018; Paulin, 2015), which we do not assume here.
The second inequality characterizes how the observation
matrix N̂a for a given action a concentrates around its mean.
The main challenge for the analysis of N̂a stems from the
Markovian dependence in its entries, and is addressed using
similar techniques as in Sanders et al. (2020); Sanders and
Senen–Cerda (2023).

5 Reward-Free RL in BLock MDPs

5.1 Setting and objectives

A policy π for the BMDP Φ is a collection of H mappings
πh : X → P(A) (P(A) is the set of probability distri-
butions on A). We denote by πh(a|x) the probability of
selecting a when the context x is observed in stage h. The
value of a policy π is defined as the expected reward accu-
mulated over an episode V π(r) = Eπ,Φ[

∑H
h=1 rh(x

π
h, a

π
h)],

where xπh and aπh are the context and the selected action
under π in stage h. The reward function r = (rh)h∈[H] is
non-stationary (it depends on the stage h), deterministic,
and depends on contexts, not only on the corresponding
latent states. We assume that the reward rh(x, a) gathered
in (context, action) pair (x, a) in stage h lies in [0, 1]. We
denote by π⋆

r an optimal policy for the reward r, and by
V ⋆(r) its value.

In this section, we study the offline reward-free RL task (Yin
and Wang, 2021). Specifically, the learner does not know
nor utilize the reward function in the BMDP until the model
estimation is completed (Jin et al., 2020). After that, the
reward function r is revealed. The learner then computes
π̂r, the optimal policy for the MDP Φ̂ with reward function
r. This procedure is sometimes referred to as the plug-
in algorithm. The performance of this model-based RL
algorithm is characterized by ∆(R) = supr∈R(V ⋆(r) −
V π̂r (r)) for a given classR of reward functions. The case
whereR includes all possible reward functions is referred
to as the minimax reward setting, whereas the case where
R reduces to a single reward function r to as the reward-
specific setting.

5.2 Lower bounds

We derive lower bounds on the sample complexity for iden-
tifying ϵ-optimal policies in both the minimax reward and
reward-specific settings. These lower bounds hold even
when adaptive behavior policies are used to gather the
data. As shown later in this section, the performance of
the plug-in algorithm based on the model estimation proce-
dure presented in previous sections almost matches these
lower bounds, even if the behavior policy is restricted to
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being passive.

For the minimax setting, we first define

Λ(Φ) = max
v∈[−1,1]S

1

S

S∑
s=1

max
a1,a2

⟨p(·|s, a1)− p(·|s, a2),v⟩ ,

where p(·|s, a) = (p(s′|s, a))s′∈S is a vector of length S.
Note that as p(s′|s, a) does not depend on n for all (s, s′),
Λ(Φ) is strictly positive and does not depend on n.

Theorem 4. [Minimax reward setting] Consider a BMDP
Φ such that Λ(Φ) > 0. Any algorithm that guarantees
supr

1
H (V ⋆(r) − V π̂(r)(r)) ≤ ϵ with probability at least

1/2 requires TH = Ω(nΛ(Φ)
ϵ2 ) samples.

The proof of the above theorem, presented in Appendix I,
reveals that to get a minimax reward-free guarantee, the min-
imal sample complexity is mainly dictated by the estimation
of the emission distributions q. This contrasts with the case
where we target reward-specific guarantees. In this case, the
minimal sample complexity is limited by the block structure
estimation as shown in the following theorem, whose proof
is deferred to Appendix I.

Theorem 5. [Reward-specific setting] Let ϵ = o(1). Con-
sider an algorithm with the following guarantees: for any
BMDP Φ satisfying Assumptions 1-4 and I(Φ) > 0, and
for any reward function r initially revealed to the algorithm,
EΦ[

1
H (V ⋆(r) − V π̂(r)(r))] ≤ ϵ. Then the algorithm re-

quires TH = Ω(n log
(
1
ϵ

)
+ SA

ϵ2 ) samples.

The first term n log(1/ϵ) in the sample complexity lower
bound may be interpreted as the number of samples required
to learn the block structure accurately, and the second term
to the data required to learn an ϵ-optimal policy given the
block structure. We establish in the next subsection that
our model-based method achieves the limits predicted in
the above theorems. In addition, note that our method does
not require any adaptive exploration procedure. And for
the reward-specific guarantees, it does not even require any
prior knowledge of the reward function (this knowledge is
assumed for the lower bound in Theorem 5).

5.3 Performance of the plug-in algorithm

Consider the plug-in algorithm computing the optimal pol-
icy π̂r for the estimated model Φ̂ = (p̂, q̂, f̂) and the reward
function r. In the minimax reward setting, we have the
following performance guarantees (their proof is presented
in Appendix J).

Theorem 6 (Minimax reward setting). Consider a BMDP
Φ satisfying Assumptions 1-4. Further assume that TH =
ω(n) and I(Φ) > 0. Then we have w.h.p.,

sup
r

1

H
(V ⋆(r)− V π̂r (r)) = O

(√
nS2A2 log(SAH)

TH

)
.

The above minimax guarantees match those predicted by the
lower bounds presented in Theorem 4: supr

1
H (V ⋆(r) −

V π̂r (r)) scales as
√

n
TH (up to a multiplicative constant

S
√
A and logarithmic factors). Further note that the gap

between the value of the optimal policy and that of π̂r de-
creases as H increases. This is the first time such decay is
proved (for general MDPs, the gap should scale at least as
1√
T

(Jin et al., 2020); we get a gap scaling as 1√
TH

due the
specific nature of our BMDPs and more specifically, the fact
that they enjoy a bounded mixing time).

The next theorem (see Appendix J for the proof) provides
performance guarantees in the reward-specific setting.

Theorem 7. [Reward-specific setting] Let C be the con-
stant introduced in Theorem 3(i). Under the assumptions of
Theorem 6, we have for any reward function r, w.h.p.

1

H
(V ⋆(r)−V π̂r (r)) = O

(√
S3A2H log(SAHn)

T

+
SH2

n

∑
x∈X

exp

(
−CTH

n
I(x; Φ)

))
.

The upper bound shown in Theorem 7 consists of two terms.
The first scaling as

√
1/T corresponds to the error made

when learning the optimal policy assuming the block struc-
ture has been accurately inferred. The second term, scaling
as e−D TH

n for some D > 0, corresponds to the error made
due to mistakes in the block structure estimation. These
two terms also match the lower bound derived in Theorem
4: there, we have shown that 1

H (V ⋆(r) − V π̂r (r)) should
scale at least as

√
1/T and e−D TH

n . Finally note that in
the case our algorithm recovers the clusters asymptotically
exactly, i.e., when TH− n log(n)

C′I(x;Φ) = ω(1) for all x, then we
can remove the second term in our upper bound, and hence
prove that 1

H (V ⋆(r)− V π̂r (r)) scales as
√

1/T .

Remark 2. The condition that I(Φ) > 0 is closely related
to the previous separability notions considered in BMDP
literature (Du et al., 2019; Misra et al., 2020). In Appendix
D.3.5, we show that our separability condition is strictly
weaker than the γ-separability (Du et al., 2019) and kine-
matic separability (Misra et al., 2020) in that ours encom-
pass a larger set of “separable” BMDPs. Additionally,
unlike the previous works where the separability condition
was imposed as assumptions, we have naturally derived
our separability condition from an information-theoretic
argument (e.g., from the proof of Theorem 1).

6 Related Work

Structure recovery in block models. The problem of
learning the latent state decoding function is in a sense simi-
lar to the cluster recovery problem in SBM (Holland et al.,
1983); see Abbe (2018) for a brief survey and references
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therein. In the SBM, the learner observes a random graph
whose edges are drawn independently of each other and with
probabilities that depend only on the cluster ids of the two
corresponding vertices. From this observation, the objective
is to infer the initial clusters. Information-theoretical lower
bounds and optimal algorithms have been proposed for this
simple block model (Yun and Proutière, 2016; Abbe, 2018),
and extensions, e.g., DCBM (Gao et al., 2018; Dasgupta
et al., 2004; Karrer and Newman, 2011). For BMDPs, the
data consists of trajectories of a controlled Markov chain.
This implies that we deal with correlated samples, which
significantly complicates the cluster recovery task. Dealing
with Markovian data has been investigated in the case of
uncontrolled Markov chains: in Zhu et al. (2022); Zhang
and Wang (2020); Duan et al. (2019), the authors analyze
scenarios under which the transition kernel of the Markov
chain exhibits a low-rank structure. Closer to our problem,
Sanders et al. (2020) studies cluster recovery in BMC. The
main differences with our model are that in Sanders et al.
(2020), (i) the Markov chain is uncontrolled (there are no
control actions); (ii) more importantly, the emission distri-
butions are known and uniform for each latent state (i.e.,
within each context cluster, the contexts are indistinguish-
able); (iii) finally, the observations come from a single long
trajectory of the Markov chain, which simplifies the analy-
sis (since it can leverage existing concentration results for
Markov chains in the stationary regime (Paulin, 2015)).

Reinforcement learning in BMDPs. There have been
considerable research efforts recently towards the design
of efficient RL algorithms for BMDPs (Jiang et al., 2017;
Dann et al., 2018; Du et al., 2019; Misra et al., 2020; Fos-
ter et al., 2021; Zhang et al., 2022b), as well as low-rank
MDPs (Sun et al., 2019; Agarwal et al., 2020; Modi et al.,
2021; Uehara et al., 2022). All the aforementioned studies
(both for block and low-rank MDPs) rely on rich function
approximators. When applied to our BMDP problem formu-
lation, this means that the block structure can be accurately
represented through a function belonging to some function
class F . When the reward function is fixed and given (sim-
ilar to our reward-specific setting), the sample complexity
for identifying an ϵ-optimal policy is proved to scale at most
as poly(S,A,H)log |F|/ϵ2 where S, A and H denotes the
number of latent states, of actions and of rounds per episode,
respectively. However, without any prior or any additional
structural assumption imposed in BMDPs, F should corre-
spond to the set of all possible assignments of contexts to
latent states, so that log |F| = n log(S). As a consequence,
the algorithms presented in the aforementioned papers do
not provably exploit the block structure. Indeed, for tab-
ular MDPs (without any block structure), there are algo-
rithms with sample complexity scaling as poly(H)An/ϵ2,
see Menard et al. (2021). We should also mention that the
use of function approximation in Block MDPs and low-rank
MDPs requires strong computational oracle assumptions

(ERM or MLE estimators on the function class Υ). The
computational issues for RL with function approximation
have been recently discussed in many papers including Kane
et al. (2022); Golowich et al. (2022); Zhang et al. (2022a);
Sam et al. (2022); Shah et al. (2020).

Feng et al. (2020) follow a different path towards efficient
algorithms compared to the aforementioned studies, but
assume that the learner has access to an unsupervised learn-
ing oracle that outputs the correct decoding function with
high probability after poly(S) observed samples. Finally,
it is worth mentioning Azizzadenesheli et al. (2016b), an
early work where the authors analyze the regret of online
algorithms using spectral methods to infer the structure.
However, their regret guarantees scale as (and is valid only
after) n2 rounds.

To the best of our knowledge, this paper is the first to analyze
when and how a block structure in MDPs can be learned
and exploited without the assumption that this structure can
be represented using function approximation and without
resorting to any kind of oracles.

Reward-free RL The last part of this paper deals with
reward-free RL. Such RL task has been extensively studied
recently for tabular MDPs, see e.g., Jin et al. (2020); Kauf-
mann et al. (2021); Menard et al. (2021). In tabular episodic
MDP with n states, the sample complexity of algorithms
leading to ϵ-optimal policies for any reward function (in the
minimax setting) is poly(H)n2A/ϵ2. If the algorithm needs
to return an ϵ-optimal policy for a given reward function,
the sample complexity becomes poly(H)nA/ϵ2 (Menard
et al., 2021). By exploiting the block structure and under
appropriate conditions, we show in this paper that we can
significantly reduce the sample complexity in both scenarios
(e.g. by a factor n in the minimax setting).

Our work is also related to the so-called offline RL problems.
For example, Xiao et al. (2022) study a learning task where
the reward is specified at the very beginning and is given as
part of the static data D (the authors referred to this setting
as batch policy optimization (BPO)).

7 Numerical Experiments

Setting. To show the efficacy of our clustering algorithm,
we consider a simple synthetic η-regular block MDP with
n = 100, S = 2, and A = 3. The latent transition matrix of
each action is given as

P1 =

[ η
1+η

1
1+η

1
1+η

η
1+η

]
, P2 =

[ 1
1+η

η
1+η

η
1+η

1
1+η

]
, P3 =

[
1
2

1
2

1
2

1
2

]
,

where η > 1 is the parameter determining the hardness of
our BMDP instance and is pre-determined. Lastly, we use
the uniform behavior policy to generate the trajectories.
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Figure 1: The clustering error rates for various choices of (a) T ’s, (b) H’s, and (c) η’s.

This particular example shows that it is necessary to con-
sider all actions via concatenation in the initial spectral
clustering, as 1. playing the third action does not provide
any useful information for clustering, and 2. considering the
“marginalized” Markov chain, i.e., a single Markov chain
with the transition matrix 1

3 (P1 + P2 + P3) also renders
clustering impossible.

Results. For T,H , and η, we considered three settings
where for each, we vary one parameter while fixing the
other two. All experiments are repeated 1000 times, and the
codes are available in our GitHub repository6.

The results are shown in Figure 1, where we show all the
outliers for the sake of transparency. First note that with
sufficiently many observations, we obtain exact clustering
using initial clustering and likelihood improvement. In (a)
and (b), the BMDP instance is fixed, and we observe a decay
in the clustering error rate as the number of observations
increases. In (c), the BMDP instance changes with the
number of observations fixed, and as expected, we also
observe a decay in the clustering error rate as η increases,
i.e., as the instance gets easier.

We believe that the outliers are there because the initial spec-
tral clustering sometimes results in poor initialization for
the likelihood improvement step. This is not contradictory
to our guarantees because they hold in probability in the
limit of TH = ω(n log n) as n → ∞. Also, one can note
that increasing T is more effective than increasing H , even
though theoretically, the guarantees depend only on TH .
We believe that this is due to a finite-size effect. Lastly, ob-
serve that in all experiments, there seems to be a sharp phase
transition after which the algorithm consistently results in
exact clustering. This is consistent with our lower bound
(Theorem 1), which suggests an asymptotic phase transition
at TH = ω(n) and TH = ω(n log n).

6https://github.com/nick-jhlee/
optimal-block-mdp

In Appendix M, we provide the precise experimental details
as well as additional results suggesting that our algorithm is
somewhat robust to random corruption.

8 Conclusion and Future Work

In this paper, we address learning problems in episodic
BMDPs. We provide, for the first time, information-
theoretical lower bounds on the latent state decoding error
rate, as well as on the sample complexity for near-optimal
policy identification in the reward-free setting (valid even
for algorithms with adaptive exploration). We also devise
simple algorithms that approach these fundamental limits.
Importantly, by exploiting the block structure, we demon-
strate that we can significantly accelerate the search for
near-optimal policies (in most cases, by a factor n, the size
of the context space). This is also verified empirically in a
synthetic BMDP environment.

In this paper, we mostly restricted the analysis to the case
where the data is generated using a fixed behavior policy.
There are cases where active exploration is more desir-
able (Jin et al., 2020; Kaufmann et al., 2021; Zhang et al.,
2021a; Tarbouriech and Lazaric, 2019; Tarbouriech et al.,
2020). In Appendix K, we already provide some discus-
sions on how to extend our theoretical results to such active
behavior policies. We plan to make these results and their
proofs precise as well as conduct numerical experiments to
assess the practical relevance of active exploration.

Another interesting research direction would be to apply to
BMDPs the concept of δ-significant latent state introduced
in Jin et al. (2020) (later extended in Zhang et al. (2021a)) for
tabular MDPs, which allows the analysis of RL tasks when
some states are hard to reach. Using this concept, we might
be able to further relax the η-regularity assumption (we have
already proposed an interesting relaxation in Appendix L).
Then we would have to recover the context to latent state
mapping for significant latent states only.

https://github.com/nick-jhlee/optimal-block-mdp
https://github.com/nick-jhlee/optimal-block-mdp
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A Further Related Work

Estimation of (controlled) Markov chains The plug-in estimator used for the offline reward-free RL has been studied
extensively in the context of estimating the transition matrix of some underlying finite, ergodic Markov chain, which is of
both theoretical and practical importance. For uncontrolled Markov chains, Billingsley (1961) was the first to consider this
as a non-parametric estimation problem. Recently, Wolfer and Kontorovich (2019, 2021) established the PAC-type minimax
sample complexity bound w.r.t. any metric. There has also been some recent interest in obtaining improved guarantees
or improving the estimator itself when a certain structural assumption is imposed on the Markov chain. As mentioned
previously, Sanders et al. (2020) introduced and studied the problem of clustering and estimation of the transition kernel
(and the emission probabilities) of BMCs; further spectral analyses have been done in Sanders and Senen–Cerda (2023);
Sanders and Van Werde (2023). It is also worthwhile to mention Werde et al. (2022), in which a thorough evaluation of the
BMC model in a realistic setting has been done, showing that indeed the BMC model as well as the proposed clustering
algorithm can provide meaningful insights into exploratory data analyses and more.

However, all the aforementioned works are for uncontrolled Markov chains, whereas most applications in RL and control
theory deal with controlled Markov chains (e.g., action in RL literature). Although the efficacy of the plug-in estimators
in offline RL is known (Duan et al., 2020; Yin and Wang, 2020; Ren et al., 2021), the precise characterization of the
non-parametric estimation of controlled Markov chain in an offline setting has been an open question. Banerjee et al. (2022)
first tackled this by showing that the usual plug-in estimator (per action) is minimax optimal in the PAC sense and provides
results for various situations such as Markov chain with restarts and offline policy evaluation (Sutton and Barto, 2018).

Offline, reward-free RL The main focus of the first half is on the statistically tight characterization of clustering, as well
as guarantees on how well the transition dynamics can be estimated. In RL, this is often referred to as model estimation. As
the learner cannot interact further with the environment other than the given trajectories that have no reward information and
are generated via some fixed, passive behavior policy ρ, our setting naturally extends to the intersection of (model-based)
offline RL and reward-free RL. To the best of our knowledge, we are the first to consider offline reward-free RL on BMDPs.

Offline RL is a framework in which the learner employs a static dataset D collected by some behavior policy ρ and performs
training without any further interaction with the environment (Levine et al., 2020). Such a framework is especially useful
when the data collection is expensive or dangerous in cases such as healthcare. Several recent works (Yin and Wang, 2021;
Ren et al., 2021; Zhang et al., 2021b; Uehara et al., 2022; Xiao et al., 2022) studied the statistical efficiency of offline RL.

Reward-free RL (or reward-free exploration), pioneered by Jin et al. (2020), is the framework in which the goal is to estimate
the optimal policy under any reward function that is revealed to the learner after a single exploration phase. Thus the main
focus is to explore well such that the collected data has sufficient coverage. Recently, this has been extensively studied
theoretically for tabular MDPs, see e.g., Jin et al. (2020); Kaufmann et al. (2021); Menard et al. (2021); Zhang et al. (2021a);
Yin and Wang (2021).

For a fair comparison, we consider a tabular episodic MDP with n states such that every context-action pair can be reached
with probability Θ(1/nA). we now recall the state-of-the-art sample complexity results for offline reward-free settings, in
which the (later revealed) rewards can be non-stationary. If the algorithm needs to return an ϵ-optimal policy for any reward
functions (reward-free setting), Yin and Wang (2021) showed the bound Õ

(
H2n2A

ϵ2

)
, which matches the known lower

bound up to logarithmic factors (Jin et al., 2020). If the algorithm needs to return an ϵ-optimal policy for a single reward
function (reward-specific setting), Ren et al. (2021) showed7 the bound Õ

(
nA
ϵ2 + H2n2A

ϵ

)
, as well as nearly matching

minimax lower bound Ω
(
nA
ϵ2

)
. The reason for the extra H terms compared to Ren et al. (2021) is because they consider the

total bounded reward assumption (
∑

h rh ∈ [0, 1]), and thus to compare to our setting in which we assume bounded reward
(rh ∈ [0, 1]), we need to replace n with nH , ϵ with ϵH , and multiply by H in their guarantees. By exploiting the block
structure and under appropriate conditions (e.g., when ϵ = o(1)), we significantly improve the sample complexities in all
cases by a factor of n, and especially in reward-specific setting, exponentially in ϵ for a certain regime of ϵ.

7Technically, they considered the so-called offline policy optimization scenario in which instead of the reward function being revealed
to the learner, the trajectories outputted by some (potentially unknown) behavior policy contain the rewards. Thus, the learner has to also
estimate the underlying reward function, while in our setting, the true reward function is revealed, i.e., estimation of the reward function is
not necessary. Despite this difference, one can immediately conclude from a quick inspection of their proofs that their upper and lower
bounds still hold for our reward-specific setting.
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B Notations

Generic notations
1 Column vector with all entries equal to 1

∥ · ∥1 The ℓ1 norm on vectors
∥ · ∥2 The ℓ2 norm on vectors
∥ · ∥∞ The infinity norm on vectors
∥ · ∥ Operator norm on matrices
∥ · ∥F Frobeinus norm on matrices
x ∨ y To mean max(x, y)
x ∧ y To mean min(x, y)
Sd−1 Unit sphere in Rd

[K] For a given integerK, denotes the set {1, . . . ,K}
P(Z) The set of probability distributions over Z

η-regular A discrete probability ν in P(Z) is said η-regular if maxz1,z2∈Z
ν(z1)
ν(z2)

≤ η

P(Z, η) The set of probability distributions over Z that are η-regular
dTV (·, ·) The total variation distance between probability measures
KL(·||·) The Kullback-Liebler divergence between probability measures

f(n) ∼ g(n) To mean limn→∞
f(n)
g(n)

= 1

f(n) ≍ g(n) To mean there exists c, C > 0 such that for all n ≥ 1, cg(n) ≤ f(n) ≤ Cg(n).
f(n) ≳ g(n) To mean there exists c > 0 such that for all n ≥ 1, f(n) ≥ cg(n).
f(n) ≲ g(n) To mean there exists C > 0 such that for all n ≥ 1, f(n) ≤ Cg(n).

Block MDPs
n Number of contexts
S Number of latent states
A Number of actions

f(x) Latent state of context x
p(s′|s, a) Transition probability from latent state s to s′ with action a
q(x|s) Emission probability for context x given the latent state s

P (y|x, a) Transition probability from context x to y with action a
ρ(a|x) Behavior policy (probability of choosing action a at context x)
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C Markov Chains induced in BMDPs and their Mixing Times

In this appendix, we analyze some of the Markov chains induced by the dynamics in a BMDP. Specifically, we study the
Markov chain capturing the dynamics of the context, the Markov chain representing the evolution of the (action, next
context) pair, and finally the Markov chain whose state is the triple (context, action, next context). To do that, we first define
the contextual transition kernel P (y|x, a) = p(f(y)|f(x), a)q(y|f(y)). We denote by MC0, MC1, MC2 these chains,
respectively. Under the (memoryless) behavior policy ρ ∼ U(A), the transition kernels and the initial state distributions of
these chains are: for all (x, x′, y, y′) ∈ X 4, and all (a, b) ∈ A2,

P0(y|x) =
∑

a ρ(a|x)P (y|x, a), µ0(x) = µ(x),

P1((b, y)|(a, x)) = ρ(b|x)P (y|x, b), µ1(a, x) =
∑

y∈X µ(y)ρ(a|y)P (x|y, a),
P2((y, b, y

′)|(x, a, x′)) = 1y=x′ρ(b|y)P (y′|y, b), µ2(x, a, x
′) = µ(x)ρ(a|x)P (x′|x, a).

Inspired by our Assumption 3 (ii), we introduce the notion of η-regular Markov chains:

Definition 2 (η-regular Markov chain). A time-homogenous Markov chain (Zt)t≥1 with finite state space Z and transition
kernel P (z′|z) = P[Zh+1 = z′|Zh = z] is η-regular for some η ≥ 1 if and only if

max
(x,y,z)∈Z3

max

{
P (y|x)
P (z|x)

,
P (x|y)
P (x|z)

}
≤ η.

We remark that Assumption 3 implies that: for all (s, s′, a) and all x ∈ f−1(s),

1

ηS
≤ αs ≤

η

S
,

1

ηS
≤ p(s′|s, a) ≤ η

S
,

1

ηαsn
≤ q(x|s) ≤ η

αsn
.

This observation will be instrumental in all the proofs presented in the remainder of the Appendix.

C.1 Regularity and stationary distributions

We start with the following:

Proposition 1. For all (x, y, a) ∈ X 2 ×A,
1

η3n
≤ P (y|x, a) ≤ η3

n
(6)

The following two propositions provide basic properties of the Markov chains MC0 and MC1.

Proposition 2. Under Assumption 3, the Markov chain MC0 is η3-regular, and irreducible aperiodic. Let Π0 denote its
stationary distribution. We have: for all (x, y) ∈ X 2,

1

η3n
≤ P0(y|x) ≤

η3

n
,

1

η3n
≤ Π0(x) ≤

η3

n
. (7)

Proposition 3. Under Assumptions 3 and 4, the Markov chain MC1 is η3-regular, and irreducible aperiodic. Let Π1 denote
its stationary distribution. We have: for all (x, y) ∈ X 2, and all (a, b) ∈ A2,

1

η3nA
≤ µ1(a, x) ≤

η3

nA
,

1

η3nA
≤ P1((b, y)|(a, x)) ≤

η3

nA
,

1

η3nA
≤ Π1(a, x) ≤

η3

nA
. (8)

In addition, for all (a, x) ∈ A× X , Π1(a, x) =
∑

y∈X Π0(y)ρ(a|y)P (x|y, a).

One may easily check that the Markov chain MC2 is not η-regular for any η, but our analyses will actually leverage the
properties of Markov chains with kernel P 2

2 . More precisely, we introduce the following two Markov chains: MC2,odd

and MC2,even. As the name suggests, they correspond to Zh = (X2h−1, A2h−1, X2h) and Zh = (X2h, A2h, X2h+1) (for
h ≥ 1), respectively. These chains share the same transition kernel, defined as follows:

P 2
2 ((y, b, y′)|(x, a, x′)) := (P2)

2
((y, b, y′)|(x, a, x′))
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=
∑
x̃,ã,ỹ

P2 ((y, b, y
′)|(x̃, ã, ỹ))P2 ((x̃, ã, ỹ)|(x, a, x′))

=
∑
ã∈A

ρ(b|y)P (y′|y, b)ρ(ã|x′)P (y|x′, ã). (9)

The two chains have different initial distributions:

µ2,odd(x, a, x
′) = µ(x)ρ(a|x)P (x′|x, a), (10)

µ2,even(x, a, x
′) =

∑
y,b

µ(y)ρ(b|y)P (x|y, b)ρ(a|x)P (x′|x, a). (11)

Proposition 4. Under Assumptions 3 and 4, the Markov chains MC2,odd and MC2,even are η3-regular, and irreducible
aperiodic. The two Markov chains share the same stationary distribution, denoted by Π2. We have: for all (x, x′, y, y′) ∈ X 2,
and all (a, b) ∈ A2,

1

η3n2A
≤ µ2,odd(x, a, x

′) ≤ η3

n2A
,

1

η6n2A
≤ µ2,even(x, a, x

′) ≤ η6

n2A
, (12)

1

η6n2A
≤ P 2

2 ((y, b, y′)|(x, a, x′)) ≤ η6

n2A
,

1

η6n2A
≤ Π2(x, a, x

′) ≤ η6

n2A
. (13)

In addition, for all (x, x′, a) ∈ X 2 ×A, Π2(x, a, x
′) = Π0(x)ρ(a|x)P (x′|x, a).

The proofs of the above propositions are straightforward. We just justify the expressions of the stationary distributions Π1

and Π2.

Proof. (Stationary distribution of Π1) It suffices to show that
∑

y∈X Π0(y)ρ(b|y)P (z|y, b) satisfies the balance equation
for the MC1:

∑
(z,b)∈X×A

∑
y∈X

Π0(y)ρ(b|y)P (z|y, b)

P1(x, a|z, b) =
∑

(z,b)∈X×A

∑
y∈X

Π0(y)ρ(b|y)P (z|y, b)

 ρ(a|z)P (x|z, a)
=
∑
z∈X

ρ(a|z)P (x|z, a)
∑
y∈X

Π0(y)

[∑
b∈A

ρ(b|y)P (z|y, b)

]
=
∑
z∈X

ρ(a|z)P (x|z, a)
∑
y∈X

Π0(y)P0(z|y)

=
∑
z∈X

ρ(a|z)P (x|z, a)Π0(z).

Proof. (Stationary distribution of Π2) Again we show that Π0(x)ρ(a|x)P (x′|x, a) satisfies the balance equations of the
Markov chain MC2: ∑

(y,y′,b)∈X 2×A

[Π0(y)ρ(b|y)P (y′|y, b)]P 2
2 ((x, a, x

′)|(y, b, y′))

=
∑

(y,y′,b)

[Π0(y)ρ(b|y)P (y′|y, b)]
∑
ã∈A

ρ(a|x)P (x′|x, a)ρ(ã|y′)P (x|y′, ã)

= ρ(a|x)P (x′|x, a)
∑

(y,y′,b)

Π0(y)ρ(b|y)P (y′|y, b)
∑
ã∈A

ρ(ã|y′)P (x|y′, ã)︸ ︷︷ ︸
=P0(x|y′)

= ρ(a|x)P (x′|x, a)
∑
(y,y′)

Π0(y)P0(y
′|y)P0(x|y′)

= ρ(a|x)P (x′|x, a)Π0(x).
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C.2 Bounds on multi-hop transition probabilities

We can establish that the bounds for P presented in the above three propositions hold for Ph for any h ≥ 1. To this aim, we
use the following generic lemma:

Lemma 1. Let Z be a finite state space. For a row-stochastic matrix P , the following holds for all x, y ∈ Z and all h ≥ 1:

min
x,y∈Z

P (x, y) ≤ Ph(x, y) ≤ max
x,y∈Z

P (x, y). (14)

Proof. One important observation is that Ph is also row-stochastic, for any h ≥ 1. We only prove the upper bound, as the
lower bound follows in the exact same manner.

h = 1 is trivial, and thus let h ≥ 2. Then, for any (x, y) ∈ Z × Z

Ph(x, y) =
∑
z∈Z

P (x, z)Ph−1(z, y) ≤
(
max
x,z∈Z

P (x, z)

)∑
z∈Z

Ph−1(z, y) = max
x,z∈Z

P (x, z).

Combining the results of the above lemma and those of Propositions 3 and 4, we simply deduce:

Corollary 1. For all (x, a, x′), (y, b, y′) ∈ X ×A×X and h ≥ 1,

1

η3n
≤ (P0)

h
(y|x) ≤ η3

n
, (15)

1

η3nA
≤ (P1)

h
((b, y)|(a, x)) ≤ η3

nA
, (16)

1

η6n2A
≤
(
P 2
2

)h
((y, b, y′)|(x, a, x′)) ≤ η6

n2A
. (17)

C.3 Mixing times

Consider an irreducible aperiodic Markov chain with initial distribution µ, transition kernel P , and stationary distribution Π.
Its mixing time is defined as inf{h ≥ 1 : dTV (µP

h,Π) ≤ 1/4}. The following proposition provides upper bounds of the
Markov chains MC0, MC1, MC2,odd and MC2,even.

Proposition 5. Assume that ρ(·|x) ∼ U(A). Under Assumptions 3 and 4, we have:

(i) The mixing times of MC0 is upper bounded by 2η2.

(i) The mixing times of MC1 is upper bounded by 2η2.

(ii) The mixing times of MC2,odd and MC2,even are both upper bounded by η2 + 1.

As described below, to obtain our tight upper bounds for the mixing times, instead of simply using the loose (regularity)
bounds for the transition kernels, we use more sophisticated arguments.

The proof of the above results relies on Dobrushin’s ergodic coefficient:

Definition 3 (Dobrushin (1956a,b)). For any row-stochastic matrix P , define the Dobrushin’s ergodic coefficient δ(P ) as
follows:

δ(P ) :=
1

2
max
x,y∈X

∑
z∈X
|P (z|x)− P (z|y)| . (18)

The Dobrushin’s ergodic coefficient can be equivalently rewritten (Exercise 4.4.12 of Bremaud (2020)) as follows:

δ(P ) = 1− min
x,y∈X

∑
z∈X

(P (z|x) ∧ P (z|y)) . (19)

Now, δ(P ) is directly related to the convergence rate of the stationary distribution:
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Theorem 8 (Theorem 4.3.15 of Bremaud (2020)). For any h,

dTV

(
µPh,Π

)
≤ (δ(P ))

h
dTV (µ,Π) (20)

and
dTV

(
Ph+1(z, ·),Π

)
≤ (δ(P ))

h
dTV (P (z, ·),Π) (21)

Proof of Proposition 5 (i) We analyze the mixing time tmix,MC0(ε) = inf{h ≥ 1 : dTV (µP
h
0 ,Π0) ≤ ε}, and apply the

results to ε = 1/4. We prove that:

tmix,MC0(ε) ≤ η2 log
1

ε
. (22)

Proof. For any x, y, z ∈ X ,

P0(z|x) ∧ P0(z|y) =

(∑
a∈A

ρ(a|x)P (z|x, a)

)
∧

(∑
a∈A

ρ(a|y)P (z|y, a)

)

=
1

A

(∑
a∈A

P (z|x, a)

)
∧

(∑
a∈A

P (z|y, a)

)

≥ 1

A

(∑
a∈A

1

ηαf(z)n
p(f(z)|f(x), a)

)
∧

(∑
a∈A

1

ηαf(z)n
p(f(z)|f(y), a)

)

≥ 1

ηαf(z)nA

(∑
a∈A

1

η
p(f(z)|f(y), a)

)
∧

(∑
a∈A

p(f(z)|f(y), a)

)

≥ 1

η2αf(z)nA

∑
a∈A

p(f(z)|f(y), a)

Then the Dobrushin’s coefficient can be bounded as follows:

δ(P0) = 1− min
x,y∈X

∑
z∈X

(P0(z|x) ∧ P0(z|y))

≤ 1− min
x,y∈X

∑
z∈X

1

η2αf(z)nA

∑
a∈A

p(f(z)|f(y), a)

= 1− 1

η2A
min
y∈X

∑
a∈A

∑
s∈S

∑
z∈f−1(s)

1

nαs
p(s|f(y), a)

= 1− 1

η2
.

Thus, we have:

dTV

(
Ph
0 (z, ·),Π

)
≤ (δ(P0))

h
dTV (µ0,Π0) ≤

(
1− 1

η2

)h

dTV (µ0,Π0) ≤ e
− h

η2 dTV (µ0,Π0) .

Note that dTV (µ0,Π0) = 1
2

∑
z∈X |µ(z)−Π(z)| ≤ 1

2

∑
z∈X (µ0(z) + Π0(z)) = 1. In summary, we have

dTV

(
Ph
0 (z, ·),Π0

)
≤ ε whenever h ≥ η2 log 1

ε . This completes the proof.

Proof of Proposition 5 (ii) The proof follows from exactly the same arguments as those used in the proof of (i).

Proof of Proposition 5 (iii) We start with the following lemma, which relates the power of P2 to the power of P1::

Lemma 2. Ph+1
2 (y′, a′, z|x, a, y) =

∑
ã∈A P1((a

′, z)|(ã, y′))Ph
1 ((ã, y

′)|(a, y)).

Proof. We proceed by induction.
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• For h = 1:

P 2
2 ((y

′, a′, z)|(x, a, y)) =
∑

(x̃,ã,ỹ)∈X×A×X

P2((y
′, a′, z)|(x̃, ã, ỹ))P2((x̃, ã, ỹ)|(x, a, y))

=
∑
ã∈A

P1((a
′, z)|(ã, y′))P1((ã, y

′)|(a, y)).

• For h ≥ 2:

Ph+1
2 ((y′, a′, z)|(x, a, y)) =

∑
(x̃,ã,ỹ)∈X×A×X

P2((y
′, a′, z)|(x̃, ã, ỹ))Ph

2 ((x̃, ã, ỹ)|(x, a, y))

=
∑

(x̃,ã)∈X×A

P1((a
′, z)|(ã, y′))

∑
ã′∈A

P1((ã, y
′)|(ã′, x̃))Ph−1

1 ((ã′, x̃)|(a, y))

=
∑
ã∈A

P1((a
′, z)|(ã, y′))

∑
(x̃,ã′)∈X×A

P1((ã, y
′)|(ã′, x̃))Ph−1

1 ((ã′x̃)|(a, y))

=
∑
ã∈A

P1((a
′, z)|(ã, y′))Ph

1 ((ã, y
′)|(a, y)).

Lemma 3. For all h ≥ 1 and all (x, a, y) ∈ X ×A×X ,

dTV

(
(P2)

h+1
(·|(x, a, y)),Π2

)
≤ dTV

(
(P1)

h
(·|(a, y)),Π1

)
. (23)

Proof. Noting that Π2(y
′, a′, z) =

∑
ã∈A P1((a

′, z)|(ã, y′))Π1(ã, y
′), we have:

2dTV

(
Ph+1
2 (·|x, a, y),Π2

)
=

∑
(y′,a′,z)∈X×A×X

∣∣Ph+1
2 (y′, a′, z|x, a, y)−Π2(y

′, a′, z)
∣∣

(∗)
=

∑
(y′,a′,z)∈X×A×X

∣∣∣∣∣∑
ã∈A

P1((a
′, z)|(ã, y′))Ph

1 ((ã, y
′)|(a, y))−

∑
ã∈A

P1((a
′, z)|(ã, y′))Π1((]ã, y

′)

∣∣∣∣∣
≤

∑
(y′,ã)∈X×A

∣∣Ph
1 ((ã, y

′)|(a, y))−Π1(ã, y
′)
∣∣ ∑
(z,a′)∈X×A

P1((a
′, z)|(ã, y′))

= 2dTV

(
Ph
1 (·|(a, y)),Π1

)
,

where (∗) follows from Lemma 2.

We now complete the proof of Proposition 5 (iii): from Lemma 3, we have that for all h ≥ 1 and all (x, a, y) ∈ X ×A×X ,

dTV

((
P 2
2

)h
(·|(x, a, y)),Π2

)
≤ dTV

(
(P1)

2h−1
(·|(a, y)),Π1

)
.

In particular, this implies that tmix,MC2 ≤
tmix,MC1

+1

2 ≤ tmix,MC1

2 + 1 ≤ η2 + 1.
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D Proof of Theorem 1 – Fundamental Lower Bound of Latent State Decoding

The proof is based upon an appropriate change-of-measure argument (Lai and Robbins, 1985). The clustering error rate
lower bound in SBMs (Yun and Proutière, 2014, 2016) and Block Markov Chains (Sanders et al., 2020) also leveraged a
change-of-measure argument, but different than ours. More precisely, our confusing model is constructed by first fixing a
specific context and moving it to some other cluster. Of course, the q’s (emission probabilities) are changed appropriately.
We note that since each cluster is inhomogeneous (the emission distributions are not uniform), we derive a clustering error
rate lower bound for each context x ∈ X .

The confusing model. Denote the T observed trajectories as T = {T (t)}Tt=1. Fix a context x and denote by i = f(x). Note
that {x ∈ E} = {f̂(x) ̸= i} is the event that x is mis-classified, where we recall that E is the set of mis-classified contexts
under ρ and our chosen algorithm A. Let Φ be the true BMDP model, induced by (p, q, f), from which T is “actually"
generated. We define the confusing BMDP model by moving x from its original cluster i to some other cluster j ̸= i, which
will be determined later on. More precisely, let Ψ(x,j) be the confusing model, induced by (p, q̃, f̃), where f̃(x) = j and
f̃ ≡ f on all other contexts and q̃, the context emission distribution of Ψ(x,j), is defined as follows:

q̃(x|j) = cq(x|i), q̃(y|j) = (1− cq(x|i))q(y|j), y ∈ f−1(j) \ {x}, (24)

q̃(z|i) = q(z|i)
1− q(x|i)

, z ∈ f−1(i) \ {x}, (25)

q̃(y|s) = q(y|s), y ∈ f−1(s), s ∈ S \ {i, j}. (26)

Here, c ≥ 0 is to be chosen later. We now provide the possible values taken by c, so that Ψ(x,j) is a possible BMDP
compatible with the β-locality assumption (for β ≳ 1

n ) at Φ. First of all, for q̃ to be a well-defined probability distribution,
we must have that q̃ ∈ [0, 1]. From the regularity condition on q, we have that 0 ≤ c ≤ 1

η2
n
S . Now, from the β-locality, we

must have that ∣∣∣∣ q(y|i)
1− q(x|i)

− q(y|i)
∣∣∣∣ ≤ β, |(1− cq(x|i))q(z|j)− q(z|j)| ≤ β.

The first inequality is trivially true for β ≥ 2η2 S
n , with sufficiently large n, or precisely speaking, with n ≥ 2η2S. The

second inequality is true for 0 ≤ c ≤ 2
η2

n
S . Overall, the domain of c is given as 0 ≤ c ≤ 1

η2
n
S . This completes the

description of Ψ(x,j). To simplify the notation, we use Ψ to represent Ψ(x,j) in the remaining of the proof.

Log-likelihood ratio and its connection to the error rate. The log-likelihood ratio of the observed trajectories under Φ
and Ψ is

L = log
PΨ[
{
T (t)

}T
t=1

]

PΦ[
{
T (t)

}T
t=1

]
=

T∑
t=1

log
PΨ[T (t)|T (1), · · · , T (t−1)]

PΦ[T (t)|T (1), · · · , T (t−1)]︸ ︷︷ ︸
≜L(t)

, (27)

with by convention T (−1) = ∅ and T (t) = (x
(t)
1 , a

(t)
1 , · · · , x(t)H−1, a

(t)
H−1, x

(t)
H , a

(t)
H ). In our case in which the policies are

non-adaptive, the conditioning is meaningless i.e. P[T (t)|T (1), · · · , T (t−1)] = P[T (t)]. The conditioning will be important
when considering adaptive behavior policies (refer to Appendix K). The following proposition relates L to the classification
error rate of x.
Proposition 6. For β-locally better-than-random clustering algorithm that outputs f̂ given some dataset (of trajectories),
we have:

(i) PΨ[f̂(x) ̸= f(x)] ≥ 1

S
,

(ii) εx = PΦ[x ∈ E ] ≥
1

2S
exp

(
−EΨ[L]−

√
2SVarΨ[L]

)
.

Proof. The proof is analogous to that of Proposition 4 of Sanders et al. (2020).

Proof of (i)
From the definition of β-locally better-than-random algorithm (Definition 1),

PΨ[f̂(x) ̸= f(x)] ≥ PΨ[f̂(x) = f̃(x)] = 1− PΨ[f̂(x) ̸= f̃(x)] ≥ 1−
(
1− 1

S

)
=

1

S
,
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where the first inequality follows from the observation that {f̂(x) = f̃(x)} ⊂ {f̂(x) ̸= f(x)}.

Proof of (ii)
For simplicity, we denote the event ξx = {f̂(x) ̸= f(x)}. First, consider any function R(n, T ) : N2

+ → R. We have:

PΨ[L ≤ R(n, T )] = PΨ[L ≤ R(n, T ), ξ∁x] + PΨ[L ≤ R(n, T ), ξx].

From (i), we deduce:

PΨ[L ≤ R(n, T ), ξ∁x] ≤ PΨ[ξ
∁
x] = 1− PΨ[ξx] ≤ 1− 1

S
.

From our change-of-measure,

PΨ[L ≤ R(n, T ), ξx] ≤ eR(n,t)PΦ[L ≤ R(n, T ), ξx] ≤ eR(n,T )PΦ[ξx].

Combining the above results, we obtain:

PΨ[L ≥ R(n, T )] ≥ 1−
(
1− 1

S

)
− eR(n,T )PΦ[ξx].

Specify R(n, T ) = log 1
2S + log 1

PΦ[ξx]
and apply Chebyshev’s inequality to get

PΨ

[
L ≥ EΨ[L] +

√
2SVarΨ[L]

]
≤ 1

2S
≤ PΨ

[
L ≥ log

1

2S
− logPΦ[ξx]

]
,

from which the result follows.

The rate (or divergence) function and its connection to the log-likelihood ratio. We first introduce the following
divergence or rate function:

I
(t)
j (x; c,Φ) := n

∑
a∈A

∑
s∈S

{
cq(x|f(x))p(j|s, a)mΨ,(t)

ρ (s, a) log
cp(j|s, a)
p(f(x)|s, a)

+ cq(x|f(x))mΨ,(t)
ρ (j, a)p(s|j, a) log p(s|j, a)

p(s|f(x), a)

+ (1− cq(x|f(x))p(j|s, a))mΨ,(t)
ρ (s, a) log

1− cq(x|f(x))p(j|s, a)
1− q(x|f(x))p(f(x)|s, a)

}
, (28)

where mΨ,(t)
ρ (s, a) denotes the expected proportion of rounds spent in (latent state, action) pair (s, a) under policy ρ and

model Ψ, in the t-th episode:

mΨ,(t)
ρ (s, a) :=

1

H − 1

H−1∑
h=1

PΨ[f̃(x
(t)
h ) = s, a

(t)
h = a]. (29)

Note that since the behavior policy is not changing from one episode to the other, mΨ,(t)
ρ (s, a) and hence I(t)j (x; c,Φ) do

not depend on t. However, we keep separating the different episodes, so that the analysis will remain valid under adaptive
behavior policies; see Appendix K for more detailed discussions.

Next, we define Ij(x; c,Φ) := 1
T

∑T
t=1 I

(t)
j (x; c,Φ), and finally, the rate function:

I(x; Φ) := min
j:j ̸=f(x)

inf
c>0

Ij(x; c,Φ). (30)

Note that the choice of the "most" confusing cluster j⋆ as well as the "optimal” c⋆ depends on x, i.e., such choices can (and
will differ, generally) for each x ∈ X .

We now consider two cases; when I(x; Φ) = 0 and when I(x; Φ) > 0.
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Proposition 7. If I(x; Φ) = 0, then PΦ[f̂(x) ̸= f(x)] ≥ αmin.

Proof. Proposition 10 (proved in Section D.3) asserts that I(x; Φ) = 0 iff there exists some j ̸= f(x) and c > 0 such that

1. p(f(x)|s, a) = cp(j|s, a), ∀(s, a) ∈ S ×A,

2. p(s|f(x), a) = p(s|j, a), ∀(s, a) ∈ S ×A.

We now show that when I(x; Φ) = 0, we can construct a different BMDP model in which clusters i = f(x) and j are
merged to a single cluster, yet the likelihoods for any given observation(trajectory) are the same for this alternate model or
the true model. This then implies that the clustering error rate of the algorithm is at least αmin.

Our original model is driven by the contextual transition kernel P (y|x, a) = p(f(y)|f(x), a)q(y|f(y)) for any (x, y, a) ∈
X 2 ×A. For our alternate model, let k be the merged cluster index of f(x) and j, and first denote S̃ = S \ {f(x), j}. Then
the alternate set of latent states is S = S ′ ∪ {k}. We then define f ′, p′, and q′ as follows:

1. p′(s|k, a) = p(s|j, a) and q′(·|s) = q(·|s) for any (s, a) ∈ S̃ × A,

2. p′(k|s, a) = (1 + c)p(j|s, a) for any (s, a) ∈ ×A,

3. q′(y|k) = c
1+cq(y|i) and q′(z|k) = 1

1+cq(z|j) for any y ∈ f−1(i) and any z ∈ f−1(j),

4. p′(k|k, a) = (1 + c)p(j|i, a).

Then it is straightforward to check that 1. p′ and q′’s are all well-defined probability distributions over their respective
supports and more importantly, 2. the alternate contextual transition kernel P ′(y|x, a) = p′(f ′(y)|f ′(x), a)q′(y|f ′(y)) is
identical to that of P . As P ′ = P , for any given observation(trajectory), the likelihoods under true and alternate models are
exactly the same, and we are done.

Now, assuming that I(x; Φ) > 0 i.e. Ij(x; c,Φ) > 0 for any j ̸= f(x) and c > 0, the next propositions assert that EΨ[L] is
precisely the leading term with Ij(x; c,Φ) to be defined later, and VarΨ[L] is negligible:

Proposition 8. EΨ[L] ≤ TH
n (Ij(x; c,Φ) +O( 1n )).

Proposition 9. VarΨ[L] ≤ O
(
TH
n

)
.

Combining all the above results will complete the proof of Theorem 1. Denote by (j⋆, c⋆) such that I(x; Φ) = Ij⋆(x; c
⋆,Φ).

Now Propositions 6, 7, 8 and 9 applied to (j⋆, c⋆) imply:

PΦ[f̂(x) ̸= f(x)] ≥ 1

2ηS
exp

(
−I(x; Φ)TH

n
(1 + o(1))

)
.

D.1 Proof of Proposition 8

Here we compute EΨ[L]. We fix our attention to episode t and focus on L(t). For full generality, we consider a more general
form of behavior policy that can change per episode i.e. ρ = (ρ(t))t∈[T ]. Recall that x(t)h is the context observed in step h of
this episode. Note that the corresponding latent state s(t)h may depend on the model Φ or Ψ considered. Further recall that
the transition kernels under the two models are:

PΦ(y|x, a) = q(y|f(y))p(f(y)|f(x), a),
PΨ(y|x, a) = q̃(y|f̃(y))p(f̃(y)|f̃(x), a).

Then the likelihoods of the observed trajectory on the t-episode under both models are:

PΦ[T (t)] =

[
µ(x

(t)
1 )

H∏
h=1

ρ(t)(a
(t)
h |x

(t)
h )

][
H−1∏
h=1

PΦ(x
(t)
h+1|x

(t)
h , a

(t)
h )

]
,

PΨ[T (t)] =

[
µ(x

(t)
1 )

H∏
h=1

ρ(t)(a
(t)
h |x

(t)
h )

][
H−1∏
h=1

PΨ(x
(t)
h+1|x

(t)
h , a

(t)
h )

]
.
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We deduce that:

EΨ[L(t)] = EΨ

[
H−1∑
h=1

log
PΨ(x

(t)
h+1|x

(t)
h , a

(t)
h )

PΦ(x
(t)
h+1|x

(t)
h , a

(t)
h )

]
=

∑
(z,a,y)∈X×A×X

EΨ

[
N̂ (t)

a (z, y)
]
log

PΨ(y|z, a)
PΦ(y|z, a)

,

where N̂ (t)
a (z, y) :=

∑H−1
h=1

indicator[x
(t)
h = z, a

(t)
h = a, x

(t)
h+1 = y]. Note that the dependency on the behavior policy ρ(t) becomes implicit in

N̂
(t)
a (z, y). In what follows, we use the following notations: NΨ,(t)

a (z, y) := EΨ[N̂
(t)
a (z, y)], and for any subsets X,Y of

the set of contexts X , NΨ,(t)
a (X,Y ) :=

∑
z∈X,y∈Y N

Ψ,(t)
a (z, y).

Let us now simplify EΨ[L(t)]. Note that the terms for z and y involved in EΨ[L(t)] are not equal to zero only if x ∈ {z, y}.
There are three disjoint cases to consider. Recalling that i = f(x),

Case 1. z ̸= x, y = x:∑
a∈A

∑
z ̸=x

NΨ,(t)
a (z, x) log

PΨ(x|z, a)
PΦ(x|z, a)

=
∑
a∈A

∑
s∈S

NΨ,(t)
a (f̃−1(s), x) log

cp(j|s, a)
p(i|s, a)

−
∑
a∈A

NΨ,(t)
a (x, x) log

cp(j|j, a)
p(i|j, a)

.

Case 2. z = x, y ̸= x:∑
a∈A

∑
y ̸=x

NΨ,(t)
a (x, y) log

PΨ(y|x, a)
PΦ(y|x, a)

=
∑
a∈A

∑
s∈S

NΨ,(t)
a (x, f̃−1(s)) log

p(s|j, a)
p(s|i, a)

−
∑
a∈A

[
NΨ,(t)

a (x, f̃−1(i)) log (1− q(x|i)) +NΨ,(t)
a (x, x) log

p(j|j, a)
p(j|i, a)

]
.

Case 3. z = y = x: ∑
a∈A

NΨ,(t)
a (x, x) log

PΨ(x|x, a)
PΦ(x|x, a)

=
∑
a∈A

NΨ,(t)
a (x, x) log

cp(j|j, a)
p(i|i, a)

.

Combining the three cases yields:

EΨ[L(t)] =
H − 1

n

∑
a∈A

∑
s∈S

[
n

H − 1
NΨ,(t)

a (f̃−1(s), x) log
cp(j|s, a)
p(i|s, a)

+
n

H − 1
NΨ,(t)

a (x, f̃−1(s)) log
p(s|j, a)
p(s|i, a)

]
+
H − 1

n

∑
a∈A

[
n

H − 1
NΨ,(t)

a (x, x) log
p(i|j, a)p(j|i, a)
p(i|i, a)p(j|j, a)

− n

H − 1
NΨ,(t)

a (x, f̃−1(i)) log (1− q(x|i))
]

︸ ︷︷ ︸
:=Λ

(t)
1

.

From Proposition 14 (proved in Section D.3.3), it can be easily seen that |Λ(t)
1 | = O(1/n) = o(1).

Now we can relate mΨ,(t)
ρ (s, a) to the NΨ,(t)

a (s, x):

NΨ,(t)
a (s, x) = (H − 1)cq(x|i)p(j|s, a)mΨ,(t)

ρ (s, a),

NΨ,(t)
a (x, s) = (H − 1)cq(x|i)p(s|j, a)mΨ,(t)

ρ (j, a).

Then, recalling the definition of I(t)j (x; c,Φ) (Eqn. (28)), we obtain:

EΨ[L(t)] =
H − 1

n
I
(t)
j (x; c,Φ) +

H − 1

n
Λ(t),

where

Λ(t) = Λ
(t)
1 −

∑
a∈A

∑
s∈S

n(1− cq(x|i)p(j|s, a))mΨ,(t)
ρ (s, a) log

1− cq(x|i)p(j|s, a)
1− q(x|i)p(i|s, a)︸ ︷︷ ︸

:=Λ
(t)
2

.
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We now conclude the proof of Proposition 8 by summing the above equalities over t. Recall that Ij(x; c,Φ) =
1
T

∑T
t=1 I

(t)
j (x; c,Φ) which implies:

EΨ[L] =
T∑

t=1

EΨ[L(t)] =
T (H − 1)

n
(I(x; Φ) + Λ) ,

where Λ := 1
T

∑T
t=1 Λ

(t). The proof is completed by applying Lemma 4. □

Lemma 4. |Λ| = O(1/n).

Proof. We show that for all t, |Λ(t)| = O(1/n).

We first note from the fact that |log(1− x) + x| ≤ x2 for |x| = o(1), we have
∣∣∣log 1−cp(j|s,a)q(x|i)

1−p(i|s,a)q(x|i)

∣∣∣ = O ( 1
n2

)
. Because∑

(s,a)∈S×Am
Ψ,(t)
ρ (s, a) = 1,

∣∣∣Λ(t)
2

∣∣∣ can be bounded as follows:

∣∣∣Λ(t)
2

∣∣∣ ≤ n ∑
(s,a)∈S×A

mΨ,(t)
ρ (s, a)

∣∣∣∣log 1− cp(j|s, a)q(x|i)
1− p(i|s, a)q(x|i)

∣∣∣∣ = O( 1

n

)
.

Hence: |Λ(t)| ≤ |Λ(t)
1 |+ |Λ

(t)
2 | ≤ O(1/n).

D.2 Proof of Proposition 9

We now compute VarΨ[L]. For our analysis, we can just compute the variance for the model Ψ constructed using the
"optimal” choices j⋆ and c⋆. As L(t)’s are independent, we have that VarΨ[L] =

∑T
t=1 VarΨ[L(t)], and thus we fix

some t and compute VarΨ[L(t)]. To simplify the notations, we ignore the dependency on t throughout the proof. Denote
Lh = log PΨ(xh+1|xh,ah)

PΦ(xh+1|xh,ah)
. We have:

VarΨ[L(t)] =

H∑
h,h′=1

CovΨ[Lh, Lh′ ] =

H∑
h,h′=1

{EΨ[LhLh′ ]− EΨ[Lh]EΨ[Lh′ ]} . (31)

Note that if I(x; Φ) = 0, then we know from previous subsection that VarΨ[L(t)] = 0 as well, and so let us assume that
I(x; Φ) > 0. Recall that f(n) ≍ f̃(n) (resp. f(n) ≲ f̃(n)) denotes f(n) = Θ(f̃(n)) (resp. f(n) = O(f̃(n))). We divide
up the computation of the r.h.s. of Eqn. (31) into three parts:

Part 1. h′ = h:

CovΨ[Lh, Lh′ ] ≤ EΨ[L
2
h]

=
∑

(z,a)∈X×A

PΨ[xh = z]ρ(a|z)
∑
y∈X

PΨ(y|z, a)
(
log

PΨ(y|z, a)
PΦ(y|z, a)

)2

≍ 1

n2

∑
a∈A

ρ(a|x) ∑
y∈X\{x}

(
log

PΨ(y|x, a)
PΦ(y|x, a)

)2

+
∑

z∈X\{x}

ρ(a|z)
(
log

PΨ(x|z, a)
PΦ(x|z, a)

)2


≲
1

n
,

and thus
∑

h′=h CovΨ[Lh, Lh′ ] ≲ H
n .

Part 2. h′ = h+ 1:
We first note that for any h, h′ ∈ [H], EΨ[Lh] ≍ EΨ[Lh′ ] ≥ 0 as

EΨ[Lh] =
∑

(z,a)∈X×A

PΨ[xh = z]ρ(a|z)
∑
y∈X

PΨ(y|z, a) log P
Ψ(y|z, a)

PΦ(y|z, a)
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=
∑

(z,a)∈X×A

PΨ[xh = z]ρ(a|z)KL
(
PΨ(·|z, a)||PΦ(·|z, a)

)
≥ 0

and PΨ[xh = z] ≍ PΨ[xh′ = z] ≍ 1
n . Hence

CovΨ[Lh, Lh′ ] ≍ EΨ[LhLh′ ]− EΨ[Lh∧h′ ]2 ≤ EΨ[LhLh′ ]. (32)

Thus,

CovΨ[Lh, Lh+1] ≲ EΨ[LhLh+1]

=
∑

(z,a)∈X×A

PΨ[xh = z]ρ(a|z)
∑
y∈X

PΨ(y|z, a)

×
∑

(a′,z′)∈A×X

ρ(a′|y)PΨ(z′|y, a′)
(
log

PΨ(y|z, a)
PΦ(y|z, a)

)(
log

PΨ(z′|y, a′)
PΦ(z′|y, a′)

)

≍ 1

n3

∑
a,a′∈A

 ∑
z,y,z′∈X

ρ(a|z)ρ(a′|y)
(
log

PΨ(y|z, a)
PΦ(y|z, a)

)(
log

PΨ(z′|y, a′)
PΦ(z′|y, a′)

) ≲
1

n
,

and thus
∑

h′=h+1 CovΨ[Lh, Lh′ ] ≲ H
n .

Part 3. h′ ≥ h+ 2:
From CovΨ[Lh, Lh′ ] = EΨ[LhLh′ ]− EΨ[Lh]EΨ[Lh′ ], we compute each term separately:

EΨ[LhLh′ ]

=
∑

yh,yh+1,yh′ ,yh′+1∈X
bh,bh′∈A

PΨ[xh = yh]ρ(bh|yh)PΨ(yh+1|yh, ah)

×

 ∑
yh+2,··· ,yh′−1∈X
bh+1,··· ,bh′−1∈A

h′−1∏
j=h+1

ρ(bj |yj)PΨ(yj+1|yj , bj)


× ρ(bh′ |yh′)PΨ(yh′+1|yh′ , bh′)

(
log

PΨ(yh+1|yh, bh)
PΦ(yh+1|yh, bh)

)(
log

PΨ(yh′+1|yh′ , bh′)

PΦ(yh′+1|yh′ , bh′)

)
and

EΨ[Lh]EΨ[Lh′ ]

=

 ∑
yh,yh+1∈X

bh∈A

PΨ[xh = yh]ρ(bh|yh)PΨ(yh+1|yh, ah)
(
log

PΨ(yh+1|yh, bh)
PΦ(yh+1|yh, bh)

)
 ∑

yh′ ,yh′+1∈X
bh′∈A

PΨ[xh′ = yh′ ]ρ(bh′ |yh′)PΨ(yh′+1|yh′ , ah′)

(
log

PΨ(yh′+1|yh′ , bh′)

PΦ(yh′+1|yh′ , bh′)

)
=

∑
yh,yh+1,yh′ ,yh′+1∈X

bh,bh′∈A

PΨ[xh = yh]ρ(ah|yh)PΨ(yh+1|yh, ah)PΨ[xh′ = yh′ ]ρ(bh′ |yh′)PΨ(yh′+1|yh′ , bh′)

(
log

PΨ(yh+1|yh, bh)
PΦ(yh+1|yh, bh)

)(
log

PΨ(yh′+1|yh′ , bh′)

PΦ(yh′+1|yh′ , bh′)

)
.

Then,

EΨ[LhLh′ ]− EΨ[Lh]EΨ[Lh′ ]
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=
∑

yh,yh+1,yh′ ,yh′+1∈X
bh,bh′∈A

PΨ[xh = yh]ρ(bh|yh)PΨ(yh+1|yh, ah)ρ(bh′ |yh′)

× PΨ(yh′+1|yh′ , bh′)Qh+1,h′(yh+1, yh′)

(
log

PΨ(yh+1|yh, bh)
PΦ(yh+1|yh, bh)

)(
log

PΨ(yh′+1|yh′ , bh′)

PΦ(yh′+1|yh′ , bh′)

)
,

where

Qh+1,h′(yh+1, yh′) :=
∑

yh+2,··· ,yh′−1∈X
bh+1,··· ,bh′−1∈A

h′−1∏
j=h+1

ρ(bj |yj)PΨ(yj+1|yj , bj)− PΨ[xh′ = yh′ ]

= PΨ[xh′ = yh′ |xh+1 = yh+1]− PΨ[xh′ = yh′ ].

We can relate |Qh+1,h′ | to the mixing time of PΨ:

|Qh+1,h′(y, z)| =
∣∣∣(PΨ

)h′−h−1
(y, z)− µ

(
PΨ
)h′−1

(z)
∣∣∣

≤
∣∣∣(PΨ

)h′−h−1
(y, z)−ΠΨ(z)

∣∣∣+ ∣∣∣ΠΨ(z)− µ
(
PΨ
)h′−1

(z)
∣∣∣

≤
∑
z∈Z

∣∣∣(PΨ
)h′−h−1

(y, z)−ΠΨ(z)
∣∣∣+∑

z∈Z

∣∣∣ΠΨ(z)− µ
(
PΨ
)h′−1

(z)
∣∣∣

≤ 2dTV (
(
PΨ
)h′−h−1

(y, ·),ΠΨ) + 2dTV

(
µ
(
PΨ
)h′−1

,ΠΨ
)

≤ 2
(
δ
(
PΨ
))h′−h−2

dTV (P
Ψ(y, ·),ΠΨ) + 2

(
δ
(
PΨ
))h′−1

dTV (µ,Π
Ψ)

≲
(
δ
(
PΨ
))h′−1

.

Using the triangle inequality,∣∣∣∣∣∣
∑

h′≥h+2

CovΨ[Lh, Lh′ ]

∣∣∣∣∣∣ ≲ 1

n3

∑
h′≥h+2

∑
yh,yh+1,yh′ ,yh′+1∈X

bh,bh′∈A

ρ(bh|yh)ρ(bh′ |yh′)|Q(yh+1, yh′)|

×
∣∣∣∣(log PΨ(yh+1|yh, bh)

PΦ(yh+1|yh, bh)

)(
log

PΨ(yh′+1|yh′ , bh′)

PΦ(yh′+1|yh′ , bh′)

)∣∣∣∣
≲

1

n

∑
h′≥h+2

(
δ
(
PΨ
))h′−1

≲
H

n
.

Finally, combining all above completes the proof of Proposition 9. □

D.3 Properties of the rate function I(x; Φ)

In this subsection, we provide properties of the rate function I(x; Φ) that are useful for the analysis. We also provide
intermediate results used throughout our proofs.

D.3.1 Necessary and sufficient conditions for I(x; Φ) = 0

Proposition 10. I(x; Φ) ≥ 0, and the equality holds iff there exist j ∈ S and c > 0 such that both of the following holds:

1. p(f(x)|s, a) = cp(j|s, a), ∀(s, a) ∈ S ×A,

2. p(s|f(x), a) = p(s|j, a), ∀(s, a) ∈ S ×A.

Before we prove the above proposition, we give its interpretation. It states that from the observations on x, we cannot
distinguish whether x’s latent state is j or f(x). Indeed, 1. represents the fact that the observations of transitions leading
to context x are statistically equivalent in Φ and Ψ(x,j), and 2. represents the fact that the observations of transitions
from context x are statistically equivalent in Φ and Ψ(x,j). The additional c takes into account the non-uniform emission
probabilities of each context of each cluster.
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Proof. I(x; Φ) = 0 if and only if there exists j and c such that Ij(x; c,Φ) = 0. We now show that Ij(x; c,Φ) is actually
equal to a mixture of KL’s. From there, the results will follow immediately. Let mΨ

ρ (s, a) = m
Ψ,(t)
ρ (s, a).

Define poutk,a(s) := p(s|k, a), and r ∈ P([2K]×A) as

r(s̄, a) :=

{
mΨ

ρ (s, a)p(f(x)|s, a)q(x|f(x)) (s̄ = 2s− 1),

mΨ
ρ (s, a) (1− p(f(x)|s, a)q(x|f(x))) (s̄ = 2s).

(33)

Analogously, we define

r̃(s̄, a; c) :=

{
mΨ

ρ (s, a)p(j|s, a)cq(x|f(x)) (s̄ = 2s− 1),

mΨ
ρ (s, a) (1− p(j|s, a)cq(x|f(x))) (s̄ = 2s),

. (34)

Then it is easy to see that actually,

Ij(x; c,Φ) = nKL
(
r̃(·, ·; c)||r(·, ·)

)
+ ncq(x|f(x))

∑
a∈A

mΨ
ρ (f(x), a)KL

(
poutj,a (·)||poutf(x),a(·)

)
. (35)

The proposition then follows from the fact that KL(p||q) ≥ 0 and KL(p||q) = 0 iff p = q a.e.

D.3.2 Alternative KL-form of the rate function I(x; Φ)

Next, we derive an alternative asymptotic KL-form for the rate function I(x; Φ) that will be useful later in the analysis of
the algorithm. For simplicity, fix t. We denote mρ := m

Φ,(t)
ρ . We first introduce the alternative divergence:

Ĩ(x; Φ) := min
j:j ̸=f(x)

inf
c>0

Ĩj(x; c,Φ), (36)

where

Ĩj(x; c,Φ) := nKL
(
pinΦ,x(·, ·)||pinΨ,x(·, ·; c)

)
+ cnq(x|f(x))

∑
a∈A

mρ(f(x), a)KL
(
poutf(x),a(·)||p

out
j,a (·)

)
. (37)

and where poutk,a(·) := p(·|k, a), and recalling that S = [K], for s̄ ∈ [2K] and a ∈ A,

pinΦ,x(s̄, a) :=

{
mρ(s, a)p(f(x)|s, a)q(x|f(x)) (s̄ = 2s− 1),

mρ(s, a) (1− p(f(x)|s, a)q(x|f(x))) (s̄ = 2s),
(38)

pinΨ,x(s̄, a; c) :=

{
cmρ(s, a)p(j|s, a)q(x|f(x)) (s̄ = 2s− 1),

mρ(s, a) (1− cp(j|s, a)q(x|f(x))) (s̄ = 2s),
. (39)

It’s easy to check that poutk,a(·) ∈ P(S) and pinΦ,x(·, ·), pinΨ,x(·, ·; c) ∈ P([2K] × A). Note that compared to the actual
divergence I , the order of Φ and Ψ is switched.

Roughly speaking, poutk,a(s) describes the outgoing probabilities from the state-action pair (k, a), and pinΦ,x(s̄, a) (resp. pinΨ,x)
describes the inward probabilities into the context x under Φ (resp. Ψ), up to order-wise negligible remainders. We then
show the following of Ĩ:

Proposition 11. For all c > 0, we have that Ij(x; c,Φ) = 0 if and only if Ĩj(x; c,Φ) = 0. Furthermore, we have that
min(1, c, 1/c, 1/η)Ĩj(x; c,Φ) ≤ Ij(x; c,Φ) ≤ max(1, c, 1/c, η)Ĩj(x; c,Φ).

Proof. The first part is trivial.

For the second part, we start with the following observations:

pinΨ,x(s̄, a)

pinΦ,x(s̄, a; c)
=


c (s̄ = 2s− 1),

1− cp(j|s, a)q(x|f(x))
1− p(f(x)|s, a)q(x|f(x))

≃ 1 (s̄ = 2s),

≲ max(c, 1),
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and

pinΦ,x(s̄, a)

pinΨ,x(s̄, a; c)
=


1

c
(s̄ = 2s− 1),

1− p(f(x)|s, a)q(x|f(x))
1− cp(j|s, a)q(x|f(x))

≃ 1 (s̄ = 2s),

≲ max(1/c, 1).

Also, we have that mρ(s, a) ∼ mΨ
ρ (s, a). From the characterization of Ij as a mixture of KL’s (see proof of Proposition

10), we conclude by applying Lemma 5.

Proposition 12. There exist nonnegative functions ψ1, ψ2, independent of n, such that for all c > 0, x ∈ X , j ∈ S, and
BMDP Φ (satisfying Assumptions 1-4), ψ1(p, η, c) ≤ Ĩj(x; c,Φ) ≤ ψ2(p, η, c). Consequently, Ij(x; Φ) = infc>0 Ij(x; c,Φ)
does not scale with n.

Proof. For simplicity, denote us,a = p(s|f(x),a)
p(s|j,a) ∈ [1/η, η] and vs,a = p(f(x)|s,a)

p(j|s,a) ∈ [1/η, η]. Then,

Ĩj(x; c,Φ)

= nKL
(
pinΦ,x(·, ·)||pinΨ,x(·, ·; c)

)
+ cnq(x|f(x))

∑
a∈A

mρ(f(x), a)KL
(
poutf(x),a(·)||p

out
j,a (·)

)
(a)

≤ n

2

∑
s̄,a

(
pinΦ,x(s̄, a)− pinΨ,x(s̄, a; c)

)2
pinΨ,x(s̄, a; c)

+
c

2
nq(x|f(x))

∑
a∈A

mρ(f(x), a)
∑
s

(
poutf(x),a(s)− p

out
j,a (s)

)2
poutj,a (s)

≤ n

2

∑
s,a

mρ(s, a)q(x|f(x))
(

1

cp(j|s, a)
+

q(x|f(x))
1− cp(j|s, a)q(x|f(x))

)
(p(f(x)|s, a)− cp(j|s, a))2

+ cη2S
η4

SA

∑
s,a

p(s|j, a)
(
p(s|f(x), a)
p(s|j, a)

− 1

)2

(b)

≤ cη7
1

SA

∑
s,a

(vs,a
c
− 1
)2

+ cη7
1

SA

∑
s,a

(us,a − 1)
2

= η7
1

SA

∑
s,a

(
v2s,a
c

+ c− 2vs,a

)
+ cη7

1

SA

∑
s,a

(us,a − 1)
2 ≜ ψ2(p, η, c)

and

Ĩj(x; c,Φ)

= nKL
(
pinΦ,x(·, ·)||pinΨ,x(·, ·; c)

)
+ cnq(x|f(x))

∑
a∈A

mρ(f(x), a)KL
(
poutf(x),a(·)||p

out
j,a (·)

)
(a)

≥ n

2

∑
s̄,a

(
pinΦ,x(s̄, a)− pinΨ,x(s̄, a; c)

)2
pinΦ,x(s̄, a) ∨ pinΨ,x(s̄, a; c)

+
c

2
nq(x|f(x))

∑
a∈A

mρ(f(x), a)
∑
s

(
poutf(x),a(s)− p

out
j,a (s)

)2
poutf(x),a(s) ∨ p

out
j,a (s)

≥ n

2

∑
s,a

mρ(s, a)q(x|f(x))
(p(f(x)|s, a)− cp(j|s, a))2

p(f(x)|s, a) ∨ cp(j|s, a)

+
n

2

∑
s,a

mρ(s, a)q(x|f(x))2
(p(f(x)|s, a)− cp(j|s, a))2

1− q(x|f(x)) (p(f(x)|s, a) ∧ cp(j|s, a))

+
c

2η6
1

A

∑
s,a

(p(s|f(x), a)− p(s|j, a))2

p(s|f(x), a) ∨ p(s|j, a)

(b)

≥ 1

2η6
1

A

∑
s,a

(p(f(x)|s, a)− cp(j|s, a))2

p(f(x)|s, a) ∨ cp(j|s, a)
+

c

2η8
1

SA

∑
s,a

(us,a − 1)
2
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≥ 1

2η7
c

1 ∨ η
c

1

SA

∑
s,a

(vs,a
c
− 1
)2

+
c

2η8
1

SA

∑
s,a

(us,a − 1)
2 ≜ ψ1(p, η, c)

where (a) follows from Lemma 6 and (b) follows from the observation that 0 ≤ q(x|f(x))
1−cp(j|s,a)q(x|f(x)) = o(1). The last point

follows from Proposition 11 and the inequality we proved above.

Lemma 5. If p, q are (discrete) probability distributions with the same support Z satisfying
maxz∈Z(p(z)/q(z), q(z)/p(z)) ≤ ξ for some ξ > 1, then the following holds:

max

(
KL(p||q)
KL(q||p)

,
KL(q||p)
KL(p||q)

)
≤ ξ. (40)

Proof. The statement then follows from the following lemma:

Lemma 6 (Lemma 19 of SM6.3 of Sanders et al. (2020) & Lemma 6.3 of Csiszar and Talata (2006)).

1

2

∑
z∈Z

(p(z)− q(z))2

p(z) ∨ q(z)
≤ KL(p||q) ≤ 1

2

∑
z∈Z

(p(z)− q(z))2

q(z)
. (41)

D.3.3 Asymptotics of mρ

We provide properties of the quantity: mρ(s, a) :=
1

H−1

∑H−1
h=1 PΦ[f(x

(t)
h ) = s, a

(t)
h = a] (there is no dependence in t).

These properties are extensively used in the appendices, and they also hold for mΨ
ρ (up to some negligible remainders –

actually, it can be easily seen that mρ(s, a) ∼ mΨ
ρ (s, a)).

Proposition 13. For (s, a) ∈ S ×A,

mρ(s, a) =
1

H − 1

H−1∑
h=1

∑
x∈f−1(s)

ρ(a|x)
∑
z∈X

µ(z) (P0)
h−1

(x|z), (42)

where remember that P0 =
∑

a∈A ρ(a|x)P (y|x, a), and by convention
∑

z µ(z)P
0
0 (x|z) = µ(x).

Proof. By definition,

mρ(s, a) =
1

H − 1

H−1∑
h=1

PΦ

[
f(x

(t)
h ) = s, a

(t)
h = a

]
=

1

H − 1

H−1∑
h=1

∑
x∈f−1(s)

ρ(a|x)PΦ

[
x
(t)
h = x

]
.

Now we have: PΦ

[
x
(t)
h = x

]
=
∑

z µ(z)P
h−1
0 (x|z) for h ≥ 1. The result follows immediately.

Proposition 14. The following holds for all (s, a) ∈ S × A: with ρ(a|s) := 1
nαs

∑
y∈f−1(s) ρ(a|y), ρ ∼ U(A) and

µ ∼ U(X ),
1

η4SA
≤ 1

η2
αsρ(a|s) ≤ mρ(s, a) ≤ η2αsρ(a|s) ≤

η4

SA
. (43)

i.e. mρ(s, a) = Θ
(

1
SA

)
.

Proof. The result follows directly from Proposition 13 and from the results of Appendix C.
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D.3.4 Examples of rate function I(x; Φ)

For simplicity, we consider the following environment: X = {x1, · · · , x10}, S = {s1, s2}, A = {a1, a2}, and f : X → S
defined such that f−1(s1) = {x1, x3, x5, x7, x9} and f−1(s2) = {x2, x4, x6, x8, x10}. We denote Pk to be the transition
probability matrix corresponding to action ak. Our exploration policy and initial distribution are set to be uniformly random,
i.e., ρ(·|x) ∼ U(A) for all x ∈ X and µ(·) ∼ U(X ). As we only have two clusters, we have that I(x; c,Φ) = I2(x; c,Φ).

Furthermore, to clearly illustrate our change-of-measure argument, we fix the construction of alternate model Ψ as follows:
change f to g such that g(x1) = s2 and rest stay the same. Also, we assume that q is uniform over its support (or its
respective cluster), which implies that the alternate q̃ is set as follows:

q̃(x2k−1|s1) =
1

4
, q̃(x1|s2) =

c

5
, q̃(x2k|s2) =

5− c
25

.

where c ∈ (0, 5) is to be set later.

Lastly, we recall (from the proof of Proposition 10) that

I(x1; c,Φ) = nKL
(
r̃(·, ·; c)||r(·, ·)

)
+
c

5
n
∑
a∈A

mΨ
ρ (s1, a)KL

(
poutj,a (·)||pouts1,a(·)

)
,

where poutk,a(s) := p(s|k, a), and r, r̃ ∈ P({s1, s̄1, s2, s̄2} × A) are defined as

r(s̄, a) :=


1

5
mΨ

ρ (s, a)p(s1|sk, a) (s̄ = sk),

mΨ
ρ (s, a)

(
1− 1

5
p(s1|sk, a)

)
(s̄ = s̄k),

and

r̃(s̄, a; c) :=


c

5
mΨ

ρ (s, a)p(s2|sk, a) (s̄ = sk),

mΨ
ρ (s, a)

(
1− c

5
p(s2|sk, a)

)
(s̄ = s̄k),

.

From Proposition 13, we have that

mΨ
ρ (s, a) =

1

20(H − 1)

H−1∑
h=1

∑
x∈g−1(s)

∑
z∈X

(
P̃0

)h−1

(x|z),

where P̃0 = 1
2

∑
a∈A P̃ (y|x, a) and P̃ (y|x, a) = p(g(y)|g(x), a)q̃(y|g(y)).

For computational simplicity, we set the horizon length to be H = 10. All the computations were done using Mathematica.

I(x1;Φ) > 0 Consider the following instantiation:

P1 =

[
2/3 1/3
1/3 2/3

]
, P2 =

[
1/2 1/2
1/2 1/2

]
.

Then we have that

mΨ
ρ (s1, a1) = mΨ

ρ (s2, a1) =
73567181

302330880
≈ 0.2433

mΨ
ρ (s1, a2) = mΨ

ρ (s2, a2) =
77598259

302330880
≈ 0.2567

With some more computations, we have the explicit form of the divergence I as follows:

I(x1; c,Φ) =
73567181

4453496320

[
2c log 2 + (15− 2c) log

15− 2c

14
+ 3(10− c) log 10− c

9

+(15− c) log 15− c
13

+ 6c log c

]
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1 2 3 4 5
c

1

2

3

4

5

6

I(x_1; c, Phi)
c -> I(x_1; c, Phi)

(a) I(x1; Φ) > 0

1 2 3 4 5
c

1

2

3

4

5

I(x_1; c, Phi)
c -> I(x_1; c, Phi)

(b) I(x1; Φ) = 0

Figure 2: Plot of I(x1; c,Φ) as function of c. Note that the domain of c is (0, 5)

and thus,
I(x1; Φ) = inf

c>0
I(x1; c,Φ) ≈ 0.2127 > 0,

where the minimum is attained at c ≈ 0.8023. We also provide a plot of I(x1; c,Φ) as a function of c in Figure 2a.

I(x1;Φ) = 0 Consider the following instantiation:

P1 =

[
1/2 1/2
1/2 1/2

]
, P2 =

[
1/2 1/2
1/2 1/2

]
.

Then we have that
mΨ

ρ (s1, a1) =
11

45
≈ 0.2444, mΨ

ρ (s1, a2) = mΨ
ρ (s2, a2) =

23

90
≈ 0.2556

Again, with some more computations, we have that

I(x1; c,Φ) =
44

45

[
(10− c) log 10− c

9
+ c log c

]
,

and thus,
I(x1; Φ) = inf

c>0
I(x1; c,Φ) = 0,

where the minimum is attained at c = 1. Again, we also provide a plot of I(x1; c,Φ) as a function of c in Figure 2b.

D.3.5 Relation to other BMDP separability notions

I(Φ) > 0 can be considered as a separability condition, as it implies that we can correctly “separate”(cluster) all contexts.
In this section, we actually show that our notion of separability encompasses previously considered separability notions i.e.
ours is the strongest.

γ-separability Du et al. (2019) considered a notion of γ-separability, in which the backward probability vectors of two
different latent states should be sufficiently separated. Precisely, for ν ∈ P(S ×A) with supp(ν) = S ×A, define

bν(s
′) = (bν(s, a|s′))(s,a)∈S×A, bν(s, a|s′) :=

p(s′|s, a)ν(s, a)∑
s̃,ã p(s

′|s̃, ã)ν(s̃, ã)
.

Definition 4 (Assumption 3.2 of Du et al. (2019)). For γ > 0, a BMDP is said to be γ-separable if

∥bν(s′)− bν(s
′′)∥1 ≥ γ, ∀s′, s′′ ∈ S, s′ ̸= s′′ (44)

If no such γ exists, then we say that the BMDP is γ-inseparable.
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The following proposition shows that our notion of separability (I(Φ) > 0) is weaker (in that it encompasses a broader
range of BMDPs) than γ-separability:

Proposition 15. If the BMDP Φ is γ-separable, then I(Φ) > 0.

Proof. We prove the contrapositive. Assume that I(Φ) = 0. Then by Proposition 10, there exists some j ∈ S with j ̸= f(x)
and c > 0 such that

p(s|f(x), a) = p(s|j, a) and p(f(x)|s, a) = cp(j|s, a), ∀(s, a) ∈ S ×A.

WLOG fix some ν ∈ P(S ×A) with supp(ν) = S ×A. Then, for arbitrary (s, a) ∈ S ×A,

bν(s, a|f(x)) =
p(f(x)|s, a)ν(s, a)∑
s̃,ã p(f(x)|s̃, ã)ν(s̃, ã)

=
cp(j|s, a)ν(s, a)∑
s̃,ã cp(j|s̃, ã)ν(s̃, ã)

=
p(j|s, a)ν(s, a)∑
s̃,ã p(j|s̃, ã)ν(s̃, ã)

= bν(s, a|j),

which implies that bν(f(x)) = bν(j).

Kinematic separability Misra et al. (2020) considered a notion of kinematic inseparability, in which two contexts have
the same forward and backward probabilities.

We recall that P (y|x, a) = q(y|f(y))p(f(y)|f(x), a) is the context transition probability kernel. Similarly as above, we
define the contextual backward transition probability kernel: given some u ∈ P(X ×A) with supp(u) = X ×A,

P bwd(x, a|y) := P (y|x, a)u(x, a)∑
x′,a′ P (y|x′, a′)u(x′, a′)

. (45)

Definition 5 (Definition 3 of Misra et al. (2020)). Given a BMDP Φ, two contexts x1, x2 ∈ X are kinematically inseparable
if for every distribution u ∈ P(X ×A) with supp(u) = X ×A the following holds: for all (x, a) ∈ X ×A,

(C1) P (x|x1, a) = P (x|x2, a),

(C2) P bwd(x, a|x1) = P bwd(x, a|x2).

If one of these conditions fails, then we say that x1, x2 are kinematically separable.

The above definition can be equivalently rewritten using latent transition and emission probabilities:

Lemma 7. The above conditions for x1, x2 being kinematically inseparable are equivalent to the following: for all
(s, a) ∈ S ×A,

(C1’) p(s|f(x1), a) = p(s|f(x2), a),

(C2’) p(f(x1)|s,a)∑
x′,a′ p(f(x1)|f(x′),a′)u(x′,a′) =

p(f(x2)|s,a)∑
x′,a′ p(f(x2)|f(x′),a′)u(x′,a′) .

Proof. Follows from straightforward computations.

Misra et al. (2020) then extended the notion of kinematic separability, which is defined between two contexts, to the whole
BMDP:

Definition 6 (Definition 4 of Misra et al. (2020)). A BMDP Φ is in canonical form if for any x1, x2 ∈ X the following
holds: f(x1) = f(x2) if and only if x1 and x2 are kinematically inseparable. If this does not hold, then Φ is said to be not
in canonical form.

Finally, the following proposition shows that our notion of separability (I(Φ) > 0) is weaker (in that it encompasses a
broader range of BMDPs) than BMDP being in canonical form:
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Proposition 16. If the BMDP Φ is in canonical form, then I(Φ) > 0.

Proof. Again, we prove the contrapositive. Assume that I(Φ) = 0. From Proposition 10, there exists some j ∈ S with
j ̸= f(x) and c > 0 such that

p(s|f(x), a) = p(s|j, a) and p(f(x)|s, a) = cp(j|s, a), ∀(s, a) ∈ S ×A.

First part implies (C1’). For the second part, WLOG fix some u ∈ P(S ×A) with supp(u) = S ×A. Then, for arbitrary
(s, a) ∈ S ×A,

p(f(x)|s, a)∑
x′,a′ p(f(x)|f(x′), a′)u(x′, a′)

=
cp(j|s, a)∑

x′,a′ cp(j|f(x′), a′)u(x′, a′)
=

p(j|s, a)∑
x′,a′ p(j|f(x′), a′)u(x′, a′)

,

which precisely implies (C2’). By Lemma 7, we have that Φ is not in canonical form.
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E Bernstein-type Concentration for Markov Chains with Restarts and Applications

In this appendix, we present concentration results for Markov chains with restarts. These results will be crucial in the
analysis of the performance of our algorithms.

E.1 Concentration of Markov chains with restarts

Consider T i.i.d. episodes of BMDP of length H generated under the behavior policy. Each episode corresponds to the
trajectory of length H of a Markov chain. We are interested in deriving concentration results for these trajectories for any T
and H . In particular, since H can possibly be limited, we cannot use either the long-term properties of the Markov chain or
the assumption that the chain starts in its steady-state regime.

Our concentration results differ from most prior Bernstein-type concentration bounds for Markov chains (refer to Paulin
(2015) and references therein). Indeed existing bounds hold for a single trajectory and assume that the Markov chain starts
from its stationary distribution. Considering restarts from an arbitrary distribution induces a bias term that vanishes with the
number of observations (as H grows large), and our results account for this bias.

Theorem 9. Let {(X(t)
h )Hh=1}t∈[T ] be a collection of i.i.d. possibly time-inhomogeneous Markov chains over a finite state

space Z , with transition probability matrices {Ph}h≥1 and initial distribution µ ∈ P(Z). We assume that µ and Ph’s are
η-regular (see Appendix C), and that each Ph admits a stationary distribution νh. Let {ϕh : X → R} be a collection of
bounded measurable real-valued functions. Then we have that for all u ≥ 0,

P

[
T∑

t=1

H∑
h=1

ϕh(X
(t)
h )− Eµ[ϕh(X

(t)
h )] > u

]
≤ exp

(
− u2

2THVµ,P,ϕ + 2
3MP,ϕu

)
, (46)

where the variance and maximum deviation terms are defined as follows:

Vµ,P,ϕ := (1 +
√
2η(2η − 1))2 max

z∈Z
max

1≤ℓ≤h≤H
VarPℓ−1(z,·)[ϕh], (47)

MP,ϕ := (2η − 1) max
h∈[H]

∥ϕh∥∞, (48)

and where by convention P0(z, ·) = µ(·).

E.2 Proof of Theorem 9

All the supporting lemmas are presented and proved in Section E.4. In this proof, we use the following notations. We define
Πh := 1νh (where 1 is a column vector with coordinates equal to 1 and νh is a row vector). Denote Eν [ϕ] := EX∼ν [ϕ(X)]
and Eν [ϕ(Xh)] := EX1∼ν [ϕ(Xh)], and similarly for Var.

Without loss of generality, we assume that νhϕh := EX∼νh
[ϕh(X)] = 0 for all h ∈ [H]. Indeed, if νhϕh ̸= 0, then

we can write ϕh(X
(t)
h )) − Eµ[ϕh(X

(t)
h )] = (ϕ(X

(t)
h )) − νhϕh) − Eµ[(ϕh(X

(t)
h ) − νhϕh], then continue the proof using

ϕ̃h : x 7→ ϕh(x)− νhϕh instead.

We start by obtaining an upper bound on the moment generating function of
∑T

t=1

∑H
h=1 ϕh(X

(t)
h )− Eµ[ϕh(X

(t)
h )]. Using

the fact that the trajectories are independent across episodes t ∈ [T ] and applying Lemma 8, we immediately obtain, for all
λ ≥ 0,

Eµ

[
exp

(
λ

(
T∑

t=1

H∑
h=1

ϕh(X
(t)
h )− Eµ[ϕh(X

(t)
h )]

))]

=

T∏
t=1

Eµ

[
exp

(
λ

(
H∑

h=1

ϕh(X
(t)
h )− Eµ[ϕh(X

(t)
h )]

))]
≤ exp

(
THVµ,P,ϕ

M2
P,ϕ

φ(λMP,ϕ)

)
,

where we recall that φ(x) = ex − x− 1, and where definitions of Vµ,P,ϕ and MP,ϕ are given in Lemmas 8. By Markov
inequality, we have: for any u ≥ 0,

P

(
T∑

t=1

H∑
h=1

ϕh(X
(t)
h ))− Eµ[ϕh(X

(t)
h )] > u

)
≤ inf

λ≥0
exp

(
THVµ,P,ϕ

M2
P,ϕ

φ(λMP,ϕ)− λu

)
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≤ exp

(
−THVµ,P,ϕ

M2
P,ϕ

φ⋆

(
MP,ϕu

THVµ,P,ϕ

))

≤ exp

(
− u2

2THVµ,P,ϕ + 2
3MP,ϕu

)
,

where we introduced φ⋆(y) = (1 + y) log(1 + y) − y, the Fenchel dual8 of φ. The last inequality then follows from
φ⋆(y) ≥ y2

2+ 2
3y

(see Boucheron et al. (2013) for the proof of this elementary inequality). The result then follows from the
upper bounds of Vµ,P,ϕ and MP,ϕ derived in Lemma 9. □

E.3 Towards concentration inequalities in BMDPs

Next, we specify the results of Theorem 9 to the case of homogenous Markov chains. This will be instrumental in our
analysis since indeed the Markov chains induced in BMDPs are homogenous. The results resemble the concentration
results established by Sanders et al. (2020) (see Proposition 10 of their supplementary material SM1) and the subsequent
improvements established by Sanders and Senen–Cerda (2023), but there are several key differences. One is that we keep
track of the asymptotics in S and A, and another is that we consider restarts and have to deal with the absence of equilibrium
assumption.

The next theorem is a direct application of Theorem 9 to homogenous Markov chains (e.g., BMDPs).

Theorem 10. Let {(X(t)
h )Hh=1}t∈[T ] be a collection of i.i.d. time-homogeneous Markov chains over a finite state space Z ,

with transition probability matrix P and initial distribution µ ∈ P(Z). We assume that µ and P are η-regular, and that P
admits a stationary distribution ν. Let ϕ : X → R be a bounded measurable real-valued function. Then we have that for all
u ≥ 0,

P

[
T∑

t=1

H∑
h=1

ϕ(X
(t)
h )− Eµ[ϕ(X

(t)
h )] > u

]
≤ exp

(
− u2

2THVµ,P,ϕ + 2
3MP,ϕu

)
, (49)

where the variance and maximum deviation terms are defined as follows:

Vµ,P,ϕ := (1 +
√
2η(2η − 1))2 max

(
Varµ[ϕ],max

z∈Z
VarP (z,·)[ϕ]

)
, (50)

MP,ϕ := (2η − 1)∥ϕ∥∞. (51)

We can further simplify the bound depending on the choice of ρ:

• For any u satisfying ∥ϕ∥∞u = o (THVµ,P,ϕ),

P

(∣∣∣∣∣
T∑

t=1

H∑
h=1

ϕ(X
(t)
h ))− Eµ[ϕ(X

(t)
h )]

∣∣∣∣∣ > u

)
≤ 2 exp

(
− u2

2THVµ,P,ϕ

)
• For any u satisfying ∥ϕ∥∞u = ω (THVµ,P,ϕ),

P

(∣∣∣∣∣
T∑

t=1

H∑
h=1

ϕ(X
(t)
h )− Eµ[ϕ(X

(t)
h )]

∣∣∣∣∣ > u

)
≤ 2 exp

(
− u

2
3MP,ϕ

)

E.4 Supporting lemmas for Theorem 9

Let (Xh)
H
h=1 be a (fixed) Markov chain over a finite state space Z with transition probability matrices {Ph}h≥1. We further

assume that each Ph admits a stationary distribution, denoted by νh, and let Πh := 1νh. We denote by P0 := µ ∈ P(Z)
its initial distribution (X1 ∼ µ). We assume that µ and Ph’s are η-regular. Let {ϕh : X → R} be a collection of bounded
measurable real-valued functions. Lastly, we denote Eν [ϕ] := EX∼ν [ϕ(X)] and Eν [ϕ(Xh)] = EX1∼ν [ϕ(Xh)], and
similarly for Var, and denote ∥ϕ∥ν :=

√
Eν [ϕ(X)2]. Furthermore, we regard any probability measures over Z as a

|Z|-dimensional row vector and all real-valued measurable functions over Z as a |Z|-dimensional column vector9.
8Recall its definition: φ⋆(y) := supx yx− φ(x).
9With this notation, note that for ϕ : Z → R, Eµ[ϕ] = µϕ.
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Lemma 8. For all λ > 0, we have

Eµ

[
exp

(
λ

(
H∑

h=1

ϕh(Xh)− Eµ[ϕh(Xh)]

))]
≤ exp

(
HVµ,P,ϕ

M2
P,ϕ

φ(λMP,ϕ)

)
,

where φ : x 7→ ex − x− 1. The variance term and maximum deviation term are defined, respectively, as follows:

Vµ,P,ϕ := max
z∈Z,ℓ∈[H]

VarPℓ−1(z,·)

[
H∑

h=ℓ

(
h−1∏
i=ℓ

(Pi −Πi)

)
ϕh

]
, (52)

MP,ϕ := max
ℓ∈[H]

∥∥∥∥∥
H∑

h=ℓ

(
h−1∏
i=ℓ

(Pi −Πi)

)
ϕh

∥∥∥∥∥
∞

. (53)

Proof. For notational convenience, let us introduce, for all h ≥ 1, the |Z|-dimensional random row vector δh = (1{Xh =
z})z∈Z . Then observe that we may write, via a telescoping sum, for all h ≥ 1,

ϕh(Xh)−Eµ[ϕh(Xh)]

= δ1

(
h−1∏
i=1

Pi

)
ϕh − µ

(
h−1∏
i=1

Pi

)
ϕh +

h−1∑
ℓ=1

δℓ+1

(
h−1∏

i=ℓ+1

Pi

)
ϕh − δℓ

(
h−1∏
i=ℓ

Pi

)
ϕh

= (δ1 − µ)

(
h−1∏
i=1

Pi

)
ϕh +

h−1∑
ℓ=1

(δℓ+1 − δℓPℓ)

(
h−1∏

i=ℓ+1

Pi

)
ϕh.

To further ease notations, we introduce Z1 = δ1 − µ and Zℓ = δℓ − δℓ−1Pℓ−1 for ℓ ≥ 2, and Pℓ→h =
∏h−1

i=ℓ Pi, with
the convention that Pℓ→ℓ = I . With that, we may write ϕh(Xh) − Eµ[ϕh(Xh)] =

∑h
ℓ=1 ZℓPℓ→hϕh. One important

observation is that Zℓ1 = 0.

On the other hand, from the fact that (Pi −Πi)Πj = 0 for all i, j ≥ 1, we have that

Pℓ→h =

h−1∏
i=ℓ

Pi =

h−1∏
i=ℓ

(Pi −Πi) + Πℓ

h−1∏
j=ℓ+1

Pj =

h−1∏
i=ℓ

(Pi −Πi) + ΠℓPℓ+1→h. (54)

Since Πj = 1νj , we have that ΠℓPℓ+1→h = 1ξ for some ξ ∈ R1×|Z|, i.e.,

Zℓ (ΠℓPℓ+1→h)ϕh = Zℓ1ξϕh = 0, ∀h > ℓ ≥ 1.

Thus, introducing ∆ℓ→h =
∏h−1

i=ℓ (Pi −Πi), with the convention that ∆ℓ→ℓ = I , we may finally write

H∑
h=1

ϕh(Xh)− Eµ[ϕh(Xh)] =

H∑
h=1

h∑
ℓ=1

Zℓ∆ℓ→hϕh =

H∑
ℓ=1

Zℓ

(
H∑

h=ℓ

∆ℓ→hϕh

)
. (55)

Now, we are ready to upper bound the moment-generating function of the LHS. The convenience of Eqn. (55) is that (Zh)h≥1

is adapted to the filtration generated by the Markov chain (Xh)h≥1, Eµ[Zh|Xh−1] = 0 for all h ≥ 2, and Eµ[Z1] = 0.
Using a standard Bernstein type upper bound technique (Boucheron et al., 2013), we have for all ℓ ≥ 2, λ > 0,

Eµ

[
exp

(
λZℓ

(
H∑

h=ℓ

∆ℓ→hϕh

))∣∣∣∣Xℓ−1

]
≤ exp

VarPℓ−1(Xℓ−1,·)

[∑H
h=ℓ ∆ℓ→hϕh

]
C2

φ(λC)

,
where φ : x 7→ ex − x− 1, and C can be any positive constant that verifies ∥

∑H
h=ℓ ∆ℓ→hfh∥∞ ≤ C. Introducing Vµ,P,ϕ

and MP,ϕ as defined in the statement of this Lemma, we see that for all ℓ ≥ 2,

Eµ

[
exp

(
λZℓ

(
H∑

h=ℓ

∆ℓ→hϕh

))∣∣∣∣Xℓ−1

]
≤ exp

(
Vµ,P,ϕ

M2
µ,P,ϕ

φ(λMµ,P,ϕ)

)
.
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Similarly, we also have

Eµ

[
exp

(
λZ1

(
H∑

h=1

∆ℓ→hϕh

))]
≤ exp

(
Vµ,P,ϕ

M2
µ,P,ϕ

φ(λMµ,P,ϕ)

)
.

Now using the fact that (Zh)h≥1 is adapted to the filtration generated by the Markov chain (Xh)h≥1, we obtain via a peeling
argument that

Eµ

[
exp

(
λ

(
H∑

h=1

ϕh(Xh)− EΦ[ϕh(Xh)]

))]
≤ exp

(
HVµ,P,ϕ

M2
µ,P,ϕ

φ(λMµ,P,ϕ)

)
, ∀λ > 0.

The following lemma provides simple bounds for Vµ,P,ϕ and MP,ϕ.

Lemma 9. For all ℓ ∈ [H] and all z ∈ Z ,

VarPℓ−1(z,·)

[
H∑

h=ℓ

(
h−1∏
i=ℓ

(Pi −Πi)

)
ϕh

]
≤ (1 +

√
2η(2η − 1))2 max

ℓ≤h≤H
VarPℓ−1(z,·)[ϕh] (56)

and ∥∥∥∥∥
H∑

h=ℓ

(
h−1∏
i=ℓ

(Pi −Πi)

)
ϕh

∥∥∥∥∥
∞

≤ (2η − 1) max
ℓ≤h≤H

∥ϕh∥∞. (57)

Proof. Recall that ∆ℓ→h =
∏h−1

i=ℓ (Pi − Πi) for h > ℓ ≥ 1, with the convention that ∆ℓ→ℓ = I . Finally, remember that
P0(z, ·) := µ(·).

Proof of Eqn. (56) (Variance term)

Varµ

[
H∑

h=ℓ

∆ℓ→hϕh

]
= Varµ

[
H∑

h=ℓ

∆ℓ→h(ϕh − µϕh1)

]

≤ EX∼µ

(( H∑
h=ℓ

∆ℓ→h(ϕh − µϕh1)

)
(X)

)2


=

∥∥∥∥∥
H∑

h=ℓ

∆ℓ→h(ϕh − µϕh1)

∥∥∥∥∥
2

µ

≤

(
H∑

h=ℓ

∥∆ℓ→h(ϕh − µϕh1)∥µ

)2

Now, we note that for h > ℓ ≥ 1, we have:

∥∆ℓ→h(ϕh − µϕh1)∥2µ ≤ ∥∆ℓ→h(ϕh − µϕh1)∥2∞

= max
x∈Z

∣∣∣∣∣∑
y

∆ℓ→h(x, y)(ϕh − µϕh1)(y)

∣∣∣∣∣
2

≤ max
x∈Z

∣∣∣∣∣∑
y

∆ℓ→h(x, y)
2

µ(y)

∣∣∣∣∣ ∥ϕh − µϕh1∥2µ
≤
(
max
x,y∈Z

∣∣∣∣∆ℓ→h(x, y)

µ(y)

∣∣∣∣)
max

x∈Z

∑
y∈Z
|∆ℓ→h(x, y)|

 ∥ϕh − µϕh1∥2µ
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≤
(
max
x,y∈Z

∣∣∣∣∆ℓ→h(x, y)

µ(y)

∣∣∣∣)( max
g∈R|Z|:∥g∥∞≤1

∥∆ℓ→hg∥∞
)
∥ϕh − µϕh1∥2µ

≤ 2

(
max
x,y∈Z

∣∣∣∣∆ℓ→h(x, y)

µ(y)

∣∣∣∣)(1− 1

η

)h−ℓ

∥ϕh − µϕh1∥2µ,

where the last inequality follows from Lemma 10.

As µ and (Ph)h≥1 satisfy the η-regularity property, so does Pℓ→h(x, ·) and ΠℓPℓ+1→h with the same parameter η, for
all x ∈ Z (this can be easily proven using induction on the number of multiplicands h − ℓ). Thus, from Eqn. (54),
∆ℓ→h(x, ·) = Pℓ→h(x, ·)−ΠℓPℓ+1→h is also η-regular, which implies that

max
x,y∈Z

∣∣∣∣∆ℓ→h(x, y)

µ(y)

∣∣∣∣ ≤ η|Z|( η

|Z|
− 1

η|Z|

)
= η2 − 1,

which in turn gives

∥∆ℓ→h(ϕh − µϕh1)∥2µ ≤ 2(η2 − 1)

(
1− 1

η

)h−ℓ

∥ϕh − µϕh1∥2µ.

Noting that ∥ϕh − µϕh1∥2µ = Varµ[ϕh], we finally obtain

Varµ

[
H∑

h=ℓ

∆ℓ→hϕh

]
≤

(
H∑

h=ℓ

∥∆ℓ→h(ϕh − µϕh1)∥µ

)2

≤

√Varµ[ϕℓ] +

H∑
h=ℓ+1

√
2(η2 − 1)

(
1− 1

η

)h−ℓ√
Varµ[ϕh]

2

≤ max
ℓ≤h≤H

Varµ[ϕh]

(
1 +

√
2(η2 − 1)

H∑
h=ℓ+1

(
1− 1

η

)(h−ℓ)/2
)2

≤ (1 +
√
2η(2η − 1))2 max

ℓ≤h≤H
Varµ[ϕh].

Proof of Eqn. (57) (Maximum deviation term)

∥∥∥∥∥
H∑

h=ℓ

∆ℓ→hϕh

∥∥∥∥∥
∞

≤
H∑

h=ℓ

∥∆ℓ→hϕh∥∞

= ∥ϕℓ∥∞ +

H∑
h=ℓ+1

∥∆ℓ→hϕh∥∞

≤ ∥ϕℓ∥∞ + 2

H∑
h=ℓ+1

(
1− 1

η

)h−ℓ

∥ϕh∥∞

≤ (1 + 2(η − 1)) max
h∈[H]

∥ϕh∥∞

= (2η − 1) max
h∈[H]

∥ϕh∥∞,

where we used the triangle inequality in the first inequality and Lemma 10 in the third inequality.

The following lemma is used above in the proof of Lemma 9.

Lemma 10. Let (Ph)
H−1
h=1 be transition matrices (i.e. row-stochastic) over Z , with each Ph having a stationary distribution

νh. Let g ∈ RZ be such that ∥g∥∞ <∞ and let us denote Πh := 1νh. Then∥∥∥∥∥
H−1∏
h=1

(Pi −Πi)g

∥∥∥∥∥
∞

≤ 2

(
H−1∏
h=1

δ(Ph)

)
∥g∥∞,
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where δ(Ph) = maxx,y∈Z dTV (Ph(x, ·), Ph(y, ·)) is the Dobrushin’s coefficient of Ph. In particular, if we assume that
Ph’s are η-regular, it follows that ∥∥∥∥∥

H−1∏
h=1

(Pi −Πi)g

∥∥∥∥∥
∞

≤ 2

(
1− 1

η

)H−1

∥g∥∞.

Proof. First, we observe that∥∥∥∥∥
H−1∏
h=1

(Pi −Πi)f

∥∥∥∥∥
∞

(a)
=

∥∥∥∥∥
(

H−1∏
h=1

Pi −Π1

H−1∏
i=2

Pi

)
g

∥∥∥∥∥
∞

= max
x∈Z

∣∣∣∣∣∣
∑
y∈Z

(
H−1∏
h=1

Pi

)
(x, y)g(y)−

∑
y∈Z

(
Π1

H−1∏
h=2

Pi

)
(x, y)g(y)

∣∣∣∣∣∣
≤ 2max

x∈Z
dTV

((
H−1∏
h=1

Pi

)
(x, ·),

(
Π1

H−1∏
h=2

Pi

)
(x, ·)

)
∥g∥∞

where (a) follows from the fact that (Pi − Πi)Πj = 0 for all i, j ≥ 1. Recall that Pℓ→h =
∏h−1

i=ℓ Pi h ≥ ℓ ≥ 1, with the
convention that Pℓ→ℓ = I . Then we may simply write∥∥∥∥∥

H−1∏
h=1

(Pi −Πi)g

∥∥∥∥∥
∞

≤ 2max
x∈Z

dTV (P1→H(x, ·),Π1P2→H(x, ·)) ∥g∥∞. (58)

Next, we formulate two claims to complete the proof:

Claim 1.

max
x∈Z

dTV (P1→H(x, ·),Π1P2→H(x, ·)) ≤ δ(P1→H). (59)

Claim 2.

δ(Pℓ→h) ≤ δ(Pℓ→k)δ(Pk→h), ∀ h ≥ k ≥ ℓ. (60)

Here, as stated in the Lemma, δ(P ) := maxx,y∈Z dTV (P (x, ·), P (y, ·)) is the Dobrushin’s coefficient.

Assuming that the two above claims hold, from (58), we have:∥∥∥∥∥
H−1∏
h=1

(Pi −Πi)g

∥∥∥∥∥
∞

≤ 2max
x∈Z

dTV (P1→H(x, ·),Π1P2→H(x, ·)) ∥g∥∞

≤ 2δ(P1→H)∥f∥∞

≤ 2 (δ(P1→2)× δ(P2→3)× . . .× δ(PH−1→H)) ∥g∥ = 2

(
H−1∏
h=1

δ(Ph)

)
∥g∥∞,

where we noted that Ph→h+1 = Ph.

Finally, we provide proof of the above two claims. Both are simple adaptations of the proofs of Lemma 4.10 and Lemma
4.11 of Levin and Peres (2017), respectively. We provide these proofs for completeness.

Proof of Claim 1

By definition,

max
x∈Z

dTV (P1→H(x, ·),Π1P2→H(x, ·)) = max
x∈Z

max
A⊆Z

|P1→H(x,A)−Π1P2→H(x,A)|

= max
x∈Z

max
A⊆Z

|P1→H(x,A)−Π1P1→H(x,A)| (Π1P1 = Π1)
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= max
x∈Z

max
A⊆Z

∣∣∣∣∣∣P1→H(x,A)−
∑
y∈Z

ν1(y)P1→H(y,A)

∣∣∣∣∣∣
= max

x∈Z
max
A⊆Z

∣∣∣∣∣∣
∑
y∈Z

ν1(y) (P1→H(x,A)− P1→H(y,A))

∣∣∣∣∣∣
≤ max

x∈Z

∑
y∈Z

ν1(y)max
A⊆Z

|(P1→H(x,A)− P1→H(y,A))|

= max
x∈Z

∑
y∈Z

ν1(y)dTV (P1→H(x, ·), P1→H(y, ·))

≤ max
x,y

dTV (P1→H(x, ·), P1→H(y, ·)).

Proof of Claim 2

Let h ≥ k ≥ ℓ ≥ 1 and fix x, y ∈ Z . From Proposition 4.7 of Levin and Peres (2017), there exists a coupling (Xk, Yk) of
Pℓ→k(x, ·) and Pℓ→k(y, ·) such that

dTV (Pℓ→k(x, ·), Pℓ→k(y, ·)) = P(Xk ̸= Yk).

We also have Pℓ→h(x,w) =
∑

z∈Z Pℓ→k(x, z)Pk→h(z, w) = E[Pk→h(Xk, w)] and similarly Pℓ→h(y, w) =
E[Pk→h(Yk, w)], for all w ∈ Z . Thus, for any A ⊆ Z , we have

|Pℓ→h(x,A)− Pℓ→h(y,A)| = |E[Pk→h(Xk, A)]− E [Pk→h(Yk, A)]|
= |E[1{Xk ̸= Yk}(Pk→h(Xk, A)− Pk→h(Yk, A))]|
≤ E[1{Xk ̸= Yk} |Pk→h(Xk, A)− Pk→h(Yk, A)|]
≤ E [1{Xk ̸= Yk}dTV (Pk→h(Xk, ·), Pk→h(Yk, ·))]
≤ P(Xk ̸= Yk) max

x′,y′∈Z
dTV (Pk→h(x

′, ·), Pk→h(y
′, ·))

= dTV (Pℓ→k(x, ·), Pℓ→k(y, ·)) max
x′,y′∈Z

dTV (Pk→h(x
′, ·), Pk→h(y

′, ·))

Finally, maximizing both sides over A ⊆ Z and x, y ∈ Z yields the desired result.
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F Proof of Theorem 2 – Initial Spectral Clustering

In this appendix, we present the proof of Theorem 2. We further clarify the details of our initial spectral clustering algorithm
and provide complementing proofs and comments.

F.1 Algorithm, preliminaries, and notations

Notations. We introduce notations used extensively throughout this appendix. We recall that N̂a(x, y) =
∑

t,h N̂a,t,h(x, y)

for all x, y ∈ X , a ∈ A, where we denote N̂a,t,h(x, y) ≜ 1{(x(t)h , a
(t)
h , x

(t)
h+1) = (x, a, y)} for all t ∈ [T ], h ∈ [H], and use

the short hand
∑

t,h =
∑T

t=1

∑H
h=1. Furthermore, when writing N̂a and N̂a,t,h, we will think of these as matrices in Rn×n.

Finally, we will also define for all a ∈ A, Pa ≜ (P (y|x, a))x,y∈X .

Trimming. In the trimming step, for each a ∈ A, we recall that Γa is defined as a subset of contexts constructed from X ,
by removing γ contexts with the highest number of visits. More precisely,

∀a ∈ A, Γa =

{
x ∈ X :

∣∣∣∣∣
{
z ∈ X :

∑
y

N̂a(x, y) <
∑
y

N̂a(z, y)

}∣∣∣∣∣ ≥ γ
}

where we choose γ = ⌊n exp
(
−TH

nA log
(
TH
nA

))
⌋. The reason for this choice will be apparent in our analysis later on (see

proof of Proposition 19). Then, the trimmed matrix is simply defined as Na,Γa = (N̂a(x, y)1{x, y ∈ Γa})x,y∈X .

Two-step conditioning. We further define for each a ∈ A, Ña ≜
∑

t,h Ña,t,h, where we set, for t ∈ [T ], 3 ≤ h ≤ H ,
Ña,t,h ≜ Eµ[N̂a,t,h|N̂a,t,h−2], Ña,t,2 ≜ Eµ[N̂a,t,2], and Ña,t,1 ≜ Eµ[N̂a,t,1]. In fact, we note that

∀h ≥ 3, Ña,t,h = diag(P0(xt,h−1, ·))diag(ρ(a|·))Pa,

Ña,t,2 = diag(µP0)diag(ρ(a|·))Pa

Ña,t,1 = diag(µ)diag(ρ(a|·))Pa

where recall that P0 ≜ (
∑

a∈A P (y|x, a)ρ(a|x))x,y∈X . Introducing (Ña)a∈A is crucial in the analysis of the concentration
of the trimmed matrix.

S-rank approximations. As described in our algorithm, for each a ∈ A, we build a matrix M̂a that is an S-rank
approximation of N̂a,Γa . More precisely, the procedure is as follows: (i) for each a ∈ A, via an SVD decomposition, we can
write N̂a,Γa

= U⊤
a diag(σa,1, . . . , σa,n)V

⊤
a where Ua, Va are two n× n orthonormal matrices, and σa,1 ≥ σa,2 ≥ · · · ≥

σa,n are the singular values of N̂a,Γa
; (ii) we obtain an S-rank approximation of N̂a,Γa

by setting all but the first S singular
values to zero, that is M̂a = U⊤

a diag(σa,1, . . . , σa,S , 0, . . . , 0)Va.

Aggregation of information across actions. In order to fully exploit all the observations we gather, we aggregate the
information across different actions by stacking together the obtained S-rank approximation matrices (M̂a)a∈A to form a
fat matrix M̂ of size n× 2nA. More precisely, we write

M̂ =
[
(M̂1)

⊤ · · · (M̂A)
⊤ M̂1 · · · M̂A

]
.

Importantly, as shown later in this appendix, our random matrix M̂ will concentrate around the matrix Ñ , an n × 2nA
matrix, defined as follows

Ñ ≜
[
(Ñ1)

⊤ · · · (ÑA)
⊤ Ñ1 · · · ÑA

]
.

As we shall see, the motivation behind our aggregation procedure stems from the fact that analyzing Ñ gives rise to a
separability quantity that is tightly related to the rate function I(Φ) that appears in our lower bound.
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Weighted K-medians clustering. Finally, we run a weighted K-medians clustering on the rows of M̂ . The procedure
consists of the following two steps:

(i) we re-weigh or normalize in an ℓ1 sense the rows of M̂ , by setting for all x ∈ X such that M̂(x, ·) ̸= 0, M̃(x, ·) =
M̂(x, ·)/∥M̂(x, ·)∥1 and define X0 = {x ∈ X : M̂(x, ·) = 0}. We further define for any x ∈ X , R̃(x, ·) =
Ñ(x, ·)/∥Ñ(x, ·)∥1, which will be useful in the analysis.

(ii) for some ϵ > 0, we solve the following (1 + ϵ)-K-medians optimization problem on X\X0: find {f̂(x)}x∈X\X0
in

SX\X0 such that: ∑
s∈S

min
us∈Rn

∑
x∈X\X0:f̂(x)=s

∥M̂(x, ·)∥1∥M̃(x, ·)− us∥1 ≤

Spectral (1 + ϵ) min
f∈SX

∑
s∈S

min
us∈Rn

∑
x∈X\X0:f(x)=s

∥M̂(x, ·)∥1∥M̃(x, ·)− us∥1 (61)

and for all x ∈ X0, we set f̂(x) = 0.

We note that step (ii) can be executed efficiently (see e.g. Chen et al. (2018); Gao et al. (2018)).

F.2 Proof of Theorem 2

Here we state a more precise version of Theorem 2 and provide its proof.

Theorem 11. Assume that TH = Ω(n) and I(Φ) > 0. The clustering error rate of the initial spectral clustering algorithm
satisfies:

P

(
|E|
n
≤ poly(η)

(
1 +

(2 + ϵ)

J̃(Φ, ρ)

)√
SAn

TH

)
≥ 1− 2

n
− 2e−n − 2e−

TH
2nA .

Observe that when TH = ω(n), then 1 − 2
n − 2e−n − 2e−

TH
2nA −→ 1

n→∞
, which justifies the claim of Theorem 2 that

|E|
n = O

(√
SAn
TH

)
with high probability.

Proof of Theorem 11. We know from Proposition 18 that the weighted K-medians clustering algorithm ensures that

|E|
n
≤
(
2 + η2 +

4(2 + ϵ)η2

J̃(Φ, ρ)

)
2η5n

√
A

TH
∥M̂ − N̂∥F .

Next, by construction of M̂ , using Lemma 12, we have

|E|
n
≤
(
2 + η2 +

4(2 + ϵ)η2

J̃(Φ, ρ)

)
8η5nA

√
S

TH
max
a∈A
∥N̂a,Γa

− Ña∥.

Finally, applying Proposition 19, we immediately obtain

P

(
|E|
n
≤ poly(η)

(
1 +

(2 + ϵ)

J̃(Φ, ρ)

)√
SAn

TH

)
≥ 1− 2

n
− 2e−n − 2e−

TH
2nA .

F.3 Separability

Definition 7. For a given BMDP Φ, we define the separability quantity as follows

J(Φ, ρ) ≜ min
ν∈P(X ,η3),

x,y∈X :f(x) ̸=f(y)

1

2A

∑
a∈A

J1(ν, x, y; Φ, ρ, a) + J2(ν, x, y; Φ, ρ, a)
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where

J1(ν, x, y; Φ, ρ, a) =
∑
z∈X

nA |ν(z)ρ(a|z)Pa(z, x)− ν(z)ρ(a|z)Pa(z, y)| ,

J2(ν, x, y; Φ, ρ, a) =
∑
z∈X

nA |ν(x)ρ(a|x)Pa(x, z)− ν(y)ρ(a|y)Pa(y, z)| ,

and where P(X , η3) = {ν : ν is a probability distribution over X ,maxz1,z2∈X
ν(z1)
ν(z2)

≤ η3}, namely, the set of all η3-
regular probability distributions.

It is not difficult to verify that under Assumptions 1-4, we have that J(Φ, ρ) ≤ poly(η).

Proposition 17 (Separability property). Under Assumptions 1-4, the matrix Ñ satisfies the following: for all x, y ∈ X such
that f(x) ̸= f(y), we have:

∥Ñ(x, ·)− Ñ(y, ·)∥1 ≥
2TH

n
J(Φ, ρ). (62)

Consequently, it also holds that:

∥R̃(x, ·)− R̃(y, ·)∥1 ≥ J̃(Φ, ρ) (63)

for some J̃(Φ, ρ) = poly(1/η)J(Φ, ρ). Furthermore, when I(Φ) > 0, then J(Φ, ρ) > 0.

Proof of Proposition 17. Let a ∈ A, and x, y ∈ X such that f(x) ̸= f(y). First, to ease notations, we introduce for all
z ∈ X ,

ν(z) =
1

T (H − 1)

(
T∑

t=1

(
µ(z) + (µP0)(z) +

H−1∑
h=3

P0(x
(t)
h−1, z)

))
,

Clearly, ν = (ν(z))z∈X is a probability distribution over X , and moreover, one can easily see that under Assumptions 2-4,
ν is η3-regular. More precisely, we also have, for all z ∈ X ,

1

η3n
≤ ν(z) ≤ η3

n
.

(Proof of (62)). First, noting that Ña(z, x) = THν(z)ρ(a|z)Pa(z, x), we have that∥∥∥Ña(·, x)− Ña(·, y)
∥∥∥
1
=
∑
z∈X

∣∣∣Ña(z, x)− Ña(z, y)
∣∣∣

=
TH

nA

∑
z∈X

nA |ν(z)ρ(a|z)Pa(z, x)− ν(z)Pa(z, y)|

≥ TH

nA
J1(ν, x, y; Φ, ρ, a).

Similarly, we have: ∥∥∥Ña(x, ·)− Ña(y, ·)
∥∥∥
1
=
∑
z∈X

∣∣∣Ña(x, z)− Ña(y, z)
∣∣∣

=
TH

nA

∑
z∈X

nA |ν(x)ρ(a|x)Pa(x, z)− ν(y)Pa(y, z)|

≥ TH

nA
J2(ν, x, y; Φ, ρ, a).

Therefore, we obtain

∥Ñ(x, ·)− Ñ(y, ·)∥1 =
∑
a∈A
∥Ña(x, ·)− Ña(y, ·)∥1 + ∥Ña(·, x)− Ña(·, y)∥1
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≥ TH

nA

∑
a∈A

J1(ν, x, y; Φ, ρ, a) + J2(ν, x, y; Φ, ρ, a)

≥ 2TH

n
J(Φ, ρ).

(Proof of (63)). Next, under Assumption 3, in view of Proposition 2, we have for all t ≥ 1, h ≥ 1,

1

η5n2A
≤ min

x,y∈X
Ña,t,h(x, y) ≤ max

x,y∈X
Ña,t,h(x, y) ≤

η5

n2A
,

which leads to

1

η5nA
≤ max

x,y∈X

(
∥Ña,t,h(x, ·)∥1, ∥Ña,t,h(·, y)∥1

)
≤ η5

nA

1

η5nA
≤ min

x,y∈X

(
∥Ña,t,h(x, ·)∥1, ∥Ña,t,h(·, y)∥1

)
≤ η5

nA

and gives that

2TH

η5n
≤ min

(
∥Ñ(x, ·)∥1, ∥Ñ(y, ·)∥1

)
≤ 2η5TH

n
. (64)

Therefore, recalling the definition of R̃, we have for all x, y ∈ X , such that f(x) ̸= f(y),

∥R̃(x, ·)− R̃(y, ·)∥1 ≥
∥Ñ(x, ·)− Ñ(y, ·)∥1

min(∥Ñ(x, ·)∥1, ∥Ñ(y, ·)∥1)
≥ J̃(Φ, ρ) = 1

η5
J(Φ, ρ).

(Proving I(Φ) > 0 =⇒ J(Φ, ρ) > 0). Now let us prove that if J(Φ, ρ) = 0, then I(Φ) = 0. Assume that J(Φ, ρ) = 0,
then there exist x, y ∈ X with f(x) ̸= f(y), and ν ∈ P(X , η3) such that for all a ∈ A,∑

z∈X
nA |ν(z)ρ(a|z)Pa(z, x)− ν(z)ρ(a|z)Pa(z, y)| = 0, (65)∑

z∈X
nA |ν(x)ρ(a|x)Pa(x, z)− ν(y)ρ(a|y)Pa(y, z)| = 0. (66)

Now observe that:

1. from Eqn. (65), we can immediately deduce that for all a ∈ A, z ∈ X , Pa(z, x) = Pa(z, y). This entails that

∀s ∈ S,∀a ∈ A, q(x, f(x))p(f(x)|s, a) = q(y, f(y))p(f(y)|s, a); (67)

2. from Eqn. (66), it must be the case that for all a ∈ A, z ∈ X , ν(x)ρ(a|x)Pa(x, z) = ν(y)ρ(a|y)Pa(y, z). By summing
over z ∈ X , we deduce that ν(x)ρ(a|x) = ρ(a|y)ν(y) > 0 because ν ∈ P(X , η3). This entails that

∀s ∈ S,∀a ∈ A, p(s|f(x), a) = p(s|f(y), a). (68)

Now in view of Proposition 10, we observe that (67) and (68) imply that minx∈X I(x; Φ) = 0, which in turn implies that
I(Φ) = 0.

F.4 Weighted K-medians clustering

The solution to (61). The solution to the (1+ϵ)-K-medians optimization (61) onX\X0 can be obtained efficiently (e.g., see
Chen et al. (2018); Gao et al. (2018) from which we took inspiration). Here, we recall that X0 = {x ∈ X : ∥M̂(x, ·)∥1 = 0}.
Thus, let us denote {f̂(x)}x∈X\X0

in SX\X0 and û1, . . . , ûS ∈ Rn such a solution. We further set f̂(x) = 1, for all x ∈ X0,
and define Û(x, ·) = ûf̂(x) for all x ∈ X . With this, observe that by definition of f̂ and Û = (Û(x, ·))x∈X , we have∑

x∈X
∥M̂(x, ·)∥1∥M̃(x, ·)− Û(x, ·)∥1 ≤ (1 + ϵ)

∑
x∈X
∥M̂(x, ·)∥1∥M̃(x, ·)− R̃(x, ·)∥1. (69)

Note that the choice of ϵ is irrelevant in our analysis and can be viewed as a constant hyperparameter.
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Linking |E| to the geometry of the rows of Û and R̃. Next, we will need the technical Lemma 11 which relates the
number of misclassified contexts |E| to that of the geometry of points, namely the rows of R̃ and Û in our case, provided
some separability condition is satisfied for R̃. The statement of the lemma is valid for any norm ∥ · ∥.
Lemma 11 (Lemma 6 in Gao et al. (2018)). Assume that minx,y∈X :f(x)̸=f(y)∥R̃(x, ·) − R̃(y, ·)∥ ≥ 2ξ for some ξ > 0.
Then it holds that

|E| =

∣∣∣∣∣ min
σ∈Υ(S)

⋃
s∈S

f̂−1(σ(s)) \ f−1(s)

∣∣∣∣∣ ≤ |X0|+ (η2 + 1)|X1|. (70)

where we define X1 = {x ∈ X\X0 : ∥Û(x, ·)− R̃(x, ·)∥1 ≥ ξ}.

The proof of Lemma 11 is borrowed from Gao et al. (2018). The statement we provide here differs slightly from that
provided by Gao et al. (2018) as they considered the Degree Corrected Block Model while in our case we consider BMDPs.
However, the proof is essentially the same and is provided here for completeness (postponed end of this subsection).

Now, invoking Proposition 17, we have under the assumption that I(Φ) > 0, for all x, y ∈ X such that f(x) ̸= f(y),
∥R̃(x, ·)− R̃(y, ·)∥1 ≥ J̃(Φ, ρ). Thus, applying Lemma 11 specialised to the ℓ1 norm, we immediately obtain that

|E| ≤ |X0|+ (η2 + 1)|X1| (71)

where X1 = {x ∈ X\X0 : ∥Û(x, ·)− R̃(x, ·)∥1 ≥ J̃(Φ, ρ)/2}.

Starting from our regularity Assumption 3, observe that

|X0|
n
≤ η5

2TH

∑
x∈X0

∥Ñ(x, ·)∥1 and
|X1|
n
≤ η5

2TH

∑
x∈X1

∥Ñ(x, ·)∥1.

Bounding
∑

x∈X0
∥Ñ(x, ·)∥1. We have:∑

x∈X0

∥Ñ(x, ·)∥1 =
∑
x∈X0

∥M̂(x, ·)− Ñ(x, ·)∥1

≤
∑
x∈X
∥M̂(x, ·)− Ñ(x, ·)∥1

≤ n
√
A∥M̂ − Ñ∥F ,

where the first equality holds by definition of X0, and the last inequality holds by the equivalence of norms on matrices
(essentially using Cauchy-Schwarz inequality).

Bounding
∑

x∈X1
∥Ñ(x, ·)∥1. First, by triangle inequality,∑

x∈X1

∥Ñ(x, ·)∥1 ≤
∑
x∈X1

(
∥Ñ(x, ·)− M̂(x, ·)∥1 + ∥M̂(x, ·)∥1

)
≤ n
√
A∥M̂ − Ñ∥F +

∑
x∈X1

∥M̂(x, ·)∥1,

where again for the second inequality, we used the equivalence between norms on matrices. Next, we have:∑
x∈X1

∥M̂(x, ·)∥1
(a)

≤ 2

J̃(Φ, ρ)

∑
x∈X1

∥M̂(x, ·)∥1∥Û(x, ·)− R̃(x, ·)∥1

(b)

≤ 2

J̃(Φ, ρ)

∑
x∈X1

∥M̂(x, ·)∥1
(
∥M̃(x, ·)− Û(x, ·)∥1 + ∥M̃(x, ·)− R̃(x, ·)∥1

)
(c)

≤ 2(2 + ϵ)

J̃(Φ, ρ)

∑
x∈X1

∥M̂(x, ·)∥1∥M̃(x, ·)− R̃(x, ·)∥1

(d)

≤ 4(2 + ϵ)

J̃(Φ, ρ)

∑
x∈X1

∥M̂(x, ·)∥1∥M̃(x, ·)− Ñ(x, ·)∥1
max(∥M̂(x, ·)∥1, ∥Ñ(x, ·)∥1)
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(e)

≤ 4(2 + ϵ)

J̃(Φ, ρ)

∑
x∈X1

∥M̃(x, ·)− Ñ(x, ·)∥1

(f)

≤ 4(2 + ϵ)

J̃(Φ, ρ)
n
√
A∥M̂ − Ñ∥F ,

where in (a) we used the definition of X1, in (b) we used the triangular inequality, in (c) we used the definition Û and (69),
in (d) we used the elementary inequality that ∥∥x∥−1

1 x − ∥y∥−1
1 y∥1 ≤ 2∥x−y∥1

max(∥x∥1,∥y∥1)
(this can be shown by triangular

inequality and reverse triangular inequality), in (e) we used ∥x∥1

max(∥x∥1,∥y∥1)
≤ 1, and finally in (f) we used equivalence of

norms between matrices. In summary, we get:∑
x∈X1

∥Ñ(x, ·)∥1 ≤
(
1 +

4(2 + ϵ)

J̃(Φ, ρ)

)
n
√
A∥M̂ − N̂∥F

Thus, we have just proved that:

|X0|
n
≤ η5n

√
A

2TH
∥M̂ − N̂∥F , (72)

|X1|
n
≤
(
1 +

4(2 + ϵ)

J̃(Φ, ρ)

)
η5n
√
A

2TH
∥M̂ − N̂∥F . (73)

Now, in view of the inequalities (71), (72), (73), we have established the following Proposition.

Proposition 18. Assume that I(Φ) > 0, and that Assumptions 1-4 hold, then the weighted K-medians clustering algorithm
ensures that

|E|
n
≤
(
2 + η2 +

4(2 + ϵ)η2

J̃(Φ, ρ)

)
2η5n

√
A

TH
∥M̂ − N̂∥F .

Proof of Lemma 11. For each s ∈ S, define

Cs :=
{
x ∈ f−1(s) ∩ (X \ X0) : ∥Û(x, ·)− R̃(x, ·)∥1 < ξ

}
.

By construction, we have that
⋃

s∈S Cs = X \ (X0 ∪X1), and that Cs ∪ Cs′ = ∅ whenever s ̸= s′. Also, by assumption, it is
easy to see that f̂(x) ̸= f̂(y) if x, y are in different Cs’s. Following Chen et al. (2018), we partition X into three groups:

R1 := {s ∈ S : Cs = ∅} ,

R2 :=
{
s ∈ S : Cs ̸= ∅,∀x, y ∈ Cs f̂(x) = f̂(y)

}
,

R3 :=
{
s ∈ S : Cs ̸= ∅,∃x ̸= y ∈ Cs f̂(x) ̸= f̂(y)

}
.

By the definition of R2, we observe that the contexts in
⋃

s∈R2
Cs have the same partition induced by f and f̂ i.e. they can

be considered to be correctly classified, up to a permutation. Thus,

|E| ≤ |X0 ∪ X1|+

∣∣∣∣∣ ⋃
s∈R3

Cu

∣∣∣∣∣ ≤ |X0|+ |X1|+

∣∣∣∣∣ ⋃
s∈R3

Cu

∣∣∣∣∣ .
Note that for each s ∈ S, Cs contains at least two different cluster indices given by f̂ i.e.

|R1|+ |R2|+ |R3| = S ≥ |R2|+ 2|R3|,

which then implies that |R1| ≥ |R3|. We now conclude the proof by noting that∣∣∣∣∣ ⋃
s∈R3

Cu

∣∣∣∣∣ ≤ |R3|
ηn

S
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≤ η|R1|
n

S

≤ η2
∣∣∣∣∣ ⋃
s∈R1

f−1(s)

∣∣∣∣∣
≤ η2|X1|.

F.5 S-rank approximation

Lemma 12 allows us to control the error in Frobeinus norm between M̂ and Ñ , which is necessary to bound the number
of misclassified contexts to that in operator norm between the trimmed matrices N̂a,Γa

and Ña for which we are able to
provide a concentration bound.
Lemma 12. Under Assumption 1-4, after Algorithm 1, we have:

∥M̂ − Ñ∥F ≤ 4
√
SAmax

a∈X
∥N̂a,Γa

− Ña∥

Proof of Lemma 12. We have

∥M̂ − Ñ∥2F = 2
∑
a∈A
∥M̂a − Ña∥2F

(a)

≤ 4S
∑
a∈A
∥M̂a − Ña∥2

(b)

≤ 4S
∑
a∈A

(
∥M̂a − N̂a,Γa

∥+ ∥N̂a,Γa
− Ña∥

)2
(c)

≤ 4S
∑
a∈A

(
σ|S|+1(N̂a,Γa) + ∥N̂a,Γa − Ña∥

)2
(d)

≤ 4S
∑
a∈A

(
σ|S|+1(Ña) + 2∥N̂a,Γa

− Ña∥
)2

(e)

≤ 16SAmax
a∈A
∥N̂a,Γa

− Ña∥2

where inequality (a) follows from ∥M∥F ≤
√
rank(M)∥M∥ and the facts that rank(M̂a) ≤ S by construction and

Ña = LPa for some random matrix L, and thus rank(Ña) ≤ rank(Pa) ≤ S by the structure of the Pa. Inequality (b)
follows by triangular inequality. Inequality (c) follows by construction of M̂a for all a ∈ A. Inequality (d) follows using
Weyl’s inequality, and finally inequality (e) follows by noting again that Ña is at most of rank S, thus σS+1(Ña) = 0.

F.6 Analysis of the trimmed random matrix

This subsection is devoted to the derivation of concentration results for the matrices N̂a,Γa
obtained after trimming the

observation matrices. These concentration results are central to the performance analysis of our algorithms. The proof
techniques used here draw inspiration from those used in SBMs, BMCs, and matrix completion problems (Feige and Ofek,
2005; Keshavan et al., 2010a; Sanders et al., 2020; Sanders and Senen–Cerda, 2023). We adapt these techniques to our
setting. The proof relies on the analysis of light and heavy couples, an involved net argument, where the analysis of the
heavy couples relies on the so-called discrepancy property (Feige and Ofek, 2005; Keshavan et al., 2010a). Furthermore, the
observations upon which the matrices N̂a,Γa

are built are not independent but rather possess a Markovian nature. To tackle
this challenge, we follow a similar reasoning to that in Sanders et al. (2020). Our setting is however different since we have
to accommodate for restarts in episodic Block MDPs. This is done thanks to our new concentration bound (see Appendix E).

We state below the main result of this subsection.
Proposition 19. For all a ∈ A, the following holds:

P

(
max
a∈A

∥∥∥N̂a,Γa
− Ña

∥∥∥ ≤ poly(η)

√
TH

nA

)
≥ 1− 2

n
− 2e−n − 2e−

TH
2nA (74)
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Proof of Proposition 19. First, we express ∥N̂a,Γa − Ña∥ using the variational form of the operator norm, then use the
triangle inequality to obtain ∥∥∥N̂a,Γa

− Ña

∥∥∥ = sup
u,v∈Sn−1

u⊤
(
N̂a,Γa

− Ñ
)
v ≤ T1 + T2 + T3,

where Sn−1 denotes the unit sphere in Rn, and T1, T2 and T3 are defined as follows:

T1 ≜

∣∣∣∣∣∣ sup
u,v∈Sn−1

∑
(x,y)∈L∩Kc

uxvyN̂a(x, y)

∣∣∣∣∣∣ ,
T2 ≜

∣∣∣∣∣∣ sup
u,v∈Sn−1

∑
(x,y)∈L

uxvyN̂a(x, y)− u⊤Ñav

∣∣∣∣∣∣ ,
T3 ≜

∣∣∣∣∣∣ sup
u,v∈Sn−1

∑
(x,y)∈H∩K

uxvyN̂a(x, y)

∣∣∣∣∣∣ ,
with

L ≜ {(x, y) : x, y ∈ X and |uxvy| < m} (light couples)

K ≜ {(x, y) : x, y ∈ X and x, y ∈ Γa} (non-trimmed couples)

H ≜ {(x, y) : x, y ∈ X and |uxvy| ≥ m} (heavy couples)

where we set m = 1
n

√
TH
nA . This choice will appear suitable for our analysis. We recall that number of trimmed nodes is

exactly γ =
⌊
n exp

(
−TH

nA log
(
TH
nA

))⌋
. By Lemma 13, Lemma 16 and Lemma 18, that the terms T1, T2, and T3 satisfy the

following high probability bounds whenever TH = Ω(n):

P

(
T1 ≤ poly(η)

√
TH

nA

)
≥ 1− e−n

A
, (75)

P

(
T2 ≤ poly(η)

√
TH

nA

)
≥ 1− e−n

A
, (76)

P

(
T3 ≤ poly(η)

√
TH

nA

)
≥ 1− 2

An
− 2e−

TH
nA . (77)

The desired result follows from the above concentration results. Indeed, we first note that the event{
T1 ≤ poly(η)

√
TH

nA

}⋂{
T2 ≤ poly(η)

√
TH

nA

}⋂{
T3 ≤ poly(η)

√
TH

nA

}
is a subset of the event {∥∥∥N̂a,Γa

− Ña

∥∥∥ ≤ poly(η)

√
TH

nA

}
.

Thus, using the union bound, we conclude that:

P

(∥∥∥N̂a,Γa
− Ña

∥∥∥ ≤ poly(η)

√
TH

nA

)
≥ 1− 2

An
− 2e−n

A
− 2e−TH/nA

which further implies, applying the union bound once more, that

P

(
max
a∈A

∥∥∥N̂a,Γa − Ña

∥∥∥ ≤ poly(η)

√
TH

nA

)
≥ 1− 2

n
− 2e−n − 2e−TH/2nA,

for TH = Ω(n) where Ω(·) hides a dependence in A log(A) (where e used the fact that TH ≥ 2nA log(A) gives
e−

TH
nA +log(A) ≤ e− TH

2nA ).
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Bounding the contribution of the light couples. In Lemmas 13 and 16, we obtain bounds on the terms that depend on
the light couples, that is when we sum over (x, y) ∈ L.

We start by bounding T1:

Lemma 13 (Bounding T1). We have for all TH = Ω(n),

P

(
T1 > poly(η)

(
1 +

log(A)

n

)√
TH

nA

)
≤ e−n−log(A).

Proof of Lemma 13. First, let us observe that T1 can be upper bounded as follows:

T1
(a)

≤ sup
u,v∈Sn−1

∑
(x,y)∈L∩Kc

|uxvy|N̂a(x, y)

(b)

≤ m
∑

(x,y)∈Kc

N̂a(x, y)

≤ mN̂a(X ,Γc
a)

≤ m max
Y:|Y|=γ

N̂a(X ,Y)

where in inequality (a) we used the triangle inequality, in (b) we used the fact that (x, y) ∈ L (i.e., light couples). Next, we
know from Lemma 14 that for all TH ≥ 2n|A|, for all Y ⊂ X such that |Y| = γ, for all u > 0,we have

max
Y:|Y|=γ

P(N̂a(X ,Y) > poly(η)n(1 + max(
√
u, u))) ≤ e−nu.

Therefore, we have by union bound

P
(
T1 > poly(η)mn(1 + max(

√
u, u))

)
≤

∑
Y:|Y|=γ

P
(
N̂a(X ,Y) > poly(η)n(1 + max(

√
u, u))

)
≤ e−n(u−log(2))

where we used the upper bound |{Y ⊆ X : |Y| = γ}| ≤ 2n. To conclude, we simply recall that m = 1
n

√
TH
nA , plug in its

value in the final concentration, and choose u sufficiently large.

Lemma 14. Let Y ⊆ X such that |Y| =
⌊
n exp

(
−TH

nA log
(
TH
nA

))⌋
. Assume that TH ≥ 2nA, then for all u > 0, we have

P
(∣∣∣N̂a(X ,Y)− Eµ[N̂a(X ,Y)]

∣∣∣ > poly(η)nmax
(√
u, u

))
≤ 2e−nu,

Furthermore, we have

P
(
N̂a(X ,Y) > poly(η)n(1 + max

(√
u, u

)
)
)
≤ 2e−nu.

Proof of Lemma 14. The result follows immediately from Theorem 9. Indeed, consider the induced restarted Markov chain
(x

(t)
h+1, a

(t)
h )t≥1,h≥1, referred to as MC1 in Appendix C. By Proposition 4, the transition kernel and initial distribution of

MC1 are both η3-regular. Introducing ϕ : (y, b) 7→ 1{b = a, y ∈ Y}, we see that N̂a(X ,Y) =
∑T

t=1

∑H
h=1 ϕ(x

(t)
h+1, a

(t)
h ).

Therefore applying Theorem 9, we obtain for all u > 0

P
(
|N̂a(X ,Y)− Eµ[N̂a(X ,Y)]| > u

)
≤ 2 exp

(
− u2

2(1 +
√
2η3(2η3 − 1))2TH γ

nAη
3 + 2

3 (2η
3 − 1)u

)

≤ 2 exp

(
−1

2
min

(
nAu2

c1THγ
,
u

c2

))
,
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where c1 = (1 +
√
2η3(2η3 − 1))2η3 and c2 = 1

3 (2η
3 − 1). Reparameterizing by u′ = 1

2n min
(

nAu2

c1THγ ,
u
c2

)
yields

P

(
|N̂a(X ,Y)− Eµ[N̂a(X ,Y)]| > max

(√
2c1nu′

γTH

nA
, 2c2nu

′

))
≤ 2 exp (−nu′)

Recalling that γ =
⌊
n exp

(
−TH

nA log
(
TH
nA

))⌋
, we can easily verify that γ ≤ 3n2A

TH (which follows from the elementary
inequalities that x log(x) + 1 ≥ x and e−x ≤ 1

x for x > 0). Thus, we may simply write that

P
(
|N̂a(X ,Y)− Eµ[N̂a(X ,Y)]| > ncmax

(√
u′, u′

))
≤ 2 exp (−nu′) ,

where c = max(
√
6c1, 2c2) = poly(η). The additional bound follows from the fact that E[N̂a(X ,Y)] ≤ 3η4n.

The following lemma is a standard net argument, which will be useful for bounding T2:
Lemma 15 (ϵ-net argument on the unit sphere). Let W be an n× n random matrix, for all ϵ ∈ (0, 1/2), let Nϵ an ϵ-net of
the unit sphere with respect to the Euclidian distance ∥ · ∥2 and with minimal cardinality. Then, for any ρ > 0,

P(∥W∥ > ρ) ≤
(
2

ϵ
+ 1

)2n

max
u,v∈Nϵ

P
(
u⊤Wv > (1− 2ϵ)ρ

)
.

Proof of Lemma 15. The existence of Nϵ is shown in Corollary 4.2.13 of Vershynin (2018), which states that |Nϵ| ≤(
2
ϵ + 1

)n
. The statement then follows from Exercise 4.4.3 of Vershynin (2018), which relates the spectral norm of a random

matrix to that of maximizing its rectangular form over Nϵ.

We now bound T2:
Lemma 16 (Bounding T2). We have, for n ≥ 2 log(A),

P

(
T2 > poly(η)

√
TH

nA

)
≤ 2e−n−log(A).

Proof of Lemma 16. Our first step is to split the sum based on the parity of the time steps per episode. More precisely, we
write T2 ≤ T even

2 + T odd
2 and define

T even
2 = sup

u,v∈Sn−1

T∑
t=1

⌊H−1
2 ⌋∑

h=1

 ∑
(x,y)∈L

uxvyN̂a,t,2h(x, y)

− u⊤Ña,t,2hv,

T odd
2 = sup

u,v∈Sn−1

T∑
t=1

⌊H
2 ⌋−1∑
h=0

 ∑
(x,y)∈L

uxvyN̂a,t,2h+1(x, y)

− u⊤Ña,t,2h+1v.

We note that T even
2 and T odd

2 are expressed as supremum over the unit sphere. To proceed we will deploy a net argument,
but first let us define for all u, v ∈ Sn−1,

T even
2 (u, v) =

T∑
t=1

⌊H−1
2 ⌋∑

h=1

 ∑
(x,y)∈L

uxvyN̂a,t,2h+1(x, y)

− u⊤Ña,t,2h+1v,

T odd
2 (u, v) =

T∑
t=1

⌊H
2 ⌋−1∑
h=0

 ∑
(x,y)∈L

uxvyN̂a,t,2h+1(x, y)

− u⊤Ña,t,2h+1v.

The analysis of T even
2 (u, v) and T odd

2 (u, v) will be the same, therefore, and without loss of generality, we only show how
to obtain a concentration bound for T odd

2 (u, v). We start by computing its moment-generating function. First, let λ > 0,
h ≥ 3, we have:

Eµ

exp
λ

 ∑
(x,y)∈L

uxvyN̂a,t,h(x, y)

− λu⊤Ña,t,hv

∣∣∣∣Ña,t,h−2
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=

 ∑
(x,y)∈X×X

(1{(x, y) ̸∈ L}+ 1{(x, y) ∈ L}eλuxvy )Ña,t,h(x, y)

 exp
(
−λu⊤Ña,t,hv

)

=

1 +
∑

(x,y)∈L

Ña,t,h(x, y)
(
eλuxvy − 1

) exp
(
−λu⊤Ña,t,hv

)
(a)

≤ exp

 ∑
(x,y)∈L

Ña,t,h(x, y)

(
λuxvy +

eλ|uxvy|

2
(λuxvy)

2

)
− u⊤Ña,t,hv


(b)

≤ exp

−λ
 ∑

(x,y)∈Lc

uxvyÑa,t,h(x, y)

+
λ2eλm

2

 ∑
(x,y)∈L

(uxvy)
2Ña,t,h(x, y)


(c)

≤ exp

(
λ

η5

n2Am
+ λ2eλm

η5

2n2A

)
where in the inequality (a), we use the elementary inequalities 1+x ≤ exp(x), then eλuxvy−1 ≤ λuxvy+ eλ|uxvy|

2 (λuxvu)
2,

in the inequality (b), we used |uxvu| ≤ m for all (x, y) ∈ L, and in inequality (c), we used the fact that
maxx,y∈X Ña,t,h(x, y) ≤ η5

n2A along with∣∣∣∣∣∣
∑

(x,y)∈Lc

uxvyÑa,t,h(x, y)

∣∣∣∣∣∣ ≤ max(x,y)∈L |Ña,t,h(x, y)|
min(i,j)∈Lc |uivj |

∑
(i,j)∈Lc

|uivj |2 ≤
η5

n2Am

and ∑
(x,y)∈L

(uxvy)
2Ña,t,h(x, y) ≤

η5

n2A
.

Therefore, using a peeling argument, we obtain, for all λ > 0,

Eµ

exp
λ T∑

t=1

⌊H
2 ⌋−1∑
h=0

 ∑
(x,y)∈L

uxvyN̂a,t,h(x, y)

− λu⊤Ña,t,hv




≤ exp

(
λ
η5TH

2n2Am
+ λ2eλm

η5TH

4n2A

)
.

Using Markov inequality and reparameterizing by λ = z/m, we obtain

P
(
T odd
2 (u, v) > nmη5(ρ+ 1)

)
≤ inf

z>0
exp

(
z
η5TH

n2Am2
+ z2ez

η5TH

2n2Am2
− znη5(ρ+ 1)

)
≤ inf

z>0
exp

(
−nη5

(
zρ− z2ez/2

))
,

where the last inequality follows by plugging in the value of m = 1
n

√
TH
nA . Thus, at the end, say for ρ ∈ [0, κeκ], after

optimizing for z ∈ (0, κ), we obtain

P

(
T odd
2 (u, v) >

√
TH

nA

(
η5/2eκ/2

√
ρ+ η5

))
≤ e−nρ.

Finally using an ϵ-net argument with ϵ = 1/4 (Lemma 15), we get, for all κ > 0, ρ ∈ (0, κeκ − 10),

P

(
T odd
2 > 2

√
TH

n|A|

(
η5/2eκ/2

√
ρ+ 10 + η5

))
≤ e−nρ
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and similarly

P

(
T even
2 > 2

√
TH

n|A|

(
η5/2eκ/2

√
ρ+ 10 + η5

))
≤ e−nρ,

which finally, by union bound, gives

P

(
T2 > 4

√
TH

nA

(
η5/2eκ/2

√
ρ+ 10 + η5

))
≤ 2e−nρ.

The final statement follows by choosing ρ = 1 and κ large enough.

Bounding the contribution of the heavy couples. The analysis of T3 relies on the discrepancy property which is satisfied
by the trimmed matrix. This property will be defined in the proof of Lemma 18 and remains crucial in order to obtain high
probability bounds in the regime when TH = ω(n) and TH = O(n log(n)).

Lemma 17 will be required for the analysis of T3.

Lemma 17. We have

P
(
max
x∈Γa

N̂a(x,X ) ≤ poly(η)
TH

nA

)
≥ 1− 2 exp

(
−TH
nA

)
.

Proof of Lemma 17. The proof follows from an immediate application of Theorem 9. In fact, the proof is identical to that of
Lemma 14. Therefore we refer the reader to that proof and omit it.

Let us now present the analysis of T3:

Lemma 18 (Bounding T3). For TH = Ω(n), we have

P

(
T3 ≤ poly(η)

√
TH

nA

)
≥ 1− 2

nA
− 2e−

TH
nA .

Proof of Lemma 18. Again, it will be convenient to write T3 ≤ T even
3 + T odd

3 , where

T even
3 = sup

u,v∈Sn−1

T∑
t=1

⌊H−1
2 ⌋∑

h=1

∑
(x,y)∈H∩K

uxvyN̂a,t,2h(x, y),

T odd
3 = sup

u,v∈Sn−1

T∑
t=1

⌊H
2 ⌋−1∑
h=0

∑
(x,y)∈H∩K

uxvyN̂a,t,2h+1(x, y).

Then without loss of generality, we may focus on T odd
3 , as the analysis of T even

3 will follow similarly. In the sparse regime
when we do not have enough observations, we cannot unfortunately use a standard argument that combines a uniform
concentration bound with a net argument. Instead, we will use the so-called discrepancy property.

Discrepancy property. First, in order to declutter notations, we shall denote the random matrix Q =(∑T
t=1

∑⌊H/2⌋−1
h=0 N̂a,t,2h+1(x, y)1{x, y ∈ Γa}

)
x,y∈X , and for all I,J ⊆ X define the quantity e(I,J ) ≜∑

(x,y)∈I×J Q(x, y). Now, to obtain the desired result, we will follow a similar approach as that used in Keshavan
et al. (2010b) which relies on showing that the matrix Q satisfies the so-called discrepancy property. We say that a random
matrix Q satisfies the discrepancy property, if there exist ξ1, ξ2 > 0 such that for all I,J ⊆ X , the following holds:

(i) e(I,J )n2A
|I||J |TH ≤ ξ1

(ii) e(I,J ) log
(

e(I,J )n2A
|I||J |TH

)
≤ ξ2 max(|I|, |J |) log

(
n

max(|I|,|J |)

)
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We know from Remark 4.5 in Keshavan et al. (2010b), that if the matrix Q satisfies the discrepancy property, then for some
given ϵ-net Nϵ of the unit sphere Sn−1, there exists an absolute constant C > 0 such that

sup
u,v∈Nϵ

∑
(i,j)∈H

uxvyQ(i, j) ≤
√
TH

nA

Now to conclude, it remains to show that Q satisfies the discrepancy property with high probability. Let I,J ⊆ X , we may
assume w.l.o.g that |J | ≥ |I|. We distinguish between two cases:

→ Case 1: if |J | ≥ n/5. First, because of trimming we have the average bounded degree property which follows from
Lemma 17

P
(
max
x∈Γa

N̂a(x,X ) ≤ poly(η)
TH

nA

)
≥ 1− 2 exp

(
−TH
nA

)
.

Thus, with probability at least 1− 2 exp
(
−TH

nA

)
, we have

e(I,J ) ≤ |I|max
x∈Γa

e(x,X ) ≤ 5C|I||J |TH
n2A

which leads to
e(I,J )n2|A|
|I||J |

≤ 5C

whenever TH = Ω(n).

→ Case 2: if |J | ≤ n/5. We start by defining

µ(I,J ) ≜ E

 ∑
x∈I,y∈J

T∑
t=1

⌊H/2⌋−1∑
h=0

N̂a,t,2h+1(x, y)


and note that in view of Assumptions 1-4, it can be easily verified that TH|I||J |

2η5n2A ≤ µ(I,J ) ≤ η5TH|I||J |
2n2A . Then

letting κ⋆(|I|, |J |) = max{κ0, t⋆(I,J )} where κ0 is chosen large enough, and t⋆(I,J ) is defined as the constant t
satisfying

t log(t) =
1

µ(I,J )
ξ2|J | log

(
n

|J |

)
.

Next, we define the event
E =

⋂
I,J⊂X :|I|≤|J |≤n/5

{e(I,J ) ≤ κ⋆(I,J )µ(I,J )}.

We claim that whenever the event E holds then Q satisfies either condition (i) or (ii) of the discrepancy property. Indeed,
let I,J ⊆ X , such that |I| ≤ |J | ≤ n/5, if κ⋆(|I|, |J |) = κ0, then under E , it holds that e(I,J ) ≤ κ0µ(I,J ) ≤
κ0η

5TH|I||J |
2n2A , which clearly means that property (i) is satisfied. On the other hand, if κ⋆(|I|, |J |) = t⋆(I,J ), then un-

der the event E , we have η5e(I,J )
2µ(I,J ) log

(
η5e(I,J )
2µ(I,J )

)
≤ η5t⋆(I,J )/2 log

(
η5t⋆(I,J )/2

)
≤ η5t⋆(I,J ) log(t⋆(I,J )) ≤

η5

µ(I,J )ξ2|J | log
(

n
|J |

)
by monotonicity of t log(t) and when choosing κ0 large enough so that t⋆(I,J ) ≥ η5/2

(κ0 ≥ η5/2). This implies that e(I,J ) log
(

e(I,J )n2A
TH|I||J |

)
≤ η5ξ2|J | log

(
n
|J |

)
. Thus, the property (ii) is satisfied in

this case. It remains to show that the event E holds with high probability. We have by union bound

P(Ec) ≤
∑

I,J∈X :|I|≤|J |≤n/5

P(e(I,J ) > k⋆(I,J )µ(I,J ))

(a)

≤
∑

I,J∈X :|I|≤|J |≤n/5

exp

(
−1

2
k⋆(I,J ) log(k⋆(I,J ))µ(I,J )

)
(b)

≤
∑

I,J∈X :|I|≤|J |≤n/5

exp

(
−1

2
ξ2|J | log

(
n

|J |

))
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≤
∑

1≤i≤j≤n/5

2

(
n

i

)(
n

j

)
exp(−ξ2j log(n/j))

≤
∑

1≤i≤j≤n/5

2 exp((4− ξ2)j log(n/j))

where in inequality (a), we applied Lemma 19, and in the inequality (b), we use the defintion of κ⋆(I,J ) and finally
chose ξ2 > 4. In particular, choosing ξ2 = 7 + log(A)/ log(n) ensures that

P(Ec) ≤ 1

nA
.

We have just shown that

P (Q satisifes the discrepency property) ≥ 1− 1

nA
− e−TH

nA .

This implies that:

P

(
T odd
3 ≤ poly(η)

√
TH

nA

)
≥ 1− 1

nA
− e−TH

nA .

We can show the same for T even
3 . Therefore, we can conclude that for n ≳ A,

P

(
T3 ≤ poly(η)

√
TH

nA

)
≥ 1− 2

nA
− 2e−

TH
nA .

Lemma 19. Let k ≥ e2η8, then

P(e(I,J ) ≥ kµ(I,J )) ≤ exp

(
−1

2
k log(k)µ(I,J )

)
.

Proof of Lemma 19. We can easily verify see, from Assumptions 1-4, that TH|I||J |
2η5n2A ≤ µ(I,J ) ≤ η5TH|I||J |

2n2A . Next, we
compute the moment-generating function of e(I,J ). Let λ > 0, we have, via a peeling argument,

E[exp(λe(I,J ))] = E

exp
λ ∑

i∈I,j∈J

T∑
t=1

⌊H/2⌋−1∑
h=0

N̂a,t,2h+1(x, y)


≤

T∏
t=1

⌊H/2⌋−1∏
h=1

(
1 +

η2|I||J |
n2A

eλ
)

≤
T∏

t=1

⌊H/2⌋−1∏
h=1

exp

(
η2|I||J |
n2A

eλ
)

≤ exp

(
η2TH|I||J |

2n2A
eλ
)
.

Now by Markov inequality, we have:

P (e(I,J ) ≥ kµ(I,J )) ≤ inf
λ>0

E[exp(λ(e(I,J )− kµ(I,J )))]

≤ inf
λ>0

exp

(
η2TH|I||J |

2n2A
eλ − λkµ(I,J )

)
= exp

(
kµ(I,J )

(
1− log

(
kµ(I,J ) 2n2A

η2TH|I||J |

)))
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≤ exp

(
kµ(I,J )

(
1− log

(
k

η4

)))
≤ exp

(
−1

2
k log(k)µ(I,J )

)
where in the last inequality we used k ≥ e2η8. This concludes the proof of the claim.
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G Proof of Theorem 3 (i) – Iterative Likelihood Improvement

The likelihood improvement steps are inspired by our lower bound. Specifically, the set of misclassified contexts is divided
into two sets: the first set corresponds to "well-behaved” contexts where the empirical lower bound divergence is high,
meaning that these contexts are likely to be classified accurately; the second set corresponds to the other contexts.

For the proof, we introduce the following notation: for x ∈ X and j ∈ S,

Îj(x; Φ) ≜
∑
a∈A

∑
s∈S

(
N̂a(f

−1(s), x) log
p(f(x)|s, a)
c̃jp(j|s, a)

+ N̂a(x, f
−1(s)) log

p(s|f(x), a)
p(s|j, a)

)
, (78)

where c̃j :=
∑

s,a mρ(s,a)p(j|s,a)∑
s,a mρ(s,a)p(f(x)|s,a) . It can be easily shown that 1/η ≤ c̃j ≤ η. Moreover, defining pbwd(s, a|j) :=

mρ(s,a)p(j|s,a)∑
s̃∈S

∑
ã∈A mρ(s̃,ã)p(j|s̃,ã) , we have that pbwd(s,a|f(x))

pbwd(s,a|j) = p(f(x)|s,a)
c̃jp(j|s,a) .

Following Yun and Proutière (2016) and Sanders et al. (2020), we start by defining the subset of "well-behaved” contexts:

Definition 8 (Well-behaved contexts). The set of well-behaved contextsH ⊂ X is the largest subset of Γ ≜
⋃

a∈A Γa with
the following properties: for x ∈ H,

(H1) For all j ̸= f(x),

Îj(x; Φ) ≥
1

4η2
TH

n
I(x; Φ), (79)

(H2) ∑
a∈A

{
N̂a(x,X \ H) + N̂a(X \ H, x)

}
≤ 2

(
log

TH

n

)2

. (80)

Let E(ℓ) be the set of misclassified contexts after the ℓ-th iteration of Algorithm 2, and let E(ℓ)H := E(ℓ) ∩H. The basic idea
is to show that E(ℓ)H vanishes for ℓ = ⌊log(nA)⌋, and then we obtain a worst-case upper bound for the error rate by simply
setting all vertices inH∁ to be misclassified.

In Section G.1, we show the following:

Proposition 20. If I(Φ) > 0, then for some universal constant C > 0, we have, w.h.p.

∣∣∣E(ℓ)H∁

∣∣∣ ≤ ∣∣∣H∁
∣∣∣ = O(∑

x∈X
exp

(
−CTH

n
I(x; Φ)

))
. (81)

In Section G.2, we show the following:

Proposition 21. If I(Φ) > 0, then w.h.p., ∣∣∣E(ℓ)H

∣∣∣ = 0 when ℓ = log(nA). (82)

From the above results and the fact that
∣∣E(ℓ)∣∣ = ∣∣∣E(ℓ)H∁

∣∣∣+ ∣∣∣E(ℓ)H

∣∣∣, we conclude the proof of Theorem 3.

G.1 Proof of Proposition 20 – Bounding |H∁|

First, note that

|Γ∁|
n

=

∣∣∣⋂a∈A Γ∁
a

∣∣∣
n

≤
mina∈A

∣∣∣Γ∁
a

∣∣∣
n

= exp

(
−TH
nA

)
n→∞−→ 0, (83)

i.e., the number of contexts not in Γ is negligible, and thus we only need to worry about H∁ ∩ Γ. From now on, all the
contexts are assumed to be in Γ.

The proof consists of two parts.
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The set of x ∈ X such that (H1) does not hold is bounded
DenoteH1 ≜ {x ∈ X : (H1) holds}. To bound the cardinality of such set, we start by bounding |H∁

1|, which follows from
the following concentration result, whose proof is postponed to Section G.3.1:
Proposition 22 (Concentration regarding the rate function I). For any x ∈ X and j ∈ S,

P

[
T∑

t=1

H−1∑
h=1

ϕj

(
x̃
(t)
h

)
<

1

4η2
TH

n
I(x; Φ)

]
≤ 2 exp

(
−2CTH

n
I(x; Φ)

)
, (84)

where C > 0 is an universal constant, x̃(t)h := (x
(t)
h , a

(t)
h , x

(t)
h+1), and

ϕj(x̃
(t)
h ) ≜

∑
a∈A

∑
s∈S

(
1
[
x
(t)
h = x, a

(t)
h = a, x

(t)
h+1 ∈ f

−1(s)
]
log

p(s|f(x), a)
c̃jp(s|j, a)

+1
[
x
(t)
h ∈ f

−1(s), a
(t)
h = a, x

(t)
h+1 = x

]
log

p(f(x)|s, a)
p(j|s, a)

)
.

Then by observing that Îj(x; Φ) =
∑T

t=1

∑H−1
h=1 ϕj(x̃

(t)
h ), from Proposition 22,

E
[∣∣∣H∁

1

∣∣∣] = ∑
x∈X

PΦ

[
∃j ̸= f(x) s.t. Îj(x; Φ) <

1

4η2
TH

n
I(x; Φ)

]

≤
∑
x∈X

∑
j ̸=f(x)

PΦ

[
Îj(x; Φ) <

1

4η2
TH

n
I(x; Φ)

∣∣∣∣∣x, j
]

≤ (S − 1)
∑
x∈X

exp

(
−2CTH

n
I(x; Φ)

)
.

We then conclude using Markov inequality:

P

[∣∣∣H∁
1

∣∣∣ ≥∑
x∈X

exp

(
−CTH

n
I(x; Φ)

)]
≤

E
[∣∣∣H∁

1

∣∣∣]∑
x∈X exp

(
−C TH

n I(x; Φ)
)

≤ (S − 1)
∑
x∈X

exp

(
−CTH

n
I(x; Φ)

)
→ 0,

where the→ holds in the limit n→∞ when I(Φ) > 0 and at least TH = ω(n).

Final construction
Now consider the following iterative constructions of sets {Z(t)}t≥0:

1. Z(0) = H∁
1;

2. Z(t) = Z(t− 1) ∪ {z(t)}, where z(t) does not satisfy (H2) w.r.t. Z(t− 1), i.e.,∑
a∈A

{
N̂a(z(t), Z(t− 1)) + N̂a(Z(t− 1), z(t))

}
> 2

(
log

TH

n

)2

;

3. If such z(t) does not exist, stop and let t∗ be the total number of iterations. We lastly define Z := Z(t∗).

First, observe that if x ∈ Z∁, then x satisfies (H1) and (H2), i.e., x ∈ H. By the maximality ofH, Z∁ ⊆ H, which implies
that, w.h.p., ∣∣∣H∁

∣∣∣ ≤ |Z| ≤ |H∁
1|+ t∗ ≤

∑
x∈X

exp

(
−CTH

n
I(x; Φ)

)
+ t∗.

Thus it suffices to bound t∗. Define s ≜
⌊
2
∑

x∈X exp
(
−C TH

n I(x; Φ)
)⌋

.

Obviously we have that |Z(0)| ≤ s
2 . We consider two cases:
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• s = 0, i.e., Z(0) = ∅. Then, we have that for all x ∈ X ,

∑
a∈A

{
N̂a(x, ∅) + N̂a(∅, x)

}
= 0 ≤ 2

(
log

TH

n

)2

.

This means that t∗ = 0.

• s ≥ 1. By construction, we have that |Z(t)| ≤ s
2 + t. We then bound N̂(Z(t), Z(t)) :=

∑
a∈A N̂a(Z(t), Z(t)) as

follows:

N̂(Z(t), Z(t))

= N̂(z(t), Z(t− 1)) + N̂(Z(t− 1), z(t)) + N̂(Z(t− 1), Z(t− 1)) + N̂(z(t), z(t))

> N̂(Z(t− 1), Z(t− 1)) + 2

(
log

TH

n

)2

.

Unfolding the recursion gives Ĥ(Z(t− 1), Z(t− 1)) > 2t
(
log TH

n

)2
.

We now claim that t∗ < s
2 with high probability. To show this, we proceed by contradiction and suppose that t∗ ≥ s

2 .

Then when t = s
2 , we have that |Z(s/2)| ≤ s and N̂(Z(s/2), Z(s/2)) ≥ s

(
log TH

n

)2
. However, the following

lemma, whose proof is presented in Section G.3.2, shows that this event does not happen with high probability:

Lemma 20. Assume s ≥ 1. Then, with high probability, no W ⊂ X with cardinality s satisfying N̂(W,W ) ≥
s log

(
TH
n

)2
. Precisely,

P

[
∃W ⊂ X : |W | = s, N̂(W,W ) < s

(
log

TH

n

)2
]
≤ 2 exp

(
−1

8

TH

n
log

TH

n

)
. (85)

In summary, we have that t∗ < s
2 . We deduce that: w.h.p.,∣∣∣H∁

∣∣∣ ≤∑
x∈X

exp

(
−CTH

n
I(x; Φ)

)
+
s

2
= 2

∑
x∈X

exp

(
−CTH

n
I(x; Φ)

)
.

G.2 Proof of Proposition 21 – Bounding |E(l)H |

From the algorithm, we must have that

E ≜
∑

x∈E(ℓ)
H

[
L(ℓ)(x, f̂ℓ+1(x))− L(ℓ)(x, f(x))

]
≥ 0, (86)

where we recall that

L(ℓ)(x, j) =
∑
a∈A

∑
s∈S

[
N̂a(x, f̂

−1
ℓ (s)) log p̂ℓ(s|j, a) + N̂a(f̂

−1
ℓ (s), x) log p̂bwd

ℓ (s, a|j)
]
,

with

p̂ℓ(j|s, a) =
N̂a(f̂

−1
ℓ (j), f̂−1

ℓ (s))

N̂a(f̂
−1
ℓ (j),X )

, p̂bwd
ℓ (s, a|j) =

N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (j))∑
ã∈A N̂ã(X , f̂−1

ℓ (j))
.

We can decompose E as E = E1 + E2 + U , where

E1 =
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f

−1(s)) log
p(s|f̂ℓ+1(x), a)

p(s|f(x), a)
(87)

+N̂a(f
−1(s), x) log

pbwd(s, a|f̂ℓ+1(x))

pbwd(s, a|f(x))

]}
, (88)
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E2 =
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[(
N̂a(x, f̂

−1
ℓ (s))− N̂a(x, f

−1(s))
)
log

p(s|f̂ℓ+1(x), a)

p(s|f(x), a)

+
(
N̂a(f̂

−1
ℓ (s), x)− N̂a(f

−1(s), x)
)
log

pbwd(s, a|j)
pbwd(s, a|f(x))

]}
, (89)

and U = E − E1 − E2.

Let us denote e(ℓ) =
∣∣∣E(ℓ)H

∣∣∣. In Section G.4.1, we derive bounds on U,E1, E2:

Lemma 21. Assume that I(Φ) > 0 and TH = ω(n). Then the following holds w.h.p.:

−E1 = Ω

(
e(ℓ+1)TH

n

)
. (90)

U = O

(
e(ℓ+1)SA

(
e(ℓ)

n

TH

nA
+ S

√
TH

nA

))
(91)

|E2| ≤ F1 + F2 + F3, (92)

where

F1 = O
(
TH

n

e(ℓ)

n
e(ℓ+1)

)
, F2 = O

(√
e(ℓ+1)e(ℓ)

THA

n

)
,

F3 = O

(
e(ℓ+1)

(
log

TH

n

)2
)
.

With the above lemma, we can now quantify the minimum number of iterations ℓ for e(ℓ) to vanish:

Proposition 23. If I(Φ) > 0, TH = ω (n) and e(1)

n = o (1) w.h.p., then after ℓ ≥ log(nA) iterations of the likelihood
improvement, e(ℓ) = 0 w.h.p..

Proof. From E ≥ 0 and I(Φ) > 0, the following holds a.s.:

−E1 ≤ F1 + F2 + F3 + |U |.

From Lemma 21, we have that w.h.p.

e(ℓ+1)TH

n
= O

(
TH

n

e(ℓ)

n
e(ℓ+1) +

√
e(ℓ+1)e(ℓ)

THA

n
+ e(ℓ+1)

(
log

TH

n

)2

+e(ℓ+1)SA

(
e(ℓ)

n

TH

nA
+ S

√
TH

nA

))
.

With the given assumptions, we have that w.h.p.

e(ℓ+1)

e(ℓ)
≤ O

(
nA

TH

)
.

We can readily see that when ℓ = ⌊log(nA)⌋, e(ℓ) = 0 w.h.p., and we are done.
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G.3 Postponed proofs – Bounding |H∁
1|

G.3.1 Proof of Proposition 22: concentration for the rate function I

Let x ∈ X , j ∈ S. We first compute ∥ϕ∥∞:∣∣∣ϕ(x̃(t)h )
∣∣∣ ≤∑

a∈A

∑
s∈S

(
1
[
x
(t)
h = x, a

(t)
h = a, x

(t)
h+1 ∈ f

−1(s)
] ∣∣∣∣log p(s|f(x), a)p(s|j, a)

∣∣∣∣
+1
[
x
(t)
h ∈ f

−1(s), a
(t)
h = a, x

(t)
h+1 = x

] ∣∣∣∣log p(f(x)|s, a)c̃jp(j|s, a)

∣∣∣∣)
≤ 3 log η.

We now compute ϕ2 in closed form:

ϕ(X,A, Y )2

=
∑

(a,s),(ã,s̃)

(
1
[
X = x,A = a, Y ∈ f−1(s)

]
log

p(s|f(x), a)
p(s|j, a)

+1
[
X ∈ f−1(s), A = a, Y = x

]
log

p(f(x)|s, a)
c̃jp(j|s, a)

)
(
1
[
X = x,A = ã, Y ∈ f−1(s̃)

]
log

p(s̃|f(x), ã)
p(s̃|j, ã)

+1
[
X ∈ f−1(s̃), A = ã, Y = x

]
log

p(f(x)|s̃, ã)
c̃jp(j|s̃, ã)

)
=
∑
a,s

[
1
[
X = x,A = a, Y ∈ f−1(s)

](
log

p(s|f(x), a)
p(s|j, a)

)2

+1
[
X ∈ f−1(s), A = a, Y = x

](
log

p(f(x)|s, a)
c̃jp(j|s, a)

)2
]

+ 2
∑
a∈A

1 [X = x,A = a, Y = x]

(
log

p(f(x)|f(x), a)
p(f(x)|j, a)

)(
log

p(f(x)|f(x), a)
c̃jp(j|f(x), a)

)
︸ ︷︷ ︸

≜G

≤
∑
a,s

[
1
[
X = x,A = a, Y ∈ f−1(s)

](
log

p(s|f(x), a)
p(s|j, a)

)2

+1
[
X ∈ f−1(s), A = a, Y = x

](
log

p(f(x)|s, a)
c̃jp(j|s, a)

)2
]
+G.

As Var[ϕ] ≤ E[ϕ2] (for any given probability measure), it suffices to derive an upper bound for Eν [ϕ
2] for ν ∈

{µodd, µeven, P2(·|x′, a′, y′)}, where we recall that Eν [ϕ
2] = EX∼ν [ϕ(X)2]. Observe that for any choice of ν,

Eµ[|G|] = O
(

1
n2

)
, possibly up to some factors involving S,A.

We first consider µodd. Recalling the definitions of pin, pout,mρ (Section D.3.2),

Eµodd

[
ϕ2
]

≤
∑
a,s

[
q(x|f(x))mρ(f(x), a)p(s|f(x), a)

(
log

p(s|f(x), a)
p(s|j, a)

)2

+mρ(s, a)p(f(x)|s, a)q(x|f(x))
(
log

p(f(x)|s, a)
c̃jp(j|s, a)

)2
]
+O

(
1

n2

)
(i)

≤ 2

q(x|f(x))∑
a∈A

mρ(f(x), a)

(
max
s∈S

poutf(x),a(s) ∨ p
out
j,a (s)

poutf(x),a(s) ∧ p
out
j,a (s)

)2

KL(poutf(x),a||p
out
j,a )
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+

(
max
s̄∈[2K]

pinΦ,x(s̄, a) ∨ pinΨ,x(s̄, a; c̃j)

pinΦ,x(s̄, a) ∧ pinΨ,x(s̄, a; c̃j)

)2

KL(pinΦ,x(·, ·)||pinΨ,x(·, ·; c̃j))

+O
(

1

n2

)
(ii)

≤ 2η2

[
q(x|f(x))

∑
a∈A

mρ(f(x), a)KL(poutf(x),a||p
out
j,a ) + KL(pinΦ,x(·, ·)||pinΨ,x(·, ·; c̃j))

]
+O

(
1

n2

)
(iii)

≤ 2η3

n
Ĩj(x; c̃j ,Φ) +O

(
1

n2

)
(iv)

≤ 2η4

n
Ij(x; c̃j ,Φ) +O

(
1

n2

)
,

where (i) follows from Lemma 22, (ii) and (iii) follow from the facts that pout is η-regular and 1/η ≤ c̃j ≤ η, and (iv)
follows from Proposition 11.

Similarly, we can bound Eµeven

[
ϕ2
]
≤ 2η6

n Ij(x; c̃j ,Φ) +O
(

1
n2

)
and EP 2

2 (·|x′,a′,y′)

[
ϕ2
]
≤ 2η4

n Ij(x; c̃j ,Φ) +O
(

1
n2

)
.

Lemma 22 (Lemma 19 of SM6.3 of Sanders et al. (2020)). When
∑

z∈Z p(z) =
∑

z∈Z q(z) = 1 and supp(p) =
supp(q) = Z , then the following holds:

∑
z∈Z

p(z)

(
log

p(z)

q(z)

)2

≤ 2

(
max
z∈Z

p(z) ∨ q(z)
p(z) ∧ q(z)

)2

KL(p||q).

In summary, we have:

MP,ϕ = 3(2η3 − 1) log η ≜ C1,

Vµ,P,ϕ ≤
C2

n
Ĩj(x; c̃j ,Φ),

with C2 ≜ 2
(
1 +
√
2η3(2η3 − 1)

)2
η4.

Recalling the definition of ϕ,

E
x
(t)
1 ∼µ

∑
t,h

ϕ
(
X̃

(t)
h

)
=
∑
a∈A

∑
s∈S

(
Na(x, f

−1(s)) log
p(s|f(x), a)
p(s|j, a)

+Na(f
−1(s), x) log

p(f(x)|s, a)
c̃jp(j|s, a)

)
=
TH

n

∑
a∈A

∑
s∈S

(
q(x|f(x))mρ(f(x), a)p(s|f(x), a) log

p(s|f(x), a)
p(s|j, a)

+mρ(s, a)p(f(x)|s, a)q(x|f(x)) log
p(f(x)|s, a)
c̃jp(j|s, a)

)
(i)

≥ TH

ηn
Ĩj(x; c̃j ,Φ)(1− o(1))

(ii)

≥ TH

2η2n
Ij(x; c̃j ,Φ),

where (i) follows from c̃jη ≥ 1 and the definition of Ĩ , and (ii) follows from Proposition 11.

Recalling that I(x; Φ) ≤ Ij(x; c,Φ) for all j ∈ S and c > 0, we conclude by applying our Bernstein-type concentration
(Theorem 10):

P

∑
t,h

ϕ
(
X̃

(t)
h

)
<

1

4η2
TH

n
I(x; Φ)


≤ P

∑
t,h

ϕ
(
X̃

(t)
h

)
<

1

4η2
TH

n
Ij(x; c̃j ,Φ)
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≤ P

∑
t,h

(
ϕ
(
X̃

(t)
h

)
− Eµ

[
ϕ
(
X̃

(t)
h

)])
< − 1

4η2
TH

n
Ij(x; c̃j ,Φ)


≤ P

∑
t,h

(
ϕ
(
X̃

(t)
2h

)
− Eµ

[
ϕ
(
X̃

(t)
2h

)])
< − 1

8η2
TH

n
Ij(x; c̃j ,Φ)


+ P

∑
t,h

(
ϕ
(
X̃

(t)
2h−1

)
− Eµ

[
ϕ
(
X̃

(t)
2h−1

)])
< − 1

8η2
TH

n
Ij(x; c̃j ,Φ)


≤ 2 exp

−
(

1
8η2

TH
n Ij(x; c̃j ,Φ)

)2
2TH C2

n Ij(x; c̃j ,Φ) +
2
3C1

1
8η2

TH
n Ij(x; c̃j ,Φ)


= 2 exp

(
−2CTH

n
Ij(x; c̃j ,Φ)

)
≤ 2 exp

(
−2CTH

n
I(x; Φ)

)
,

where C ≜ 1
256η4C2+

32
3 η2C1

.

G.3.2 Proof of Lemma 20

Let W ⊂ X be any subset of size s ≥ 1. As done previously, we split the summation into two parts:

N̂(W,W ) = N̂even(W,W ) + N̂odd(W,W ), (93)

where H̃ ≜ ⌊H/2⌋, Ih,t =
∑

a∈A 1
[
X

(t)
h ∈W,A

(t)
h = a,X

(t)
h+1 ∈W

]
= 1

[
X

(t)
h ∈W,X

(t)
h+1 ∈W

]
,

N̂even(W,W ) ≜
T∑

t=1

H̃∑
h=1

I2h,t, N̂odd(W,W ) ≜
T∑

t=1

H̃+1∑
h=1

I2h−1,t. (94)

Again, we exploit the conditional independency structure:

E
[
eθN̂

even(W,W )
]
= E

 T∏
t=1

H̃∏
h=1

eθI2h,t


=

T∏
t=1

E

H̃−1∏
h=1

eθI2h,tE
[
eθI2H̃,t

∣∣∣{I2h,t}H̃−1
h=1

]
=

T∏
t=1

E

H̃−1∏
h=1

eθI2h,tE
[
eθI2H̃,t

∣∣1[X2H̃−1 ∈W ]
]

=

T∏
t=1

E

H̃−1∏
h=1

eθI2h,t

{
E
[
eθI2H̃,t

∣∣X2H̃−1 ∈W
]
1[X2H̃−1 ∈W ]

+E
[
eθI2H̃,t

∣∣X2H̃−1 ̸∈W
]
1[X

(t)

2H̃−1
̸∈W ]

}]
≤

T∏
t=1

E

H̃−1∏
h=1

eθI2h,t

{
E
[
eθI2H̃,t

∣∣X2H̃−1 ∈W
]
1[X2H̃−1 ∈W ] + 1[X

(t)

2H̃−1
̸∈W ]

}
(∗)
≤

T∏
t=1

E

H̃−1∏
h=1

eθI2h,t

(
1 + eθ

s2η6

n2

)
≤ · · ·
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≤
(
1 + eθ

s2η6

n2

)TH̃

≤ exp

(
eθ
TH̃s2η6

n2

)
≤ exp

(
eθ
THs2η6

2n2

)
,

where (∗) follows from

E
[
eθI2H̃,t

∣∣X2H̃−1 ∈W
]
= eθP

[
X2H̃ ∈W,X2H̃+1 ∈W | X2H̃−1 ∈W

]
+ 1

= 1 + eθ
∑

x,y,z∈W P[X2H̃−1 = x,X2H̃ = y,X2H̃+1 = z]∑
x∈W P[X2H̃−1 = x]

= 1 + eθ
∑

x,y,z∈W P[X2H̃−1 = x]P[X2H̃ = y|X2H̃−1 = x]P[X2H̃+1 = z|X2H̃ = y]∑
x∈W P[X2H̃−1 = x]

≤ 1 + eθ
s2
(

η3

n

)2∑
x∈W P[X2H̃−1 = x]∑

x∈W P[X2H̃−1 = x]
= 1 + eθ

s2η6

n2
.

By Markov inequality, we have:

P

[
N̂even

a (W,W ) ≥ s

2

(
log

TH

n

)2
]
≤ inf

θ≥0

E
[
exp

(
θN̂even

a (W,W )
)]

exp
(
θ s
2

(
log TH

n

)2)
≤ inf

θ≥0
exp

(
eθ
THs2η6

2n2
− θ s

2

(
log

TH

n

)2
)

(i)

≤ exp

(
−TH

n
s

(
1

2
log

TH

n
− e

TH
n

log TH
n
η6s

2n

))
(ii)

≤ exp

(
−s
4

TH

n
log

TH

n

)
,

where (i) follows from choosing θ =
TH
n

log TH
n

, and (ii) follows from a simple calculation:

e

TH
n

log TH
n
η6s

2n
≃ 1

n

∑
x∈X

exp

(
TH
n

log TH
n

− CTH
n
I(x; Φ)

)

=
1

n

∑
x∈X

exp

(
−TH

n

(
CI(x; Φ)− 1

log TH
n

))
= o(1) ≤ 1

4
log

TH

n
,

where we recall the definition of s and our assumptions that
∑

x∈X exp
(
−C TH

n I(x; Φ)
)
> 0, and TH = ω(n).

Similarly, we also have that

P

[
N̂odd

a (W,W ) ≥ s

2
log

(
TH

n

)2
]
≤ exp

(
−s
4

TH

n
log

TH

n

)
.

It follows from a simple union bound (combinatorial) argument that

E

[∣∣∣∣∣
{
W : N̂(W,W ) ≥ s

(
log

TH

n

)2

, |W | = s

}∣∣∣∣∣
]

≤ E

[∣∣∣∣∣
{
W : N̂even(W,W ) ≥ s

2
log

(
TH

n

)2

, |W | = s

}∣∣∣∣∣
]
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+ E

[∣∣∣∣∣
{
W : N̂odd(W,W ) ≥ s

2
log

(
TH

n

)2

, |W | = s

}∣∣∣∣∣
]

≤ 2
(en
s

)s
exp

(
−s
4

TH

n
log

TH

n

)
= 2 exp

(
−s
4

(
TH

n
log

TH

n
− log

en

s

))
(i)

≤ 2 exp

(
−s
8

TH

n
log

TH

n

)
(ii)

≤ 2 exp

(
−1

8

TH

n
log

TH

n

)
,

where (i) follows from log en
s ≤

1
2
TH
n log TH

n , and (ii) follows from s ≥ 1.

Finally, by Markov inequality, we conclude that

P

[∣∣∣∣∣
{
W : N̂(W,W ) ≥ s

(
log

TH

n

)2

, |W | = s

}∣∣∣∣∣ ≥ 1

]
≤ 2 exp

(
−1

8

TH

n
log

TH

n

)
→ 0.

□

G.4 Postponed proofs - Bounding |E(ℓ)H |

G.4.1 Proof of Lemma 21: bounding E1, E2, U

We bound each term separately.

Proof of (90) - Lower bounding −E1

The lower bound for −E1 can be obtained by recalling that the form is asymptotically the same to that of the rate function:

−E1 =
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f

−1(s)) log
p(s|f(x), a)
p(s|f̂ℓ+1(x), a)

+N̂a(f
−1(s), x) log

pbwd(f(x)|s, a)
pbwd(f̂ℓ+1(x)|s, a)

]}
=

∑
x∈E(ℓ+1)

H

Îf̂ℓ+1(x)
(x; Φ)

(i)
= Ω

TH
n

∑
x∈E(ℓ+1)

H

I(x; Φ)

 (ii)
= Ω

(
e(ℓ+1)TH

n

)
,

where (i) follows from the condition (H1) for the well-defined contexts (Definition 8), and (ii) follows from our assumption
that I(Φ) > 0, which implies that I(x; Φ) > 0 for all x ∈ X (see Section 3).

Proof of (91) - Upper bounding U
We again rewrite U as U = U in + Uout, with

U in ≜
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f̂

−1
ℓ+1(s))

(
log

p̂ℓ(s|f̂ℓ+1(x), a)

p̂ℓ(s|f(x), a)
− log

p(s|f̂ℓ+1(x), a)

p(s|f(x), a)

)]}

=
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f̂

−1
ℓ+1(s))

(
log

p̂ℓ(s|f̂l+1(x), a)

p(s|f̂l+1(x), a)
− log

p̂ℓ(s|f(x), a)
p(s|f(x), a)

)]}
,

and

Uout ≜
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f̂

−1
ℓ+1(s))

(
log

p̂bwd
ℓ (f̂ℓ+1(x), a|s)
p̂bwd
ℓ (f(x), a|s)

− log
pbwd(f̂ℓ+1(x), a|s)
pbwd(f(x), a|s)

)]}
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=
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[
N̂a(x, f̂

−1
ℓ+1(s))

(
log

p̂bwd
ℓ (f̂l+1(x), a|s)
pbwd(f̂l+1(x), a|s)

− log
p̂bwd
ℓ (f(x), a|s)
pbwd(f(x), a|s)

)]}
,

We conclude by Lemma 25 and the triangle inequality: w.h.p.

|U | ≤ |U in|+ |Uout|

≤ O

(
e(l+1)S

TH

n

(
e(l)

n
+ S

√
nA

TH

))
.

Proof of (92) - Upper bounding E2

From the regularity assumptions and the triangle inequality, we first have that

|E2| ≲
∑

x∈E(ℓ+1)
H

{∑
a∈A

∑
s∈S

[∣∣∣N̂a(x, f̂
−1
ℓ (s))− N̂a(x, f

−1(s))
∣∣∣+ ∣∣∣N̂a(f̂

−1
ℓ (s), x)− N̂a(f

−1(s), x)
∣∣∣]} .

We bound the first summation (the second summation follows the exact same argument): by the triangle inequality,∑
x∈E(ℓ+1)

H

∑
a∈A

∑
s∈S

∣∣∣N̂a(x, f̂
−1
ℓ (s))− N̂a(x, f

−1(s))
∣∣∣

≤
∑

x∈E(ℓ+1)
H

∑
a∈A

∑
s∈S

∣∣∣N̂a(x, f̂
−1
ℓ (s) ∩H)− N̂a(x, f

−1(s) ∩H)
∣∣∣

+
∑

x∈E(ℓ+1)
H

∑
a∈A

∑
s∈S

(
N̂a(x, f̂

−1
ℓ (s) ∩H∁) + N̂a(x, f

−1(s) ∩H∁)
)

=
∑

x∈E(ℓ+1)
H

∑
a∈A

∑
s∈S

∣∣∣N̂a(x, f̂
−1
ℓ (s) ∩H)− N̂a(x, f

−1(s) ∩H)
∣∣∣

+ 2
∑

x∈E(ℓ+1)
H

∑
a∈A

N̂a(x,X \ H).

From the construction ofH (specifically (H2)), the second sum can be further bounded as follows:

2
∑

x∈E(ℓ+1)
H

∑
a∈A

N̂a(x,X \ H) ≤ 4e(ℓ+1)

(
log

TH

n

)2

.

The first sum is bounded as follows:∑
x∈E(ℓ+1)

H

∑
a∈A

∑
s∈S

∣∣∣N̂a(x, f̂
−1
ℓ (s) ∩H)− N̂a(x, f

−1(s) ∩H)
∣∣∣

=
∑

x∈E(ℓ+1)
H

∑
a∈A

∑
s∈S

∣∣∣∣∣∣
∑

y∈(f̂−1
ℓ (s)∩H)\(f−1(s)∩H)

N̂a(x, y)−
∑

y∈(f−1(s)∩H)\(f̂−1
ℓ (s)∩H)

N̂a(x, y)

∣∣∣∣∣∣
≤

∑
x∈E(ℓ+1)

H

∑
a∈A

∑
s∈S

∑
y∈(f̂−1

ℓ (s)∩H)△(f−1(s)∩H)

N̂a(x, y)

= 2
∑

x∈E(ℓ+1)
H

∑
a∈A

∑
y∈E(ℓ)

H

N̂a(x, y) = 2
∑
a∈A

N̂a

(
E(ℓ+1)
H , E(ℓ)H

)
.

Next, we will use the following lemma related to the spectral norm of matrices:
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Lemma 23 (Lemma 20 of SM6.4 of Sanders et al. (2020)). For any matrix B ∈ Rn×n and any subsets E,F ⊂ [n], we
have

∑
r∈E

∑
c∈F B(r, c) = 1⊺EB1F , where 1E and 1F are column vector such that 1E(x) = 1[x ∈ E] for x ∈ [n].

Furthermore, we have that 1⊺EB1F ≤ ∥B∥
√
|E||F |.

Thus, ∑
a∈A

N̂a

(
E(ℓ+1)
H , E(ℓ)H

)
=
∑
a∈A

Na

(
E(ℓ+1)
H , E(ℓ)H

)
+
∑
a∈A

(N̂a −Na)
(
E(ℓ+1)
H , E(ℓ)H

)
≤ O

(
TH

n2
e(ℓ+1)e(ℓ) +

∑
a∈A

∥∥∥N̂a −Na

∥∥∥
2

√
e(ℓ+1)e(ℓ)

)
.

From Proposition 19, we have that for each a ∈ A, w.h.p.∥∥∥N̂a −Na

∥∥∥
2
≤
∥∥∥N̂a − TrimΓa

(
N̂a

)∥∥∥
2
+
∥∥∥TrimΓa

(
N̂a

)
−Na

∥∥∥
2

≤ O

(∥∥∥N̂a − TrimΓa

(
N̂a

)∥∥∥
F
+

√
TH

nA

)

≤ O

√( TH
n2A

)2

ne−
TH
nA +

√
TH

nA

 ≤ O(√TH

nA

)
.

In summary, we have, w.h.p.,

|E2| = O

THn e(ℓ)

n
e(ℓ+1)︸ ︷︷ ︸

≜F1

+

√
e(ℓ+1)e(ℓ)

THA

n︸ ︷︷ ︸
≜F2

+ e(ℓ+1)

(
log

TH

n

)2

︸ ︷︷ ︸
≜F3

 .

□

G.4.2 Intermediate estimation errors for p and pbwd

In this subsection, we bound the estimation errors of p and pbwd during the improvement steps.

One important remark is that p and pbwd can be precisely written as ratios of expected numbers of observations of transitions
(even without the stationarity assumption):

Lemma 24. For all (s, a, s′) ∈ S ×A× S,

p(s′|s, a) =
Na

(
f−1(s), f−1(s′)

)
Na (f−1(s),X )

, pbwd(s, a|s′) = Na(f
−1(s), f−1(s′))∑

ã∈ANã(X , f−1(s′))
. (95)

Proof. Both follow from a simple chain of computations:

Na

(
f−1(s), f−1(s′)

)
Na (f−1(s),X )

=
TH

∑
y∈f−1(s′)mρ(s, a)p(s

′|s, a)q(y|s′)
TH

∑
z∈X mρ(s, a)p(f(z)|s, a)q(z|f(z))

= p(s′|s, a) 1∑
s̃∈S p(s̃|s, a)

= p(s′|s, a).

and

Na(f
−1(s), f−1(s′))∑

ã∈ANã(X , f−1(s′))
=
TH

∑
y∈f−1(s′)mρ(s, a)p(s

′|s, a)q(y|s′)
TH

∑
s̃∈S

∑
ã∈Amρ(s̃, ã)p(s′|s̃, ã)

=
mρ(s, a)p(s

′|s, a)∑
s̃∈S

∑
ã∈Amρ(s̃, ã)p(s′|s̃, ã)

= pbwd(s, a|s′).
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Now the intermediate error bound for p:

Lemma 25. After ℓ rounds of improvement, the following holds: if e(ℓ) at least satisfies Theorem 2, then for all (s, a, s′) ∈
S ×A× S, w.h.p. ∣∣∣∣log p̂ℓ(s′|s, a)p(s′|s, a)

∣∣∣∣ ≤ ∣∣∣∣ p̂ℓ(s′|s, a)− p(s′|s, a)p(s′|s, a)

∣∣∣∣ = O
(
S

(
e(ℓ)

n
+ S

√
nA

TH

))
(96)

and ∣∣∣∣log p̂bwd
ℓ (s′|s, a)
pbwd(s′|s, a)

∣∣∣∣ ≤ ∣∣∣∣ p̂bwd
ℓ (s′|s, a)− pbwd(s′|s, a)

pbwd(s′|s, a)

∣∣∣∣ = O
(
S

(
e(ℓ)

n
+ S

√
nA

TH

))
. (97)

Proof. We start with pℓ. From the inequalities x
1+x ≤ log(1 + x) ≤ x for x > −1 and Lemma 24, we have that∣∣∣∣log p̂ℓ(s′|s, a)p(s′|s, a)

∣∣∣∣ ≤ ∣∣∣∣ p̂ℓ(s′|s, a)− p(s′|s, a)p(s′|s, a)

∣∣∣∣
=

∣∣∣∣∣ Na(f
−1(s),X )

Na(f−1(s), f−1(s′))

N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

N̂a(f̂
−1
ℓ (s),X )

− 1

∣∣∣∣∣
=

∣∣∣∣ Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f−1(s), f−1(s′))

Na(f
−1(s),X )

Na(f̂
−1
ℓ (s),X )︸ ︷︷ ︸

left ratios

N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f̂
−1
ℓ (s),X )

N̂a(f̂
−1
ℓ (s),X )︸ ︷︷ ︸

right ratios

−1
∣∣∣∣.

The "left ratios" capture the clustering error, both of which are concentrated around 1 with high probability. Denoting
V ≜ f−1(s), V̂ ≜ f̂−1

ℓ (s),W ≜ f−1(s′), Ŵ ≜ f̂−1
ℓ (s′), we first compute an upper bound for |Na(V̂ , Ŵ )−Na(V,W )|:∣∣∣Na(V̂ , Ŵ )−Na(V,W )

∣∣∣ = ∣∣∣(Na(V \ V̂ ,W ) +Na(V ∩ V̂ , Ŵ \W )
)

−
(
Na(V̂ \ V, Ŵ ) +Na(V ∩ V̂ ,W \ Ŵ )

)∣∣∣
≤ Na(V ∩ V̂ ,W△Ŵ ) +Na(V \ V̂ , B) +Na(V̂ \ V, Ŵ )

≤ Na

(
V, E(ℓ)

)
+Na(E(ℓ),W ) +Na(E(ℓ), Ŵ )

≤ O
(
TH

n2A

n

S
e(l)
)

= O
(
TH

nSA
e(l)
)
,

where△ is the symmetric difference operator.

Now we compute the asymptotics of the first left ratio:∣∣∣∣∣Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f−1(s), f−1(s′))
− 1

∣∣∣∣∣ =
∣∣∣∣ 1

Na(f−1(s), f−1(s′))

(
Na(V̂ , Ŵ )−Na(V,W )

)∣∣∣∣
≤ O

(
1

n2

S2
TH
n2A

TH

nSA
e(ℓ)

)
= O

(
Se(ℓ)

n

)
.

Observe that the same bound also holds for the other left ratio.

The "right ratios" are readily bounded using Proposition 24, provided at the end of this appendix: w.h.p.∣∣∣∣∣N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))
− 1

∣∣∣∣∣ ≤ O
(

1
n2

S2
TH
n2A

√
nTH

A

)

= O

(
S2

√
nA

TH

)
.

Similarly, the same bound also holds for the other right ratio, and combining them all gives our result.
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We now turn to pbwd
ℓ . Using similar reasoning as previous, we first have that∣∣∣∣log p̂bwd

ℓ (s, a|s′)
pbwd(s, a|s′)

∣∣∣∣ ≤ ∣∣∣∣ p̂bwd
ℓ (s, a|s′)− pbwd(s, a|s′)

pbwd(s, a|s′)

∣∣∣∣
=

∣∣∣∣∣
∑

ã∈ANã(X , f−1(s′))

Na(f−1(s), f−1(s′))

N̂a(f̂
−1
ℓ (s), f̂−1

ℓ (s′))∑
ã∈A N̂ã(X , f̂−1

ℓ (s′))
− 1

∣∣∣∣∣
=

∣∣∣∣∣Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

Na(f−1(s), f−1(s′))

∑
ã∈ANã(X , f−1(s′))∑
ã∈ANã(X , f̂−1

ℓ (s′))

×
N̂a(f̂

−1
ℓ (s), f̂−1

ℓ (s′))

Na(f̂
−1
ℓ (s), f̂−1

ℓ (s′))

∑
ã∈ANã(X , f̂−1

ℓ (s′))∑
ã∈A N̂ã(X , f̂−1

ℓ (s′))
− 1

∣∣∣∣∣ .
All ratios in the above can be bounded as those involved in pℓ. This completes the proof.

Concentration of N̂a aroundNa We now provide the concentration result relatingNa and N̂a, for any subsetsE,F ⊂ X ,
used in the discussions above:
Proposition 24 (Concentration of Na and N̂a over all possible subsets). There exists an absolute constant c > 0 such that
for any a ∈ A,

P

[
max

E,F⊂X

∣∣∣N̂a(E,F )−Na(E,F )
∣∣∣ ≥ c√nTH

A

]
≤ 4 exp (−2n (1− log 2)) . (98)

Proof. Let E,F ⊂ X , and let ϕ(X,A, Y ) = 1[X ∈ E,A = a, Y ∈ F ]. We have that N̂a(E,F ) =∑
t,h ϕ

(
X

(t)
h−1, A

(t)
h−1, X

(t)
h

)
and ∥ϕ∥∞ = 1. As for the proof of other concentration results for BMDPs (e.g. Propo-

sition 22), we consider MC2,odd and MC2,even. We first have that Eµodd
[ϕ],Eµeven

[ϕ],EP 2
2 (·|x′,a′,y′)[ϕ] ≤ η5

A ≜ p for all
(x′, a′, y′) ∈ X ×A×X . From this, the variances for all cases are bounded as follows:

Var[ϕ] = E[ϕ] (1− E[ϕ]) ≤ E[ϕ] ≤ p,

implying that Vµ,P,ϕ ≤
(
1 +
√
2η3(2η3 − 1)

)2
p.

Thus for any u = o (THp),

P

∣∣∣∣∣∣
∑
t,h

ϕ(X
(t)
h ))− Eµ[ϕ(X

(t)
h )]

∣∣∣∣∣∣ > u


≤ P

∣∣∣∣∣∣
∑
t,h

ϕ(X
(t)
2h ))− Eµ[ϕ(X

(t)
2h )]

∣∣∣∣∣∣ > u

2

+ P

∣∣∣∣∣∣
∑
t,h

ϕ(X
(t)
2h+1))− Eµ[ϕ(X

(t)
2h+1)]

∣∣∣∣∣∣ > u

2


≤ 4 exp

(
− u2

2TH
(
1 +
√
2η3(2η3 − 1)

)2
p

)
.

Choose u = c
√

nTH
A = o (THp) with c2 ≥ 4

(
1 +
√
2η3(2η3 − 1)

)2
η5. Then,

P

[∣∣∣N̂a(E,F )−Na(E,F )
∣∣∣ ≥ c√nTH

A

]
≤ 4 exp

(
−

c2 nTH
A

2TH
(
1 +
√
2η3(2η3 − 1)

)2 η5

A

)
≤ 4 exp (−2n) .

We conclude by taking the union bound over all possible pairs (E,F ) ⊂ X :

P

[
max

E,F⊂X

∣∣∣N̂a(E,F )−Na(E,F )
∣∣∣ ≥ c√nTH

A

]
≤ 22n4 exp (−2n) ≤ 4 exp (−2(1− log 2)n) .
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H Proof of Theorem 3 (ii) – Estimation of the Latent Transitions and Emission Probabilities

In this appendix, we establish concentration results on the final estimation error of the latent state transitions rates and the
emission probabilities.

H.1 Preliminaries on the estimators

Estimation under f̂ . Let us recall, that given an estimated decoding function f̂ , we estimate the latent state transition
probabilities p̂ and the emission probabilities q̂ as follows:

∀s, s′ ∈ S,∀a ∈ A, p̂(s′|s, a) =
∑

t,h 1{f̂(x
(t)
h ) = s, a

(t)
h = a, f̂(x

(t)
h+1) = s′}∑

t,h 1{f̂(x
(t)
h ) = s, a

(t)
h = a}

,

∀x ∈ X ,∀s ∈ S, q̂(x|s) =
∑

t,h 1{f̂(x
(t)
h ) = s, x

(t)
h = x}∑

t,h 1{f̂(x
(t)
h ) = s}

.

Here, we use the short hand
∑

t,h ≜
∑T

t=⌊T/2⌋+1

∑H
h=1. Without explicitly mentioning it, we set p̂(s′|s, a) = 0 (resp.

q̂(x|s) = 0) whenever
∑

t,h 1{f̂(x
(t)
h ) = s, a

(t)
h = a} = 0 (resp.

∑
t,h 1{f̂(x

(t)
h ) = s} = 0), and as we shall see this will

not happen with high probability.

Estimation under the true f . We will denote the estimates of the latent transition probabilities and emission probabilities
under the true clustering function f by p̂f and q̂f , respectively. They are defined as follows:

∀s, s′ ∈ S,∀a ∈ A p̂f (s
′|s, a) =

∑
t,h 1{f(x

(t)
h ) = s, a

(t)
h = a, f(x

(t)
h+1) = s′}∑

t,h 1{f(x
(t)
h ) = s, a

(t)
h = a}

∀x ∈ X ,∀s ∈ S, q̂f (x|s) =
∑

t,h 1{f(x
(t)
h ) = s, x

(t)
h = x}∑

t,h 1{f(x
(t)
h ) = s}

.

Again, without explicitly mentioning it, we set p̂f (s′|s, a) = 0 (resp. q̂f (x|s) = 0) whenever
∑

t,h 1{f(x
(t)
h ) = s, a

(t)
h =

a} = 0 (resp.
∑

t,h 1{f(x
(t)
h ) = s} = 0), and as we shall see this will not happen with high probability.

Notations. To declutter notations, we introduce for all t ∈ [T ], h ∈ [H], ∀x ∈ X , ∀X ⊆ X , ∀a ∈ A, δt,h,a(x) ≜

1{x(t)h = x, a
(t)
h = a}, δt,h(x) ≜ 1{x(t)h = x}, δt,h,a(X) ≜ 1{x(t)h ∈ X , a

(t)
h = a} and δt,h(X) ≜ 1{x(t)h ∈ X}. We will

further write p̂(s, a), p(s, a), q̂(s), q(s) instead of p̂(·|s, a), p(·|s, a), q̂(·|s), q(·|s)

H.2 Proof of Theorem 3 (ii)

Here we present the precise statement of Theorem 3 - (ii), as Proposition 25.

Proposition 25. Under Assumptions 1-4, the estimators p̂ and q̂ satisfy:

(i) for all TH = Ω(log(n)), the event

max
s∈S,a∈A

∥p̂(s, a)− p(s, a)∥1 ≤ poly(η)SA

(√
S + log(nSA)

TH
+
|E|
n

)
(99)

holds with probability at least 1− 4
n − e

−TH
n .

(ii) for all TH = Ω(n), the event

max
s∈S
∥q̂(s)− q(s)∥1 ≤ poly(η)S

(√
n

TH
+
|E|
n

)
(100)

holds with probability at least 1− 4
n − e

−TH
n
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Proof of Proposition 25. The proof is an immediate consequence of the estimation error decomposition Lemmas 26 and 27,
and the concentration bounds provided in Lemma 28, Lemma 29, Lemma 30, and Lemma 31.

Proposition 26. Under Assumptions 1-4, the estimator and q̂ satisfy: for all V ∈ Rn, for all ρ > 0, for TH ≥
poly(η)S(ρ+ log(S)),

P

(
max
s∈S

∣∣∣(q̂(s)− q(s))V ∣∣∣ ≤ poly(η)∥V ∥∞S

(√
ρ+ log(S)

TH
+
|E|
n

+
ρ

TH

))
≥ 1− 4e−ρ

Proof of Proposition 26. The proof is an immediate consequence of the estimation error decomposition Lemma 27, and the
concentration bounds provided in Lemma 28, Lemma 29, and Lemma 31.

H.3 Estimation error decomposition lemmas

A key step in the proof of Theorem 3 - (ii) is to establish Lemmas 26 and 27. These lemmas allow us to obtain upper bounds
on the estimation error of p̂ and q̂ that only depend on the estimation error of p̂f and q̂f and the total number of misclassified
nodes

∑
t,h 1{f̂(x

(t)
h ) ̸= f(x

(t)
h )} where here we use the slight abuse of notations that

∑
t,h =

∑T
t=⌊T/2⌋+1

∑H+1
h=1 .

Here, we state Lemma 26 which will serve in the analysis of the estimation error of p̂.

Lemma 26 (First Error Decomposition). The estimator p̂ satisfies the following error decomposition: for all s ∈ S, a ∈ A,
provided that N̂a(f

−1(s)) ̸= 0, we have

∥p̂(s, a)− p(s, a)∥1 ≤ ∥p̂(s, a)− p(s, a)∥1 +
6
∑

t,h 1{f̂(x
(t)
h ) ̸= f(x

(t)
h )}

N̂a(f−1(s))
. (101)

Next, we state Lemma 27 which will serve to analyze the estimation error of q̂.

Lemma 27 (Second Error Decomposition). The estimator q̂ satisfies the following error decomposition: for all s ∈ S,
provided that N̂(f−1(s)) ̸= 0, we have

∥q̂(s)− q(s)∥1 ≤ ∥q̂f (s)− q(s)∥1 +
4
∑

t,h 1{f̂(x
(t)
h ) ̸= f(x

(t)
h )}

N̂(f−1(s))
. (102)

Moreover, for any V ∈ Rn, it holds

∣∣∣(q̂(s)− q(s))V ∣∣∣ ≤ ∣∣∣(q̂f (s)− q(s))V ∣∣∣+ 4
∑

t,h 1{f̂(x
(t)
h ) ̸= f(x

(t)
h )}∥V ∥∞

N̂(f−1(s))
. (103)

H.4 Concentration bounds

Lemma 28. Under Assumptions 1-4, we have for all ρ > 0,

P

 1

TH

∑
t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} ≤ poly(η)

(
|E|
n

+
ρ

TH

) ≥ 1− e−ρ (104)

Consequently, we have:

P

 1

TH

∑
t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} ≤ poly(η)

|E|
n

 ≥ 1− e−TH
n (105)

Lemma 29. Under Assumptions 1-4, forall ρ > 0, we have:

(i) for all TH ≥ poly(η)S(ρ+ log(S))

P
(
min
s∈S

N̂(f−1(s)) ≥ poly

(
1

η

)
TH

S

)
≤ 1− e−ρ. (106)
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(ii) For all TH ≥ poly(η)SA(ρ+ log(SA)), we obtain

P
(

min
s∈S,a∈A

N̂a(f
−1(s)) ≥ poly

(
1

η

)
TH

SA

)
≤ e−ρ. (107)

An immediate consequence of Lemma 29 is that for TH = Ω(log(n)), we have

P
(
min
s∈S

N̂(f−1(s)) ≥ poly

(
1

η

)
TH

S

)
≥ 1− 1

n

and

P
(

min
s∈S,a∈A

N̂a(f
−1(s)) ≥ poly

(
1

η

)
TH

SA

)
≥ 1− 1

n
.

where Ω(·) hides a dependence on poly(η)SA log(SA).

Lemma 30. Under Assumptions 1-4, for TH = Ω(log(n)), we have

P

(
max

s∈S,a∈A

∥∥∥p̂f (s, a)− p(s, a)∥∥∥
1
≤ poly(η)SA

√
S + log(nSA)

TH

)
≤ 1− 3

n
. (108)

Lemma 31. Under Assumptions 1-4, we obtain:

(i) for all ρ > 0, for all V ∈ Rn, for all TH ≥ poly(η)S(ρ+ log(S)),

P

(
max
s∈S

∣∣∣(q̂f (s)− q(s))V ∣∣∣ ≤ poly(η)∥V ∥∞S
√
ρ+ log(S)

TH

)
≥ 1− 3e−ρ. (109)

(ii) For TH = Ω(n),

P
(
max
s∈S

∥∥∥q̂f (s)− q(s)∥∥∥
1
≤ poly(η)S

√
n

TH

)
≥ 1− 3

n
. (110)

H.5 Proofs – Estimation error decompositions

Proof of Lemma 26. Let U ∈ RS such that ∥U∥∞ ≤ 1. We wish to relate the estimation error of |(p̂(s, a)− p(s, a))U | to
that |(p̂f (s, a)− p(s, a))U | and the number of misclassified nodes |E|. First, we start by writing

N̂a(f
−1(s))

(
p̂(s, a)− p(s, a)

)
U = ∆1 +∆2 +∆3 +∆4

where we define

∆1 =
(
N̂a(f

−1(s))− N̂a(f̂
−1(s))

) (
p̂(s, a)− p(s, a)

)
U

∆2 =
∑
s′∈S

(
N̂a(f

−1(s), f−1(s′))− p(s′|s, a)N̂a(f
−1(s))

)
U(s′)

∆3 =
∑
s′∈S

((
N̂a(f̂

−1(s), f−1(s′))

− N̂a(f
−1(s), f−1(s′))

)
− p(s′|s, a)

(
N̂a(f̂

−1(s))− N̂a(f
−1(s))

))
U(s′)

∆4 =
∑
s′∈S

(
N̂a(f̂

−1(s), f−1(s′))− N̂a(f̂
−1(s), f̂−1(s′))

)
U(s′).

Bounding ∆1. The term ∆1 can be bounded as follows:

|∆1| ≤
∣∣∣∑

t,h

δt,h,a(f̂
−1(s))− δt,h,a(f−1(s))

∣∣∣∥p̂(s, a)− p(s, a)∥1
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≤ 2
∑
t,h

∣∣∣δt,h,a(f̂−1(s))− δt,h,a(f−1(s))
∣∣∣

≤ 2
∑
t,h

∑
x∈X

1{f̂(x) ̸= f(x)}1{x(t)h = x}max
(
1{f(x) = s},1{f̂(x) = s}

)
≤ 2

∑
t,h

∑
x∈X

1{f̂(x) ̸= f(x)}1{x(t)h = x}

where in the second inequality, we used the fact that ∥p̂(s, a)− p(s, a)∥1 ≤ 2.

Bounding ∆2. We observe that

|∆2| = N̂a(f
−1(s))

∣∣∣ ∑
s′∈S

(
p̂f (s

′|s, a)− p(s′|s, a)
)
U(s′)

∣∣∣
≤ N̂a(f

−1(s))∥p̂f (s, a)− p(s, a)∥1.

Bounding ∆3. We bound ∆3 as follows

∆3 =

∣∣∣∣∣∣
∑
s′∈S

∑
t,h

(
δt,h+1(f

−1(s′))− p(s′|s, a)
)(
δt,h,a(f̂

−1(s))− δt,h,a(f−1(s))
)
U(s′)

∣∣∣∣∣∣
≤
∑
s′∈S

∑
t,h

∣∣∣(δt,h+1(f
−1(s′))− p(s′|s, a)

)
U(s′)

∣∣∣ ∣∣∣δt,h,a(f̂−1(s))− δt,h,a(f−1(s))
∣∣∣

≤
∑
t,h

2
∣∣∣δt,h,a(f̂−1(s))− δt,h,a(f−1(s))

∣∣∣
≤
∑
t,h

2
∑
x∈X

1{f(x) ̸= f̂(x)}1{xt,h = x}.

Bounding ∆4. We bound ∆4 as follows

∆4 =

∣∣∣∣∣∣
∑
t,h

∑
s′∈S

(
δt,h+1(f

−1(s′))− δt,h+1(f̂
−1(s′))

)
δt,h,a(f̂

−1(s))

∣∣∣∣∣∣
≤
∑
t,h

∑
s′∈S

∣∣∣δt,h+1(f
−1(s′))− δt,h+1(f̂

−1(s′))
∣∣∣ δt,h,a(f̂−1(s))

≤
∑
t,h

∑
s′∈S

∣∣∣δt,h+1(f
−1(s′))− δt,h+1(f̂

−1(s′))
∣∣∣

≤
∑
t,h

∑
s′∈S

1{f̂(x(t)h+1) ̸= f(x
(t)
h+1)}max(1{f(x(t)h+1) = s′},1{f̂(x(t)h+1) = s′})

≤ 2
∑
t,h

1{f̂(x(t)h+1) ̸= f(x
(t)
h+1)}.

Finally, we conclude by writing

∥p̂(s, a)− p(s, a)∥1 ≤ ∥p̂(s, a)− p(s, a)∥1 +
6
∑

t,h 1{f̂(x
(t)
h ) ̸= f(x

(t)
h )}

N̂a(f−1(s))

provided N̂a(f
−1(s)) > 0, where we slightly abuse notations and use

∑
t,h =

∑T
t=⌊T/2⌋+1

∑H+1
h=1 .

Proof of Lemma 27. Let V ∈ Rn, we start relating the estimation error of |(q̂(s) − q(s))V | to that of |(q̂f (s) − q(s))V |
and the misclassification error. Let us also recall that

∀x ∈ X , s ∈ S, q̂(x|s) = N̂({x} ∩ f̂−1(s))

N̂(f̂−1(s))
and q̂f (x|s) =

N̂({x} ∩ f−1(s))

N̂(f−1(s))
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whenever N̂(f̂−1(s)), N̂(f−1(s)) > 0, otherwise the estimates are set to zero. Now, we have

N̂(f̂−1(s))
∣∣∣(q̂(s)− q(s))V ∣∣∣ = ∣∣∣∣∣∑

x∈X

(
N̂({x} ∩ f̂−1(s))− q(x|s)N̂(f̂−1(s))

)
V (x)

∣∣∣∣∣
≤

∣∣∣∣∣∑
x∈X

(
N̂({x} ∩ f−1(s))− q(x|s)N̂(f−1(s))

)
V (x)

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
t,h

∑
x∈X

(δt,h(x)− q(x|s))
(
δt,h(f̂

−1(s))− δt,h(f−1(s))
)
V (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
x∈X

(
N̂({x} ∩ f−1(s))− q(x|s)N̂(f−1(s))

)
V (x)

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
t,h

(∑
x∈X
|δt,h(x)− q(x|s)|

)∣∣∣δt,h(f̂−1(s))− δt,h(f−1(s))
∣∣∣∥V ∥∞

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
x∈X

(
N̂({x} ∩ f−1(s))− q(x|s)N̂(f−1(s))

)
V (x)

∣∣∣∣∣
+

∣∣∣∣∣∣
∑
t,h

(∑
x∈X
|δt,h(x)− q(x|s)|

)(∑
x∈X

δt,h(x)1{f̂(x) ̸= f(x)}
)
∥V ∥∞

∣∣∣∣∣∣
≤

∣∣∣∣∣∑
x∈X

(
N̂({x} ∩ f−1(s))− q(x|s)N̂(f−1(s))

)
V (x)

∣∣∣∣∣
+ 2

∑
x∈X

(∑
t,h

δt,h(x)
)
1{f̂(x) ̸= f(x)}∥V ∥∞

where we used at the end we used the fact that ∥δt,h(·) − q(·|x)∥∞ ≤ 1. Thus, provided that N̂(f̂−1(s)) > 0 and
N̂(f−1(s)) > 0, we obtain

N̂(f̂−1(s))
∣∣∣(q̂(s)− q(s))V ∣∣∣ ≤ N̂(f−1(s))

∣∣∣(q̂f (s)− q(s))V ∣∣∣+ 2|E|max
x∈X

N̂(x)∥V ∥∞

where we recall that |E| =
∑

x∈X 1{f̂(x) ̸= f(x)}. Furthermore,

N̂(f−1(s))
∣∣∣(q̂(s)− q(s))V ∣∣∣ ≤ N̂(f−1(s))

∣∣∣(q̂f (s)− q(s))V ∣∣∣+ 2|E|max
x∈X

N̂(x)∥V ∥∞

+ (N̂(f̂−1(s))− N̂(f̂−1(s)))
∣∣∣(q̂(s)− q(s))V ∣∣∣

≤ N̂(f−1(s))
∣∣∣(q̂f (s)− q(s))V ∣∣∣+ 4|E|max

x∈X
N̂(x)∥V ∥∞

where we used the fact ∥q̂(s) − q(s)∥1 ≤ 2, and |N̂(f̂−1(s)) − N̂(f−1(s))| ≤ |E|maxx∈X N̂(x). Therefore, by taking
the supremum over V such that ∥V ∥∞ ≤ 1, we finally obtain, provided N̂(f−1(s)) > 0, that

∥q̂(s)− q(s)∥1 ≤ ∥q̂f (s)− q(s)∥1 +
4|E|maxx∈X N̂(x)

N̂(f−1(s))
.

H.6 Proofs – Concentration bounds

Proof of Lemma 28. In view of Proposition 2, we can easily verify that for all t > ⌊T/2⌋,h ∈ [H],

Eµ[1{f̂(x(t)h ) ̸= f(x
(t)
h )}|f̂ ] ≤ max

x∈X
Eµ[1{x(t)h = x}|f̂ ]|E| ≤ max

x∈X
µ⊤Ph−1

0 (x)|E| ≤ η2|E|
n

.
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Thus, Eµ[
∑

t,h 1{f̂(x
(t)
h ) ̸= f(x

(t)
h )}|f̂ ] ≤ η2TH|E|

2n . Now, we may apply Theorem 9 conditionally on f̂ , which gives for
all u > 0 (possibly depending on f̂ )

E

1
∑

t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} > η2TH|E|

2n
+ u

∣∣∣f̂


≤ E

1
∑

t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} > Eµ

∑
t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )}

∣∣∣f̂
+ u

∣∣∣f̂


≤ exp

(
− u2

8η10 TH|E|
n + 4

3η
2u

)

≤ exp

(
−min

(
nu2

8η10TH|E|
,

u

2
√
2η5

))
.

Reparametrizing by z = nu
TH|E| gives

E

1
∑

t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} > η2TH|E|

2n
+
TH|E|
n

z

∣∣∣f̂


≤ exp

(
−TH|E|

n
min

(
z2

8η10
,

z

2
√
2η5

))
.

Further reparametrizing ρ = TH|E|
n min

(
z2

8η10 ,
z

2
√
2η5

)
gives

E

1
∑

t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} > η2TH|E|

2n
+ 2
√
2η5 max

{√
TH|E|ρ

n
, ρ

}∣∣∣f̂
 ≤ e−ρ.

Finally, noting that max

{√
TH|E|ρ

n , ρ

}
≤ TH|E|

n + ρ, we conclude that for all ρ > 0

P

 1

TH

∑
t,h

1{f̂(x(t)h ) ̸= f(x
(t)
h )} >

(
η2

2
+ s
√
2η5
)
|E|
n

+ 2
√
2η5

ρ

TH

 ≤ e−ρ.

Proof of Lemma 29. In view of Proposition 2, we know that P0 is η3-regular. We can easily verify that for all t >
⌊T/2⌋+ 1,h ∈ [H],

Eµ[1{f(xt,h) = s}] ≥ min
x∈X

Eµ[1{x(t)h = x}]αsn = min
x∈X

µ⊤(P0)
h−1(x)αsn ≥

1

η4S

Eµ[1{f(xt,h) = s}] ≤ max
x∈X

Eµ[1{x(t)h = x}]αsn = max
x∈X

µ⊤(P0)
h−1(x)αsn ≤

η4

S
.

Thus, we have TH
2η4S ≤ Eµ[N̂(f−1(s))] ≤ THη4

2S . Now, applying Theorem 9, we can immediately obtain that for all u > 0,

P
(
TH

2η3S
− u > N̂(f−1(s))

)
≤ P(Eµ[N̂(f−1(s))] > N̂(f−1(s)) + u)

≤ exp

(
− u2

8η10 TH
S + 4

3η
2u

)

≤ exp

(
−min

(
Su2

8η11TH
,

u

2
√
2η11/2

))
.
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Using a union bound gives us

P
(
TH

2η3S
− u > min

s∈S
N̂(f−1(s))

)
≤ exp

(
−min

(
Su2

8η11TH
,

u

2
√
2η11/2

)
+ log(S)

)
.

Reparametrizing by ρ = min
(

Su2

8η11TH ,
u

2
√
2η11/2

)
− log(S), yields

P

(
TH

2η3S
− 2
√
2η11/2 max

{√
TH

S
(ρ+ log(S)), ρ+ log(S)

}
> min

s∈S
N̂(f−1(s))

)
≤ e−ρ.

Thus, for all TH ≥ 8η17S(log(ρ) + log(S)), we obtain

P
(
TH

4η3S
> min

s∈S
N̂(f−1(s))

)
≤ e−ρ.

Choosing ρ = log(n), we obtain that for TH = Ω(log(n)),

P
(
TH

4η3S
> min

s∈S
N̂(f−1(s))

)
≤ 1

n

where Ω(·) hides a dependence in poly(η)S log(S).

Following, a similar proof with the only exception that we use instead the fact P1 is η2-regular, we obtain that for
TH = Ω(log(n)),

P
(

TH

4η3SA
> min

s∈S,a∈A
N̂a(f

−1(s))

)
≤ 1

n

where Ω(·) hides a dependence in poly(η)SA log(SA).

Lemma 32 (ϵ-net argument for ℓ1 norm). Let q be a d-dimensional random vector, and ϵ ∈ (0, 1). Furthermore, let N be
an ϵ-net of the unit ball with respect to ∥ · ∥∞, with minimal cardinality. Then, for all ρ > 0, we have

P
(
∥q∥1 >

ρ

1− ϵ

)
≤
(
3

ϵ

)d

max
V ∈N

P
(
q⊤V > ρ

)
.

Proof of Lemma 30. Let U ∈ RS such that ∥U∥∞ ≤ 1. We have

N̂a(f
−1(s))

∣∣∣(p̂f (s, a)− p(s, a))U ∣∣∣ = ∣∣∣∑
t,h

∑
s′∈S

(δt,h+1(f
−1(s′))− p(s′|s, a))U(s′)δt,h,a(f

−1(s))
∣∣∣.

We note by Hoeffding’s lemma that for all λ > 0, we have

E
[
exp

(
λ
( ∑

s′∈S
U(s′)(δt,h+1(f

−1(s′))− p(s′|s, a))δt,h,a(f−1(s))
))∣∣∣s(t)h

]
≤ exp

(
λ2

2

)
.

Using the above inequality alongside a peeling argument, we obtain

E
[
exp

(
λ
(∑

t,h

∑
s′∈S

U(s′)(δt,h+1(f
−1(s′))− p(s′|s, a))δt,h,a(f−1(s))

))]
≤ exp

(
THλ2

2

)
.

Now using Markov’s inequality and optimizing over λ > 0, we obtain that for all ρ > 0

P
(
N̂a(f

−1(s))
(
p̂f (s, a)− p(s, a)

)
U > ρ

)
≤ exp

(
− ρ2

2TH

)
. (111)
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This gives via a standard union bound

P
(

min
s∈S,a∈A

N̂a(f
−1(s)) max

s∈S,a∈A

∣∣∣(p̂f (s, a)− p(s, a))U ∣∣∣ > ρ

)
≤ 2 exp

(
− ρ2

2TH
+ log(SA)

)
.

Reparametrizing by ρ =
√
TH(ρ′ + log(SA)), we may write for all ρ′ > 0,

P
(

min
s∈S,a∈A

N̂a(f
−1(s)) max

s∈S,a∈A

∣∣∣(p̂f (s, a)− p(s, a))U ∣∣∣ >√TH(ρ′ + log(SA))

)
≤ 2e−ρ′

.

Using Lemma 29, we obtain that for all TH ≥ poly(η)SA(ρ′ + log(SA)),

P

(
max

s∈S,a∈A

∣∣∣(p̂f (s, a)− p(s, a))U ∣∣∣ > poly(η)SA

√
ρ′ + log(SA)

TH

)
≤ 3e−ρ′

.

Now, we apply an ϵ-net argument using Lemma 32 with ϵ = 1/2 to obtain

P

(
max

s∈S,a∈A

∥∥∥p̂f (s, a)− p(s, a)∥∥∥
1
> poly(η)SA

√
ρ′ + log(SA)

TH

)
≤ 3e−ρ′+log(6)S .

Reparametrizing by ρ′′ = ρ′ + log(6)S

P

(
max

s∈S,a∈A

∥∥∥(p̂f (s, a)− p(s, a))∥∥∥
1
> poly(η)SA

√
ρ′ + log(SA) + S

TH

)
≤ 3e−ρ′

.

Choosing ρ′′ = log(n), we finally obtain for TH = Ω(log(n))

P

(
max

s∈S,a∈A

∣∣∣p̂f (s, a)− p(s, a)∥∥∥
1
> poly(η)SA

√
S + log(nSA)

TH

)
≤ 3

n

where Ω(·) hides a dependence of order poly(η)SA log(SA) .

Proof of Lemma 31. Let V ∈ Rn such that ∥V ∥∞ <∞.

Proof of (i). We have

N̂(f−1(s))
∣∣∣(q̂f (s)− q(s))V ∣∣∣ = ∣∣∣∑

t,h

∑
x∈X

(δt,h(x)− q(x|s))1{st,h = s}V (x)
∣∣∣.

We note by Hoeffding’s lemma that for all λ > 0, we have

E
[
exp

(
λ
(∑

x∈X
(δt,h(x)− q(x|s))1{st,h = s}V (x)

))∣∣∣st,h] ≤ exp

(
λ2∥V ∥2∞

2

)
.

Using the above inequality alongside a peeling argument, we immediately obtain

E
[
exp

(
λ
(∑

t,h

∑
x∈X

(δt,h(x)− q(x|s))1{st,h = s}V (x)
))]
≤ exp

(
THλ2∥V ∥2∞

2

)
.

Now using Markov’s inequality and optimizing over λ > 0, we obtain that for all ρ > 0

P
(
N̂(f−1(s))

(
q̂f (s)− q(s)

)
V > ρ

)
≤ exp

(
− ρ2

2TH∥V ∥2∞

)
. (112)

This gives via a standard union bound

P
(
min
s∈S

N̂(f−1(s))max
s∈S

∣∣∣(q̂f (s)− q(s))V ∣∣∣ > ρ

)
≤ 2 exp

(
− ρ2

2TH∥V ∥2∞
+ log(S)

)
.
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Reparametrizing by ρ = ∥V ∥∞
√
TH(ρ′ + log(S)), we may write for all ρ′ > 0,

P
(
min
s∈S

N̂(f−1(s))max
s∈S

∣∣∣(q̂f (s)− q(s))V ∣∣∣ > ∥V ∥∞√TH(ρ′ + log(S))

)
≤ 2e−ρ′

.

Using Lemma 29, we obtain that for all TH ≥ poly(η)S(ρ′ + log(S)),

P

(
max
s∈S

∣∣∣(q̂f (s)− q(s))V ∣∣∣ > poly(η)∥V ∥∞S
√
ρ′ + log(S)

TH

)
≤ 3e−ρ′

.

Proof of (ii) We start from the inequality (112) and apply an ϵ-net argument using Lemma 32 with ϵ = 1/2 to obtain

P
(
N̂(f−1(s))

∥∥∥q̂f (s)− q(s)∥∥∥
1
> 2ρ

)
≤ exp

(
− ρ2

2TH
+ log(6)n

)
.

Then, using a union bound we obtain

P
(
min
s∈S

N̂(f−1(s))max
s∈S

∥∥∥q̂f (s)− q(s)∥∥∥
1
> 2ρ

)
≤ exp

(
− ρ2

2TH∥V ∥2∞
+ log(6)n+ log(S)

)
.

Reparametrizing by ρ =
√

2TH(ρ′ + log(6)n+ log(S))

P
(
min
s∈S

N̂(f−1(s))max
s∈S

∥∥∥q̂f (s)− q(s)∥∥∥
1
> 2
√

2TH(ρ′ + log(6)n+ log(S))

)
≤ e−ρ.

Choosing ρ′ = log(n) and applying Lemma 29, we can obtain for TH = Ω(log(n))

P

(
max
s∈S

∥∥∥q̂f (s)− q(s)∥∥∥
1
> poly(η)

S
√
2TH(n+ log(n) + log(S))

TH

)
≤ 3

n
.
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I Proofs of Theorems 4 and 5 – Lower Bounds for Reward-Free RL

In this appendix, we provide the proofs of the sample complexity lower bounds in the (offline) reward-free RL. On a high
level, both rely on a specific construction of alternate BMDPs.

I.1 Proof of Theorem 4 – minimax setting

Recall that

Λ(Φ) = max
v∈[−1,1]S

1

S

S∑
s=1

max
a1,a2

S∑
s′=1

(p(s′|s, a1)− p(s′|s, a2))vs′ .

In the following, we denote by v⋆ the S-dimensional vector achieving the maximum leading to Λ(Φ), and by a⋆1,s and
a⋆2,s the two actions achieving this maximum for latent state s. Such choices exist as the domains [−1, 1]S and A are both
compact.

We start by identifying a necessary condition for
∑

x∈f−1(s) |q(x|s)− q̂(x|s)| ≤
ε

Λ(Φ) , where q̂ would be estimated from
the data.

From Lemma D.6 in Jin et al. (2020), for a given transition vector q(x|s), we can define Ms = eΩ(n/S) transition vectors
{q(i)(x|s)}1≤i≤Ms such that

• |q(x|s)− q(i)(x|s)| = 8ε
|f−1(s)|Λ(Φ) for all x ∈ f−1(s),

•
∑

x∈f−1(s) |q(i)(x|s)− q(j)(x|s)| ≥
2ε

Λ(Φ) .

Let q(0)(x|s) = q(x|s). From Lemma 5, for all i, j ∈ {0, 1, . . . ,Ms} such that i ̸= j,

KL(q(i)(·|s), q(j)(·|s)) = O(ε2/Λ(Φ)2).

Let P(0) be the model defined by q(·|1), . . . q(·|S) and P(v) with v ∈ [M1] × · · · × [MS ] be the model defined by
q(v1)(·|1), . . . qvS (·|S). Let Nπ(s) be the expected number of visits to the s-th cluster under policy π, then

KL(P(v),P(v′)) =

S∑
s=1

Nπ(s)KL(q(vs)(·|s), q(v
′
s)(·|s)) = O(TH ε2

Λ(Φ)2
).

When
TH ε2

Λ(Φ)2∑S
s=1 logMs

= O(1), from Theorem 2.5 in Tsybakov (2009),∑
x∈f−1(s)

|q(x|s)− q̂(x|s)| ≥ ε

Λ(Φ)
for all s with probability

1

2
.

We now show that we can design a reward function r such that 1
H (V ⋆(r)−V π̂r (r)) > εwhen

∑
x∈f−1(s) |q(x|s)−q̂(x|s)| ≥

ε
Λ(Φ) for all s.

For this proof, let Vh(x) be the value of x from step h and V̂h(x) be the estimated value using q̂.

We first design rH as follows. Pick an action aH that will be optimal in all context x for both model (p, q) and (p, q̂). Hence,
VH(x) = V̂H(x) = rH(x, aH). Now we choose the reward function such that rH(x, aH) =

1+v⋆
s

2 if q(x|s) ≥ q̂(x|s) and
rH(x, aH) =

1−v⋆
s

2 if q(x|s) < q̂(x|s). Then,

1

S

S∑
s=1

S∑
s′=1

(p(s′|s, a⋆1,s)− p(s′|s, a⋆2,s))

 ∑
x∈f−1(s′)

(q(x|s′)− q̂(x|s′))VH(x)


≥ 1

S

S∑
s=1

S∑
s′=1

(p(s′|s, a⋆1,s)− p(s′|s, a⋆2,s))
ε

Λ(Φ)

v⋆s
4

=
ε

4
.

We then set rH−1 so that
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• rH−1(x, a) = 0 for all a /∈ {a⋆1,s, a⋆2,s} for all x ∈ f−1(s);

• a⋆1,s is the optimal action of x ∈ f−1(s) while a⋆2,s is the optimal action under q̂ at time H − 1, and so that

rH−1(x, a
⋆
1,s) +

S∑
s′=1

p(s′|s, a⋆1,s)
∑

x′∈f−1(s′)

q(x′|s′)VH(x′)

−

rH−1(x, a
⋆
2,s) +

S∑
s′=1

p(s′|s, a⋆2,s)
∑

x′∈f−1(s′)

q(x′|s′)VH(x′)


=

S∑
s′=1

(p(s′|s, a⋆1,s)− p(s′|s, a⋆2,s))
ε

Λ(Φ)

v⋆s
8

Then, although

1

S

S∑
s=1

rH−1(x, a
⋆
1,s) +

S∑
s′=1

p(s′|s, a⋆1,s)
∑

x′∈f−1(s′)

q(x′|s′)VH(x′)


− 1

S

S∑
s=1

rH−1(x, a
⋆
2,s) +

S∑
s′=1

p(s′|s, a⋆2,s)
∑

x′∈f−1(s′)

q(x′|s′)VH(x′)

 =
ε

8
,

the error on q̂ makes the algorithm play a⋆2,s instead of a⋆1,s for all s, which induces Ω(ε) loss with respect to the optimal
policy.

Analogously, at every h, we can design rh so that a⋆1,s is the optimal action of x ∈ f−1(s) while a⋆2,s is the optimal action
under q̂ at time h and loose ε value. Therefore, there exist r1, . . . , rH such that

V ⋆
h (r)− V

π̂r

h (r) = Ω((H − h)ε), for all h.

Therefore, maxr
1
H (V ⋆(r)− V π̂r (r)) ≥ ε, when

∑
x∈f−1(s) |q(x|s)− q̂(x|s)| ≥

ε
Λ(Φ) for all s. □

I.2 Proof of Theorem 5 – reward-specific setting

We first establish the first term of the lower bound derived in Theorem 5. Consider a block MDP model such that every
latent state s has the same size n

S and a unique optimal action as, defined as follows.

Rewards. We consider a simple reward model such that every context state in s ∈ {1, . . . ⌊S/2⌋} has rh(x, a) = 1 for all
a and h and every context state in s ∈ {⌊S/2⌋ + 1, . . . , S} has rh(x, a) = 0 for all a and h. Then, policies should visit
s ∈ {1, . . . ⌊S/2⌋} as many as possible to maximize the value. Note that from the reward information, we know whether
f(x) ∈ {1, . . . ⌊S/2⌋} or not. However, we do not have any prior knowledge from the reward about the exact membership
among {1, . . . ⌊S/2⌋} or among {⌊S/2⌋+ 1, . . . S}.

Transitions. The transition
∑

v∈{1,...⌊S/2⌋} p(v|s, as) = 3/4 and
∑

v∈{1,...⌊S/2⌋} p(v|s, a) = 1/4 for a ̸= as and q(x|s) =
S
n for all s and x ∈ f−1(s). One can easily check that p and q satisfy I(x; Φ) > 0. We design the transition model so that
playing a ̸= as causes ⌊S/2⌋

2S expected loss at the next time slot.

Policy and clustering. From any given policy, we can simply design a clustering algorithm such that x is classified to s
when x selects as with probability at least 1/2 at a given time step h. From the clustering lower bound derived in Theorem
1, to have less than εn misclassified context states, it is necessary to collect TH = Ω(n log(1/ε)) samples. Therefore, when
TH = O(n log(1/ε)), every policy has to play the best policy as with probability at most 1/2 from at least εn context
states, which makes

1

H

(
V ∗(r)− V π̂(r)

)
= Ω(ε).

To justify the second term of our lower bound derived in Theorem 5, we consider another Block MDP model. This model
is similar to the previous model but with a slightly different transition kernel. The transitions are defined as follows:
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q(x|s) = S
n for all s and x ∈ f−1(s) and

∑
v∈{1,...⌊S/2⌋} p(v|s, as) = 1/2 + ε while

∑
v∈{1,...⌊S/2⌋} p(v|s, a) = 1/2 for

a ̸= as. We also constraint p so that |p(v|s, a)− p(v|s, a′)| ≤ 4ε
S for all s, v, and a, a′. Therefore, the model is designed so

that failing to identify as ends up with ϵ loss (since when a policy plays a ̸= as, the policy loses ε at the next time slot) and

KL(p(·|s, a), p(·|s, a′)) = O(ε2) for all a ̸= a′,

which comes from Lemma 5.

We now find the necessary condition to correctly identify as. From Theorem 2.5 in Tsybakov (2009), every policy fails
to find as with probability at least 1/2 when TH = O(SA/ε2). We thus have E

[
1
H

(
V ⋆(r)− V π̂r (r)

)]
≥ ε with

TH = O(SA/ε2). □
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J Proofs of Theorems 6 and 7 – Upper Bounds for Reward-Free RL

In this appendix, we provide proof of the reward-free guarantees of our algorithms. We start by introducing concepts and
notations extensively used in our proofs. Then we provide the proofs of Theorem 6 and 7 which are fairly similar but with
subtle differences. On a high level, the first step of these proofs is to use a value difference lemma to decouple the estimation
error p̂ and q̂ from the clustering error due to the estimation of f̂ . In the second step, we use the specific concentration results
for each setting to control the estimation error of p̂ and q̂. In the final step, we invoke our upper bound on the proportion of
misclassified nodes, Theorem 3, to conclude.

J.1 Preliminaries and notations

Transitions and value functions. Under the BMDP Φ = (p, q, f), we will denote the transition probabilities from the
rich observations by P where P (y|x, a) = q(y, f(y))p(f(y)|f(x), a) for all x, y ∈ X , a ∈ A. Additionally, for a given
reward r and for all h ∈ [H], we define the value function, of a policy π, under BMDP Φ, at step h, by

V π
h (x) = EΦ

[
H∑

k=h

rk(x
π
k , a

π
k )
∣∣∣xh = x

]

where the dependence on r is omitted for simplicity. Observe that we may simply write V π(r) = Eµ[V
π
1 (x1)]. Furthermore,

we note that such value functions satisfy the following recursions:

∀h ∈ [H],∀x ∈ X , V π
h (x) = rh(x, πh(x)) + P (xh, πh(x))V

π
h+1

where we use the convention V π
H+1 = 0 and assume implicitly that the policy π is deterministic for simplicity. Here, the

notation P (xh, πh(x))V π
h+1 means

∑
y∈X P (y|xh, πh(x))V π

h+1(y).

Empirical BMDP. Through our estimation procedures we obtain the estimates p̂, q̂, and f̂ . With these, we will denote the
empirical BMDP by Φ̂ = (p̂, q̂, f̂). The context transition probabilities under Φ̂ will be denoted by P̂ . Additionally, for a
given reward r, the value function under policy π, will be denoted by V̂ π(r), and at step h, by V̂ π

h for all h ∈ [H].

True BMDP under inaccurate clustering. We will also have to use the BMDP Φ̃ = (p, q, f̂) in our analysis. The context
transition probabilities under Φ̃ will be denoted by P̃ . Additionally, for a given reward r, the value function under policy π,
will be denoted by Ṽ π(r), and at step h, by Ṽ π

h for all h ∈ [H].

J.2 Proof of Theorem 6

Here we restate Theorem 6.

Theorem 6 (Minimax reward setting). Consider a BMDP Φ satisfying Assumptions 1-4. Further assume that TH = ω(n)
and I(Φ) > 0. Then we have, w.h.p.,

sup
r

1

H
(V ⋆(r)− V π̂r (r)) = O

(√
nS2A2 log(SAH)

TH

)
.

Proof of Theorem 6. The proof is an immediate application of Theorem 3 - (i) and Proposition 27. Indeed, let us define the
events

E1 =

{
|E|
n
≤ 1

n

∑
x∈X

exp

(
−C ′I(x; Φ)

TH

n

)}
,

E2 =

{
1

H
sup
r
V ⋆(r)− V π̂r (r) ≤ poly(η)

(√
S2A2n log(SA)

TH
+
SA|E|
n

)}
.

Under the event E1 ∩ E2, we have

1

H
sup
r
V ⋆(r)− V π̂r (r) ≤ poly(η)

(√
S2A2n log(SA)

TH
+ SAe−C′ TH

n minx∈X I(x;Φ)

)
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≤ poly(η)

(√
S2A2n log(SA)

TH
+

SAn

C ′ minx∈X I(x; Φ)TH

)

= O

(√
S2A2n log(SA)

TH

)

where we used the fact that exp
(
−C ′ minx∈X I(x; Φ)

TH
n

)
≤ n

C′ minx∈X I(x;Φ)TH . Therefore, by union bound,

P

(
1

H
sup
r
V ⋆(r)− V π̂r (r) = O

(√
S2A2n log(SA)

TH

))
≥ 1− P(Ec

1 ∪ Ec
2)

≥ 1− P(Ec
1)− P(Ec

2).

Next, in view of Theorem 3 - (i) and Proposition 27, we know that P(Ec
1) −→

n→∞
0 and P(Ec

2) −→
n→∞

0 for TH = ω(n). This
concludes the proof.

Proposition 27 (Minimax setting). Under Assumptions 1-4, for all reward functions r, provided TH = Ω(n), we have:

P

(
1

H
sup
r
V ⋆(r)− V π̂r (r) ≤ poly(η)

(√
S2A2n log(SA)

TH
+
SA|E|
n

))
≥ 1− 14

n
− e−TH

n .

Proof of Proposition 27. We start by applying Lemma 33, which ensures the following decomposition

1

H
sup
r
V ⋆(r)− V π̂r (r) ≤ 2η2

(
max

s∈S,a∈A
∥p̂(s, a)− p(s, a)∥1 +max

s∈S
∥q̂(s)− q(s)∥1

)
+

4η4|E|
n

.

Then, we have from Proposition 25 that for all TH = Ω(n),

P

(
max

s∈S,a∈A
∥p̂(s, a)− p(s, a)∥1 ≤ poly(η)SA

(√
S + log(nSA)

TH
+
|E|
n

))
≥ 1− 4

n
− e−TH

n

and

P
(
max
s∈S
∥q̂(s)− q(s)∥1 ≤ poly(η)S

(√
n

TH
+
|E|
n

))
≥ 1− 4

n
− e−TH

n .

Finally, combining the above three inequalities yields the result.

J.3 Proof of Theorem 7

Here we restate Theorem 7 in a more precise way.

Theorem 7 (Reward-specific setting). Let C be the constant introduced in Theorem 3(i). Under the assumptions of Theorem
6, we have for any reward function r, w.h.p.

1

H
(V ⋆(r)−V π̂r (r)) = O

(√
S3A2H log(SAHn)

T

+
SH2

n

∑
x∈X

exp

(
−CTH

n
I(x; Φ)

))
.

Proof of Theorem 7. The proof is an immediate application of Theorem 3 - (i) and Proposition 28. Indeed, let us define the
events

E1 =

{
|E|
n
≤ 1

n

∑
x∈X

exp

(
−C ′TH

n
I(x; Φ)

)}
,
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E2 =

{
1

H
V ⋆(r)− V π̂r (r) ≤ poly(η)

(√
S3AH4 log(SAHn)

TH
+
SH2|E|

n

)}
.

Proving (i). We note that under the event E1 ∩ E2, we have

1

H
V ⋆(r)− V π̂r (r) ≤ poly(η)

(√
S3A2 log(SAHn)

TH
+
SAH2

∑
x∈X exp

(
−C ′ TH

n I(x; Φ)
)

n

)
.

Next, in view of Theorem 3 - (i) and Proposition 28, we know that P(Ec
1) −→

n→∞
0 and P(Ec

2) −→
n→∞

0 for TH = ω(n). This
completes the proof of (i).

Proving (ii). We start by noting that when TH − n log(n)
C′I(x;Φ) = ω(1) for all x ∈ X , then we have |E| < 1 which simply

implies that |E| = 0 (i.e., we recover the clusters exactly). Thus, under E1 ∩ E2, we have in this case,

1

H
V ⋆(r)− V π̂r (r) = O

(√
S3A2 log(SAHn)

TH

)
.

And again, in view of Theorem 3 - (i) and Proposition 28, we know that P(Ec
1) −→

n→∞
0 and P(Ec

2) −→
n→∞

0 when

TH − n log(n)
C′I(x;Φ) = ω(1) for all x ∈ X . This concludes the proof of (ii).

Proposition 28 (Reward-specific setting). Under Assumptions 1-4, we have for all reward functions r, provided TH = Ω(n),

P

(
1

H

(
V ⋆(r)− V π̂r (r)

)
≤ poly(η)

(√
S3A2H4 log(SAHn)

TH
+
SH2|E|

n

))
≥ 1− 14

n
− e−TH

n .

Proof of Proposition 28. We start by applying Lemma 34, which ensures the following decomposition

1

H

(
V ⋆(r)− V π̂r (r)

)
≤ max

s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h+1

∣∣∣+ 2H max
s∈S,a∈A

∥p̂(s, a)− p(s, a)∥1

+ max
s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h+1

∣∣∣+ 6η2H|E|
n

.

From Lemma 38, we have the following concentration bounds that hold as long as TH = Ω(n),

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > poly(η)SH

(√
SA log(SAHn)

TH
+
|E|
n

))
≤ 4

n

and

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h

∣∣∣ > poly(η)SH

(√
SA log(SAHn)

TH
+
|E|
n

))
≤ 4

n
.

Additionally from Proposition 25 we also have for TH = Ω(log(n))

P

(
∥p̂(s, a)− p(s, a)∥1 > poly(η)SA

(√
S + log(nSA)

TH
+
|E|
n

))
>

6

n
+ e−

TH
n .

The final result follows from combining the above four inequalities.

J.4 Value difference lemmas

A crucial step towards obtaining our reward-free guarantees is to establish value difference lemmas. These lemmas must
account for the clustering error and whether we are in the minimax setting or reward-specific setting. We state and prove
such lemmas (Lemma 33 and Lemma 34).
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Lemma 33 (First Value Difference Lemma). For any reward function r, let π̂r be the optimal policy for the empirical model
Φ̂. Under Assumptions 1-4 for the true BMDP Φ, we have:

1

H
sup
r
V ⋆(r)− V π̂r (r) ≤ 2η2

(
max

s∈S,a∈A
∥p̂(s, a)− p(s, a)∥1 +max

s∈S
∥q̂(s)− q(s)∥1

)
+

4η4|E|
n

.

Lemma 34 (Second Value Difference Lemma). Let r be some reward function and let π̂r be the optimal policy for the
empirical model Φ̂. Under Assumptions 1-4 for the true BMDP Φ, we have:

1

H

(
V ⋆(r)− V π̂r (r)

)
≤ max

s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h+1

∣∣∣+ 2H max
s∈S,a∈A

∥p̂(s, a)− p(s, a)∥1

+ max
s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h+1

∣∣∣+ 6η2H|E|
n

.

Lemma 33 (resp. Lemma 34) is used to establish the reward-free guarantee in the minimax (resp. reward-specific setting.
We note that Lemma 34 has a worse dependence in H , than that of Lemma 33. This is due to the fact that Φ̂ does not
necessarily satisfy Assumptions 1-4 which are essential to get such improvement in H . Therefore, it may appear strange to
use Lemma 34. It is however useful in order to obtain an improvement of order n in the reward-specific setting in contrast
with the minimax one, as will be apparent in our concentration bounds. The proofs of these lemmas rely on Lemma 35,
Lemma 36, and Lemma 37.

Lemma 35. Under Assumptions 1-4 for the true BMDP Φ, for all rewards r, and any policy π, it holds that

|V π(r)− V̂ π(r)| ≤ H max
x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))V̂ π
h+1

∣∣∣+ η2H|E|
n

.

Alternatively, we also have

|V π(r)− V̂ π(r)| ≤ H max
x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣+ η2H|E|
n

.

Lemma 36. Under Assumption 1-2, for all x ∈ X , a ∈ A, we have∥∥P̃ (x, a)− P̂ (x, a)∥∥
1
≤ 2η2|E|

n
+max

s∈S
∥p̂(s, a)− p(s, a)∥1 +max

s∈S
∥q̂(s)− q(s)∥1.

More precisely, for any V ∈ Rn, we have∣∣∣(P̃ (x, a)− P̂ (x, a))V ∣∣∣ ≤ (2η2|E|
n

+max
s∈S
∥p̂(s, a)− p(s, a)∥1

)
∥V ∥∞ +max

s∈S

∣∣∣(q̂(s)− q(s))V ∣∣∣.
In Lemma 37, we establish that the centered value function under the regularity assumption satisfies an upper bound that is
horizon free. This has to do with the fact that all the transition matrices have mixing times that are uniformly bounded by η2.
In fact, this result is easily generalizable to MDPs with finite state-action spaces that are communicating and aperiodic.

Lemma 37. Under Assumptions 1-4 for the true BMDP Φ. Then, for all h ∈ [H], the value function of a policy π at step h,
V π
h satisfies, for all x ∈ X , a ∈ A ∥∥∥V π

h+1 − P (x, a)V π
h+11

∥∥∥
∞
≤ (2η2 − 1).

J.5 Concentration bounds on averaged optimal value functions

The following lemma is a key technical result to establish a guarantee for the reward-free setting which does not suffer a
linear dependence in n.

Lemma 38. Assuming that f̂ is estimated using the first ⌊TH/2⌋ observations, and that p̂, q̂ are estimated using the
observations ⌊TH/2⌋ with f̂ . Then, under Assumptions 1-4, provided TH = Ω(n), we have

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > poly(η)SH

(√
SA log(HSn)

TH
+
|E|
n

))
≤ 4

n
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and

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h

∣∣∣ > poly(η)SH

(√
SA log(HSn)

TH
+
|E|
n

))
≤ 4

n
.

The challenge in obtaining the first concentration bound comes from the fact that q̂(s) and V̂ π̂r are dependent on each
other. Fortunately, V̂ π̂r has a special structure that can be characterized; see Lemma 39. Lemma 39 says that actually, the
optimal value function under the BMDP model possesses a linear structure. This observation stems from the remark that the
transition matrices in the BMDP are low rank (see Zhang et al. (2022b)). This low-rank structure can then be leveraged to
ensure that, actually the value function of any policy satisfies the representation stated in the Lemma 39 (See for example,
Proposition 2.3. in Jin et al. (2020) or Lemma 1 in Modi et al. (2021)).

Lemma 39. Let Φ be a BMDP, then, for all h ∈ [H], there exists θh ∈ RSA, such that ∥θh∥2 ≤
√
SA(H − h) such that

the value function can be expressed as follows:

∀x ∈ X , V ⋆
h (x) = max

a∈A
{rh(x, a) + ψf (x, a)

⊤θh}

where for all x ∈ X , a ∈ A, ψf (x, a) is an SA-dimensional column vector in {0, 1}SA such that ψf (x, a)(s, b) =
1{(f(x), a) = (s, b)} (f is the latent state decoding function of Φ).

Now using the representation of the optimal value function stated in Lemma 39, we consider, for a given decoding function
f , the set of all possible optimal value functions at step h as we vary the latent transitions p and emission probabilities q.
More precisely, we define a set that contains all such functions as follows:

V⋆
h(f ; r) :=

{
V : ∃θh : ∥θh∥2 ≤M,∀x ∈ X , V (x) = min{max

a∈A
{rh(x, a) + ψf (x, a)

⊤θh}, H}
}

with M =
√
SA(H − h). Lemma 40 shows that we can construct a ϵ-net of V⋆

h(f ; r) with a cardinality that grows
exponentially only in SA and not n (see Lemma D.6 in Jin et al. (2020)). This property is crucial to obtain an error rate that
is independent of n. However, it is also important to note that such a net will still depend on the given reward functions r
and the clustering function f . It is for this reason that we won’t be able to use such a net argument in the minimax setting,
and also why we split our budget of episodes into two parts in the design of our algorithm.

Lemma 40. Let f be any latent state decoding function and r be any reward function, then there exists ϵ-net Nϵ(f ; r) of
V⋆
h(f ; r) with respect to ∥ · ∥∞, such that

|Nϵ(f ; r)| ≤

(
1 +

2
√
SA(H − h)

ϵ

)SA

.

J.6 Proofs – Value difference lemmas

Proof of Lemma 33 and Lemma 34. The starting point for the proof of Lemma 33 and Lemma 34 is the same. We recall
that for any given reward r, the policy π̂r is optimal under Φ̂, thus, and in particular, V̂ π⋆

r (r) − V̂ π̂r (r) < 0. From this
observation, we immediately obtain

V ⋆(r)− V π̂r (r) = V ⋆(r)− V̂ π⋆
r (r) + V̂ π⋆

r (r)− V̂ π̂r (r) + V̂ π̂r (r)− V π̂r (r)

≤ V ⋆(r)− V̂ π⋆
r (r) + V̂ π̂r (r)− V π̂r (r). (113)

Now, let us introduce an intermediary model Φ̃ = (p, q, f̂), and denote Ṽ π the value function of policy π under the model Φ̃.

(Proof of Lemma 33). We start from (113) to write

V ⋆(r)− V π̂r (r) ≤ 2max
π

∣∣∣V π(r)− V̂ π(r)
∣∣∣ .

Then, an immediate application of Lemma 35 gives us

V ⋆(r)− V π̂r (r) ≤ 2Hmax
π

max
x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣+ 2η2H|E|
n

.
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We then observe that∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣ (a)= ∣∣∣(P̃ (x, a)− P̂ (x, a)) (Ṽ π
h+1 − P̃ (x, a)Ṽ π

h+11
) ∣∣∣

(b)

≤ ∥P̃ (x, a)− P̂ (x, a)∥1∥Ṽ π
h+1 − P̃ (x, a)Ṽ π

h+11∥∞
(c)

≤ 2η2∥P̃ (x, a)− P̂ (x, a)∥1
(d)

≤ 2η2
(
2η2|E|
n

+max
s∈S
∥p̂(s, a)− p(s, a)∥1 +max

s∈S
∥q̂(s)− q(s)∥1

)
where (a) follows by simply adding and subtracting a constant, (b) follows from Holder’s inequality, (c) follows from
applying Lemma 37 (we recall that 1 ∈ Rn and has all its entries equal to 1), and (d) follows from applying Lemma 36.
Therefore, we finally obtain that

V ⋆(r)− V π̂r (r) ≤ 2η2H

(
max
s∈S
∥p̂(s, a)− p(s, a)∥1 +max

s∈S
∥q̂(s)− q(s)∥1

)
+

4Hη4|E|
n

,

which leads to the desired solution by taking the supremum over all possible values of rewards r.

(Proof of Lemma 34). Again, we start from (113) to write

V ⋆(r)− V π̂r (r) ≤
∣∣∣V π̂r (r)− V̂ π̂r (r)

∣∣∣︸ ︷︷ ︸
Term 1

+
∣∣∣V π⋆

(r)− V̂ π⋆

(r)
∣∣∣︸ ︷︷ ︸

Term 2

.

In contrast to the proof of Lemma 33, we will have to analyze each of the above terms separately to take advantage of the
fact that π̂r is optimal under Φ̂, thus exploiting the fact that V̂ π̂r has a special structure.

(Bounding term 1). First, an immediate application of Lemma 35 gives∣∣∣V π̂r (r)− V̂ π̂r (r)
∣∣∣ ≤ H max

x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))V̂ π̂r

h+1

∣∣∣+ η2H|E|
n

where we took the supremum over all possible optimal value functions at all steps h ∈ [H]. Then, applying Lemma 36, we
also have for all h ∈ [H], V ∈ V⋆

h+1(f̂ , r),∣∣∣(P̃ (x, a)− P̂ (x, a))V̂ π̂r

h+1

∣∣∣ ≤ max
s∈S

∣∣∣(q̂(s)− q(s))V̂ π̂r

h+1

∣∣∣+Hmax
s∈S
∥p̂(s, a)− p(s, a)∥1 +

2η2H|E|
n

where we also used the fact that ∥V ∥∞ ≤ H . Therefore, combining the above bounds gives

1

H

∣∣∣V π̂r (r)− V̂ π̂r (r)
∣∣∣ ≤ max

s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h+1

∣∣∣
+H max

s∈S,a∈A
∥p̂(s, a)− p(s, a)∥1 +

3η2H|E|
n

.

(Bounding term 2). Next, again, by applying Lemma 35, we obtain∣∣∣V π⋆

(r)− V̂ π⋆

(r)
∣∣∣ ≤ H max

x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π⋆

h+1

∣∣∣+ η2H|E|
n

.

Then, applying Lemma 36, we also have for all h ∈ [H],∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π⋆

h+1

∣∣∣ ≤ max
s∈S

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h+1

∣∣∣+Hmax
s∈S
∥p̂(s, a)− p(s, a)∥1 +

2η2H|E|
n

where we also used the fact that ∥V ∥∞ ≤ H . Therefore, we obtain

1

H

∣∣∣V π⋆

(r)− V̂ π⋆

(r)
∣∣∣ ≤ max

s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π⋆

h+1

∣∣∣
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+H max
s∈S,a∈A

∥p̂(s, a)− p(s, a)∥1 +
3η2H|E|

n
.

Now combining the bounds on terms 1 and 2, obtain

1

H

(
V ⋆(r)− V π̂r (r)

)
≤ max

s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h+1

∣∣∣+ max
s∈S,a∈A,h∈[H]

∣∣∣(q̂(s)− q(s))Ṽ π⋆

h+1

∣∣∣
+ 2H max

s∈S,a∈A
∥p̂(s, a)− p(s, a)∥1 +

6η2H|E|
n

.

Proof of Lemma 35. We start by writing

|V π(r)− V̂ π(r)| ≤ |V π(r)− Ṽ π(r)|+ |Ṽ π(r)− V̂ π(r)|.

Now, Let us define for all h ∈ [H], x ∈ X ,

Eπ
h (x) = |V π

h (x)− Ṽ π
h (x)|

Ẽπ
h (x) = |Ṽ π

h (x)− V̂ π
h (x)|

and note that
|V π(r)− V̂ π(r)| ≤ Ex1 [E

π
1 (x1)] + Ex1 [Ẽ

π
1 (x1)].

Step 1 – (Bounding Eπ
1 (x)) First, we have for all h ∈ [H], x ∈ X ,

Eπ
h (x) =

∣∣∣P (x, πh(x))V π
h+1 − P̃ (x, πh(x))Ṽ π

h+1

∣∣∣
≤
∣∣∣(P (x, πh(x))− P̃ (x, πh(x)))V π

h+1

∣∣∣+ P̃ (x, πh(x))
∣∣∣V π

h+1 − Ṽ π
h+1

∣∣∣
≤
∣∣∣(P (x, πh(x))− P̃ (x, πh(x)))V π

h+1

∣∣∣+ P̃ (x, πh(x))E
π
h+1

≤ 1{f̂(x) ̸= f(x)}max
y∈X

∣∣∣V π
h+1(y)− P (x, πh(x))V π

h+1

∣∣∣+ P̃ (x, πh(x))E
π
h+1

≤ 2η21{f̂(x) ̸= f(x)}+ P̃ (x, πh(x))E
π
h+1

where we used the facts that (i) P̃ (x, a) = P (x, a) whenever f̂(x) = f(x), (ii) P is η2-regular, (iii) Lemma 37 to obtain
maxy∈X |V π

h+1(y)−P (x, πh(x))V π
h+1| ≤ 2η2− 1, and setting Eπ

H+1 = 0. We conclude after iterating the above recursion
that

Ex1
[Eπ

1 (x1)] ≤ EP̃

[ H∑
h=1

1{f(xπh) ̸= f̂(xπh)}
]

≤ max
x∈X

Ñ(x)|E|

≤ η2H|E|
n

where Ñ(x) = EP̃ [
∑H

h=1 1{xπh = x}], and by η2-regularity of P̃ , we can easily verify that Ñ(x) ≤ η2H
n .

Step 2 – (Bounding Ẽπ
1 (x)) First, we verify that Ẽπ

h satisfies the following recursion

Ẽπ
h (x) =

∣∣∣P̃ (x, πh(x))Ṽ π
h+1 − P̂ (x, πh(x))V̂ π

h+1

∣∣∣
≤
∣∣∣(P̃ (x, πh(x))− P̂ (x, πh(x)))Ṽ π

h+1

∣∣∣+ P̂ (x, πh(x))
∣∣∣Ṽ π

h+1 − V̂ π
h+1

∣∣∣
≤
∣∣∣(P̃ (x, πh(x))− P̂ (x, πh(x)))Ṽ π

h+1

∣∣∣+ P̂ (x, πh(x))Ẽ
π
h+1
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≤ max
x∈X ,a∈A

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣+ P̂ (x, πh(x))Ẽ
π
h+1

with Ẽπ
H+1 = 0. By iterating the above recursion, we then obtain

Ex1
[Ẽπ

1 (x1)] ≤
H∑

h=1

max
x∈X ,a∈A

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣
≤ H max

x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))Ṽ π
h+1

∣∣∣.
Similarly, we can also obtain

Ex1
[Ẽπ

1 (x1)] ≤ H max
x∈X ,a∈A,h∈[H]

∣∣∣(P̃ (x, a)− P̂ (x, a))V̂ π
h+1

∣∣∣.
This completes the proof of the lemma.

Proof of Lemma 36. First, we will start by introducing two intermediate probability distributions: P̃1(x, a) =

(q(y, f̂(y))p(f̂(y)|f(x), a))y∈X , and P̃2(x, a) = (q̂(y, f̂(y))p(f̂(y)|f(x), a))y∈X . We may then write∣∣∣(P̃ (x, a)− P̂ (x, a))V ∣∣∣ ≤ ∣∣∣(P̃ (x, a)− P̃1(x, a)
)
V
∣∣∣

+
∣∣∣(P̃1(x, a)− P̃2(x, a)

)
V
∣∣∣

+
∣∣∣(P̃2(x, a)− P̂ (x, a)

)
V
∣∣∣.

Note that P̃ (y|x, a) = P̃1(y|x, a) whenever f(y) = f̂(y), thus∣∣∣(P̃ (x, a)− P̄ (x, a))V ∣∣∣ ≤ ∥V ∥∞ ∑
y∈X
|P̄ (y|x, a)− P̃ (y|x, a)|

≤ ∥V ∥∞
∑
y∈X

1{f̂(y) ̸= f(y)}max
y∈X

q(y|s′)p(s′|s, a)

≤ η2|E|∥V ∥∞
n

.

Next, we have ∣∣∣(P̃1(x, a)− P̃2(x, a)
)
V
∣∣∣ ≤ ∣∣∣ ∑

y∈X

(
q(y|f̂(y))− q̂(y|f̂(y))

)
p(f̂(y)|f̂(x), a)V (y)

∣∣∣
≤
∑
s∈S

p(s|f̂(x), a)

∣∣∣∣∣∣
∑

y∈f̂−1(s)

(
q(y|s)− q̂(y|s

)
V (y)

∣∣∣∣∣∣
≤
∑
s∈S

p(s|f̂(x), a)

∣∣∣∣∣∣
∑
y∈X

(
q(y|s)− q̂(y|s

)
V (y)

∣∣∣∣∣∣
+
∑
s∈S

p(s|f̂(x), a)

∣∣∣∣∣∣
∑
y∈X

1{f̂(y) ̸= f(y)}q(y|s)V (y)

∣∣∣∣∣∣
≤ max

s∈S

∣∣∣∣∣∣
∑
y∈X

(
q(y|s)− q̂(y|s

)
V (y)

∣∣∣∣∣∣+ η2|E|∥V ∥∞
n

where we used that, by construction, q̂(y|s) = 0 for all s ̸∈ f̂−1(y). Finally, we have

∣∣∣(P̃2(x, a)− P̂ (x, a)
)
V
∣∣∣ =

∣∣∣∣∣∣
∑
y∈X

q̂(y|f̂(y))
(
p(f̂(y)|f̂(x), a)− p̂(f̂(y)|f̂(x), a)

)
V (y)

∣∣∣∣∣∣
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≤

∣∣∣∣∣∣
∑
s′∈S

(
p(s′|f̂(x), a)− p̂(s′|f̂(x), a)

) ∑
y∈f̂−1(s)

q̂(y|s)V (y)

∣∣∣∣∣∣
≤
∑
s′∈S
|p(s′|f̂(x), a)− p̂(s′|f̂(x), a)|max

s′∈S

∣∣∣∣∣∣
∑

y∈f̂−1(s)

q̂(y|s)V (y)

∣∣∣∣∣∣
≤
∥∥∥p(f̂(x), a)− p̂(f̂(x), a)∥∥∥

1
∥V ∥∞

≤ ∥V ∥∞ max
s∈S
∥p̂(s, a)− p(s, a)∥1

To conclude, we obtain ∣∣∣(P̃ (x, a)− P̂ (x, a))V ∣∣∣ ≤ 2η2∥V ∥∞
n

+max
s∈S
∥p̂(s, a)− p(s, a)∥1∥V ∥∞

+max
s∈S

∣∣∣ ∑
y∈X

(
q(y|s)− q̂(y|s

)
V (y)

∣∣∣

Proof of Lemma 37. For simplicity, let us denote gh(x) = rh(x, πh(x)) and Eh[ · ] = Eπ [ · |xh = y]. Then we note that

V π
h+1(x)− P (y, πh(y))V π

h+1 = Eh

[
H∑

ℓ=h

gℓ(xℓ)− Eh[gℓ(xℓ)]

]

Since the transitions (P (·, πh(·)))h∈H are η2-regular, we obtain that

max
x∈X

∣∣∣V π
h+1(x)− P (y, πh(y))V π

h+1

∣∣∣ ≤ (2η2 − 1)

J.7 Proofs – Concentration bounds on averaged optimal value functions

Proof of Lemma 38. First, let us note that V̂ π̂r

h+1 ∈ V⋆
h+1(f̂ ; r). Let N be an ϵ-net of V⋆(f̂ ; r) with respect to ∥ · ∥∞. We

have: ∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ ≤ sup
V ∈V⋆

h(f̂ ;r)

∣∣∣(q̂(s)− q(s))V ∣∣∣
≤ max

V ∈N

∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ sup
V ∈V⋆

h(f̂ ;r)

max
Ṽ ∈N

∣∣∣(q̂(s)− q(s))(V − Ṽ )
∣∣∣

≤ max
V ∈N

∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ ∥q̂(s)− q(s)∥1ϵ
≤ max

V ∈N

∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ.

Let us recall that the construction of q̂ and p̂ only uses half the subsequent budget of TH/2 observations. Thus, we have

P(
∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > ρ) ≤ P(max
V ∈N

∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > ρ)

= E
[
E
[
1

{
max
V ∈N

∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > ρ

} ∣∣∣f̂]]

≤ E

E
∑
Ṽ ∈N

1
{∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > ρ

} ∣∣∣f̂


≤ E
[
|N |max

Ṽ ∈N
E
[
1
{∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > ρ

} ∣∣∣f̂]] .
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Applying Proposition 26, we obtain for TH ≥ poly(η)S(ρ′ + log(S)),

E

[
1

{∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > poly(η)SH

(√
ρ′ + log(S)

TH
+
|E|
n

+
ρ′

TH

)
+ 2ϵ

}∣∣∣f̂] ≤ 4e−ρ′
.

Additionally, Lemma 40 ensures that |N | ≤
(
1 + H

√
SA
ϵ

)SA

. Therefore,

E
[
|N |max

Ṽ ∈N
E
[
1
{∣∣∣(q̂(s)− q(s))Ṽ ∣∣∣+ 2ϵ > ρ

} ∣∣∣f̂]] ≤ 4

(
1 +

√
SA(H − h)

ϵ

)SA

e−ρ′

where we set ρ = poly(η)SH

(√
ρ′+log(S)

TH + |E|
n + ρ′

TH

)
+ 2ϵ. Further, reparametrizing by ρ′′ = ρ′ +

SA log
(
1 + 2H

√
SA

ϵ

)
, we obtain

P
(∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > ρ
)
≤ 4e−ρ′′

where

ρ = poly(η)SH


√√√√ρ′′ + SA log

(
1 + 2H

√
SA

ϵ

)
+ log(S)

TH
+
|E|
n

+
ρ′

TH

+ 2ϵ

Now choosing ϵ =
√

SA
n , we obtain that

ρ ≤ poly(η)SH

(√
ρ′′ + SA log(Hn) + log(S)

TH
+
|E|
n

+
ρ′′ + SA log(Hn)

TH

)
+ 2

√
SA

n

≤ poly(η)SH

(√
ρ′′ + SA log(HSn)

TH
+
|E|
n

+
ρ′′ + SA log(HSn)

TH

)
+ 2

√
SA

TH

where the second inequality holds as long as TH = Ω(n). Thus, choosing ρ′′ = 1
HSn gives that for TH = Ω(n),

P

(∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > poly(η)SH

(√
SA log(HSn)

TH
+
|E|
n

)
+ 2

√
SA

TH

)
≤ 4

HSn

where we also used the fact that
√

SA log(HSn)
TH ≥ SA log(HSn)

TH for TH = Ω(log(n)). Therefore, using a union bound, we
finally obtain that

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))V̂ π̂r

h

∣∣∣ > poly(η)SH

(√
SA log(HSn)

TH
+
|E|
n

))
≤ 4

n

provided TH = Ω(n). Similarly, but this time without going through a net argument since Ṽ ⋆
h conditionally on f̂ is no

more random, we can obtain that

P

(
max

s∈S,h∈[H]

∣∣∣(q̂(s)− q(s))V ⋆
h

∣∣∣ > poly(η)SH

(√
SA log(HSn)

TH
+
SH|E|
n

))
≤ 4

n

for TH = Ω(n).
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K Towards Optimal Adaptive Exploration in BMDPs

We have so far considered scenarios where the T episodes were generated under a fixed behavior policy ρ. In this section,
we briefly discuss how our results could be extended to the case where the behavior policy is (history-)adaptive. Note that
for reward-free RL, our lower bounds derived for the sample complexity of identifying near-optimal policies (see Theorem 4
and 5) hold even for adaptive exploration policies; surprisingly, Theorem 6 and 7 establish that even using uniform behavior
policy, we can match these lower bounds. However, we believe that using adaptive behavior policies would actually yield
significant performance improvements.

As before, we denote by {T (τ)}Tτ=1 the data collected during the T episodes. In case of an adaptive exploration process, the
policy at episode t, ρ(t), used to generate T (t) may be chosen depending on the previously observed data history {T (τ)}t−1

τ=1.

Before we present ways to extend our analysis to the case of adaptive behavior policies, we provide here a few pointers
towards existing studies on the adaptive design of the exploration process for various inference tasks, especially for reward-
free RL. In tabular MDP, adaptive exploration for identifying near-optimal policies has extensively been studied with both
minimax or problem-specific guarantees and in the reward-specific and reward-free settings, see e.g. Zanette and Brunskill
(2019); Jin et al. (2020); Marjani and Proutière (2021); Al Marjani et al. (2021); Menard et al. (2021) and references therein.
Recently, Tarbouriech and Lazaric (2019); Tarbouriech et al. (2021) developed a framework to learn the model or a policy
with prescribed frequencies at which (state, action) pairs are visited. All the aforementioned studies are restricted to general
tabular MDPs. For BMDPs, as already discussed in Section 6, most of the proposed algorithms use adaptive policies in
settings where the reward is already known and cluster recovery isn’t the main objective. Indeed, the problem of estimating
the latent state decoding function in BMDPs has some similarities with the cluster recovery problem in SBMs, DCBMs, and
BMCs. However, even for SBMs, there isn’t much work on adaptive sampling strategies; refer to Yun and Proutière (2014,
2019) for preliminary results.

K.1 Lower bound on the latent state decoding error rate

We apply the same change-of-measure argument to derive this lower bound. Fix a context x. As the initial part of our lower
bound proof is applicable to adaptive policies as well (from Appendix D), we first recall them here.

We start with the lower bound of the individual error rate:

εx = PΦ[x ∈ E ] ≥
1

2S
exp

(
−EΨ[L]−

√
2ηSVarΨ[L]

)
.

We can further establish the connection between EΨ[L] and the rate function Ij(x; c,mΨ
ρ ,Φ) defined as:

I
(t)
j (x; c,mΨ

ρ ,Φ) := n
∑
a∈A

∑
s∈S

{
cq(x|f(x))p(j|s, a)mΨ,(t)

ρ (s, a) log
cp(j|s, a)
p(f(x)|s, a)

+ cq(x|f(x))mΨ,(t)
ρ (j, a)p(s|j, a) log p(s|j, a)

p(s|f(x), a)

+ (1− cq(x|f(x))p(j|s, a))mΨ,(t)
ρ (s, a) log

1− cq(x|f(x))p(j|s, a)
1− q(x|f(x))p(f(x)|s, a)

}
,

where mΨ,(t)
ρ (s, a) denotes the expected proportion of rounds spent in (latent state, action) pair (s, a) under policy ρ and

model Ψ, in the t-th episode:

mΨ,(t)
ρ (s, a) :=

1

H − 1

H−1∑
h=1

PΨ[f̃(x
(t)
h ) = s, a

(t)
h = a].

We add the explicit dependence on mΨ
ρ for the rate function to remember that we can design the adaptive policy ρ based on

the desirable mΨ
ρ .

We also have:

EΨ[L] ≤
TH

n
(Ij(x; c,m

Ψ
ρ ,Φ) +O(

1

n
)) and VarΨ[L] ≤ O

(
TH

n

)
.

By defining
I(x;mΨ

ρ ,Φ) := min
j:j ̸=f(x)

min
c>0

Ij(x; c,m
Ψ
ρ ,Φ), (114)
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we can show, as previously, that under the adaptive policy ρ,

εx = PΦ[x ∈ E ] ≥
1

2ηS
exp

(
−TH

n
I(x;mΨ

ρ ,Φ)(1 + o(1))

)
.

We deduce that the expected number of misclassified contexts under the adaptive policy ρ is lower bounded as follows:

EΦ[|E|] ≳ n exp

(
−TH

n
I(mΦ

ρ ,Φ)(1 + o(1))

)
,

where ≳ hides additional (polynomial) dependency on η, S,A, and

I(mΦ
ρ ,Φ) = −

n

TH
log

(
1

2ηSn

∑
x

exp

(
−TH

n
I(x;mΦ

ρ ,Φ)

))
.

Note that we could replace mΨ
ρ by mΦ

ρ in the above definition, because Φ and Ψ only differ from a single context. The
formal justification is left for future work. Now, the difference with scenarios without adaptive exploration policies is that
here the learner can design policies to optimize mΦ

ρ . We denote byM the set of possible expected proportions of rounds
spent in the various (s, a) pairs.M can be intricate to characterize for small T but when T grows large, we can proceed as
in Al Marjani et al. (2021) and write the navigation constraints m ∈M should asymptotically satisfy.

We now define the adaptive rate function:
I ′(Φ) := max

m∈M
I(m,Φ). (115)

Finally, we can state the following preliminary result:

Theorem 12. Let Φ be a BMDP satisfying Assumptions 1,2,3,4. Consider a clustering algorithm that is β-locally better-
than-random for Φ with β ≥ 2Sη2

n , when applied to the data gathered over T episodes, each of length H , using adaptive ρ.
Then, we have that

EΦ[|E|] ≳ n exp

(
−TH

n
I ′(Φ)(1 + o(1))

)
.

K.2 Adaptive latent state decoding algorithms

An interesting interpretation of the adaptive lower bound is that m⋆(Φ) ∈ argmaxm∈M I(m,Φ) represents an optimal way
of navigating the BMDP to minimize the proportion of misclassified context. We can leverage this observation to design an
adaptive algorithm. We can proceed in the following steps:

1. Using δT episodes, explore the BMDP uniformly at random and run Algorithm 1 and 2 to obtain the initial estimate
Φ̂1 = (f̂1, p̂1, q̂1)

2. Compute m̂ ∈ argmaxm∈M(Φ̂1)
Ĩ(x;m, Φ̂) for each x ∈ X (see Appendix D.3.2)

3. Using the remaining (1− δ)T episodes, adaptively explore the BMDP such that the expected numbers of visits to each
(estimated latent state-action) pair match m̂;

4. Based upon the new samples, run the cluster improvement algorithm to output improved Φ̂ = (f̂ , p̂, q̂).

We emphasize that the above algorithm is not complete, and it just provides good design principles.
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L Beyond the η-regularity Assumption

In this section, we describe how to recover our results under a weaker assumption than Assumption 3(ii), namely, only
assuming that the dynamics of the latent state are ergodic.

L.1 Relaxing Assumption 3(ii)

We may relax Assumption 3(ii) in the following way as done for instance in Azizzadenesheli et al. (2016a).

Assumption 5. The Markov chains corresponding to the latent transition matrices, pa = (p(s′|s, a))s,s′∈S for all a ∈ A,
are aperiodic and communicating.

A direct consequence of Assumption 5 is that we may define a regularity parameter for the k-step transition probabilities,
which again will allow us to quantify the mixing properties of the latent dynamics in our BMDPs, namely those described
by the transition matrices pa = (p(s′|s, a))s,s′∈S for all a ∈ A. Additionally, aperiodicity may be further relaxed by simply
requiring that a stationary distribution exists instead.

Lemma 41. Let P be the transition matrix corresponding to a communicating and aperiodic Markov chain over a finite
state space Z . Then, setting k = |Z|2, we have:

(i) there exists η ≥ 1, such that

η ≥ max
z1,z2,z3∈Z

{
P k(z1|z3)
P k(z2|z3)

,
P k(z1|z2)
P k(z1|z3)

}
;

(ii) the Dobrushin’s coefficient of P k is non-trivially bounded i.e., δ(P k) ≤ 1− 1/η;

(iii) the mixing time of P satisfies tmix(ε) ≤ |Z|2(η log(1/ε) + 1).

Proof sketch of Lemma 41. To establish (i) we simply need to verify that for k = |Z|2, P k(z1|z2) > 0 for all z1, z2 ∈ Z .
Because the Markov chain is communicating, there exists k0 ≥ 0, such that for all k ≥ k0, the k-step transition probabilities
are strictly positive. Corollary 1 of Denardo (1977) implies that k0 ≤ |Z|2. Equipped with (i), the proof of (ii) follows
immediately from Definition 3 and the proof of (iii) follows similarly as in the proof of Propostion 5.

Remark 3. In view of Lemma 41, under Assumption 5, we can easily verify most of our results in Appendix C generalize.
Most importantly, for all a ∈ A, the S2-step transition PS2

a will be η-regular, even though the state space X is of size n≫ S.
Consequently, the S2-step transitions of the induced Markov chains under our model will also inherit the η-regularity.

L.2 Bernstein-type concentration bounds for Markov chains with restarts.

The extension of the concentration bound presented in Theorem 10 for the time-homogeneous Markov chain immediately
follows under the assumption that the Markov chain is aperiodic and communicating.

Theorem 13. Let {(X(t)
h )Hh=1}t∈[T ] be a collection of i.i.d. time-homogeneous Markov chains over a finite state space Z ,

with transition probability matrix P and initial distribution µ ∈ P(Z). We assume that µ and P k are η-regular, and that P
admits a stationary distribution ν. Let (ϕh)h≥1 be sequence of mapping from X to R, bounded and measurable. Then we
have that for all u ≥ 0,

P

(
T∑

t=1

H∑
h=1

ϕh(X
(t)
h )− Eµ[ϕh(X

(t)
h )] > u

)
≤ k exp

(
− u2

2THVµ,P,ϕ + 2
3MP,ϕu

)
where

Vµ,P,ϕ ≤ poly(η)k2 max
h≥1,i∈{0,...,k−1}

{
VarPk(x,·)[ϕh],VarµP i [ϕh]

}
,

MP,ϕ ≤ poly(η)kmax
h≥1
∥ϕh∥2.
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Proof sketch of Theorem 13. In fact, the proof steps are similar to those of the proof of Theorem 9 with some extra steps.
First, recall from the proof of Lemma 7 that we may write

H∑
h=1

ϕh(Xh)− Eµ[ϕh(Xh)] =

H∑
ℓ=1

Zℓ

(
H∑

h=ℓ

(P −Π)h−ℓϕh

)
=

k−1∑
i=0

Si

with

Si =

H/k∑
ℓ=1

Zℓk+i

(
H∑

h=ℓk+i

(P −Π)h−ℓϕh

)
where we assume for simplicity that H/k is an integer. We note that for each i ∈ {0, . . . , k − 1}, Si is a martingale. We
will analyze each Si separately and then combine our concentration bounds via a union bound. Now let i be fixed, following
a similar argument as in the proof of Theorem 9, we can conclude by upper bounding the terms

Vµ,P,ϕ = max
z∈Z,ℓk+i∈[H]

{
VarPk(z,·)

[
H∑

h=ℓ

(P −Π)h−ℓϕh

]
,VarµP i(z,·)

[
H∑

h=ℓk+i

(P −Π)h−ℓϕh

]}

MP,ϕ =

∥∥∥∥∥
H∑

h=ℓk+i

(P −Π)h−ℓϕh

∥∥∥∥∥
∞

.

We recall that we used Lemma 9 and Lemma 10 for that. Now, we shall provide the key steps that need to be adapted in
order to obtain similar lemmas. First, we can establish, following a similar reasoning as in Lemma 9 that for any η-regular
distribution µ, we have

Vµ

[
H∑

h=ℓ

(P −Π)h−ℓϕh

]
≤

(
H∑

h=ℓ

∥∥(P −Π)h−ℓ(ϕh − µϕh1)
∥∥
∞

)2

≤

( ∞∑
h=0

kmax
i∈[k]

∥∥(P −Π)kh(ϕhk+i − µϕhk+i1)
∥∥
∞

)2

where we recall here that k = |Z|2, upper bound naively the sum by the infinite sum, then split the sum into blocks of size
k to obtain the final inequality. Next, we can easily verify that for all h ≥ 1, P kh, Π and µ are all η-regular since P k is
η-regular. Thus, since (P −Π)k = P k −Π, we can obtain in a similar fashion as in the proof of Lemma 9, we have

max
x,y∈Z

∣∣∣∣ (P −Π)kh(x, y)

µ(x)

∣∣∣∣ ≤ η2 − 1

Thus, we have for all h ≥ 1,

max
i∈[k]

∥∥(P −Π)kh(ϕhk+i − µϕhk+i1)
∥∥
∞ ≤ 2(η2 − 1)δ(P k)max

h≥1
∥ϕh − µϕh1∥µ

≤ 2(η2 − 1)

(
1− 1

η

)h

max
t≥1
∥ϕt − µϕt1∥µ

where in an intermediate step we use

∥(P −Π)khg∥∞ ≤ 2δ(P kh)∥g∥∞ ≤ 2(δ(P k))h∥g∥∞ ≤ 2

(
1− 1

η

)h

∥g∥∞

for all g, such that ∥g∥∞ <∞, where again the proof follows similarly as in the proof of Lemma 10. Therefore, we obtain
at the end that for ℓ ∈ [H].

Vµ,P,Φ ≤ poly(η)k2 max
h≥1

Varµ[ϕh]

MP,Φ ≤ poly(η)kmax
h≥1
∥ϕh∥∞
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Now, to further extend the above concentration to time-inhomogeneous Markov chains, we need a somewhat stronger
assumption on the sequence of the transition matrices (Ph)h≥1. More precisely, along with the assumption that all Ph’s are
communicating and aperiodic, we also need to impose that

∀m ≥ 1, lim
n→∞

δ

(
n∏

i=m

Pi

)
= 0

where we recall that δ(P ) denotes the Dobrushin coefficient of the stochastic matrix P (see Definition 3 in Appendix C).

One observation is that our results for BMDPs do not require the use of a concentration for a time-inhomogenous Markov
chain, except for our horizon-free guarantee in Theorem 6, which only needs the bounds established in Lemma 9 and Lemma
10. Extension to the time-inhomogeneous case is left to future work.

L.3 On the lower bound for the latent state decoding error rate

To extend our lower bound (Theorem 1), we have to be careful when using the change-of-measure argument. More precisely,
when defining the alternative models, we have to make sure that the absolute continuity of the dynamics under the true
model, with respect to the dynamics of the perturbed models, holds. This will result in technical manipulations that will
require a new definition of I(x; Φ) and I(Φ).

L.4 On the performance guarantee of the initial spectral clustering (Algorithm 1)

The algorithm of the initial clustering will remain the same and we expect that its performance guarantees will still hold
under the relaxed assumption. As for the analysis, equipped with Theorem 13, we can immediately obtain all the required
concentration results to prove Theorem 2.

Adapting the analysis of the concentration of the trimmed matrix. This will be the main part that requires changes in
the proofs. First, all the concentration results used in proving Theorem 2 that relied on Theorem 9 are actually very easily
modified by instead using Theorem 13. We will only pay an additional price for the dependence on S (which will not affect
our results in terms of scaling in n). Second, our proof relied on the fact that the underlying Markov chains will visit each
context x ∈ X with a probability that is roughly of order 1/n within two steps. That is why we used a two-step conditioning
(See Appendix F.1). This can be easily fixed by instead using (S2 + 1)-step conditioning. To this aim, we may define for all
a, t, h, Ña,t,h = E[N̂a,t,h|N̂a,t,h−S2−1], and analyze the matrix differences

∀r ∈ [S2],

T∑
t=1

H/S2∑
ℓ=1

N̂a,t,ℓS2+r − Ña,t,ℓS2+r

whenever this is required in the proof instead of the odd and even terms, and then conclude by union bound. This will only
come at a cost of poly(S)≪ n in the new concentration bounds (see Appendix F.6). Finally, we will obtain the same results
up to some minor technical details.

Separability, S-rank approximation, and ℓ1-weighted-K-means. These parts in the proof of Theorem 2 will practically
remain unchanged, except for the separability section for which we need to take into account the (S2 + 1)-step conditioning.
Again, we will obtain the same results up to minor technical details.

L.5 On the guarantee of the iterative likelihood improvement (Algorithm 2)

Algorithm 2 corresponding to the iterative likelihood improvement is inspired by our lower bound. Therefore, the expression
of the updates in the algorithm might change depending on how the definition of I(Φ) and I(x; Φ) change. As for the
analysis, we expect that the proof of Theorem 3 will not change much except for the requirement of new concentration
bounds which again will be immediately obtained from Theorem 13.

L.6 On the guarantees for reward-free RL

For the reward-specific setting, the horizon-free result of Theorem 6 may not be preserved, unless we are able to recover the
claims of Lemmas 9 and 10 with time-inhomogeneous Markov chains. On the other hand, the results of Theorem 6 and
Theorem 7 will still hold with perhaps slightly worse dependencies in S,A,H , but not in n and T .
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Figure 3: The clustering error rates with corruptions for various choices of (a) δ1’s, (b) δ2’s, and (c) δ3’s.

M Deferred Experimental Details

M.1 Missing details for Section 7

The k-median clustering in Algorithm 1 is implemented using the pyclustering package (Novikov, 2019). In each setting,
each parameter was varied as follows: T ∈ {5, 10, · · · , 45} with H = 100 and η = 4.0; H ∈ {20, 30, · · · , 100} with
T = 30 and η = 4.0; η ∈ {1.5, 2.0, · · · , 6.0} with T = 30 and H = 100.

M.2 Additional experiment: clustering with random corruptions

In this additional experiment (same setting as in Section 7), we show how robust the clustering algorithm is to corruption.
For simplicity, we consider an oblivious adversary that chooses δ1T trajectories as well as δ2n contexts and δ3A actions (for
each selected trajectory) to corrupt, uniformly at random. Contexts are corrupted by replacing them with other contexts in
different clusters, and actions are corrupted by replacing them with other actions. Over all experiments, we fix T = 30,
H = 100, and η = 4.0 vary each corruption ratio δ1, δ2, δ3 separately by fixing the other two ratios. Precisely, each ratio
was varied as follows: δi ∈ {0, 0.1, · · · , 0.9} with δj = δk = 0.4, for {i, j, k} = {1, 2, 3}.

Figure 3 shows the results for clustering with corruption. As expected, the error rate increases (on average) as the corruption
level becomes more severe. Note that for our example, the performance of our clustering is particularly robust to δ2
(proportion of corrupted contexts) and δ3 (proportion of corrupted actions). Surprisingly, it can be seen that up to a certain
corruption level, our algorithm recovers near-exact clustering.

For future work, it would be interesting to theoretically and empirically investigate the effect of oblivious and adaptive
adversarial corruption on clustering in BMDPs. Empirically, one could start by constructing various other types of BMDP
environments and similarly test out our algorithms. Theoretically, one may take inspiration from recent progress on robust
community detection (Al-Sharoa et al., 2021; Liu and Moitra, 2022) or robust RL (Wu et al., 2021). Another future direction
is to make the algorithm provably these corruptions. One possible approach is to utilize adaptive clustering schemes (Yun
and Proutière, 2014, 2019) or active model estimation (Tarbouriech and Lazaric, 2019).
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